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ABSTRACT

The epiretinal membrane (ERM) is an ocular pathology that can cause visual distortions. 
To prevent a loss of vision, symptomatic ERM needs to be removed before it can cause 
irreversible damage. In order to do this, the ERM needs to be located early, so that it 
can be peeled from the retina. This chapter explores an automatic methodology for ERM 
segmentation, as well as its intuitive visualization in the form of colour maps. To do this, 
visual features that are compatible with ERM presence are extracted from ophthalmologic 
images by using computer vision algorithms and deep learning models. This methodology 
achieved satisfactory results, reaching a dice coefficient of 0.826 and a Jaccard index of 
0.714, contributing to highlight the applicability of deep learning models for the detection 
of pathological signs in medical images.
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Fully Automatic Epiretinal Membrane Segmentation

INTRODUCTION

Thanks to recent advances in computation architectures and in the development 
of new and improved artificial intelligence algorithms, Computer-aided Diagnosis 
(CAD) systems are becoming increasingly relevant in healthcare services, finding 
application in fields such as audiometry (Fernández, et al., 2018), radiology (Romeny 
et al., 1998) or encephalography (Hosny et al., 2018). Among the different domains 
of application of CAD systems, the analysis of medical images stands out.

Deep learning is a subset of machine learning focused on the development of 
artificial neural network models that have multiple layers in order to progressively 
extract higher-level features from data (LeCun et al., 2015). Convolutional neural 
networks are artificial neural networks that use the convolution operation in order 
to be able to extract visual features from images (Lecun et al., 1998). Thanks to the 
advent of deep convolutional neural networks, deep learning models are nowadays 
used for several tasks in the field of image analysis. These tasks can range from 
image classification (Krizhevsky et al., 2017), in which images are separated in 
classes according to their content; to image segmentation (Long et al., 2015), where 
images are partitioned into multiple segments, or every pixel in their content is 
labelled; to regression (Lv et al., 2014), where a value or a set of values are extracted 
from the images. With a focus on healthcare, deep convolutional neural networks 
have successfully been used to analyze and study anatomical structures as well as 
pathological signs in medical images of several types (Shen et al., 2017; Litjens 
et al., 2017). In particular, deep learning-based CAD systems have found uses in 
medical imaging techniques such as magnetic resonance imaging (Kamnitsas et al., 
2017), conventional radiography (Lakhani & Sundaram, 2017), ultrasound (Cheng 
et al., 2016) or computed tomography scans (Setio et al., 2016). These systems 
have demonstrated that their performance can be on par with, or even exceed that 
of human experts in different diagnosis-related tasks (Litjens et al., 2017; Lee et 
al., 2020; Ting et al., 2017; Gulshan et al., 2016).

In ophthalmology, Optical Coherence Tomography (OCT) is an imaging technique 
that allows the in-depth visualization of tissue (Huang et al., 1991). By shining a 
beam of low coherence (high bandwidth) light over the tissue and measuring the 
differences in phase and amplitude in the reflected beam compared to a reference 
one, a one-dimensional reading or A-Scan can be acquired at every scanned spot. 
This A-Scan contains depth-wise information about the reflectivity of the scanned 
tissue. If this beam is swept through the surface of the tissue, these readings can 
be combined into a two-dimensional reading or B-Scan (Figure 1). These B-Scans 
can be visualized as high-resolution images which show a cross-sectional view of 
the tissue, like a tomogram containing the histological information of the scanned 
tissue. Furthermore, these B-Scans can be laterally combined to produce a volumetric 
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representation of the underlying tissue. This makes OCT a remarkably useful 
technique for the analysis of healthy or pathological ocular structures since these 
volumes allow the complete histological visualisation of the retinal tissue in vivo 
and in a non-invasive manner. For reference, OCT images can be used for the study 
of the vascular structure of the eye (Kashani et al., 2017; de Moura et al., 2016, 
2017a; Spaide et al., 2018); for the diagnosis of glaucoma (Hood, 2017) (Tan et al., 
2009; Jaffe & Caprioli, 2004), which is the most common cause of blindness in the 
developed world for people over 50; exudative macular disease (de Moura et al., 
2017b), one of the most common causes of blindness in the developed world; or 
that of diabetic macular oedema (Hee, 1995; de Moura et al., 2019, 2020; Mookiah 
et al., 2013), the leading cause of blindness in patients of diabetes mellitus.

This chapter explores a methodology developed for the automatic detection and 
segmentation of one such ocular pathology, the Epiretinal Membrane (ERM). The 
ERM is a thin fibrocellular sheet that may appear over the retina surface. This layer 

Figure 1. Example of an OCT slice or B-Scan, illustrated over an eye fundus image 
showcasing its location
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is mostly transparent and can be imagined as a thin film of cellophane stuck to the 
fundus of the eye. It is known by different names such as cellophane maculopathy, 
macular pucker, macular fibrosis, or surface wrinkling retinopathy. These names 
reference the effects that this layer can have over the tissue of the retina. While it 
is mostly transparent and may not cause any symptoms, the ERM may also start 
to harden and contract after appearing. This causes mechanical traction over the 
underlying tissue, which in turn may start to deform and wrinkle the retina. The 
ERM is typically formed over the boundary between the vitreous body and the retina 
tissue, this area is known as the Inner Limiting Membrane (ILM). If the ERM is 
positioned over the retinal macula, these deformations may cause metamorphopsia 
(Matsumoto et al., 2003), a visual distortion that can manifest itself as a bowing in 
the centre of the visual field. For example, when observing parallel lines such as 
in an Amsler grid, these may appear to bow and bend to a patient suffering from 
metamorphopsia (Figure 2). Additionally, the deformations provoked by the ERM can 
also cause a thickening of the macular tissue, and in severe cases, the disappearance 
of the foveal pit. Although it is normally idiopathic, the ERM can also appear as a 
secondary factor to other related ocular pathologies. Diabetic macular oedema has 
a high prevalence of related ERM, with studies reporting that between 27 and 34% 
of oedema patients present ERM (Yamamoto et al., 2001; Ghazi et al.,2007). It can 
also appear as a response to external trauma to the eye, as a response to surgery or 
as a posterior complication of vitreous detachment or macular hole, among others. 
Generally, its appearance is caused by the retraction of the vitreous gel from the 
macula.
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If the ERM is allowed to contract and deform the retina for long, some of the 
deformations it produces may become permanent. Treatment for symptomatic 
ERM involves a surgery known as pars plana vitrectomy (Suh et al., 2009), where 
a series of instruments are used to scrape the surface of the retina and peel away the 
fibrocellular layer. This surgery has higher chances of preserving the vision of the 
patients if performed early, before the exerted traction can further deform the tissue 
(Massin et al., 2000; Rahman & Stephenson, 2014), and it requires that the expert 
determines the extent and location of the ERM. This underscores the relevance of 
an early and accurate diagnosis of the ERM. Due to its transparency, the ERM is 
difficult to detect in eye fundus images (Figure 3). Often, only the deformations the 
ERM causes over the retina are visible in this imaging technique, and even then, 
only those that are very prominent. In OCT images, however, the ERM appears as 
a bright layer over the ILM (Figure 4). This imaging modality makes it much easier 
for the experts to detect and diagnose the ERM, as its high reflectivity facilitates 
its visualisation. Because of this, ERM diagnosis is usually performed by experts 
visually inspecting OCT images.

Figure 2. Example of the visual distortions that the metamorphopsia may cause to 
patients suffering from ERM over an Amsler grid
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While the ERM is easier to detect in OCT slices, the visual inspection of images 
with the intention of screening for ERM signs is a time-consuming and inherently 
subjective process. Furthermore, the ERM is not the only reflective surface that can 
appear in OCT images, since visual artefacts caused by the forwards and backwards 
scattering of light can produce noise and bright spots in this image modality, making 
the visual detection of the ERM in OCT a non-trivial task.

Figure 3. Example of a case of symptomatic ERM in an eye fundus image. Small 
creases over the tissue can be observed in the highlighted area
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In this chapter, a methodology developed for the automatic segmentation of 
the ERM in OCT images is explored. The aim of this methodology is to provide 
the experts with an intuitive visualisation of the ERM presence (or lack thereof) in 
OCT volumes. To do this, the methodology consists of a series of three steps aimed 
at the preliminary detection of our Region of Interest (ROI), the segmentation of 
the ERM and, finally, the generation of intuitive segmentation maps that display 
the ERM overlaid on a reconstruction of the eye fundus, generated based on the 
original OCT volumes. These maps are also post-processed to incorporate cross-slice 
information into the segmentation results, helping minimise the stochastic errors 
that may be produced by the visual artefacts that are present in OCT images. The 
complete methodology makes use of different computer vision techniques, as well 
as deep learning algorithms in order to extract and analyse visual features which 
are relevant for the detection and diagnosis of the ERM. Moreover, thanks to the 
use of machine learning models, the segmentation process can be trained directly 
from annotated images, implicitly learning which visual features are relevant for 
the task at hand. This greatly simplifies the development process of CAD systems 
making use of this methodology.

The layout of this chapter is as follows: The Background section introduces 
how other works in the literature have approached the problem of the diagnosis of 
this pathology. The Epiretinal Membrane Segmentation section explains how each 

Figure 4. OCT slice displaying the ERM and ERM-related lesions
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of the steps that comprise this methodology are performed, the data that was used 
for its development, the deep learning model training details and the results that 
were obtained from evaluating the methodology. Solutions and Recommendations 
covers some of the solutions that were designed for the issues that arose during the 
development of this methodology. Future Research Directions indicates the different 
approaches that may be taken to further advance in the detection of this pathology. 
Finally, in Conclusion, the main ideas exposed in this chapter are summed up.

BACKGROUND

Due to the relevance of a disease such as the ERM, various works have addressed 
the challenge presented by its detection as an opportunity for the application of 
CAD systems that can aid in its diagnosis. This section shares an overview of how 
different works in the literature have approached the problem of detecting the ERM 
in medical imaging, a brief description of each one, as well as a summary of the 
advantages they may provide to the field of study and the shortcomings they might 
suffer from.

In the beginning, works such as the proposal by Wilkins et al. (1996) offered 
semi-automatic approaches for ERM diagnosis. These, however, relied on an initial 
manual annotation made by the expert indicating the location of the ERM in order 
to measure the macular thickening that it caused and assess the ERM.

Later works have introduced automatic methods, aiming to overcome the 
reliance on an initial expert annotation. As reference, Lu et al. (2018) used deep 
learning models for the detection of different pathologies, the ERM being one of 
them. A convolutional neural network was trained to classify images according 
to which of the four considered pathologies was present. The results obtained by 
this convolutional model were compared to those produced by two experts on 
the same task. These results showed that the system achieved a performance that 
was competitive with or better than that of human experts. In the work by Fang et 
al. (2017), the authors propose the detection of multiple macular lesions in OCT 
images. Among these lesions, the ERM was also considered. In order to perform 
this detection, a conventional feature extraction process was performed in segmented 
regions of interest. Using a machine learning-based system, these regions were then 
classified into the different macular lesions. Kuwayama et al. (2019) also proposed 
a system based on the classification of OCT slices. In a similar manner to the work 
by Lu et al., the authors used a convolutional neural network for the classification 
into four different pathologies, achieving competitive results.

Sonobe et al. (2018) presented a study in which they compare the performance of 
support vector machines and deep learning models at detecting ERM cases in OCT 
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volumes. Images from the surface of the eye fundus, obtained from the software 
provided by the OCT scanner were used as input and a classification was performed 
by making use of the two proposed approaches. The results achieved by the deep 
learning model were higher than those obtained by the support vector machine 
approach. More recently, Lo et al. (2020) used a residual neural network architecture 
to screen for ERM in OCT images. Non-retinal specialised ophthalmologists were 
asked to participate in a test where their results were compared to those achieved 
by the residual neural network. In this comparison, the deep learning models 
performed slightly better than the ophthalmologists. More recently, Parra-Mora et 
al. (2021) described the use of four Deep learning-based classification architectures 
for the screening of the ERM. In the results, the authors claim a high discriminative 
performance by the deep learning models at classifying between OCT slices that 
displayed healthy eyes and slices showing ERM presence.

The results that were obtained in these works collectively show the potential that 
deep learning models possess for the screening of the ERM. These models have 
been proven to achieve a performance that can be on par with human experts and, 
in some cases, even exceed that of certified specialists. Additionally, comparisons 
between classical machine learning-based approaches that use conventional feature 
extraction and selection and deep learning models have shown that the latter may 
have the upper hand in terms of results. All of the previously mentioned approaches 
are based on the classification of OCT slices into whether they show healthy tissue 
or if signs compatible with the ERM are visible in the images. Furthermore, many 
of these proposals are focused on the screening of several pathologies, the ERM 
just being one of those considered and hardly the main focal point of these works.

Conversely, the works by Baamonde et al. (2017a, 2017b, 2019a) showcase 
a series of methods for the characterization of the ERM tissue in OCT images. 
These studies are completely focused on the detection of this pathology by means 
of different approaches such as local luminosity patterns or hand-crafted visual 
features. Moreover, in (Baamonde, et al., 2019b), the authors present the first 
approach for the segmentation of the ERM. This segmentation is done by means of 
the classification of patches. From every patch, the authors extracted a set of 452 
conventional visual features, grey-level co-occurrence matrices, Gabor features, 
local binary patterns, Laws features) to intensity-based (intensity global features, 
grey-level intensity histograms, histograms of oriented gradients), as well as a set of 
domain-specific hand-crafted features. From this set of original features, the authors 
used the Spatial Uniform ReliefF algorithm to select the ones that contributed the 
most to the classification process. Finally, they provide a comparison between 
using random forests, k-nearest neighbours, and support vector machines for the 
classifications of different sets of selected features.
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In this chapter, a refinement of the ERM segmentation methodology proposed 
by Baamonde et al. is explained (Gende et al., 2021). This methodology is refined 
by incorporating deep learning models into the classification process and providing 
an intuitive visualisation of the diseased tissue over a projection of the eye fundus.

EPIRETINAL MEMBRANE SEGMENTATION

This section explains the step-by-step process in which the presented methodology 
for the ERM segmentation in OCT images is subdivided. A visual summary of this 
methodology can be found in Figure 5. As previously mentioned, this segmentation 
methodology consists of a set of three steps, namely: the segmentation of the ROI, 
the classification of image patches and the final reconstruction of the intuitive 
representation. These will be explained in detail in the following subsections, as 
well as the data that was used to develop and test this methodology and the details 
of the neural network model training process.

Figure 5. Graphical summary of the methodology that is explored in this chapter. 
The original OCT volume is first subdivided into 2-dimensional B-Scans. Then, the 
ROI is segmented, and a series of windows centred on the ILM are extracted. These 
windows are classified by a convolutional neural network. Based on this classification, 
the segmentation map is reconstructed and postprocessed. A reconstruction of the 
eye fundus can be generated from the OCT volume. In parallel, this reconstruction 
and the segmentation map are overlaid to create the intuitive visualisation of ERM 
presence over the eye fundus.
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Region of Interest Segmentation

The first step is to segment the ROI location. In order to narrow down the area in 
which to look for the ERM, the boundary in which the ERM may appear if present 
must first be detected. This region is known as the Inner Limiting Membrane. 
Fortunately, due to the transparency of the vitreous body, the ILM is easy to detect in 
OCT slices. In these images, the retinal tissue is visible as are its internal structures, 
while the vitreous body appears as a slightly noisy background. This conveniently 
simplifies the task of detecting the position of the ILM.

Since the ILM appears as a continuous horizontal layer in these images, its position 
can be modelled as a height value. That is, for every image column in any OCT 
slice, there will be a pixel in which the ILM will begin. Thanks to this continuity, it 
is possible to convert this segmentation problem into a problem of determining the 
height of the ILM in every image column, which is much simpler.

To take advantage of the contrast that the ILM possesses in OCT images and 
the fact that the ILM can be modelled as a height value for every vertical column 
of pixels, active contour models can be used to segment the ROI (Gawlik et al., 
2018). Active contour models, or snakes, are a computer vision framework used 
for determining the outlines of objects in images. One of the advantages of this 
framework is its robustness to noise. An active contour model can be defined as a 
set of n points vi for i=0,…,n–1. The contour model is moderated by a set of two 
energies: Eexternal, the external energy which pulls the contour outwards toward the 
edges that are visible in the image and Einternal, the internal energy which elastically 
contracts the contour in order to preserve a smooth curve. Thus, the energy function 
of the snake can be described by Equation 1.

E E s ds E s E ssnake snake internal external
* � � �� � � � �� � � � �� �0

1

0

1

v v v�� �ds (1)

Eexternal draws the snake towards visible edges in the image. It measures how well 
the curve matches image data. it can be described by Equation 2:

Eexternal(v) = -|Gy(v)|2 (2)

where Gy is the gradient in the y-axis. This makes it so that the active contour adjusts 
itself to edges in the image. Since the ILM describes an approximately horizontal 
line, only those pixels that possess the highest gradient in the y-axis are of interest.

On the other hand, Einternal (Equation 3) reflects curve tension and curvature. 
Minimising the internal energy favours smooth, continuous curves.
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where 𝛼(s) and 𝛽(s) are weights which control the sensitivity of the internal energy. 
𝛼(s)penalises the separation between points in the contour. 𝛽(s)penalises oscillations 
between the positions of consecutive points, preserving curve smoothness.

OCT images generally present speckle noise due to the effects of light back-
scattering (Samagaio et al., 2017). This noise can cause the active contours to fixate 
on bright spots that don’t correspond to the real ILM location. In order to get rid of 
this noise, each original OCT slice is first pre-processed using a median filter. This 
filter assigns the median of the surrounding neighbours to each pixel. This way, the 
effects of isolated bright pixels can be minimised. To obtain the horizontal filters, 
a convolution using a y-axis Sobel filter is applied. This pre-processing stage can 
be visualised in Figure 6.

Once an image highlighting the horizontal edges in the original OCT slice has 
been obtained, the active contour can be adjusted. As previously indicated, since 
only the horizontal edge of the ILM is of relevance for this task, the active contour is 
initialised to the top of the image, with a contour point for every image column. These 
are allowed to iteratively move in the vertical axis, minimising the aforementioned 
internal and external energies until convergence. Once the active contour has settled 
over the ILM surface, its vertical position for every image column can be obtained, 

Figure 6. Initial pre-processing of an OCT slice prior to ILM segmentation. The 
image is filtered in order to remove noise and a Sobel operator in the y-axis is 
applied. This way the ILM can be highlighted over the fundus.
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effectively producing the segmentation of this layer. At this point, to proceed with 
the segmentation of the ERM, each ILM pixel will have to be classified into whether 
it is positioned over healthy or diseased tissue. Since a single pixel does not contain 
sufficient information about whether the tissue point it displays is diseased or not, a 
standard image window must first be extracted around each of these pixels. These 
windows contain the visual information surrounding the ILM pixel that is necessary 
for its correct classification. A summary of this process of window extraction can 
be visualised in Figure 7.

Window Classification

Once the region of interest has been segmented and the windows around each pixel 
of the ILM have been extracted, the second step is the classification of each of these 
windows according to whether they are centred around pathological or healthy 
tissue. The classification of these images can be accomplished by employing a 
convolutional neural network. These deep learning models can use the convolution 
operation (Figure 8) in order to make use of the visual information contained in 
images as features. These models are able to learn a number of convolutional filters 
that can extract visual features from the images. The progressive stacking of these 
convolutional filters in depth yields gradually higher-level features. This ability to 
learn high-level visual representations of information directly from images enables 
deep learning models to perform a variety of computer vision tasks.

Figure 7. ILM segmentation. The active contour is allowed to contract downward 
until it converges on the ILM surface. Once the position of the ILM is determined, a 
window is extracted around each ILM pixel. These are to be classified on the next step.
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To classify the image windows, Densely Connected Convolutional Neural 
Networks can be employed (Huang et al., 2017). These deep learning models use 
dense blocks and the progressive concatenation of lower-level features in order to 
propagate these further into the architecture. This aids to mitigate the vanishing 
gradient problem by allowing it to flow directly from the layer closest to the loss 
to the early ones. This way, the layers close to the original data can be updated 
more efficiently than in a conventional convolutional neural network. From among 
the different DenseNet variants, a DenseNet-121 was used for the methodology 
described in this chapter. A schematic representation of this architecture can be 
found in Figure 9.

Figure 8. Convolution operation. A convolution filter is applied centred on every 
image element. The values of the image and the filter are multiplied and gathered 
in order to obtain the resulting value at each point.
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The labels that result from each window classification can be assigned to the 
original central pixels around which the image windows were extracted. This way, 
by combining the location of the ILM with its classification into healthy or diseased 
tissue, a segmentation of the ERM can be effectively produced (Figure 10).

INTUITIVE MAP RECONSTRUCTION

The third and final step is the reconstruction and post-processing of the segmentation 
maps. In order to provide the experts with an intuitive visualisation of the results, 
these are reconstructed in the form of a colour map indicating ERM presence or 
absence overlaid over a representation of the eye fundus. This way, the zone that is 

Figure 9. Basic structure of a DenseNet-121 model, detailing the composition of the 
dense blocks, their dense layers, and the progressive concatenation of visual features

Figure 10. Second step of ERM segmentation. The windows that were extracted in 
the previous step are classified into healthy or pathological. The resulting labels 
are assigned to the original pixels around which the windows were extracted.



103

Fully Automatic Epiretinal Membrane Segmentation

affected by the ERM can be easily interpreted, bypassing the need to observe each 
of the OCT slices.

For this reconstruction, the information contained in the 3D OCT volumes is 
leveraged by taking advantage of the consecutive organisation of the 2D OCT slices. 
These advantages are harnessed in two ways. First, since each OCT tomogram 
represents a parallel slice of the analysed section of the eye fundus, there is a 
structural relation between the information contained in consecutive slices. This 
information can be used to further refine the ERM segmentation by providing a 
consensus of the classifications of the surrounding boundary points. This way, each 
image pixel contributes not only to the classification of the spot where it is located 
and the surrounding pixels in the same slice, but also to the classifications of pixels 
in the surrounding slices, adding an additional cross-slice dimension through which 
visual information can be integrated in the segmentation process. This helps to 
correct spurious misclassifications that may occur due to lighting differences in 
consecutive slices and softens the segmented boundary region. Second, due to the 
organisation of the 2D OCT slices, the visual information contained in each of them 
can be combined in order to recreate a visualisation of the analysed retina section. 
This visualisation allows for the information contained in the whole cube to be 
summed up in order to provide a quick analysis and reference of the location of the 
analysed tissue. This way, the segmentation results and the equivalent location in 
the eye fundus can be viewed at a glance in the form of colour maps.

To obtain these maps, the one-dimensional classification tag arrays of every 
slice are laterally stacked together according to their original location. This creates a 
two-dimensional spatial representation of the classification of every original image 
column, which can be interpreted as an overview of the eye fundus. In these images, 
green represents an ILM spot that was classified as healthy, while red represents a 
diseased one.

Since every image patch was isolated from its context, some outlying pixels 
classified as ERM can appear. These are mainly caused by a few misclassifications 
produced by image artefacts and reflections in the original OCT images. In order 
to correct these, and with the aim to produce a visualisation that better represents 
the appearance that the ERM has over the eye fundus, a post-processing step is 
applied. This step incorporates into the classification of every pixel the information 
contained in the classification of its surrounding neighbours. Additionally, it aims 
to preserve the softer boundaries that the ERM actually presents.
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This post-processing step consists of the filtering of any ERM-classified contour 
under a certain size threshold and morphological filtering. Expert knowledge 
determines that isolated ERM patches of a very small size are extremely unlikely. 
Because of this, the first step of this post-processing stage is to filter out any 
isolated ERM-classified contour under 25 pixels in size. Furthermore, in order 
to correct spurious misclassifications and preserve the regularity of the boundary 
region, a morphological opening is performed on the segmentation map using a 
10×4 pixel horizontal rectangle as structuring element. This operation is described 
by Equation 4, where Ab denotes the translation of A by b. Since consecutive OCT 
slices may show differences in reflectivity, incorporating cross-slice information 
via this morphological filtering helps preserve boundary regularity. This results 
in an image where the isolated ERM pixels are filtered out and with a continuous 
boundary region. The complete reconstruction and the post-processing stage are 
summed up in Figure 11.
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Figure 11. Third step of ERM segmentation. The 1D classification arrays are converted 
to colour pixels are stacked in the original order. The resulting segmentation maps 
are then post-processed in order to filter spurious pixels and produce a regular 
boundary.
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Finally, in order to provide a reference for this map, a representation of the eye 
fundus is created from the original OCT volume. This representation is created by 
averaging every image column in the volume. That is, for every slice in the volume, 
the average value of the pixels in every column is calculated. This value is translated 
into a pixel brightness value, which can be combined with its neighbours in an 
orderly manner, in the same way in which the segmentation map is reconstructed. 
The resulting two-dimensional image shows a representation of the fundus of the eye, 
allowing a visualisation of the foveal pit, the vascular structure of the eye and any 
relevant deformations that may be present in the retina (Figure 12). By overlaying 
the segmentation colour map over the eye fundus reconstruction, the final intuitive 
visualisation of the ERM is produced.

Dataset

The methodology presented in this chapter was comprehensively validated with 
a representative dataset. Specifically, this dataset consisted of 20 OCT volumes 
obtained from different patients. Each of these volumes represents an eye. Out 
of the 20 eyes, 12 belonged to healthy patients, while 8 displayed signs of ERM. 
These volumes contained a total of 2428 2D OCT slices, with 1,536 belonging 
to healthy eyes and 892 to eyes with ERM. The platform used to produce these 
images was a CIRRUS ™ HD-OCT Carl Zeiss Meditec confocal scanning laser 
ophthalmoscope. These images were obtained in accordance with the Declaration 
of Helsinki, as approved by the Ethics Committee of Investigation from A Coruña/
Ferrol (2014/437) the 24th of November 2014. All of the images showing ERM 
signs were manually annotated by an expert indicating the location of the diseased 
tissue, which served as the dataset ground truth. This dataset was partitioned using 
a 4-fold cross-validation, with each fold being divided into three sets, using 50% of 

Figure 12. Reconstruction of the eye fundus representation to be used as reference. 
The average brightness value of each image column of every OCT slice contained 
in the original volume is calculated. These values are then combined to produce a 
2D image representing the retina of the eye.
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the eyes for training, 25% for validation and the remaining 25% for test. In order to 
preserve a balance between ERM-positive and negative cases, as well as to avoid 
oversampling the training set, 40 equispaced windows were extracted from every 
slice belonging to diseased eyes, and 8 from every slice taken from a healthy eye. 
This resulted in a total of 21,667 pathological samples and 27,536 healthy samples. 
These were used to train and validate this methodology, ensuring each eye appears 
in a testing set once.

Training Details

The DenseNet-121 models were trained on the available dataset following the 
4-fold cross-validation. This way, 4 models were trained on their corresponding
training sets. The training process was allowed to run for a maximum of 100 epochs,
selecting the epoch that produced the smallest loss on its corresponding validation
set for testing. Cross-entropy loss was used for training, while Adaptive Moment
Estimation (Adam) was used for optimisation, with a learning rate of 1×10-5, 𝛽1=0.9
and 𝛽2=0.999. The 112×112 pixel windows extracted from the images were resized
to a standard 224×224 resolution. Furthermore, in order to take a better advantage of
the available data, online augmentation was used on the training samples, combining
random horizontal flipping, random vertical and horizontal shearing between -15º
and 15º as well as random rotation of the windows between -15º and 15º (Figure
13). The borders of the images were reflected with the intention to preserve image
continuity after the augmentation.

RESULTS AND DISCUSSION

This methodology achieved generally favourable results, both in terms of the 
classification of image patches and the segmentation of the ERM in the images as a 
whole. In this sense, this methodology can provide an accurate and robust diagnosis 
of this pathology. In this section, the results that were obtained by making use of 
the presented methodology are described and discussed. These results correspond 
to those produced by the convolutional neural networks when trained and cross-

Figure 13. Example of different augmented variations of the same spot showing 
signs of ERM
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validated on the previously described dataset. Commonly reported metrics for similar 
image segmentation tasks such as the Accuracy (Equation 5), Sensitivity or Recall 
(Equation 6), Specificity (Equation 7), Sørensen-Dice Coefficient (Equation 8) and 
Jaccard Index (Equation 9) were used.

Accuracy TP TN
TP TN FP FN

�
�

� � �
(5)

Sensitivity Recall TP
TP FN
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(6)

Specificity TN
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Jaccard TP
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In terms of the classification of the image windows, Figure 14 shows the results 
that were obtained by every model classifying the window samples contained in 
the test set. This figure also displays the results obtained from the classification of 
every window extracted from every pixel contained in the volumes included in the 
test sets, analogously to how this model would perform when analysing an OCT 
volume. Respecting the segmentation maps of the ERM, Figure 15 illustrates the 
Receiver Operating Characteristic as well as the Precision Recall curves described 
by the models. The Dice Coefficient and the Jaccard Index before and after applying 
the post-processing stage can be found in Figure 16.

Figure 14. Accuracy, Precision and Recall of the samples contained in the test sets 
and by extracting a window around every ILM pixel of the images in this set
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These results show that this methodology can provide a robust and objective 
segmentation of the ERM in OCT images. By making use of deep learning models, 
the visual features that are visible at different scales in the images can be used 
for an accurate characterisation of the ERM. Furthermore, by incorporating the 
information contained in the surrounding slices into the classification results, these 
can be refined. Thanks to this post-processing stage, it is possible to achieve better 
results and provide a segmentation that preserves the actual appearance of the 
ERM over the eye fundus. The resulting colour maps overlaid over the eye fundus 
reference have the potential to simplify the analysis process and provide an intuitive 
diagnosis of this disease.

Figure 15. Receiver Operating Characteristic (left) and Precision Recall (right) 
curves corresponding to the results of the proposed methodology
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SOLUTIONS AND RECOMMENDATIONS

During the development process of this methodology, the authors identified a 
number of possible issues and proposed a series of solutions. For the problem of 
determining the balance between the positive and the negative samples in the dataset, 
preliminary testing was performed. In this testing, different sampling conditions 
were compared, with the best results being obtained with the strategy that was 
described. This strategy consisted in sampling 40 equispaced windows from every 
image belonging to a pathological eye and 8 from every image in a healthy eye. 
This relation between samples was chosen in order to preserve a balance between 
the classes, since the healthy eyes are more numerous and do not contain diseased 
tissue while the diseased ones are fewer and do contain healthy tissue. Moreover, 
by using this sampling strategy, there is already a consistent overlap between 
consecutive windows. Increasing the number of samples extracted from the images 
further would provide little to no benefit at the risk of overrepresenting the visual 
information that was already sampled.

The post-processing stage was incorporated to the methodology partially as a 
solution to the problem of isolated bright pixels caused by image artefacts being 

Figure 16. Dice Coefficient and Jaccard Index corresponding to the segmentation 
maps before and after the application of the post-processing stage
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misclassified as ERM-positive spots. Furthermore, there are some differences 
in lighting and overall image quality between consecutive slices, which can lead 
to irregular boundary regions when only the information that is contained in a 
single slice is used to classify ILM pixels. By filtering out the small, isolated spots 
which are not adjacent to any ERM region and by using morphological filtering 
to incorporate cross-slice information into the classification of every ILM pixel, 
these problems can be corrected, resulting in a more uniform segmentation map 
without isolated ERM-positive pixels and with a more regular boundary between 
ERM and healthy regions.

FUTURE RESEARCH DIRECTIONS

Future work dedicated to address ERM diagnosis could focus on leveraging the 
information contained in OCT volumes. This chapter exposed the advantages of 
combining cross-slice information into the segmentation of each ILM spot. These 
advantages could be further exploited in the form of three-dimensional analysis 
by employing 3D convolutional models for the detection of this pathology. This 
way, the convolutional models can better integrate more of the surrounding slice 
information into classifying each of the ILM pixels.

Moreover, this methodology could be simplified significantly by training models 
to perform the automatic segmentation of the ERM tissue. It may be possible to 
train convolutional neural networks to return segmentation masks directly from the 
data, bypassing the series of steps described in this chapter and the over reliance on 
the ILM segmentation pre-processing stage.

Furthermore, the problem of automatically assessing the different stages of ERM 
and its severity remains to be addressed. By performing a multiclass classification of 
each segmented ERM pixel into the stages the ERM may present, a more complete 
evaluation of this relevant eye disease can be produced. In order to achieve many of 
the tasks that are proposed here, a more comprehensive annotated dataset focused 
entirely on the segmentation of the ERM may be required.

CONCLUSION

This chapter explores a detailed explanation of a fully automatic methodology for 
the segmentation of the ERM in OCT images. This methodology takes advantage of 
computer vision techniques and makes use of state-of-the-art deep learning models 
in order to provide an accurate and objective detection of the visual features that 
characterise this disease.



112

Fully Automatic Epiretinal Membrane Segmentation

The first step in the proposed methodology is to limit the area that is to be analysed 
to only that which is susceptible to ERM apparition. To do this, the ILM region is 
segmented from the images by using active contours. This region is modelled as a 
height value for every image column, since the ILM appears as a mostly horizontal 
boundary line in the OCT slices. Due to its horizontality, the ILM region can be 
highlighted using border detection techniques such as a convolution using the y-axis 
Sobel operator. The active contour is then allowed to contract downward from the 
top of the image, eventually converging over the ILM location.

At this point, an image window is extracted around every segmented ILM pixel. 
These windows are then classified by a DenseNet-121 architecture. This deep learning 
model returns a label determining whether each image displays healthy or ERM-
related tissue. These labels are then assigned to the original ILM pixels, marking 
whether they should be considered healthy or diseased tissue. This way, an effective 
segmentation of the ERM can be produced by means of a classification of windows.

The arrays containing the labels of each OCT slice segmentation are then combined 
with those of the consecutive slices. This produces a two-dimensional segmentation 
map which shows the ERM presence in an overhead view. In order to further refine 
these maps, a post-processing stage based on expert clinical knowledge is applied. 
After this post-processing stage, the maps display a uniform ERM region, according to 
its real appearance. This post-processing stage also contributes to improve the results, 
since it filters out many misclassifications that may occur due to image artefacts.

Finally, an overhead visualisation of the eye fundus is generated based on the 
original OCT volume. This visualisation is synthesised by calculating the average 
brightness value of every image column in the set. This visualisation clearly displays 
the foveal pit as well as the vascular structure of the retina and any irregularities that 
may be present. This representation serves as a reference with which to interpret the 
ERM segmentation maps. As a final step, these two images are overlaid in order to 
present the segmentation results in an intuitive and simple manner, helping provide 
robustness and objectivity to the diagnosis of this relevant pathology.
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KEY TERMS AND DEFINITIONS

Artificial Neural Network: Computing system inspired by neurons which can 
learn to convert a series of input features into a meaningful output.

Epiretinal Membrane (ERM): Thin fibrocellular layer that may appear over 
the eye macula idiopathically or as a secondary factor of other pathologies. May 
cause irreversible visual distortions.
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Fovea: Central pit in the middle of the macula of the retina. Composed of closely 
packed cones, it is responsible for approximately half of the visual information 
produced by the whole retina.

Inner Limiting Membrane (ILM): Layer that serves as a boundary between 
the vitreous body and the retina. It is the layer over which the ERM may appear.

Macula: Pigmented area near the centre of the ocular retina that is responsible 
for the acute, high-resolution colour vision.

Optical Coherence Tomography (OCT): Medical imaging technique that uses 
low coherence light to produce cross-sectional visualisations of tissue. It can produce 
volumes that display the tissue of the patient in three dimensions.

Retina: Light-sensitive layer of tissue located at the back of the eye. It is 
responsible for the translation of light into electrical neural impulses that can be 
interpreted by the brain.

Segmentation: In computer vision, the process of partitioning an image into 
multiple zones, areas, or segments, according to their content.
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