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Abstract
Central Serous Chorioretinopathy (CSC) is a retinal disorder caused by the accumulation of fluid, resulting in vision distor-
tion. The diagnosis of this disease is typically performed through Optical Coherence Tomography (OCT) imaging, which 
displays any fluid buildup between the retinal layers. Currently, these fluid regions are manually detected by visual inspec-
tion a time-consuming and subjective process that can be prone to errors. A series of six deep learning-based automatic 
segmentation architectural configurations of different levels of complexity were trained and compared in order to determine 
the best model intended for the automatic segmentation of CSC-related lesions in OCT images. The best performing models 
were then evaluated in an external validation study. Furthermore, an intra- and inter-expert analysis was conducted in order 
to compare the manual segmentation performed by expert ophthalmologists with the automatic segmentation provided by 
the models. Test results of the best performing configuration achieved a mean Dice of 0.868± 0.056 in the internal dataset. 
In the external validation set, these models achieved a level of agreement with human experts of up to 0.960 in terms of 
Kappa coefficient, contrasting with a value of 0.951 for agreement between human experts. Overall, the models reached a 
better agreement with either of the human experts than these experts with each other, suggesting that automatic segmentation 
models for the detection of CSC-related lesions in OCT imaging can be useful tools for assessing this disease, reducing the 
workload of manual inspection and leading to a more robust and objective diagnosis method.
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Introduction

Central Serous Chorioretinopathy (CSC) is a retinal disease 
that causes visual impairment characterised by the detach-
ment of the retina due to the accumulation of Subretinal 
Fluid (SRF) produced by the dysfunction of the retinal pig-
ment epithelium and the hyperpermeability and enlarge-
ment of the underlying choroid. Patients with CSC typically 
experience central vision loss, central scotoma, micropsia 
or metamorphopsia [1]. This disease was first described in 
1866 by Albrecht von Graefe as central recurrent retinitis 
and involved the detachment of the serous retina, primarily 
affecting the macular region [2].

Recent research has shed some light on the causes of 
CSC, pointing towards choroidal vascular hyperpermeabil-
ity, which can lead to an increase in the hydrostatic pressure 
beneath the retinal pigment epithelium (RPE), causing it to 
disintegrate [3]. The balance between oncotic and hydro-
static pressure at the RPE normally results in fluid flowing 
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from the retina into the choroid. However, in CSC, the 
increase in hydrostatic pressure within the choroid causes 
fluid to accumulate beneath the RPE. When the hydrostatic 
pressure beneath the RPE is high, it pushes the RPE forward, 
causing a discontinuity in its barrier, leading to the detach-
ment of the RPE and punctate areas of leakage, commonly 
referred to as “microrips” or “blowouts”.

The presence of SRF leakage and accumulation can cause a 
loss of vision, as seen in the study conducted by Mrejen et al. 
[4], which researched the long-term causes of vision loss in 
the CSC. Different medical imaging techniques have been put 
forward for the diagnosis of this disease including, but not 
limited, to fluorescein angiography, indocyanine angiogra-
phy, fundus autofluorescence imaging, Colour Fundus Pho-
tography (CFP) and Optical Coherence Tomography (OCT). 
With the former two being more invasive methods, the latter 
three are generally favoured due to their non-invasiveness, 
their lower risk of complication and convenience [3, 5]. These 
methods allow for a safe and effective monitoring of the dis-
ease and an early detection of vision loss.

In particular, OCT is a non-invasive imaging technique that 
can produce micrometre-resolution cross-sectional and volu-
metric visualisations of the retinal tissue. Its cross-sectional 
nature makes it the preferred imaging modality for the diag-
nosis of the CSC [6] as it enables the visualisation of different 
layers or sections of the eye [7, 8]. This, in turn, allows the 
visual inspection of the changes caused by disease progression 
[9, 10]. Its ability to allow the direct observation of the vari-
ous layers that make up the macula makes it one of the most 
widely used techniques for the diagnosis of various ocular 
pathologies, including age-related macular degeneration [11], 
diabetic macular oedema [12], cystoid macular oedema [13], 
as well as CSC [14].

OCT enables an easy visualisation of any alterations 
related to CSC such as neurosensory detachment, detach-
ment of the pigmentary epithelium, protrusion of the RPE, 
thickness changes in the posterior retinal surface, granu-
lations on the detached retina, hyperreflective spots, RPE 
defects, RPE proliferation and subretinal fibrous exudates 
[10]. One of the most noticeable changes of CSC is the 
accumulation of SRF, which can appear in OCT imaging 
as a dark area around the pigmentary epithelium [15]. Early 
detection of the CSC is crucial for avoiding serious symp-
toms such as vision loss. However, the diagnosis process of 
CSC through OCT is slow and time-consuming, as well as 
subjective and prone to errors or misdiagnosis as it is carried 
out manually by expert examiners [16]. In this situation, the 
use of deep learning models for the automatic segmentation 
in CSC diagnosis could greatly benefit the process and aid 
the experts in the assessment of this disease.

Deep learning models make use of several consecu-
tive convolutional layers to identify patterns and struc-
tures in large datasets [17, 18]. These models are able to 

automatically learn patterns by means of annotated exam-
ples, without the need to formalise the explicit knowledge 
needed to perform certain tasks. This makes deep learning 
models especially attractive for fields such as medicine, 
where the ability of these models to automatically learn 
how to identify patterns of disease makes them invaluable 
in the development of new and advanced Computer-aided 
Diagnosis (CAD) systems.

The use of CAD systems to automate the diagnosis pro-
cess of CSC can lead to increased efficiency and accuracy, 
reducing the risk of errors derived from subjective expert 
assessment. Given the relevance of this topic, several stud-
ies have employed fundus imaging for the diagnosis of 
CSC, such as in the work of Chen et al. [19], where a deep 
learning model was proposed for the automatic detection 
of CSC leak points. For this purpose, they employed an 
attention-gated network architecture, integrating an atten-
tion gate with convolutional layers. The results highlighted 
the performance of deep learning models for the detection 
of CSC leakage points. However, this study is limited by 
its reliance on fluorescein angiography imaging, an inva-
sive procedure which requires the use of a contrast die to 
highlight the blood vessels. Xu et al. [20] developed a deep 
learning-based architecture for the screening of SRF from 
CFP images. The network architecture followed a cascade 
approach in which two separate Convolutional Neural Net-
work (CNN) models are able to determine the presence or 
absence of the disease, and whether it affects the central 
foveal region. However, it does not provide a true segmen-
tation map of the presence of fluid. More recently, Yoo 
et al. [21] used a different approach, training conditional 
generative models to create the segmentation maps of the 
area of interest in the lesions with presence of SRF, with 
results that approach those of the human annotation. In spite 
of this, the use of generative models for generating segmen-
tation masks has a high risk of generating maps that may 
look convincing enough to fool the discriminator but have 
no bearing on the presence of SRF, as the results show. 
These studies indicate that fundus imaging can be used for 
the automatic characterisation of the CSC, and highlight 
the utility of deep learning architectures in extracting the 
relevant characteristics in this disease, but may require inva-
sive procedures or are otherwise limited in the accuracy of 
the segmentation outputs they are able to provide.

On the other hand, the advantages of OCT have made this 
imaging technique increasingly popular for the diagnosis of 
retinal diseases, particularly for the detection of pathological 
fluid regions. The high-resolution, cross-sectional images cap-
tured by OCT, combined with the use of automatic segmen-
tation techniques, can offer a comprehensive analysis of the 
affected area, which can be crucial for a precise diagnosis. Pre-
vious works have shown the potential of deep learning-based 
segmentation in OCT images for various retinal diseases, such 
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as serous retinal detachment [22], diabetic macular oedema 
[23], glaucoma [24], age-related macular degeneration [25] 
and intra-retinal cysts [26].

Because of this, recent studies have employed OCT to 
automatically analyse the CSC. Gao et al. [27] presented a 
study in which they employed an area-constraint fully con-
volutional network to perform the automatic segmentation 
of the CSC region in OCT images. The results showed that 
the model was close to manual segmentation after inde-
pendent layer segmentation as well as quantitative and qual-
itative evaluations. However, this methodology was trained 
and tested only on a small dataset consisting of 10 eyes, 5 
of which suffered CSC. Rao et al. [28] conducted a study 
to automatically segment regions affected by CSC in OCT 
images using deep learning-based architectures. This meth-
odology relied on a pre-processing stage in order to adapt 
the images to the architecture, which was trained and vali-
dated on a similarly small dataset of only 15 eyes annotated 
only by a single expert. In the work of de Moura et al. [29], 
the authors proposed an end-to-end methodology for the 
automatic identification and segmentation of intra-retinal 
fluid regions associated with CSC in OCT scans. To achieve 
this, the authors adapted a fully convolutional architecture 
inspired by the SegNet architecture [30], while omitting any 
pre- or post-processing stages. This approach was validated 
on a larger dataset than the two other approaches. However, 
the images were only annotated by a single expert, which 
poses a risk of biasing the results towards that single expert. 
Pawan et al. introduced a modification to capsule networks 
based on dilation, residual connections, inception blocks 
and capsule pooling in order to better adapt the architecture 
to the segmentation of fluid in images of CSC patients. 
These changes also reduced the overall complexity of the 
networks while maintaining competitive performance. Nev-
ertheless, its evaluation is based on the annotations of a 
single expert, which may pose risks of bias, similarly to the 
other previous approaches. Indeed, these studies highlight 
the recent efforts dedicated to the automatic analysis of the 
CSC in OCT imaging.

Recent works on the automatic segmentation of patho-
logical and CSC-related lesions using OCT have shown 
promising results, while providing a clear and accurate vis-
ualisation of the progression of the disease. Nevertheless, 
these results are based on the annotations of a single expert 
which, as previously mentioned, can lead to subjectivity. 
Moreover, these studies may not fully capture the nuances 
of the manual diagnosis process. In order to address this 
limitation, an intra- and inter-expert analysis is necessary, 
so that the variability and subjectivity typically associated 
with manual inspection can be properly assessed. This way, 
a more robust and reliable assessment of the diagnosis can 
be provided, by taking into account any inconsistencies and 
potential disagreements among experts.

In this work, we aim to address this crucial challenge 
by presenting a comprehensive study in the application of 
deep learning models to the automatic segmentation of SRF 
regions in OCT images associated with CSC. Complemen-
tarily, this study is extended by including an intra- and inter-
expert analysis of the best performing models with multiple 
expert ophthalmologists. These models were trained and 
validated using a representative dataset of the pathology 
(specifically designed for this study), along with an exter-
nal validation dataset used for the intra- and inter-expert 
analysis. This analysis can provide ground-breaking evalu-
ation of any possible inconsistencies among the automatic 
segmentation models as well as valuable insight into inter-
expert disagreement. The main contributions of this work 
can be summarised as follows:

• This work presents a comparative analysis of various 
modular deep learning architectural configurations for 
fluid segmentation.

• This analysis is complemented by an evaluation of the 
configurations that produced the best results in an exter-
nal dataset annotated by two human experts.

• The intra- and inter-expert analysis that was performed 
revealed that the deep learning models exhibited better 
alignment with individual human experts, surpassing 
human inter-expert consistency.

• Intra- and inter-expert analysis can set a new standard for 
the validation of future studies in the field.

Materials and Methods

In this work, we propose a deep learning-based methodol-
ogy for the automatic segmentation of fluid regions in OCT 
images of patients with chronic CSC. The methodology is 
comprised of two main stages, as displayed in Fig. 1. The 
first stage involves the training and validation of a series 
of deep learning models using a representative dataset of 
OCT images belonging to CSC and healthy control patients. 
The second stage involves an intra- and inter-expert analy-
sis between the best performing models of the first stage 
and multiple expert ophthalmologists. Using an external 
validation dataset, the automatic segmentations produced 
by the models are compared among themselves and with the 
manual annotations produced by the human experts. This 
comparison provides a thorough and comprehensive analysis 
of the performance of the automatic models, and can offer 
valuable insight into inter-expert disagreement.

Automatic Segmentation of Fluid Regions

The first stage of the methodology is focused on train-
ing, evaluating and comparing the performance of several 
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prominent deep learning architectures for the segmentation 
of the fluid regions in OCT scans of patients with CSC.

Dataset

A dataset was collected with a total of 557 OCT images 
from different patients. 303 images correspond to patients 
of CSC, while 254 display healthy control patients. These 
images were acquired with a Heidelberg spectralis® opti-
cal imaging platform. These OCT scans are all macula 
centred, and were extracted from both the left and right 
eyes using different scanning protocols, including 1- and 
7-line scans, the two highest quality scanning protocols 
most widely used in the assessment of the CSC. Moreo-
ver, these images are representative of the inherent vari-
ability in terms of severity that can be found in clinical 
practice, from small isolated cases, to multiple deposits, 
to larger accumulations of fluid. These scans were manu-
ally annotated by a trained expert to accurately segment all 
the targeted regions of CSC-related pathological fluid. The 
images range in resolution from 760 × 450 to 1536 × 500 . 
For compatibility with all the models, and to ensure a fair 

comparison, all images were resized to 512 × 512 pixels 
during pre-processing. The protocols followed during the 
development of this project were conducted in accordance 
with the Declaration of Helsinki, approved by the local 
Ethics Committee. A representative example of these OCT 
images, as well as the corresponding annotation indicating 
the pathological region can be found in Fig. 2.

Methodology

In this study, different CNN architectures were trained and 
validated to determine the one best suited for the automatic 
segmentation of SRF regions in OCT images associated 
with the chronic CSC disease. In order to achieve this goal, 
two backbone segmentation architectures were trained 
and validated: Feature Pyramid Network (FPN) [31], and 
U-Net [32]. These architectures were modularly combined 
with three different encoder architectures, by substitut-
ing and adapting the corresponding encoder part of each 
architecture. With an aim to explore how models of differ-
ent complexity adapt to this task, three different encoder 

Fig. 1  Summary of the experiments that were performed. A: Multi-
configuration SRF segmentation model training. Six representative 
configurations of backbone segmentation network and encoder archi-
tectures were trained and validated on an OCT image dataset. B: Intra- 

and inter-expert comparison. The best model configurations for each 
backbone architecture were selected and compared among themselves 
and with two expert annotators on an external validation dataset
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architectures were selected for this task: MobileNet [33], 
DenseNet [34] and ResNet [35].

On the one hand, the FPN architecture is a convolutional, 
pyramid-shaped, top-down neural network with scale-invariant  
lateral connections originally intended for image classifica-
tion [31] but later adapted for semantic segmentation [36]. 
This CNN architecture was specifically developed for focus-
ing on detection at multiple scales, by merging feature maps 
from lower and deeper layers, and has found application in 
several related medical image segmentation tasks [37, 38]. 

This detection at different scales can be of great help to the 
segmentation of retinal fluid due to the different degrees of 
affectation that these images can present. Being able to accu-
rately detect small buildups as well as large accumulations 
can improve the robustness of the models. Figure 3 displays 
a schematic view of this architecture. On the other hand, the 
U-Net architecture was specifically developed for medical 
image segmentation, and has been successfully applied to 
similar problems (for reference, [39–41]). By using skip 
connections between different levels of its contracting and 

Fig. 2  Representative exam-
ples from both datasets, along 
with a detailed view of the 
expert annotations. Top: First 
dataset, employed for training 
and validation of the models, 
expert annotations shown in 
red. Bottom: Second dataset, 
employed for the intra- and 
inter-expert analysis. In cyan, 
annotation from the first expert. 
In magenta, annotation from the 
second expert. In yellow, over-
lap between the two experts

Fig. 3  Base structure of the 
FPN backbone segmenta-
tion architecture. Features are 
extracted and progressively 
refined. At the later stages, the 
extracted features are upscaled 
and stacked before passing on 
to the segmentation head which 
outputs the segmentation mask



112 Journal of Imaging Informatics in Medicine (2024) 37:107–122

1 3

expanding path, this architecture enables the transmission of 
both high- and low-level features to the final layers, enabling 
a more comprehensive analysis of the information contained 
in the images, also improving the detection of fluid build-
ups at different scales. A summarised view of this backbone 
architecture can be found in Fig. 4.

The three encoder architectures that were selected 
represent different levels of complexity. The MobileNet-
v2 architecture [33] makes use of linearly separable and 
depth-wise convolutions in order to create a lightweight 
model. This results in a highly efficient architecture, 
with the smallest parameter count of those considered in 
this work. The DenseNet architectures [34] make use of 
densely connected layers in which the features are trans-
mitted forward and concatenated along the network, using 
bottlenecks at the end of each dense block for limiting 
the explosion in the number of features. This allows these 
models to achieve remarkable depths in terms of lay-
ers while avoiding the vanishing gradient problem. The 
DenseNet-169 architecture was selected for this work as 
a balance between efficiency and complexity. Finally, the 

ResNet architectures [35] make use of residual blocks, in 
which features are transmitted forward via skip connec-
tions, adding them to the deeper features instead of using 
concatenation. These models allow for a greater com-
plexity in terms of trainable parameters. The ResNet-34 
architecture was selected for this work, representing the 
most complex model of those considered. For ease of com-
parison, a summary of the trainable parameters for each 
architecture configuration can be found in Table 1.

The experiments that were performed were designed to 
allow a fair comparison between the various model con-
figurations. To this end, a 5-fold cross-validation strategy 
was adopted, partitioning the data into 5 subsets. In each 
partition, 60% of the images were used for training, 20% 
for validation, and the remaining 20% for testing, ensuring 
that each image appeared in the test set exactly once for 
each configuration. Special care was taken to confine images 
from the same patient to the same set, preventing data leak-
age and any associated biases to sharing different images 
from the same patient between sets. This way, the model 
configurations can be compared fairly among themselves.

Fig. 4  Base structure of the 
U-Net backbone segmentation 
structure. At each scale level, 
the extracted features are con-
catenated into the correspond-
ing layers in the later part of the 
structure, bypassing the deeper 
levels

Table 1  Number of trainable parameters and multiply and accumulate operations for each configuration of backbone segmentation architecture 
and modular encoder

FPN

MobileNet-v2 DenseNet-169 ResNet-34

Parameters 4 ×  106 15 ×106 23 ×  106

Operations 10 ×  109 27 ×109 27 ×  109

U-Net

MobileNet-v2 DenseNet-169 ResNet-34

Parameters 7 ×  106 21 ×  106 24 ×  106

Operations 14 ×  109 38 ×  109 31 ×  109
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In order to better take advantage of the limited amount 
of available training data, the encoder models were first 
initialised to a pre-training on ImageNet. Afterwards, each 
model was trained on its corresponding training set. At this 
stage, data augmentation was applied in the form of random 
horizontal flipping. At the end of each training epoch, the 
models were validated on their corresponding validation set, 
extracting a loss metric that was used to detect the training 
stage at which the models could better generalise to images 
not used during training. For this matter, after a fixed train-
ing length, a checkpoint of the models at the stage with the 
lowest validation loss was selected for testing.

The models were trained using Dice overlap loss [42] 
due to its performance in similar unbalanced segmentation 
tasks in medical imaging (for reference, [43–45]) Adam [46] 
was used for optimisation, with a learning rate of 1 × 10−3 , 
�
1
= 0.9 and beta

2
= 0.999 . These models were trained with 

a batch size of 16 images for a maximum of 400, which was 
empirically found to be sufficient for model convergence.

Evaluation

In order to achieve a comprehensive assessment of the per-
formance of the segmentation models, the Accuracy, Recall, 
Precision, Jaccard index, and Dice coefficient metrics were 
employed in the evaluation of the models. Collectively, these 
metrics can provide a thorough validation of how these mod-
els perform.

Intra‑ and Inter‑expert Analysis

In order to comprehensively study the subjectivity associ-
ated to the manual segmentation of fluid regions in OCT 
images, as well as to thoroughly validate and assess the 
robustness of the trained models, an intra- and inter-expert 
analysis was conducted using a separate dataset consisting 
of both CSC and control patients. The aim of this analysis is 
to shed light on the differences that may arise due to expert 
variability, as well as to provide a benchmark against which 
the performance of the trained models can be compared.

Dataset

An independent dataset, distinct from the one that was used 
for the model training and validation, was employed for 
this analysis. This dataset was comprised of a total of 100 
OCT images from different patients, 85 of which displayed 
signs of CSC and 15 displayed healthy eyes. These images 
were acquired with the Heidelberg spectralis® platform, 
at resolutions ranging from 760 × 450 to 1536 × 500 pix-
els. As in the previous case, and for compatibility with all 
the models, these images were resized to a standard size of 
512 × 512 pixels during pre-processing. Two different expert 

annotators were separately asked to manually label the pres-
ence and location of CSC-related fluid accumulations for 
each OCT image. As in the previous case, the dataset was 
collected after approval from the local ethics committee, fol-
lowing the tenets of the Declaration of Helsinki. Examples 
of the manual labelling by the experts can be found in Fig. 2.

Methodology

The intra- and inter-expert analysis consists of two parts. 
The first part is aimed at assessing the robustness and con-
sistency of the trained automatic segmentation models. The 
second part is aimed at studying the subjectivity and the 
differences in criteria between the human experts, as well 
as to validate the performance of the automatic models in 
this context.

In the first, intra-expert analysis, the different instances 
of models trained in the first stage are compared among 
themselves. For each architectural configuration, the five 
models, each one trained on a cross-validation subset, were 
separately used to segment this independent dataset. Then, 
the segmentations produced by these models were compared 
among themselves, extracting a measurement of how similar 
the segmentation results are. This, in turn, can allow the 
comparison of the consistency and robustness of the models 
when trained using different sets of images. A low variabil-
ity between the results of different models of a single con-
figuration can indicate a better robustness to training with 
different samples, and better performance in generalisation 
to unseen images.

In the second, inter-expert analysis, the segmentations 
produced by the two experts are compared with the models 
that produced the highest results for each backbone in the 
first stage. Three different scenarios were considered in 
this analysis: 

1. Comparison of manual segmentations produced by the 
expert annotators: This comparison was performed to 
study the impact of differences in criteria when diagnos-
ing this pathology, as well as to set a reference of the 
magnitude of inter-expert differences.

2. Comparison of manual segmentations with the auto-
mated segmentations produced by the best performing 
models: This comparison was conducted in order to 
validate the segmentation models against an external, 
unseen dataset, highlighting any potential biases, and 
comparing the performance of the automated models 
with inter-expert variability.

3. Comparison of automated segmentation models: The 
automatic segmentation models were also compared 
among themselves to identify any potential biases result-
ing in each configuration.
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In line with previous work in the segmentation of oph-
thalmic imaging [47], the total area segmented as SRF was 
used as a uni-dimensional indicator for each expert’s seg-
mentation. This value was calculated for each segmented 
image and used to create a Bland-Altman plot for each 
comparison. This plot offers a simple way of assessing bias 
between mean differences, and of estimating an agreement 
interval between the experts [48–50].

Evaluation

To provide a comprehensive summary of the intra- and inter-
expert comparative analysis, the Limits of Agreement (LoA) 
of the Bland-Altman plots were calculated at a confidence 
level of 95% ( � = 1.96 ). LoA = x± � × sd , where x and sd 
denote the average and standard deviation of area segmented 
as fluid in all images in the set, respectively. These LoA can 
be used to calculate the amplitude between the upper and the 
lower LoA as a measurement of the disagreement between 
the experts, with wider amplitudes showing increased disa-
greement. Furthermore, the mean difference between the 
areas segmented by each expert can be used as a measure-
ment of any existing bias, with higher values indicating the 
first expert tends to over-segment relative to the second 
one, and smaller values indicating the opposite. Aside from 

calculating similarity measurements in terms of the total 
area segmented, the Dice coefficient, Cohen’s � coefficient, 
and the Mean Square Error (MSE) were also computed as a 
measurement of the specific similarity between automated 
and manual segmentation masks.

Software and Hardware Resources

The experiments were performed using the Python language 
(v.3.8.10). The PyTorch library (v.1.12.1) [51] was used 
to train and validate the models, while the Segmentation 
Models Pytorch library (v.0.3.1) [52] was used for model 
configuration and pre-trained weight acquisition. Statisti-
cal calculations were done using the statsmodels (v.0.13.5) 
and SciPy (v.1.10.1) In terms of hardware, the models were 
trained and validated using an AMD EPYC 7763 64-Core 
CPU, with 504GB RAM and two NVIDIA A100 GPUs.

Results and Discussion

Automatic Segmentation of Fluid Regions

The six model configurations were trained and tested as 
described in Section 2.1.2. Figure 5 displays the training 

Fig. 5  Training and validation curves describing the average training and validation loss and Accuracy for the models trained across every configuration
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and validation loss and Accuracy curves. These curves 
show that the models converge in validation before the 
maximum allowed number of epochs. The average epoch 
at which the models achieved the best results in terms of 
validation was 253± 91 . Generally, all the configurations 
display a similar behaviour during training. The models 
using the MobileNet encoder architecture display the high-
est variability during training, and show generally higher 
loss than the others. The models which incorporated a 
DenseNet encoder architecture show generally lower train-
ing loss than the others, and seem to be able to achieve 
good results quickly in the early stages of training. The 
remaining models, which used the ResNet architecture, 
take longer to adapt, with higher loss in the early stages, 
but settling in lower values at the later stages, as can be 
expected from the most complex architecture in terms of 
trainable parameters.

After selecting the best training stage for each model in 
terms of the checkpoint with lowest validation loss, the mod-
els were evaluated on their corresponding test subset. The 
results of this test are shown in Table 2. A repeated measures 
ANOVA test was performed in order to verify whether there 
are significant differences between the results achieved by 
the models. Significant differences were found for the Accu-
racy ( p = 0.002 ), Precision ( p = 0.008 ) and Recall metrics 
( p = 0.032 ). Differences could not be considered significant 
for Jaccard ( p = 0.081 ) and Dice ( p = 0.092 ) at � = 0.05 . 
For the FPN backbone architecture, the best results are 
achieved by the DenseNet encoder architecture, with a Dice 
coefficient of up to 0.861± 0.069 . Conversely, for the U-Net 
backbone architecture, the best results are obtained by the 
most complex model using the ResNet encoder architecture, 
with a Dice coefficient of up to 0.868± 0.056 . Generally, 
more complex models seem to achieve better results, with 
the exception of the combination of FPN and ResNet archi-
tectures, which achieve results quite similar to the configura-
tion using the MobileNet encoder. The models belonging to 
this configuration show higher losses when adapting to the 
task in the earlier stages.

The lack of a shared publicly available dataset aimed at 
the segmentation of CSC-related fluid regions precludes a 
fair comparison between this work and others in the litera-
ture. With this in mind, the study by Rao et al. [28] reports 
values of 0.936 for Precision, 0.890 for Recall, and 0.910 
for Dice, using a private dataset and pre-processing stages. 
The previous work by de Moura et al. [29] achieved val-
ues of 0.879 for Jaccard, and a 0.965 for Dice, on a differ-
ent dataset. The end-to-end configuration with the highest 
results considered in this work (U-Net with ResNet encoder) 
achieved average values of 0.832 for Precision, 0.918 for 
Recall, 0.769 for Jaccard and 0.868 for Dice. While these 
values are not directly comparable since they are measured 
against different datasets, they are indicative of these mod-
els achieving a performance at least competitive with those 
of the state of the art [28, 29]. In this scenario, an intra- and 
inter-expert analysis can provide valuable insight and assess 
the performance of the models presented in this work. An 
inter-expert analysis involves the comparison of the results 
obtained by different models within the same study, rather 
than by comparing the results with other works. By com-
paring the results of the architectural configurations within 
the same study, it is possible to identify the strengths and 
limitations of each model, as well as to accurately deter-
mine which configurations can perform better in specific 
scenarios. Furthermore, the addition of an intra-expert 
analysis can shed light on the variability and robustness of 
the trained models under different training scenarios, ulti-
mately providing a more comprehensive evaluation of the 
models and highlighting the challenges and opportunities 
for further research.

Intra‑ and Inter‑expert Analysis

In the intra-expert analysis, the models were evaluated by 
comparing the segmentation results produced by each model 
belonging to a configuration among themselves, using the 
second independent dataset. Thus, for every configura-
tion, the output segmentation maps of every model were 

Table 2  Test results for each segmentation architecture configuration

Values shown as average ± standard deviation of the models trained in the five cross-validation subsets
Par. denotes the number of parameters
Highest results shown in bold

Backbone Encoder Par. Accuracy Recall Precision Jaccard Dice

FPN MobileNet 4M 0.998 ± 0.002 0.897 ± 0.167 0.829 ± 0.035 0.752 ± 0.121 0.853 ± 0.086
DenseNet 15M 0.998 ± 0.002 0.912 ± 0.135 0.825 ± 0.042 0.761 ± 0.101 0.861 ± 0.069
ResNet 23M 0.998 ± 0.002 0.893 ± 0.185 0.828 ± 0.035 0.747 ± 0.136 0.849 ± 0.098

U-Net MobileNet 7M 0.997 ± 0.002 0.871 ± 0.179 0.824 ± 0.041 0.729 ± 0.136 0.837 ± 0.095
DenseNet 21M 0.998 ± 0.002 0.909 ± 0.149 0.827 ± 0.048 0.757 ± 0.136 0.859 ± 0.072
ResNet 24M 0.998 ± 0.001 0.918 ± 0.123 0.832 ± 0.051 0.769 ± 0.085 0.868 ± 0.056
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compared pair-wise with those of every other model. The 
results were then averaged across all the models belonging 
to said configuration. This allows the extraction of a single 
summary value for each metric for every architecture con-
figuration. The results can be found in Fig. 3.

The results show that these models are highly robust, 
without significant deviations, even with trained with dif-
ferent images and using an external set of images under the 
same conditions. Between the two base segmentation back-
bone architectures that were considered, the models that 
used the U-Net architecture seem to display less variability 
among themselves than those trained with the FPN architec-
ture, with all U-Net models achieving better results in every 
metric. This can be indicative that the U-Net architecture is 
less prone to overfitting to training data than the FPN. Mod-
els using the U-Net architecture are generally more complex 
in terms of trainable parameters (Table 1), which can suggest 
that more complex architectures may fare better in terms of 
variability and robustness. This fact is also supported by 
models using the MobileNet architecture showing greater 
instability than more complex ones.

In the inter-expert analysis, the human experts and auto-
mated models were compared among themselves. The deep 
learning architecture configurations that produced the high-
est results were the FPN backbone with DenseNet encoder 
module, and the U-Net backbone with a ResNet encoder 
module. Within each configuration, the model with the low-
est validation loss was selected to generate the segmenta-
tion masks for comparison with the human experts. Figure 6 
displays the Bland-Altman plots of the three scenarios that 
were considered, while Table 4 shows the results from the 
inter-expert analysis.

These results show that the models correctly adapt to this 
task, achieving results that fall well within expert variabil-
ity. In the first comparison scenario, the two human experts 
were compared. The results show that there is a bias towards 
the second expert, indicating that they tend to over-segment 
when compared with the first expert in terms of mean differ-
ence of area segmented. This can be seen in the correspond-
ing Bland-Altman plot, where most of the examples tend 
to describe a descending trend. Comparing the two experts 

produces a Dice and a � coefficients of 0.952 and 0.951, as 
well as a MSE of 0.229. This comparison shows the most 
significant disagreement of those considered, and is repre-
sentative of what can be expected from manual inspection 
in daily clinical practice. Regarding the second scenario, in 
which the models are compared with the experts, we can 
see that the models agree more with each of the human 
experts separately than these experts agree with each other. 
As established in the first scenario, the first expert may tend 
to under-segment, while the second one seems to have a 
tendency to over-segment. This is apparent also in the com-
parison with the models, where comparisons with Expert 1 
yield a positive bias (towards the model segmenting more 
area) while comparisons with Expert 2 yield a negative bias 
(towards the second expert). All models achieve higher Dice 
and � coefficients, as well as a smaller MSE than the human 
experts. While the U-Net architecture achieved compara-
bly better results during testing in the first stage, the FPN 
architecture seems to better align itself with Expert 1. Both 
architectures align similarly with the second expert. In the 
third scenario both models were compared among them-
selves. The corresponding Bland-Altman plot shows that the 
FPN model tends to over-segment in images with smaller 
patches of fluid, while U-Net segments more area in more 
affected images. Nevertheless, with a mean difference of 8, 
the bias between the models is substantially smaller than 
in any comparison involving the human experts. Overall, 
these models seem to provide good balance between the two 
human experts. Both deep learning-based configurations are 
able to find a consensus close to either of the human experts, 
without significant over- or under-segmentation, and finding 
better agreement among themselves and with either of the 
experts than either human expert with the other. This high-
lights the significant subjectivity in the process of manual 
segmentation, and shows that machine learning models can 
be used to find a consensus between experts and provide a 
robust and repeatable assessment of these images for the 
diagnosis of CSC.

In order to better assess the possible differences between 
the manual and automatic annotations, Fig. 7 shows some 
visual examples of the segmentation results. This image 

Table 3  Intra-expert analysis results. Metrics are extracted by comparing the segmentations produced by every model against all those produced 
by the other models within a configuration, then averaging across all models belonging to each configuration. For MSE, lower values are better

Accuracy Jaccard Dice � MSE

FPN MobileNet 0.999± 0.001 0.934± 0.029 0.965± 0.015 0.965± 0.016 0.016± 0.005

DenseNet 0.999± 0.001 0.944± 0.026 0.971± 0.014 0.971± 0.014 0.012± 0.002

ResNet 0.999± 0.001 0.939± 0.033 0.968± 0.017 0.967± 0.018 0.014± 0.001

U-Net MobileNet 0.999± 0.001 0.975± 0.030 0.975± 0.016 0.972± 0.016 0.007± 0.001

DenseNet 0.999± 0.000 0.955± 0.024 0.977± 0.012 0.976± 0.013 0.008± 0.001

ResNet 0.999± 0.000 0.954± 0.019 0.976± 0.010 0.977± 0.010 0.007± 0.002
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highlights the differences in criteria regarding the bounda-
ries of the segmented areas, as well as the size and location 
of smaller areas, specially those adjacent to bigger fluid 
accumulations. For more easily explainable results, Axiom-
based Gradient-weighted Class Activation Mapping (XGrad-
CAM) [53] can be used to visualise the areas that maximise 

network activation for the fluid detection. This way, it is 
possible to see the areas where the model has a higher acti-
vation and areas where the activation is lower, producing 
segmentation results that are easier to interpret (Fig. 8).

While this work presents many strengths, it is essential to 
address the following limitations. First, the images employed 

Fig. 6  Bland-Altman plots showing the one-on-one comparison 
between the human experts and the automated segmentation models. 
The horizontal axis represents the average area segmented as CSC-

related fluid in both images. The vertical axis represents the differ-
ence between the area segmented in each image in the first set and its 
equivalent in the second set
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in this work are categorised as presenting CSC or healthy tis-
sue, but the actual severity of the CSC images has not been 
graded. Second, the comparisons in this work have been 
limited to end-to-end deep learning architectures that have 

performed well in similar tasks, and other bespoke methods 
tailored specifically for CSC segmentation may provide better 
results. Finally, the methods in this work were validated using 
images from a single platform (Heidelberg spectralis®).

Table 4  Inter-expert analysis 
results

Amp. denotes amplitude, as the difference between the higher and lower LoA in the Bland-Altman plot, a 
higher value indicates higher disagreement
MD is the mean difference between the number of pixels detected by the first and second experts, values 
further from 0 indicate a bias

Amp. MD Dice � MSE

Expert 1 - Expert 2 1051 -387 0.952 0.951 0.229
FPN - Expert 1 1066 271 0.960 0.960 0.134
FPN - Expert 2 996 -206 0.961 0.960 0.140
U-Net - Expert 1 1378 172 0.957 0.956 0.132
U-Net - Expert 2 1248 -214 0.961 0.960 0.139
FPN - U-Net 697 8 0.960 0.959 0.138

Fig. 7  General and detailed 
view of the manual annotations 
and automatic segmentation 
masks of images from the inter-
expert analysis performed using 
the second dataset. Segmenta-
tion masks overlaid with origi-
nal image for ease of reference
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Conclusions

The diagnosis of CSC is typically performed by means of 
an expert visually inspecting images in search for signs of 
the disease. This process is subjective, tiring and can lead to 
errors which, in turn, can translate into a late or even missed 
diagnosis. In this work, we have designed and validated a 
methodology for the fully automatic segmentation of CSC-
related fluid regions in OCT images. This methodology has 
been implemented using a series of modular state-of-the-art 
segmentation architectures, representative of a spectrum of 
complexity. Along with a thorough comparison of all archi-
tectures, studying which are better suited for the segmenta-
tion of CSC signs in OCT images, this work is the first in the 
literature to propose a comprehensive intra- and inter-expert 
analysis to validate these models. In this study, the models 
are compared among themselves and with different human 
experts using an external validation dataset. This study can 
help measure the variability caused by the natural subjectiv-
ity of manual image inspection, and also provide a robust 
framework with which to validate deep learning models 
aimed at this task.

The results that were obtained show that these automatic 
models can perform at least at a level comparable to the 
experts, finding a balance between them and achieving a 
higher level of agreement with either of the human experts 
than those among themselves. The models also show a 
smaller bias when compared with either of the human 
experts, and almost none when compared with each other. 
These findings indicate that while differences in expert cri-
teria may exist, deep learning models can be used to achieve 
a robust and repeatable segmentation of CSC-related lesions 
in OCT imaging, finding a consensus among experts and 
providing an objective and accurate segmentation of the 

fluid regions. These models can be used to improve the 
diagnosis process of the CSC, while improving patient care 
and prognosis thanks to an early and precise assessment of 
this disease.

Plans for future work involve a more detailed analysis of 
the different stages at which fluid may accumulate under the 
RPE in CSC patients. Moreover, future work could focus on 
including other purpose-specific architectures into the study 
that may provide other advantages into this task, as well as 
studying the data efficiency of these architectures. Finally, 
the inclusion of other imaging platforms to conform to a 
multi-expert multi-vendor dataset could help provide a more 
robust validation framework with which to validate future 
fluid segmentation methodologies.
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