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ABSTRACT

Coronavirus Disease 2019 (COVID-19), declared a global
pandemic by the World Health Organization, mainly affects
the pulmonary tissues, playing chest X-ray images an impor-
tant role for its screening and early detection. In this con-
text, portable X-ray devices are widely used, representing an
alternative to fixed devices in order to reduce risks of cross-
contamination. However, they provide lower quality and de-
tailed images in terms of spatial resolution and contrast. In
this work, given the low availability of images of this recent
disease, we present new approaches to artificially increase the
dimensionality of portable chest X-ray datasets for COVID-
19 diagnosis. Hence, we combined 3 complementary Cycle-
GAN architectures to perform a simultaneous oversampling
using an unsupervised strategy and without the necessity of
paired data. Despite the poor quality of the portable X-ray im-
ages, we provide an overall accuracy of 92.50% in a COVID-
19 screening context, proving their suitability for COVID-19
diagnostic tasks.

Index Terms— COVID-19, Portable chest X-ray images,
Oversampling, CycleGAN, Deep Learning

1. INTRODUCTION

The novel coronavirus SARS-CoV-2 appeared in Wuhan,
Hubei province (China) at the end of 2019 and was rapidly
spread worldwide. It causes a respiratory infection known as
Coronavirus disease 2019 (COVID-19) that was declared as
a global pandemic by the World Health Organization (WHO)
[1]. The most common symptoms of COVID-19 are fever,
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coughing, pneumonia or respiratory distress syndrome, mak-
ing the disease difficult to distinguish from other common
infections like pneumonia or influenza-like viruses [2].

During the last decades, chest X-ray images have been
widely used as a method for the clinical diagnosis of rele-
vant pulmonary issues and diseases like fibrosis, pneumonia,
pleural thickening or lung nodules, among others [3]. In the
context of the global pandemic caused by the COVID-19 dis-
ease, radiologists are asked to prioritize chest X-ray images
of patients with clinical-epidemiological suspected COVID-
19 infection over any other imaging evaluations.

Given the relevance of this topic, several works have
been aimed at solving the problem of automatic screening
for COVID-19 using the chest X-ray images. In this sense,
deep learning has shown a significant performance, providing
satisfactory results [4, 5, 6, 7].

Typically, the availability of sufficient images is crucial
for the development of accurate CAD systems. Thus, few
studies specifically addressed the paradigm of oversampling
over chest X-ray datasets. As reference, Malygina et al. [8]
proposed a methodology for the oversampling of X-ray im-
ages using a Cycle Generative Adversarial Network (Cycle-
GAN) in the analysis of pneumonia.

Given the recent apparition of the COVID-19 disease, the
image availability is still reduced. In that context, at the mo-
ment, only Zebin et al. [9] used a CycleGAN to generate
new images, considering only the minority COVID-19 class.
Therefore, this work partially addresses the problem, without
considering all the classes for oversampling, which may bias
the final learning process. In addition, the authors used the
COVID-19 Image Data Collection [10], where the X-ray im-
ages, mostly from fixed capture devices with good quality and
detail, were extracted from online publications, websites, or
directly from the PDF files using cropping tools and, there-
fore, without any reference to the type of X-ray device used.
In this line, the American College of Radiology (ACR) rec-
ommends to use portable chest X-ray machinery [11], which
is critical to minimize the risks of COVID-19 transmission
[12]. However, portable X-ray devices provide lower quality
images in terms of spatial resolution and contrast, providing



lower details for the diagnostic process. Therefore, an image-
based computational analysis is more challenging compared
to images from fixed X-ray devices that are of better quality.

In this work, we propose a novel fully automatic method-
ology for artificially increasing the dimensionality of the
chest X-ray dataset, using an unsupervised strategy and with-
out the necessity of using paired data. To achieve this, we
combined 3 complementary CycleGAN architectures to per-
form a complete oversampling task, simultaneously consid-
ering the different combinations among healthy, pathological
and genuine COVID-19 cases. To validate our proposal, ex-
haustive experiments were performed using a portable X-ray
dataset that was obtained from a real COVID-19 diagnostic
context. Despite the poor quality, portable X-ray images
are now frequently used in healthcare services, minimizing
infection control problems and, therefore, the risk of cross-
contamination. To the best of our knowledge, this proposal
represents the only study specifically designed for the over-
sampling and analysis of COVID-19 in chest X-ray images
acquired by means of portable devices, in combination with
healthy patients and other pulmonary diseases.

2. MATERIALS AND METHODS

The proposed methodology is divided into 2 main stages, as
illustrated in Fig. 1. Firstly, a set of generated X-ray images
is obtained, taking advantage of 3 complementary CycleGAN
architectures in order to perform a simultaneous oversampling
using an unsupervised approach (Section 2.2) of all the pos-
sible situations: healthy patients, pulmonary pathological pa-
tients and genuine COVID-19 patients. After that, the system
provides a computational approach for the analysis of the de-
gree of separability between chest X-ray images of the differ-
ent possible scenarios of pulmonary diseases (Section 2.3).

2.1. Dataset

All the X-ray images were provided by the Radiology Ser-
vice of the Complexo Hospitalario Universitario A Coruña
(CHUAC). They were obtained from portable devices from
a real COVID-19 screening context. These images, despite
that provide less quality and details, are frequently used at
the moment in the healthcare services in this diagnostic sce-
nario given the flexibility and versatility of the capture de-
vices. Specifically, the particular used capture models were
Agfa dr100E GE and Optima Rx200. This dataset, designed
specifically for this study, consists of 600 chest X-ray images
from 600 patients divided into 200 healthy cases, i.e. without
pleural or pulmonary diseases (without considering cardiol-
ogy or hepatic diseases), 200 pathology cases, i.e. patients
diagnosed with pulmonary diseases that can be present symp-
toms similar to COVID-19 and 200 genuine COVID-19 cases.

2.2. Computational approaches for data augmentation

To obtain the augmented dataset, the oversampling paradigm
is divided into 3 different scenarios considering the combina-
tions among healthy, pathological and COVID-19 cases.

Healthy vs Pathological. In this case, the set of healthy
images is considered alongside the pathological images.
From this analysis, two different pathways are followed.
The first one translates the images from healthy to patho-
logical. Regarding this idea, the system adds pathological
patterns that belong to diseases others than COVID-19. On
the other hand, the second pathway converts the images from
the pathological scenario to a healthy environment.

Healthy vs COVID-19. Chest X-ray images labeled as
healthy are translated to a COVID-19 environment. Similarly,
two pathways are followed. The first one converts healthy im-
ages to COVID-19, presumably adding pathological patterns
compatible with COVID-19. In the second pathway the net-
work should remove COVID-19 pathological patterns from
the images, generating synthetic healthy images.

Pathological vs COVID-19. Similarly, in the first path-
way, images labeled as pathological are converted to a
COVID-19 scenario. The method should remove patholog-
ical patterns from the original image, then adding structures
related with the COVID-19 disease. In the second pathway,
the same idea is considered but in the opposite direction.

Network architecture and training details. The whole
amount of images is used for training the CycleGAN [13]
architecture. Hence, we adopted a ResNet-based generator
with 9 residual blocks as discriminating network. All the ap-
proaches of this stage have the same parameter set. Every
model is trained using the Adam algorithm from scratch dur-
ing 250 epochs with a mini-batch size of 1 and a constant
learning rate of α = 0.0002 during the whole process.

2.3. Computational approach for screening tasks

For the second stage, we designed a computational approach
for the analysis of the degree of separability between chest
X-ray images and the suitability of the generated samples.
On one hand, we analyze the separability between the images
generated by the oversampling process. Also, we analyzed
the COVID-19 screening using the new oversampled dataset.

Network architecture and training details. A Dense
Convolutional Network Architecture (DenseNet) [14] was
used, in this state, to test their potential in the proposed ap-
proaches. The training details of this experiment are the same
used in [15], given their adequate results for this issue. Thus,
the input dataset was randomly partitioned in three sets with
the 60% of the images for training, 20% for validation and the
remaining 20% for testing purposes. In addition, the weights
from a model pretrained on the ImageNet dataset was used
for the network initialization. In particular, this model was
trained using cross-entropy as loss function. The network
weights optimization was performed using the algorithm of



Fig. 1: A general overview of the proposed paradigm.

Fig. 2: Examples of generated chest X-ray images from the complete oversampling methodology. 1st block, healthy vs Patho-
logical scenario. 2nd block, Healthy vs COVID-19 scenario. 3rd Pathological vs COVID-19 scenario.

Stochastic Gradient Descent (SGD) with a constant learning
rate with a value of α = 0.01. In the same way, the value of
mini-batch size was fixed to 4 and a first-order momentum of
0.9 was considered. With respect to the number of repetitions,
this process was performed 5 times.

2.4. Evaluation

The performance of these proposed approaches was evaluated
making a comparison between the actual annotations made in
the original dataset against the outputs predicted by the net-
work. Thus, considering the values of True Positives (TP),
True Negatives (TN), False Positives (FP) and False Nega-
tives (FN), several performance metrics commonly used were
considered: precision, recall, F1-Score and accuracy.

3. EXPERIMENTAL RESULTS

In this work, 4 representative experiments were conducted.
The first 3 were used to validate the degree of separability
among the generated images obtained from the oversampling
process and their genuine utility. Next, a fourth experiment
was performed to distinguish between cases of patients with
COVID-19 from other similar respiratory diseases or even
healthy patients. Fig. 2 shows some representative exam-
ples of the generated images obtained from the CycleGAN
oversampling approaches that illustrate the remarkable and
well-synthesized differences in the pulmonary regions.

1st experiment: analysis of the separability of healthy
and pathological generated examples. In this first case,
we designed an experiment to evaluate the capability of the
system to convert images from healthy to pathological and
vice versa. To do so, we consider the set of 200 healthy
generated images alongside the set of 200 pathological gen-
erated images. The method achieved a mean accuracy of



0.9641± 0.0326 for training, 0.9100± 0.0533 for validation
and a global accuracy of 0.9375 in terms of test (Table 1).

Table 1: Performance at the test stage for the separability
between healthy and pathological generated examples.

Cases Precision Recall F1-Score
Healthy 0.92 0.95 0.94

Pathological 0.95 0.93 0.94

2nd experiment: analysis of the separability of healthy
and COVID-19 generated examples. In this second exper-
iment, we proved the system capability of converting images
from a healthy environment to a COVID-19 scenario and vice
versa. To do so, we considered the 200 healthy generated
images set alongside the 200 generated images with specific
COVID-19 symptomatology. After 5 repetitions, the model
achieved a mean train accuracy of 0.8970± 0.0981 for train-
ing, 0.8512 ± 0.0753 for validation and a global accuracy of
0.8687 in terms of testing (Table 2).

Table 2: Performance at the test stage for the separability
between healthy and COVID-19 generated examples.

Cases Precision Recall F1-Score
Healthy 0.84 0.90 0.87

COVID-19 0.90 0.84 0.87

3rd experiment: analysis of the separability of patho-
logical and COVID-19 generated examples. In this ap-
proach, we proved the system ability to convert images from
pathological to COVID-19 and vice versa. To do that, the
whole set of 200 pathological generated images is used along-
side the set of 200 COVID-19 generated examples. After 5
iterations the model obtained a mean accuracy of 0.9050 ±
0.1336 for training, 0.8587 ± 0.1333 for validation and a
global accuracy of 0.9375 in terms of testing (Table 3).

Table 3: Performance at the test stage for the separability
between pathological and COVID-19 generated examples.

Cases Precision Recall F1-Score
Pathological 0.91 0.98 0.94
COVID-19 0.97 0.90 0.93

4th experiment: analysis of the COVID-19 screening
using the original dataset with oversampling. In this last
experiment, we designed a scenario to evaluate the degree of
separability between cases of patients with COVID-19 from

other similar respiratory diseases and even healthy patients.
To do so, this approach considers both the original dataset
(600 images) and the new generated dataset (1,200 images).
In this case, we use a proportion of 2

3 and 1
3 between neg-

ative and positive classes, respectively. After 5 repetitions,
the model achieved a mean accuracy of 0.9700 ± 0.0276 for
training, 0.9050±0.0315 for validation and a global accuracy
of 0.9250 in terms of testing. Additionally, Fig. 3 shows the
performance of the model in testing, showing a 0.9328 cor-
rect classification ratio for the Healthy/Pathological scenario
whereas a 0.9098 ratio for the COVID-19 examples.

Fig. 3: Confusion matrix results for the 4th experiment on the
test set with the ratios of correct classification and misclassi-
fication for the COVID-19 screening.

4. CONCLUSION

This work presents novel and fully automatic approaches
specifically designed to artificially increase the size of the
chest X-ray dataset used for COVID-19 diagnosis. The
dataset specifically designed for this work has been provided
by the Radiology Service of the Complexo Hospitalario Uni-
versitario A Coruña (CHUAC). All images were obtained
from portable devices from a real COVID-19 diagnostic sce-
nario. Due to their poor quality and details, portable X-ray
images represent a significant challenge for the automatic
diagnosis of COVID-19. In this complex scenario, 3 comple-
mentary CycleGAN architectures were used simultaneously
to perform a complete oversampling of all the considered
classes (healthy, pulmonary pathological and COVID-19),
avoiding biases in the classification process. After that, the
system provides a computational approach for the analysis
of the degree of separability between chest X-ray images of
the different possible scenarios of pulmonary diseases. Sev-
eral experiments were conducted to prove that the proposal
is able to translate portable X-ray images between different
scenarios, generating a set of synthetic images with a suitable
separability. In the same way, the obtained results show the
robustness of the proposal in the screening of COVID-19,
obtaining a high ratio of correct classifications for both the
Healthy/Pathological and the specific COVID-19 cases.
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