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We propose a two-dimensional flow model of a viscous fluid between two close
moving surfaces. We show, using a formal asymptotic expansion of the solution,
that its asymptotic behavior, when the distance between the two surfaces tends
to zero, is the same as that of the the Navier-Stokes equations.
The leading term of the formal asymptotic expansions of the solutions to the new
model and Navier-Stokes equations are solution of the same limit problem, and
the type of the limit problem depends on the boundary conditions. If slip velocity
boundary conditions are imposed on the upper and lower bound surfaces, the
limit is a solution of a lubricationmodel, but if the tractions and friction forces are
known on both bound surfaces, the limit is a solution of a thin fluid layer model.
The model proposed has been obtained to be a valuable tool for computing vis-
cous fluid flow between two nearby moving surfaces, without the need to decide
a priori whether the flow is typical of a lubrication or a thin fluid layer problem,
and without the enormous computational effort that would be required to solve
the Navier-Stokes equations in such a thin domain.

1 INTRODUCTION

In our previous work [1], we used the asymptotic expansions technique to study the behavior of a viscous fluid that flows
between two very closemoving surfaces. Asymptotic analysis is amathematical tool that has been used successfully (since
the pioneering works of Dean [2, 3], Friedrichs and Dressler [4] and Goldenveizer [5]) to obtain and justify mathematical
models, in solidmechanics [6–11] and fluidmechanics [12–34], when at least one of the dimensions of the domain is much
smaller than the others. Using the same mathematical technique, the authors have also proposed several new shallow
water models [35–40] and curved-pipe flow models [41, 42].
We observed, in our prior article [1], that the viscous fluid thatmoves between two nearby surfaces has two very different

behaviors, depending on the boundary conditions of the problem. If the pressure differences are large in the open part
of the domain boundary (that is, the region of the domain boundary between the two surfaces), then the fluid obeys
Equation (17), which resembles a lubrication problem. If the pressure differences are small in the mentioned region of the
domain boundary, then the fluid obeys Equation (25), which is a thin fluid layer problem (it can also be understood as a
shallow water problem in which the depth is known).
This behavior reminds us of that observed in the works of Ciarlet et al. [43–45], where it is shown that the solution of

the linearized elasticity equations in a shell converges, when the shell thickness tends to zero, to different shell models,
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depending on the geometry of the shell and its boundary conditions. In particular, in the work of Ciarlet and Lods [46],
the authors show that the Koiter’s shell model has the same asymptotic behavior, that is, its solutions converge, when the
thickness of the shell tends to zero, to the same limit problems as the linearized elasticity equations do.
In this article we intend to justify a new two-dimensional flow model of a viscous fluid between two very close moving

surfaces in a similar way to what was done in the above mentioned works [43–46], and, to confirm that when the distance
between the two surfaces tends to zero, its behavior is the same as that observed in [1] for the Navier-Stokes equations,
justifying it in Sections 5 and 6, using a formal asymptotic expansion of the solution of the new model.
With this aim, in the first place, wewill summarize, in Section 2, the results presented previously in our article [1], which

will allow us to make some assumptions about the behavior of the solutions of the Navier-Stokes. These hypothesis will
be used in Sections 3–6 to derive the new two-dimensional model proposed in Section 4. Next, in Section 5, we will begin
the asymptotic analysis of the model, deriving in Section 6.1 the limit model if the fluid velocity is known at the upper and
lower bound surfaces, and obtaining, in Section 6.2, the limit model when the tractions are known at the bound surfaces.
Finally we will discuss the results achieved in Section 7.

2 SUMMARY OF THEMAIN PREVIOUS RESULTS

In our prior work [1] we studied the behavior of the Navier-Stokes equations in a domain bounded by two nearby moving
surfaces, when the distance between them tends to zero. We observed that the asymptotic behavior of the solutions of the
Navier-Stokes equations, in this case, strongly depends on the boundary conditions. In fact, two different limit models
were obtained (one similar to a lubrication model and the other similar to a thin fluid layer model), depending on the
boundary conditions in the original problem.
The twomodels presented in the preceding article [1] were derived fromNavier-Stokes equations in a three-dimensional

thin domain, Ω𝜀
𝑡 , filled by a viscous fluid, that varies with time 𝑡 ∈ [0, 𝑇], given by

Ω𝜀
𝑡 =

{
(𝑥𝜀1, 𝑥

𝜀
2, 𝑥

𝜀
3) ∈ 𝑅3 ∶ 𝑥𝑖(𝜉1, 𝜉2, 𝑡) ≤ 𝑥𝜀𝑖 ≤ 𝑥𝑖(𝜉1, 𝜉2, 𝑡) + ℎ𝜀(𝜉1, 𝜉2, 𝑡)𝑁𝑖(𝜉1, 𝜉2, 𝑡),

(𝑖 = 1, 2, 3), (𝜉1, 𝜉2) ∈ 𝐷 ⊂ ℝ2
}

(1)

where �⃗�𝑡(𝜉1, 𝜉2) = �⃗�(𝜉1, 𝜉2, 𝑡) = (𝑥1(𝜉1, 𝜉2, 𝑡), 𝑥2(𝜉1, 𝜉2, 𝑡), 𝑥3(𝜉1, 𝜉2, 𝑡)) is the lower bound surface parametrization,
ℎ𝜀(𝜉1, 𝜉2, 𝑡) is the gap between the two surfaces in motion, and �⃗�(𝜉1, 𝜉2, 𝑡) is the unit normal vector.
The lower bound surface is assumed to be regular and the gap is assumed to be small with regard to the dimensions

of the bound surfaces. We take into account that the fluid film between the surfaces is thin by introducing a small non-
dimensional parameter 𝜀, and setting that

ℎ𝜀(𝜉1, 𝜉2, 𝑡) = 𝜀ℎ(𝜉1, 𝜉2, 𝑡), ℎ(𝜉1, 𝜉2, 𝑡) ≥ ℎ0 > 0, ∀ (𝜉1, 𝜉2) ∈ 𝐷 ⊂ ℝ2, ∀ 𝑡 ∈ [0, 𝑇]. (2)

We introduce a reference domain

Ω = 𝐷 × [0, 1] (3)

independent of 𝜀 and 𝑡, which is related to Ω𝜀
𝑡 by the following change of variable:

𝑡𝜀 = 𝑡 (4)

𝑥𝜀𝑖 = 𝑥𝑖(𝜉1, 𝜉2, 𝑡) + 𝜀𝜉3ℎ(𝜉1, 𝜉2, 𝑡)𝑁𝑖(𝜉1, 𝜉2, 𝑡) (𝑖 = 1, 2, 3) (5)

where (𝜉1, 𝜉2) ∈ 𝐷 and 𝜉3 ∈ [0, 1]. Now, given any scalar function 𝐹𝜀(𝑡𝜀, 𝑥𝜀1, 𝑥
𝜀
2, 𝑥

𝜀
3) defined on Ω𝜀

𝑡 , we can introduce
another scalar function 𝐹(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) on Ω, using the change of variable:

𝐹(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) = 𝐹𝜀(𝑡𝜀, 𝑥𝜀1, 𝑥
𝜀
2, 𝑥

𝜀
3) (6)

We also define the basis {�⃗�1, �⃗�2, �⃗�3}
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�⃗�1(𝜉1, 𝜉2, 𝑡) =
𝜕�⃗�(𝜉1, 𝜉2, 𝑡)

𝜕𝜉1
(7)

�⃗�2(𝜉1, 𝜉2, 𝑡) =
𝜕�⃗�(𝜉1, 𝜉2, 𝑡)

𝜕𝜉2
(8)

�⃗�3(𝜉1, 𝜉2, 𝑡) = �⃗�(𝜉1, 𝜉2, 𝑡) (9)

so that, the velocity, �⃗�𝜀, and the external density of volume forces, 𝑓𝜀, can be written in the new basis (7)–(9) as follows,
where we adopt the convention of summing over repeated indices from 1 to 3, except where otherwise indicated:

�⃗�𝜀 = 𝑢𝜀𝑖 𝑒𝑖 = 𝑢𝑘(𝜀)�⃗�𝑘, 𝑢𝜀𝑖 =
(
𝑢𝑘(𝜀)�⃗�𝑘

)
⋅ 𝑒𝑖 = 𝑢𝑘(𝜀)𝑎𝑘𝑖 (10)

𝑓𝜀 = 𝑓𝜀𝑖 𝑒𝑖 = 𝑓𝑘(𝜀)�⃗�𝑘, 𝑓𝜀𝑖 =
(
𝑓𝑘(𝜀)�⃗�𝑘

)
⋅ 𝑒𝑖 = 𝑓𝑘(𝜀)𝑎𝑘𝑖 (11)

where 𝑎𝑘𝑖 = �⃗�𝑘 ⋅ 𝑒𝑖 .
Taking into account (4)–(11), Navier-Stokes equations can be written in the reference domain Ω in the following way

(in the next equations, repeated indices indicate summation from 1 to 3, except for index 𝑙 and 𝑛, which take values from
1 to 2):

𝜕𝑢𝑘(𝜀)

𝜕𝑡
𝑎𝑘𝑖 + 𝑢𝑘(𝜀)

𝜕𝑎𝑘𝑖
𝜕𝑡

+

(
𝑎𝑘𝑖

𝜕𝑢𝑘(𝜀)

𝜕𝜉𝑛
+ 𝑢𝑘(𝜀)

𝜕𝑎𝑘𝑖
𝜕𝜉𝑛

)[
−(𝛼𝑛�⃗�1 + 𝛽𝑛�⃗�2) ⋅

(
𝜕�⃗�
𝜕𝑡

+ 𝜀𝜉3ℎ
𝜕�⃗�3
𝜕𝑡

)]

+

(
𝑎𝑘𝑖

𝜕𝑢𝑘(𝜀)

𝜕𝜉3
+ 𝑢𝑘(𝜀)

𝜕𝑎𝑘𝑖
𝜕𝜉3

)(
−
1
𝜀ℎ

�⃗�3 ⋅
𝜕�⃗�
𝜕𝑡

−
𝜉3
ℎ
𝜕ℎ
𝜕𝑡

)

+𝑢𝑘(𝜀)𝑎𝑘𝑗

(
𝑎𝑞𝑖

𝜕𝑢𝑞(𝜀)

𝜕𝜉𝑙
+ 𝑢𝑞(𝜀)

𝜕𝑎𝑞𝑖

𝜕𝜉𝑙

)(
𝛼𝑙𝑎1𝑗 + 𝛽𝑙𝑎2𝑗 + 𝛾𝑙𝑎3𝑗

)
= −

1
𝜌0

𝜕𝑝(𝜀)

𝜕𝜉𝑙
(𝛼𝑙𝑎1𝑖 + 𝛽𝑙𝑎2𝑖 + 𝛾𝑙𝑎3𝑖) + 𝜈

{[
𝜕2(𝑢𝑘(𝜀)𝑎𝑘𝑖)

𝜕𝜉𝑙𝜕𝜉𝑚

(
𝛼𝑙𝑎1𝑗 + 𝛽𝑙𝑎2𝑗 + 𝛾𝑙𝑎3𝑗

)
+
𝜕(𝑢𝑘(𝜀)𝑎𝑘𝑖)

𝜕𝜉𝑙

𝜕

𝜕𝜉𝑚

(
𝛼𝑙𝑎1𝑗 + 𝛽𝑙𝑎2𝑗 + 𝛾𝑙𝑎3𝑗

)](
𝛼𝑚𝑎1𝑗 + 𝛽𝑚𝑎2𝑗 + 𝛾𝑚𝑎3𝑗

)}
+𝑓𝑘(𝜀)𝑎𝑘𝑖, (𝑖 = 1, 2, 3) (12)

(
𝑎𝑘𝑗

𝜕𝑢𝑘(𝜀)

𝜕𝜉𝑙
+ 𝑢𝑘(𝜀)

𝜕𝑎𝑘𝑗

𝜕𝜉𝑙

)(
𝛼𝑙𝑎1𝑗 + 𝛽𝑙𝑎2𝑗 + 𝛾𝑙𝑎3𝑗

)
= 0 (13)

where 𝛼𝑙, 𝛽𝑙 and 𝛾𝑙 are defined in Appendix A by expressions (A11)–(A30). We denote by 𝑝 the pressure, by 𝜌0 the fluid
density and by 𝜈 the kinematic viscosity.
We begin assuming that 𝑢𝑖(𝜀), 𝑓𝑖(𝜀) (𝑖 = 1, 2, 3) and 𝑝(𝜀) can be developed in powers of 𝜀, that is,

𝑢𝑖(𝜀) = 𝑢0𝑖 + 𝜀𝑢1𝑖 + 𝜀2𝑢2𝑖 +⋯ (𝑖 = 1, 2, 3) (14)

𝑝(𝜀) = 𝜀−2𝑝−2 + 𝜀−1𝑝−1 + 𝑝0 + 𝜀𝑝1 + 𝜀2𝑝2 +⋯ (15)

𝑓𝑖(𝜀) = 𝑓0𝑖 + 𝜀𝑓1𝑖 + 𝜀2𝑓2𝑖 +⋯ (𝑖 = 1, 2, 3) (16)

As mentioned above, using asymptotic analysis we are able to derive two different models depending on the boundary
conditions chosen.
In the first place, if we assume that the fluid slips at the lower surface (𝜉3 = 0), and at the upper surface (𝜉3 = 1), but

there is continuity in the normal direction, so the tangential velocities at the lower and upper surfaces are known, and
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the normal velocity of each of them must match the fluid velocity, we obtain

1√
𝐴0

div

(
ℎ3√
𝐴0

𝑀∇𝑝−2

)
= 12𝜇

𝜕ℎ
𝜕𝑡

+ 12𝜇
ℎ𝐴1

𝐴0

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)

−6𝜇∇ℎ ⋅
(
�⃗�0 − �⃗�0

)
+

6𝜇ℎ√
𝐴0

div
(√

𝐴0
(
�⃗�0 + �⃗�0

))
(17)

that can be considered a generalization of Reynolds equation. We denote by 𝑉1�⃗�1 + 𝑉2�⃗�2 the tangential velocity at the
lower surface and, by𝑊1�⃗�1 +𝑊2�⃗�2 the tangential velocity at the upper surface, and we have

�⃗�(𝜀) = (𝑉1, 𝑉2) = �⃗�0 + 𝑂(𝜀) (18)

�⃗�(𝜀) = (𝑊1,𝑊2) = �⃗�0 + 𝑂(𝜀) (19)

Coefficients 𝐴0, 𝐴1 and matrix𝑀 are defined in Appendix A ((A7)–(A10)), and 𝜇 = 𝜌0𝜈 is the dynamic viscosity.
Once obtained 𝑝−2 using (17), the following approximation of the three components of the velocity is yielded

𝑢0𝑖 =
ℎ2(𝜉23 − 𝜉3)

2𝜇

2∑
𝑘=1

𝐽0,0
𝑖𝑘

𝜕𝑝−2

𝜕𝜉𝑘
+ 𝜉3

(
𝑊0

𝑖 − 𝑉0
𝑖

)
+ 𝑉0

𝑖 , (𝑖 = 1, 2) (20)

𝑢03 =
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3 (21)

where 𝐽0,0
𝑖𝑘

is given by (A37).
If instead of considering that the tangential and normal velocities are known on the upper and lower surfaces, we

assume that the normal component of the traction on 𝜉3 = 0 and on 𝜉3 = 1 are known pressures (denoted by 𝜋𝜀
0 and 𝜋

𝜀
1,

respectively), and that the tangential component of the traction on these surfaces are friction forces depending on the
value of the velocities on 𝜕𝐷, then we get a thin fluid layer model:

𝑢0𝑖 = 𝑊0
𝑖 = 𝑉0

𝑖 (𝑖 = 1, 2) (22)

𝑝−2 = 𝑝−1 = 0 (23)

𝑝0 =
2𝜇

ℎ
𝜕ℎ
𝜕𝑡

+ 𝜋0
0 (24)

𝜕𝑉0
𝑖

𝜕𝑡
+

2∑
𝑙=1

(
𝑉0
𝑙
− 𝐶0

𝑙

)𝜕𝑉0
𝑖

𝜕𝜉𝑙
+

2∑
𝑘=1

(
𝑅0
𝑖𝑘
+

2∑
𝑙=1

𝐻0
𝑖𝑙𝑘
𝑉0
𝑙

)
𝑉0
𝑘

= −
1
𝜌0

2∑
𝑙=1

𝜕𝜋0
0

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

+ 𝜈

{
2∑

𝑚=1

2∑
𝑙=1

𝜕2𝑉0
𝑖

𝜕𝜉𝑚𝜕𝜉𝑙
𝐽0,0
𝑙𝑚

+
2∑

𝑘=1

2∑
𝑙=1

𝜕𝑉0
𝑘

𝜕𝜉𝑙
�̄�0,0
𝑖𝑘𝑙

+
2∑

𝑘=1

𝑉0
𝑘
�̄�0,0
𝑖𝑘

+ 𝜅0𝑖

}

+𝐹0
𝑖 − 𝑄0

𝑖3

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
(𝑖 = 1, 2) (25)

where coefficients 𝐶0
𝑙
, 𝑅0

𝑖𝑘
, 𝐻0

𝑖𝑙𝑘
, 𝐽0,0

𝑙𝑚
, �̄�0,0

𝑖𝑘𝑙
, �̄�0,0

𝑖𝑘
, 𝜅0𝑖 , 𝐹

0
𝑖 and 𝑄

0
𝑖3 are defined in Appendix A (in (A32), (A45), (A35), (A37),

(A42), (A48), (A50), (A51) and (A44) respectively), and 𝜋0
0 is the term of order zero on 𝜀 of 𝜋𝜀

0, that is, 𝜋
𝜀
0 = 𝜋0

0 + 𝑂(𝜀).

Remark 1. Equation (25) is exactly the same as Equation (168) in [1], although some of the constants have been redefined
here (see (A42) and (A48)) with respect to the definitions in [1] to simplify (25).
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3 NEWHYPOTHESIS ABOUT THE DEPENDENCE OF THE SOLUTION ON 𝝃𝟑

If we carefully observe the steps of the proofs in the previous work [1], we can see that 𝑝𝑘 (𝑘 = −2,−1, 0, 1), and 𝑢𝑘𝑖 (𝑖 =
1, 2, 3; 𝑘 = 0, 1) are polynomials in 𝜉3 of at most degree three. Because of this, we are going to assume that, for 𝜀 small
enough, the following equalities are true:

𝑢𝑖(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) =
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑖 (𝜀)(𝑡, 𝜉1, 𝜉2), (𝑖 = 1, 2, 3) (26)

𝑝(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) =
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛(𝜀)(𝑡, 𝜉1, 𝜉2), (27)

𝑓𝑖(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) =
∞∑
𝑛=0

𝜉𝑛3 𝑓
𝑛
𝑖 (𝜀)(𝑡, 𝜉1, 𝜉2). (𝑖 = 1, 2, 3) (28)

We want to point out that the previous hypothesis is equivalent to neglecting in (14)–(15) the terms in 𝑂(𝜀2) when 𝜀
is small.
Using expressions (26)–(28) and (A11)–(A15) (see Appendix A), we can rewrite Equations (12)–(13) as follows (repeated

indices 𝑘, 𝑗 and 𝑞 indicate summation from 1 to 3, while repeated indices 𝑙 and𝑚 indicate summation from 1 to 2):

3∑
𝑛=0

𝜉𝑛3
𝜕�̄�𝑛

𝑘

𝜕𝑡
�⃗�𝑘 +

3∑
𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑘

𝜕�⃗�𝑘
𝜕𝑡

−

(
�⃗�𝑘

3∑
𝑛=0

𝜉𝑛3
𝜕�̄�𝑛

𝑘

𝜕𝜉𝑙
+

3∑
𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑘

𝜕�⃗�𝑘
𝜕𝜉𝑙

)[
∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
�⃗�1 + 𝛽𝑟

𝑙
�⃗�2
)
⋅

(
𝜕�⃗�
𝜕𝑡

+ 𝜀𝜉3ℎ
𝜕�⃗�3
𝜕𝑡

)]

− �⃗�𝑘

3∑
𝑛=1

𝑛𝜉𝑛−13 �̄�𝑛
𝑘

[
1
𝜀ℎ

(
�⃗�3 ⋅

𝜕�⃗�
𝜕𝑡

)
+
𝜉3
ℎ
𝜕ℎ
𝜕𝑡

+
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3�⃗�1 + 𝛽𝑟3�⃗�2

)
⋅

(
𝜕�⃗�
𝜕𝑡

+ 𝜀𝜉3ℎ
𝜕�⃗�3
𝜕𝑡

)]

+
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑘

(
�⃗�𝑞

3∑
𝑑=0

𝜉𝑑3
𝜕�̄�𝑑𝑞

𝜕𝜉𝑙
+

3∑
𝑑=0

𝜉𝑑3 �̄�
𝑑
𝑞

𝜕�⃗�𝑞

𝜕𝜉𝑙

)
∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
(�⃗�𝑘 ⋅ �⃗�1) + 𝛽𝑟

𝑙
(�⃗�𝑘 ⋅ �⃗�2)

)
)

+
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑘

(
�⃗�𝑞

3∑
𝑑=1

𝑑𝜉𝑑−13 �̄�𝑑𝑞

)(
∞∑
𝑟=0

𝜀𝑛𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3(�⃗�𝑘 ⋅ �⃗�1) + 𝛽𝑟3(�⃗�𝑘 ⋅ �⃗�2)

)
+

1
𝜀ℎ

(�⃗�𝑘 ⋅ �⃗�3)

)

= −
1
𝜌0

3∑
𝑛=0

𝜉𝑛3
𝜕�̄�𝑛

𝜕𝜉𝑙

∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
�⃗�1 + 𝛽𝑟

𝑙
�⃗�2
)

−
1
𝜌0

3∑
𝑛=1

𝑛𝜉𝑛−13 �̄�𝑛

(
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3�⃗�1 + 𝛽𝑟3�⃗�2

)
+

1
𝜀ℎ

�⃗�3

)

+ 𝜈

[
3∑

𝑛=0

𝜉𝑛3
𝜕2(�⃗�𝑘�̄�

𝑛
𝑘
)

𝜕𝜉𝑙𝜕𝜉𝑚

∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
𝑎1𝑗 + 𝛽𝑟

𝑙
𝑎2𝑗

)

+ 2
3∑

𝑛=1

𝑛𝜉𝑛−13

𝜕(�⃗�𝑘�̄�
𝑛
𝑘
)

𝜕𝜉𝑚

(
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3𝑎1𝑗 + 𝛽𝑟3𝑎2𝑗

)
+

1
𝜀ℎ

𝑎3𝑗

)

+
3∑

𝑛=0

𝜉𝑛3
𝜕(�⃗�𝑘�̄�

𝑛
𝑘
)

𝜕𝜉𝑙

𝜕

𝜕𝜉𝑚

(
∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
𝑎1𝑗 + 𝛽𝑟

𝑙
𝑎2𝑗

))

+ �⃗�𝑘

3∑
𝑛=1

𝑛𝜉𝑛−13 �̄�𝑛
𝑘

𝜕

𝜕𝜉𝑚

(
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3𝑎1𝑗 + 𝛽𝑟3𝑎2𝑗

)
+

1
𝜀ℎ

𝑎3𝑗

)]
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6 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

⋅
∞∑
𝑠=0

(𝜀𝜉3ℎ)
𝑠
(
𝛼𝑠𝑚𝑎1𝑗 + 𝛽𝑠𝑚𝑎2𝑗

)

+ 𝜈

[
�⃗�𝑘

3∑
𝑛=2

𝑛(𝑛 − 1)𝜉𝑛−23 �̄�𝑛
𝑘

(
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3𝑎1𝑗 + 𝛽𝑟3𝑎2𝑗

)
+

1
𝜀ℎ

𝑎3𝑗

)

+
3∑

𝑛=0

𝜉𝑛3
𝜕(�⃗�𝑘�̄�

𝑛
𝑘
)

𝜕𝜉𝑙

∞∑
𝑟=1

𝑟𝜀𝑟𝜉𝑟−13 ℎ𝑟
(
𝛼𝑟
𝑙
𝑎1𝑗 + 𝛽𝑟

𝑙
𝑎2𝑗

)

+ �⃗�𝑘

3∑
𝑛=1

𝑛𝜉𝑛−13 �̄�𝑛
𝑘

(
∞∑
𝑟=0

(𝑟 + 1)𝜀𝑟𝜉𝑟3ℎ
𝑟−1

(
𝛼𝑟3𝑎1𝑗 + 𝛽𝑟3𝑎2𝑗

))]

⋅

(
∞∑
𝑠=0

𝜀𝑠𝜉𝑠+13 ℎ𝑠−1
(
𝛼𝑠3𝑎1𝑗 + 𝛽𝑠3𝑎2𝑗

)
+

1
𝜀ℎ

𝑎3𝑗

)
+

∞∑
𝑛=0

𝜉𝑛3 𝑓
𝑛
𝑘
�⃗�𝑘 (29)

3∑
𝑛=0

𝜉𝑛3
𝜕�̄�𝑛

𝑘

𝜕𝜉𝑙

∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
(�⃗�𝑘 ⋅ �⃗�1) + 𝛽𝑟

𝑙
(�⃗�𝑘 ⋅ �⃗�2)

)

+
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑘

𝜕𝑎𝑘𝑗

𝜕𝜉𝑙

∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟
(
𝛼𝑟
𝑙
𝑎1𝑗 + 𝛽𝑟

𝑙
𝑎2𝑗

)

+
3∑

𝑛=1

𝑛𝜉𝑛−13 �̄�𝑛
𝑘

(
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3(�⃗�𝑘 ⋅ �⃗�1) + 𝛽𝑟3(�⃗�𝑘 ⋅ �⃗�2)

)
+

1
𝜀ℎ

(�⃗�𝑘 ⋅ �⃗�3)

)
= 0 (30)

and identify the terms multiplied by 𝜉𝑛3 (𝑛 = 0, 1, 2, 3) in (29)–(30). In Equation (31), below, repeated indices 𝑘 and 𝑞
indicate, again, summation from 1 to 3, while repeated indices 𝑙 and𝑚 indicate summation from 1 to 2.

𝜕�̄�𝑛
𝑘

𝜕𝑡
�⃗�𝑘 + �̄�𝑛

𝑘

𝜕�⃗�𝑘
𝜕𝑡

−

(
�⃗�𝑘

𝜕�̄�𝑛
𝑘

𝜕𝜉𝑙
+ �̄�𝑛

𝑘

𝜕�⃗�𝑘
𝜕𝜉𝑙

)
𝐶0
𝑙

−
𝑛−1∑
𝑚=0

(
�⃗�𝑘

𝜕�̄�𝑚
𝑘

𝜕𝜉𝑙
+ �̄�𝑚

𝑘

𝜕�⃗�𝑘
𝜕𝜉𝑙

)
(𝜀ℎ)𝑛−𝑚𝐶𝑛−𝑚,𝑛−𝑚−1

𝑙

−
𝑛 + 1
𝜀ℎ

�⃗�𝑘�̄�
𝑛+1
𝑘

(
�⃗�3 ⋅

𝜕�⃗�
𝜕𝑡

)
−
𝑛
ℎ
�⃗�𝑘�̄�

𝑛
𝑘

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

− �⃗�𝑘

𝑛−2∑
𝑚=0

(𝑚 + 1)�̄�𝑚+1
𝑘

𝜀𝑛−𝑚−1ℎ𝑛−𝑚−2𝐶𝑛−𝑚−1,𝑛−𝑚−2
3

+
𝑛∑

𝑚=0

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=0

(
�⃗�𝑞

𝜕�̄�
𝑗
𝑞

𝜕𝜉𝑙
+ �̄�

𝑗
𝑞

𝜕�⃗�𝑞

𝜕𝜉𝑙

)
(𝜀ℎ)𝑛−𝑚−𝑗𝐵

𝑛−𝑚−𝑗
𝑙𝑘

+
𝑛−1∑
𝑚=0

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=1

𝑗𝜀𝑛−𝑚−𝑗ℎ𝑛−𝑚−𝑗−1𝐵
𝑛−𝑚−𝑗
3𝑘

�⃗�𝑞�̄�
𝑗
𝑞 +

1
𝜀ℎ

𝑛∑
𝑚=0

�̄�𝑚3 (𝑛 − 𝑚 + 1)
(
�⃗�𝑞�̄�

𝑛−𝑚+1
𝑞

)

= −
1
𝜌0

𝑛∑
𝑚=0

𝜕�̄�𝑚

𝜕𝜉𝑙
(𝜀ℎ)𝑛−𝑚

(
𝛼𝑛−𝑚
𝑙

�⃗�1 + 𝛽𝑛−𝑚
𝑙

�⃗�2
)
−
𝑛 + 1
𝜀ℎ𝜌0

�̄�𝑛+1�⃗�3

−
1
𝜌0

𝑛∑
𝑚=1

𝑚�̄�𝑚𝜀𝑛−𝑚ℎ𝑛−𝑚−1
(
𝛼𝑛−𝑚3 �⃗�1 + 𝛽𝑛−𝑚3 �⃗�2

)
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RODRÍGUEZ and TABOADA-VÁZQUEZ 7 of 26

+ 𝜈

[
𝑛∑
𝑟=0

(𝜀ℎ)𝑛−𝑟
𝜕2(�⃗�𝑘�̄�

𝑟
𝑘
)

𝜕𝜉𝑙𝜕𝜉𝑚

𝑛−𝑟∑
𝑠=0

𝐽𝑠,𝑛−𝑟−𝑠
𝑙,𝑚

+ 2
𝑛∑
𝑟=1

𝑟𝜀𝑛−𝑟ℎ𝑛−𝑟−1
𝜕(�⃗�𝑘�̄�

𝑟
𝑘
)

𝜕𝜉𝑚

𝑛−𝑟∑
𝑠=0

𝐽𝑠,𝑛−𝑟−𝑠3𝑚

+
𝑛∑
𝑟=0

(𝜀ℎ)𝑛−𝑟
𝜕(�⃗�𝑘�̄�

𝑟
𝑘
)

𝜕𝜉𝑙

𝑛−𝑟∑
𝑠=0

𝐾𝑠,𝑛−𝑟−𝑠
𝑙

+
𝑛∑
𝑟=0

𝜀𝑛−𝑟ℎ𝑛−𝑟−1
𝜕(�⃗�𝑘�̄�

𝑟
𝑘
)

𝜕𝜉𝑙

𝑛−𝑟∑
𝑠=1

𝑠
𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ �⃗�𝑘

𝑛∑
𝑟=1

𝑟𝜀𝑛−𝑟ℎ𝑛−𝑟−1�̄�𝑟
𝑘

𝑛−𝑟∑
𝑠=0

𝐾𝑠,𝑛−𝑟−𝑠
3 + �⃗�𝑘

𝑛∑
𝑟=1

𝑟𝜀𝑛−𝑟ℎ𝑛−𝑟−2�̄�𝑟
𝑘

𝑛−𝑟∑
𝑠=0

(𝑠 − 1)
𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠3𝑚

+ �⃗�𝑘

𝑛∑
𝑟=0

(𝑟 + 1)𝜀𝑛−𝑟−1ℎ𝑛−𝑟−1�̄�𝑟+1
𝑘

𝐻𝑛−𝑟
𝑚𝑚3

]

+ 𝜈

[
�⃗�𝑘

𝑛∑
𝑟=2

𝑟(𝑟 − 1)𝜀𝑛−𝑟ℎ𝑛−𝑟−2�̄�𝑟
𝑘

𝑛−𝑟∑
𝑠=0

𝐽𝑠,𝑛−𝑟−𝑠33 +
�⃗�𝑘
𝜀2ℎ2

(𝑛 + 2)(𝑛 + 1)�̄�𝑛+2
𝑘

+
𝑛−1∑
𝑟=0

𝜀𝑛−𝑟ℎ𝑛−𝑟−1
𝜕(�⃗�𝑘�̄�

𝑟
𝑘
)

𝜕𝜉𝑙

𝑛−𝑟∑
𝑠=1

𝑠𝐽𝑠,𝑛−𝑟−𝑠
𝑙3

+ �⃗�𝑘

𝑛∑
𝑟=1

𝑟𝜀𝑛−𝑟ℎ𝑛−𝑟−2�̄�𝑟
𝑘

𝑛−𝑟∑
𝑠=0

(𝑠 + 1)𝐽𝑠,𝑛−𝑟−𝑠33

]

+ 𝑓𝑛
𝑘
�⃗�𝑘, (𝑛 = 0, 1, 2, 3) (31)

�̄�𝑛+13 = −
𝜀ℎ

𝑛 + 1

𝑛∑
𝑚=0

(𝜀ℎ)𝑛−𝑚
2∑

𝑘=1

[
2∑
𝑙=1

(
𝜕�̄�𝑚

𝑘

𝜕𝜉𝑙
𝐵𝑛−𝑚
𝑙𝑘

+ �̄�𝑚
𝑘
𝐻𝑛−𝑚
𝑙𝑙𝑘

)
+ �̄�𝑚3 𝐻

𝑛−𝑚
𝑘𝑘3

+
𝑚
ℎ
�̄�𝑚
𝑘
𝐵𝑛−𝑚
3𝑘

]

(𝑛 = 0, 1, 2) (32)

3∑
𝑚=0

(𝜀ℎ)𝑚

[
2∑

𝑘=1

2∑
𝑙=1

𝜕�̄�3−𝑚
𝑘

𝜕𝜉𝑙
𝐵𝑚
𝑙𝑘
+

3∑
𝑘=1

�̄�3−𝑚
𝑘

2∑
𝑙=1

𝐻𝑚
𝑙𝑙𝑘

+
3 − 𝑚
ℎ

2∑
𝑘=1

�̄�3−𝑚
𝑘

𝐵𝑚
3𝑘

]
= 0 (33)

where we have introduced the notation �̄�4𝑖 = �̄�5𝑖 = 0, (𝑖 = 1, 2, 3). The coefficients 𝐵𝑗
𝑙𝑘
, 𝐶0

𝑙
, 𝐶𝑖,𝑗

𝑙
,𝐻𝑗

𝑖𝑙𝑘
, 𝐽𝑖,𝑗

𝑙𝑚
, 𝐾𝑗,𝑖

𝑙
are given by

(A31), (A32), (A33), (A35), (A37), (A39).
We multiply Equations (31) by 𝛼0𝑖 �⃗�𝑖 (𝑖 = 1, 2) and sum in 𝑖, then we repeat the procedure multiplying (31) by 𝛽0𝑖 �⃗�𝑖

(𝑖 = 1, 2) and adding in 𝑖 again, to yield these equations:

𝜕�̄�𝑛𝑖
𝜕𝑡

+
3∑

𝑘=1

�̄�𝑛
𝑘
𝑄0
𝑖𝑘
−

2∑
𝑙=1

𝜕�̄�𝑛𝑖
𝜕𝜉𝑙

𝐶0
𝑙
−

𝑛−1∑
𝑚=0

2∑
𝑙=1

(
𝜕�̄�𝑚𝑖
𝜕𝜉𝑙

+
3∑

𝑘=1

�̄�𝑚
𝑘
𝐻0
𝑖𝑙𝑘

)
(𝜀ℎ)𝑛−𝑚𝐶𝑛−𝑚,𝑛−𝑚−1

𝑙

−
𝑛 + 1
𝜀ℎ

�̄�𝑛+1𝑖

(
�⃗�3 ⋅

𝜕�⃗�
𝜕𝑡

)
−
𝑛
ℎ
�̄�𝑛𝑖

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

−
𝑛−2∑
𝑚=0

(𝑚 + 1)�̄�𝑚+1
𝑖 𝜀𝑛−𝑚−1ℎ𝑛−𝑚−2𝐶𝑛−𝑚−1,𝑛−𝑚−2

3

+
𝑛∑

𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=0

2∑
𝑙=1

(
𝜕�̄�

𝑗
𝑖

𝜕𝜉𝑙
+

3∑
𝑞=1

�̄�
𝑗
𝑞𝐻

0
𝑖𝑙𝑞

)
(𝜀ℎ)𝑛−𝑚−𝑗𝐵

𝑛−𝑚−𝑗
𝑙𝑘

+
𝑛−1∑
𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=1

𝑗𝜀𝑛−𝑚−𝑗ℎ𝑛−𝑚−𝑗−1𝐵
𝑛−𝑚−𝑗
3𝑘

�̄�
𝑗
𝑖 +

1
𝜀ℎ

𝑛∑
𝑚=0

�̄�𝑚3 (𝑛 − 𝑚 + 1)�̄�𝑛−𝑚+1
𝑖

= −
1
𝜌0

𝑛∑
𝑚=0

𝜕�̄�𝑚

𝜕𝜉𝑙
(𝜀ℎ)𝑛−𝑚𝐽0,𝑛−𝑚

𝑖𝑙
−

1
𝜌0

𝑛∑
𝑚=1

𝑚�̄�𝑚𝜀𝑛−𝑚ℎ𝑛−𝑚−1𝐽0,𝑛−𝑚𝑖3
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8 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

+ 𝜈

{
𝑛∑
𝑟=0

𝜀𝑛−𝑟
2∑

𝑚=1

2∑
𝑙=1

𝜕2�̄�𝑟𝑖
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄𝑛−𝑟
𝑙𝑚

+
𝑛∑
𝑟=0

𝜀𝑛−𝑟
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�𝑟
𝑘

𝜕𝜉𝑙
𝐿𝑛,𝑟
𝑖𝑘𝑙

+
𝑛∑
𝑟=0

𝜀𝑛−𝑟
3∑

𝑘=1

�̄�𝑟
𝑘
𝑆𝑛,𝑟
𝑖𝑘

}

+
𝜈(𝑛 + 1)

𝜀ℎ
�̄�𝑛+1𝑖

2∑
𝑚=1

𝐻0
𝑚𝑚3 + 𝜈

(𝑛 + 2)(𝑛 + 1)

𝜀2ℎ2
�̄�𝑛+2𝑖 + 𝑓𝑛𝑖 , (𝑖 = 1, 2, 𝑛 = 0, 1, 2, 3) (34)

where 𝑄0
𝑖𝑘
, 𝜄𝑛
𝑙𝑚
, 𝐿𝑛,𝑟

𝑖𝑘𝑙
and 𝑆𝑛,𝑟

𝑖𝑘
are given by (A43), (A44), (A38), (A40) and (A46) respectively.

If Equations (31) are multiplied by �⃗�3, we obtain:

𝜕�̄�𝑛3
𝜕𝑡

+
2∑

𝑘=1

�̄�𝑛
𝑘

[
𝜕�⃗�𝑘
𝜕𝑡

⋅ �⃗�3 −
2∑
𝑙=1

𝐶0
𝑙

𝜕�⃗�𝑘
𝜕𝜉𝑙

⋅ �⃗�3

]
−

2∑
𝑙=1

𝜕�̄�𝑛3
𝜕𝜉𝑙

𝐶0
𝑙

−
𝑛−1∑
𝑚=0

2∑
𝑙=1

[
𝜕�̄�𝑚3
𝜕𝜉𝑙

+
2∑

𝑘=1

�̄�𝑚
𝑘

(
𝜕�⃗�𝑘
𝜕𝜉𝑙

⋅ �⃗�3

)]
(𝜀ℎ)𝑛−𝑚𝐶𝑛−𝑚,𝑛−𝑚−1

𝑙

−
𝑛 + 1
𝜀ℎ

�̄�𝑛+13

(
�⃗�3 ⋅

𝜕�⃗�
𝜕𝑡

)
−
𝑛
ℎ
�̄�𝑛3

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

−
𝑛−2∑
𝑚=0

(𝑚 + 1)�̄�𝑚+1
3 𝜀𝑛−𝑚−1ℎ𝑛−𝑚−2𝐶𝑛−𝑚−1,𝑛−𝑚−2

3

+
𝑛∑

𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=0

2∑
𝑙=1

(
𝜕�̄�

𝑗
3

𝜕𝜉𝑙
+ �̄�

𝑗
𝑞

𝜕�⃗�𝑞

𝜕𝜉𝑙
⋅ �⃗�3

)
(𝜀ℎ)𝑛−𝑚−𝑗𝐵

𝑛−𝑚−𝑗
𝑙𝑘

+
𝑛−1∑
𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚−1∑
𝑗=0

(𝑛 − 𝑚 − 𝑗)𝜀𝑗ℎ𝑗−1𝐵
𝑗
3𝑘
�̄�
𝑛−𝑚−𝑗
3 +

1
𝜀ℎ

𝑛∑
𝑚=0

�̄�𝑚3 (𝑛 − 𝑚 + 1)�̄�𝑛−𝑚+1
3

= −
𝑛 + 1
𝜀ℎ𝜌0

�̄�𝑛+1 + 𝜈

[
𝑛∑
𝑟=0

𝜀𝑛−𝑟
2∑
𝑙=1

2∑
𝑚=1

𝜕2�̄�𝑟3
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄𝑛−𝑟
𝑙𝑚

+
𝑛∑
𝑟=0

𝜀𝑛−𝑟
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�𝑟
𝑘

𝜕𝜉𝑙
𝐿𝑛,𝑟
3𝑘𝑙

+
𝑛∑
𝑟=0

𝜀𝑛−𝑟
2∑

𝑘=1

�̄�𝑟
𝑘
𝑆𝑛,𝑟
3𝑘

]
+
𝜈(𝑛 + 1)

𝜀ℎ
�̄�𝑛+13

2∑
𝑚=1

𝐻0
𝑚𝑚3 +

𝜈

𝜀2ℎ2
(𝑛 + 2)(𝑛 + 1)�̄�𝑛+23

+ 𝑓𝑛3 , (𝑛 = 0, 1, 2, 3) (35)

where the coefficients 𝐿𝑛,𝑟
3𝑘𝑙

and 𝑆𝑛,𝑟
3𝑘

are defined in (A41) and (A47).
Since we have assumed that the velocity and the pressure are polynomials of degree three in 𝜉3 ((26)–(27)), we have 16

unknowns to determine. Out of these unknowns, the terms �̄�𝑘3 and �̄�
𝑘 (𝑘 = 1, 2, 3) corresponding to the third component

of the velocity and the pressure, respectively, are given by (32) and (35) using the terms �̄�𝑘𝑖 (𝑖 = 1, 2, 𝑘 = 0, 1, 2) once they
have been computed. Therefore, we must actually determine 10 unknowns.
Denoting, as previously done, by𝑉1�⃗�1 + 𝑉2�⃗�2 and𝑊1�⃗�1 +𝑊2�⃗�2 the tangential velocity at the lower and upper surfaces,

respectively, we have

𝑢𝜀
𝑘
𝑒𝑘 = 𝑢𝑘(𝜀)�⃗�𝑘 = 𝑉1(𝜀)�⃗�1 + 𝑉2(𝜀)�⃗�2 +

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
�⃗�3 on 𝜉3 = 0 (36)

𝑢𝜀
𝑘
𝑒𝑘 = 𝑢𝑘(𝜀)�⃗�𝑘 = 𝑊1(𝜀)�⃗�1 +𝑊2(𝜀)�⃗�2 +

(
𝜕(�⃗� + 𝜀ℎ�⃗�3)

𝜕𝑡
⋅ �⃗�3

)
�⃗�3 on 𝜉3 = 1 (37)

and, taking into account (26), we yield

�̄�0𝑖 = 𝑉𝑖 (𝑖 = 1, 2) (38)
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RODRÍGUEZ and TABOADA-VÁZQUEZ 9 of 26

�̄�03 =
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3 (39)

3∑
𝑘=1

�̄�𝑘𝑖 = 𝑊𝑖 − 𝑉𝑖 (𝑖 = 1, 2) (40)

3∑
𝑘=1

�̄�𝑘3 = 𝜀
𝜕ℎ
𝜕𝑡

(41)

Equality (39) gives us an expression for �̄�03, so it is no longer an unknown, it is determined by the lower bound surface.
At this point, nine unknowns are left, �̄�𝑘𝑖 (𝑖 = 1, 2, 𝑘 = 0, 1, 2, 3) and �̄�0, but we will see that not all are needed to obtain
an approximation of the velocity and the pressure.

4 NEWMODEL

As we have just seen in Section 3, operating with the truncated part of the formal asymptotic expansion of the solution,
hypotheses (26)–(28) allow us to derive a two-dimensional limit model, which we shall call new model from now on,
formed by equations:

𝑢𝑖(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) =
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛
𝑖 (𝜀)(𝑡, 𝜉1, 𝜉2), (𝑖 = 1, 2, 3) (42)

𝑝(𝜀)(𝑡, 𝜉1, 𝜉2, 𝜉3) =
3∑

𝑛=0

𝜉𝑛3 �̄�
𝑛(𝜀)(𝑡, 𝜉1, 𝜉2), (43)

𝜕�̄�𝑛𝑖
𝜕𝑡

+
3∑

𝑘=1

�̄�𝑛
𝑘
𝑄0
𝑖𝑘
−

2∑
𝑙=1

𝜕�̄�𝑛𝑖
𝜕𝜉𝑙

𝐶0
𝑙
−
𝑛
ℎ
�̄�𝑛𝑖

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

+
𝑛∑

𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=0

2∑
𝑙=1

(
𝜕�̄�

𝑗
𝑖

𝜕𝜉𝑙
+

3∑
𝑞=1

�̄�
𝑗
𝑞𝐻

0
𝑖𝑙𝑞

)
(𝜀ℎ)𝑛−𝑚−𝑗𝐵

𝑛−𝑚−𝑗
𝑙𝑘

+
𝑛−1∑
𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=1

𝑗𝜀𝑛−𝑚−𝑗ℎ𝑛−𝑚−𝑗−1𝐵
𝑛−𝑚−𝑗
3𝑘

�̄�
𝑗
𝑖 +

1
𝜀ℎ

𝑛∑
𝑚=1

�̄�𝑚3 (𝑛 − 𝑚 + 1)�̄�𝑛−𝑚+1
𝑖

−
𝑛−1∑
𝑚=0

2∑
𝑙=1

(
𝜕�̄�𝑚𝑖
𝜕𝜉𝑙

+
3∑

𝑘=1

�̄�𝑚
𝑘
𝐻0
𝑖𝑙𝑘

)
(𝜀ℎ)𝑛−𝑚𝐶𝑛−𝑚,𝑛−𝑚−1

𝑙

−
𝑛−2∑
𝑚=0

(𝑚 + 1)�̄�𝑚+1
𝑖 𝜀𝑛−𝑚−1ℎ𝑛−𝑚−2𝐶𝑛−𝑚−1,𝑛−𝑚−2

3

= −
1
𝜌0

𝑛∑
𝑚=0

2∑
𝑙=1

𝜕�̄�𝑚

𝜕𝜉𝑙
(𝜀ℎ)𝑛−𝑚𝐽0,𝑛−𝑚

𝑖𝑙
−

1
𝜌0

𝑛∑
𝑚=1

𝑚�̄�𝑚𝜀𝑛−𝑚ℎ𝑛−𝑚−1𝐽0,𝑛−𝑚𝑖3

+ 𝜈
𝑛∑
𝑟=0

𝜀𝑛−𝑟

[
2∑

𝑚=1

2∑
𝑙=1

𝜕2�̄�𝑟𝑖
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄𝑛−𝑟
𝑙𝑚

+
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�𝑟
𝑘

𝜕𝜉𝑙
𝐿𝑛,𝑟
𝑖𝑘𝑙

+
3∑

𝑘=1

�̄�𝑟
𝑘
𝑆𝑛,𝑟
𝑖𝑘

]

+
𝜈(𝑛 + 1)

𝜀ℎ
𝐴1

𝐴0
�̄�𝑛+1𝑖 + 𝜈

(𝑛 + 2)(𝑛 + 1)

𝜀2ℎ2
�̄�𝑛+2𝑖 + 𝑓𝑛𝑖 , (𝑖 = 1, 2, 𝑛 = 0, 1, 2, 3) (44)

3∑
𝑚=0

(𝜀ℎ)𝑚

[
2∑

𝑘=1

2∑
𝑙=1

𝜕�̄�3−𝑚
𝑘

𝜕𝜉𝑙
𝐵𝑚
𝑙𝑘
+

3∑
𝑘=1

�̄�3−𝑚
𝑘

2∑
𝑙=1

𝐻𝑚
𝑙𝑙𝑘

+
3 − 𝑚
ℎ

2∑
𝑘=1

�̄�3−𝑚
𝑘

𝐵𝑚
3𝑘

]
= 0 (45)
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10 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

�̄�03 =
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3 (46)

�̄�𝑛+13 = −
𝜀ℎ

𝑛 + 1

𝑛∑
𝑚=0

(𝜀ℎ)𝑛−𝑚
2∑

𝑘=1

[
2∑
𝑙=1

(
𝜕�̄�𝑚

𝑘

𝜕𝜉𝑙
𝐵𝑛−𝑚
𝑙𝑘

+ �̄�𝑚
𝑘
𝐻𝑛−𝑚
𝑙𝑙𝑘

)
+ �̄�𝑚3 𝐻

𝑛−𝑚
𝑘𝑘3

+
𝑚
ℎ
�̄�𝑚
𝑘
𝐵𝑛−𝑚
3𝑘

]

(𝑛 = 0, 1, 2) (47)

�̄�𝑛+1 =
𝜇

𝜀ℎ
(𝑛 + 2)�̄�𝑛+23 +

𝜇𝐴1

𝐴0
�̄�𝑛+13 −

𝜌0
𝑛 + 1

𝑛∑
𝑚=1

�̄�𝑚3 (𝑛 − 𝑚 + 1)�̄�𝑛−𝑚+1
3

+
𝜀ℎ𝜌0
𝑛 + 1

{
−
𝜕�̄�𝑛3
𝜕𝑡

−
2∑

𝑘=1

�̄�𝑛
𝑘
𝑄0
3𝑘
+

2∑
𝑙=1

𝜕�̄�𝑛3
𝜕𝜉𝑙

𝐶0
𝑙
+
𝑛
ℎ
�̄�𝑛3

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

+
𝑛−1∑
𝑚=0

2∑
𝑙=1

[
𝜕�̄�𝑚3
𝜕𝜉𝑙

+
2∑

𝑘=1

�̄�𝑚
𝑘

(
𝜕�⃗�𝑘
𝜕𝜉𝑙

⋅ �⃗�3

)]
(𝜀ℎ)𝑛−𝑚𝐶𝑛−𝑚,𝑛−𝑚−1

𝑙

+
𝑛−2∑
𝑚=0

(𝑚 + 1)�̄�𝑚+1
3 𝜀𝑛−𝑚−1ℎ𝑛−𝑚−2𝐶𝑛−𝑚−1,𝑛−𝑚−2

3

−
𝑛∑

𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚∑
𝑗=0

2∑
𝑙=1

[
𝜕�̄�

𝑗
3

𝜕𝜉𝑙
+ �̄�

𝑗
𝑞

(
𝜕�⃗�𝑞

𝜕𝜉𝑙
⋅ �⃗�3

)]
(𝜀ℎ)𝑛−𝑚−𝑗𝐵

𝑛−𝑚−𝑗
𝑙𝑘

−
𝑛−1∑
𝑚=0

2∑
𝑘=1

�̄�𝑚
𝑘

𝑛−𝑚−1∑
𝑗=0

(𝑛 − 𝑚 − 𝑗)𝜀𝑗ℎ𝑗−1𝐵
𝑗
3𝑘
�̄�
𝑛−𝑚−𝑗
3

+ 𝜈
𝑛∑
𝑟=0

𝜀𝑛−𝑟

[
2∑
𝑙=1

2∑
𝑚=1

𝜕2�̄�𝑟3
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄𝑛−𝑟
𝑙𝑚

+
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�𝑟
𝑘

𝜕𝜉𝑙
𝐿𝑛,𝑟
3𝑘𝑙

+
3∑

𝑘=1

�̄�𝑟
𝑘
𝑆𝑛,𝑟
3𝑘

]
+ 𝑓𝑛3

}

(𝑛 = 0, 1, 2) (48)

Examining the new model, we observe that the equations can be divided into two groups: a first group, including
Equations (44) and (45), that must be solved to obtain the terms �̄�01, �̄�

0
2, �̄�

0, �̄�11, �̄�
1
2, �̄�

2
1, �̄�

2
2, �̄�

3
1 and �̄�32, and a second

group, including Equations (46)–(48), that allow us to eliminate the terms �̄�03, �̄�
1
3, �̄�

2
3, �̄�

3
3, �̄�

1, �̄�2, �̄�3 from Equations (44)–
(45). Once the aforementioned elimination has been carried out, we can solve the first group of equations to compute
�̄�𝑘𝑖 (𝑘 = 0, 1, 2, 3, 𝑖 = 1, 2) and �̄�0, and use the second group of equations to obtain �̄�𝑘3 (𝑘 = 0, 1, 2, 3) and �̄�𝑗 (𝑗 = 1, 2, 3).
Boundary and initial conditions must be added to this system of equations.

5 ASYMPTOTIC ANALYSIS OF THE NEWMODEL

This section is devoted to the asymptotic analysis of the model (42)–(48), proposed in the previous section. We want to
check if the asymptotic behavior of the new model, when 𝜀 tends to zero, is the same as the Navier-Stokes equations,
shown in [1].
Let us start assuming that �̄�𝑛𝑖 (𝜀), 𝑓

𝑛
𝑖 (𝜀), �̄�

𝑛(𝜀),𝑊𝑖(𝜀) and 𝑉𝑖(𝜀) (𝑖 = 1, 2, 3, 𝑛 = 0, 1, 2, 3) can be developed in powers of
𝜀, that is:

�̄�𝑛𝑖 (𝜀) =
∞∑
𝑘=0

𝜀𝑘�̄�𝑛,𝑘𝑖 (𝑖 = 1, 2, 3, 𝑛 = 0, 1, 2, 3) (49)

�̄�𝑛(𝜀) =
∞∑

𝑘=−2

𝜀𝑘�̄�𝑛,𝑘 (𝑛 = 0, 1, 2, 3) (50)
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RODRÍGUEZ and TABOADA-VÁZQUEZ 11 of 26

𝑓𝑛𝑖 (𝜀) =
∞∑
𝑘=0

𝜀𝑘𝑓𝑛,𝑘𝑖 (𝑖 = 1, 2, 3, 𝑛 = 0, 1, 2, …) (51)

𝑉𝑖(𝜀) =
∞∑
𝑘=0

𝜀𝑘𝑉𝑘
𝑖 (𝑖 = 1, 2) (52)

𝑊𝑖(𝜀) =
∞∑
𝑘=0

𝜀𝑘𝑊𝑘
𝑖 (𝑖 = 1, 2) (53)

The substitution of the developments (49)–(53) in (44)–(48), (38) and (40)–(41) and the identification of the terms mul-
tiplied by the same power of 𝜀, lead to a series of equations that will allow us to determine �̄�𝑛,0𝑖 , �̄�𝑛,−2, … (𝑖 = 1, 2, 3, 𝑛 =
0, 1, 2, 3).
In this way, we identify the terms multiplied by

∙ 𝜀−2 in (44) and (48):

1
𝜌0

2∑
𝑙=1

𝜕�̄�0,−2

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

=
2𝜈

ℎ2
�̄�2,0𝑖 , (𝑖 = 1, 2) (54)

1
𝜌0

2∑
𝑙=1

𝜕�̄�1,−2

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

+ �̄�1,−2ℎ−1𝐽0,0𝑖3 = 𝜈
6

ℎ2
�̄�3,0𝑖 , (𝑖 = 1, 2) (55)

1
𝜌0

2∑
𝑙=1

𝜕�̄�𝑛,−2

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

+ 𝑛�̄�𝑛,−2ℎ−1𝐽0,0𝑖3 = 0, (𝑛 = 2, 3, 𝑖 = 1, 2) (56)

�̄�𝑛,−2 = 0, (𝑛 = 1, 2, 3) (57)

Taking into account (57), we obtain from (55):

�̄�3,0𝑖 = 0, (𝑖 = 1, 2) (58)

∙ 𝜀−1 in (44) and (48) (considering (57) and (58)):

1
𝜌0

2∑
𝑙=1

𝜕�̄�0,−1

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

=
𝜈
ℎ
�̄�1,0𝑖

𝐴1

𝐴0
+ 𝜈

2

ℎ2
�̄�2,1𝑖 , (𝑖 = 1, 2) (59)

1
ℎ
�̄�1,03 �̄�1,0𝑖 = −

1
𝜌0

2∑
𝑙=1

𝜕�̄�1,−1

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

−
1
𝜌0

2∑
𝑙=1

𝜕�̄�0,−2

𝜕𝜉𝑙
ℎ𝐽0,1

𝑖𝑙
−

1
𝜌0
�̄�1,−1ℎ−1𝐽0,0𝑖3

+
2𝜈
ℎ
𝐴1

𝐴0
�̄�2,0𝑖 + 𝜈

6

ℎ2
�̄�3,1𝑖 , (𝑖 = 1, 2) (60)

1
ℎ

2∑
𝑚=1

�̄�𝑚,0
3 (3 − 𝑚)�̄�3−𝑚,0

𝑖 = −
1
𝜌0

2∑
𝑙=1

𝜕�̄�2,−1

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

−
2
𝜌0
�̄�2,−1ℎ−1𝐽0,0𝑖3 , (𝑖 = 1, 2) (61)

1
ℎ

3∑
𝑚=2

�̄�𝑚,0
3 (4 − 𝑚)�̄�4−𝑚,0

𝑖 = −
1
𝜌0

2∑
𝑙=1

𝜕�̄�3,−1

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

−
𝑛
𝜌0
�̄�3,−1ℎ−1𝐽0,0𝑖3 , (𝑖 = 1, 2, 𝑛 = 2, 3) (62)

�̄�𝑛+1,−1 =
𝜇

ℎ
(𝑛 + 2)�̄�𝑛+2,03 , (𝑛 = 0, 1) (63)

�̄�3,−1 = 0 (64)

∙ 𝜀0 in (44)–(48), (38) and (40) (keeping in mind (57) and (58)):
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12 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

𝜕�̄�0,0𝑖
𝜕𝑡

+
3∑

𝑘=1

�̄�0,0
𝑘
𝑄0
𝑖𝑘
−

2∑
𝑙=1

𝜕�̄�0,0𝑖
𝜕𝜉𝑙

𝐶0
𝑙
+

2∑
𝑘=1

�̄�0,0
𝑘

2∑
𝑙=1

(
𝜕�̄�0,0𝑖
𝜕𝜉𝑙

+
3∑

𝑞=1

�̄�0,0𝑞 𝐻0
𝑖𝑙𝑞

)
𝐵0
𝑙𝑘

= −
1
𝜌0

2∑
𝑙=1

𝜕�̄�0,0

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

+ 𝜈

{
2∑

𝑚=1

2∑
𝑙=1

𝜕2�̄�0,0𝑖
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄0
𝑙𝑚

+
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�0,0
𝑘

𝜕𝜉𝑙
𝐿0,0
𝑖𝑘𝑙

+
3∑

𝑘=1

�̄�0,0
𝑘
𝑆0,0
𝑖𝑘

}

+
𝜈
ℎ
𝐴1

𝐴0
�̄�1,1𝑖 + 𝜈

2

ℎ2
�̄�2,2𝑖 + 𝑓0,0𝑖 , (𝑖 = 1, 2) (65)

𝜕�̄�1,0𝑖
𝜕𝑡

+
3∑

𝑘=1

�̄�1,0
𝑘
𝑄0
𝑖𝑘
−

2∑
𝑙=1

𝜕�̄�1,0𝑖
𝜕𝜉𝑙

𝐶0
𝑙
−

1
ℎ
�̄�1,0𝑖

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

+
1∑

𝑚=0

2∑
𝑘=1

�̄�𝑚,0
𝑘

2∑
𝑙=1

(
𝜕�̄�1−𝑚,0

𝑖

𝜕𝜉𝑙
+

3∑
𝑞=1

�̄�1−𝑚,0
𝑞 𝐻0

𝑖𝑙𝑞

)
𝐵0
𝑙𝑘
+

2∑
𝑘=1

�̄�0,0
𝑘
ℎ−1𝐵0

3𝑘
�̄�1,0𝑖 +

2
ℎ
�̄�1,13 �̄�1,0𝑖

= −
1
𝜌0

1∑
𝑚=0

2∑
𝑙=1

𝜕�̄�𝑚,𝑚−1

𝜕𝜉𝑙
ℎ1−𝑚𝐽0,1−𝑚

𝑖𝑙
−

1
𝜌0
�̄�1,0ℎ−1𝐽0,0𝑖3

+ 𝜈

{
2∑

𝑚=1

2∑
𝑙=1

𝜕2�̄�1,0𝑖
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄0
𝑙𝑚

+
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�1,0
𝑘

𝜕𝜉𝑙
𝐿1,1
𝑖𝑘𝑙

+
3∑

𝑘=1

�̄�1,0
𝑘
𝑆1,1
𝑖𝑘

}

+
2𝜈
ℎ
𝐴1

𝐴0
�̄�2,1𝑖 + 𝜈

6

ℎ2
�̄�3,2𝑖 + 𝑓1,0𝑖 , (𝑖 = 1, 2) (66)

𝜕�̄�2,0𝑖
𝜕𝑡

+
3∑

𝑘=1

�̄�2,0
𝑘
𝑄0
𝑖𝑘
−

2∑
𝑙=1

𝜕�̄�2,0𝑖
𝜕𝜉𝑙

𝐶0
𝑙
−

2
ℎ
�̄�2,0𝑖

(
𝜕ℎ
𝜕𝑡

+ 𝐶0
3

)

+
2∑

𝑚=0

2∑
𝑘=1

�̄�𝑚,0
𝑘

2∑
𝑙=1

(
𝜕�̄�2−𝑚,0

𝑖

𝜕𝜉𝑙
+

3∑
𝑞=1

�̄�2−𝑚,0
𝑞 𝐻0

𝑖𝑙𝑞

)
𝐵0
𝑙𝑘

+
1∑

𝑚=0

2∑
𝑘=1

�̄�𝑚,0
𝑘

(2 − 𝑚)ℎ−1𝐵0
3𝑘
�̄�2−𝑚,0
𝑖 +

1
ℎ

2∑
𝑚=1

(3 − 𝑚)(�̄�𝑚,1
3 �̄�3−𝑚,0

𝑖 + �̄�𝑚,0
3 �̄�3−𝑚,1

𝑖 )

= −
1
𝜌0

2∑
𝑚=0

2∑
𝑙=1

𝜕�̄�𝑚,𝑚−2

𝜕𝜉𝑙
ℎ2−𝑚𝐽0,2−𝑚

𝑖𝑙
−

1
𝜌0

2∑
𝑚=1

𝑚�̄�𝑚,𝑚−2ℎ1−𝑚𝐽0,2−𝑚𝑖3

+ 𝜈

{
2∑

𝑚=1

2∑
𝑙=1

𝜕2�̄�2,0𝑖
𝜕𝜉𝑙𝜕𝜉𝑚

𝜄0
𝑙𝑚

+
3∑

𝑘=1

2∑
𝑙=1

𝜕�̄�2,0
𝑘

𝜕𝜉𝑙
𝐿2,2
𝑖𝑘𝑙

+
3∑

𝑘=1

�̄�2,0
𝑘
𝑆2,2
𝑖𝑘

}

+
3𝜈
ℎ
𝐴1

𝐴0
�̄�3,1𝑖 + 𝑓2,0𝑖 , (𝑖 = 1, 2) (67)

2∑
𝑚=1

2∑
𝑘=1

�̄�𝑚,0
𝑘

2∑
𝑙=1

(
𝜕�̄�3−𝑚,0

𝑖

𝜕𝜉𝑙
+

3∑
𝑞=1

�̄�3−𝑚,0
𝑞 𝐻0

𝑖𝑙𝑞

)
𝐵0
𝑙𝑘

+
2∑

𝑚=1

2∑
𝑘=1

�̄�𝑚,0
𝑘

(3 − 𝑚)ℎ−1𝐵0
3𝑘
�̄�3−𝑚,0
𝑖 +

1
ℎ

3∑
𝑚=1

(4 − 𝑚)(�̄�𝑚,1
3 �̄�4−𝑚,0

𝑖 + �̄�𝑚,0
3 �̄�4−𝑚,1

𝑖 )

= −
1
𝜌0

3∑
𝑚=2

2∑
𝑙=1

𝜕�̄�𝑚,𝑚−3

𝜕𝜉𝑙
ℎ3−𝑚𝐽0,3−𝑚

𝑖𝑙
−

1
𝜌0

3∑
𝑚=2

𝑚�̄�𝑚,𝑚−3ℎ2−𝑚𝐽0,3−𝑚𝑖3 + 𝑓3,0𝑖 ,

(𝑖 = 1, 2) (68)
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�̄�0,03 =
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3 (69)

�̄�𝑛+1,03 = 0, (𝑛 = 0, 1, 2) (70)

�̄�𝑛+1,0 =
𝜇

ℎ
(𝑛 + 2)�̄�𝑛+2,13 , (𝑛 = 0, 1) (71)

�̄�3,0 = 0 (72)

�̄�0,0𝑖 = 𝑉0
𝑖 (𝑖 = 1, 2) (73)

�̄�1,0𝑖 + �̄�2,0𝑖 = 𝑊0
𝑖 − 𝑉0

𝑖 , (𝑖 = 1, 2) (74)

Bearing in mind (70) we yield from (63):

�̄�1,−1 = �̄�2,−1 = 0 (75)

∙ 𝜀 in (46), (47), (38) and (40)–(41) (considering (70)):

�̄�0,13 = 0 (76)

�̄�1,13 = −ℎ

[
1√
𝐴0

div
(√

𝐴0�⃗�0,0
)
+ �̄�0,03

𝐴1

𝐴0

]
(77)

�̄�𝑛+1,13 = −
ℎ

𝑛 + 1

[
1√
𝐴0

div
(√

𝐴0�⃗�𝑛,0
)
−
𝑛
ℎ
∇ℎ ⋅ �⃗�𝑛,0

]
, (𝑛 = 1, 2) (78)

�̄�0,1𝑖 = 𝑉1
𝑖 (𝑖 = 1, 2) (79)

3∑
𝑘=1

�̄�𝑘,1𝑖 = 𝑊1
𝑖 − 𝑉1

𝑖 (𝑖 = 1, 2) (80)

3∑
𝑘=1

�̄�𝑘,13 =
𝜕ℎ
𝜕𝑡

(81)

where �⃗�𝑛,𝑘 = (�̄�𝑛,𝑘1 , �̄�𝑛,𝑘2 ).
∙ 𝜀2 in (46), (47) and (38) and (40)–(41) (keeping in mind (76)):

�̄�0,23 = 0 (82)

�̄�1,23 = −
ℎ√
𝐴0

div
(√

𝐴0�⃗�0,1
)

(83)

�̄�2,23 = −
ℎ
2

1∑
𝑚=0

ℎ1−𝑚
2∑

𝑘=1

[
2∑
𝑙=1

(
𝜕�̄�𝑚,𝑚

𝑘

𝜕𝜉𝑙
𝐵1−𝑚
𝑙𝑘

+ �̄�𝑚,𝑚
𝑘

𝐻1−𝑚
𝑙𝑙𝑘

)
+ �̄�𝑚,𝑚

3 𝐻1−𝑚
𝑘𝑘3

+
𝑚
ℎ
�̄�𝑚,𝑚
𝑘

𝐵1−𝑚
3𝑘

]
(84)

�̄�3,23 = −
ℎ
3

2∑
𝑚=1

ℎ2−𝑚
2∑

𝑘=1

[
2∑
𝑙=1

(
𝜕�̄�𝑚,𝑚−1

𝑘

𝜕𝜉𝑙
𝐵2−𝑚
𝑙𝑘

+ �̄�𝑚,𝑚−1
𝑘

𝐻2−𝑚
𝑙𝑙𝑘

)
+ �̄�𝑚,𝑚−1

3 𝐻2−𝑚
𝑘𝑘3

+
𝑚
ℎ
�̄�𝑚,𝑚−1
𝑘

𝐵2−𝑚
3𝑘

]
(85)

�̄�0,2𝑖 = 𝑉2
𝑖 (𝑖 = 1, 2) (86)
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14 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

3∑
𝑘=1

�̄�𝑘,2𝑖 = 𝑊2
𝑖 − 𝑉2

𝑖 (𝑖 = 1, 2) (87)

3∑
𝑘=1

�̄�𝑘,23 = 0 (88)

Once theEquations (54)–(88) have been derived,wewill proceed, in the next section, to impose the boundary conditions.

6 IMPOSING BOUNDARY CONDITIONS

6.1 Boundary conditions leading to a lubrication problem

Let us assume that the fluid slips at the lower surface (𝜉3 = 0), and at the upper surface (𝜉3 = 1), that is, let us assume
that the tangential velocities of the fluid at the lower and upper surfaces are known, and, that the normal velocity of both
surfaces matches the normal velocities of the fluid at the surfaces.
In this case, the terms �̄�0𝑖 (𝑖 = 1, 2) are known (38), �̄�0,𝑘𝑖 (𝑖 = 1, 2, 𝑘 = 0, 1, … ) are known (see (73), (79), (86)), and from

Equations (54) and (74), we obtain

�̄�2,0𝑖 =
ℎ2

2𝜇

2∑
𝑙=1

𝜕�̄�0,−2

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙
, (𝑖 = 1, 2) (89)

�̄�1,0𝑖 = 𝑊0
𝑖 − 𝑉0

𝑖 −
ℎ2

2𝜇

2∑
𝑙=1

𝜕�̄�0,−2

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙
, (𝑖 = 1, 2) (90)

We can substitute �̄�𝑘,13 (𝑘 = 1, 2, 3) in (81) by the expressions (77)–(78) and then, using (73), (69), (89) and (90) we yield:

1

12𝜇
√
𝐴0

div

(√
𝐴0ℎ3

2∑
𝑙=1

𝜕𝑝0,−2

𝜕𝜉𝑙

(
𝐽0,0
1𝑙
, 𝐽0,0

2𝑙

))
− ℎ

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
𝐴1

𝐴0

−
ℎ

2
√
𝐴0

div(
√
𝐴0(�⃗�0 + �⃗�0)) +

1
2
∇ℎ ⋅ (�⃗�0 − �⃗�0) =

𝜕ℎ
𝜕𝑡

(91)

Remark 2. Equation (91) is exactly the same as Equation (17) (equation (99) in [1]), although the divergence term is written
in a slightly different form using

𝑀√
𝐴0

=
√
𝐴0

(
𝐽0,011 𝐽0,012
𝐽0,021 𝐽0,022

)

As explained in [1], (91) is a generalized version of the Reynolds equation.

The following result can be proved using (10), (42), (43), (56), (58), (69), (70), (73), (89) and (90):

Theorem1. If we assume that there exist asymptotic expansions (49)–(53), that (28) holds and that the tangential andnormal
velocities are known on the bound surfaces, then the solution of model (42)–(48) verifies

𝑢𝑘(𝜀) = 𝑉0
𝑘
+ 𝜉3(𝑊

0
𝑘
− 𝑉0

𝑘
) +

ℎ2

2𝜇

2∑
𝑙=1

𝜕�̄�0,−2

𝜕𝜉𝑙
𝐽0,0
𝑘𝑙
(𝜉23 − 𝜉3) + 𝑂(𝜀), (𝑘 = 1, 2) (92)

𝑢3(𝜀) =
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3 + 𝑂(𝜀), (93)

𝑝(𝜀) = 𝜀−2�̄�0,−2 + 𝑂(𝜀−1), (94)
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RODRÍGUEZ and TABOADA-VÁZQUEZ 15 of 26

where �̄�0,−2is the solution of the Equation (91). Thus, the velocity, �⃗�𝜀, and the pressure, 𝑝𝜀, defined in the original domain,
satisfy

𝑢𝜀𝑖 =
2∑

𝑘=1

𝑢𝑘(𝜀)
𝜕𝑥𝑖
𝜕𝜉𝑘

+ 𝑢3(𝜀)𝑁𝑖, (𝑖 = 1, 2, 3) (95)

=
2∑

𝑘=1

[
𝑉0
𝑘
+ 𝜉3

(
𝑊0

𝑘
− 𝑉0

𝑘

)
+

ℎ2

2𝜇

2∑
𝑙=1

𝜕�̄�0,−2

𝜕𝜉𝑙
𝐽0,0
𝑖𝑙

(
𝜉23 − 𝜉3

)] 𝜕𝑥𝑖
𝜕𝜉𝑘

+

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
𝑁𝑖 + 𝑂(𝜀), (96)

𝑝𝜀 = 𝜀−2�̄�0,−2 + 𝑂(𝜀−1). (97)

Remark 3. Following the steps of [42], it would be possible to show that the norm of the difference between the exact
solution of (42)–(48) and its asymptotic approximation is small. In this way, error estimates could be obtained not just
formally and, Theorem 1 could be mathematically proved. However, the adaptation of the method used in [42] to prove
Theorem 1 is not trivial and it would be very laborious.

6.2 Boundary conditions leading to a thin fluid layer problem

Now, instead of considering that the tangential and normal velocities are known on the upper and lower surfaces, we
assume that the normal component of the traction on 𝜉3 = 0 and on 𝜉3 = 1 are known pressures, and that the tangential
component of the traction on these surfaces are friction forces depending on the value of the velocities on 𝜕𝐷. Therefore,
we assume that

𝑇𝜀 ⋅ 𝑛𝜀0 = (𝜎𝜀𝑛𝜀0) ⋅ 𝑛
𝜀
0 = −𝜋𝜀

0 on 𝜉3 = 0 (98)

𝑇𝜀 ⋅ 𝑛𝜀1 = (𝜎𝜀𝑛𝜀1) ⋅ 𝑛
𝜀
1 = −𝜋𝜀

1 on 𝜉3 = 1 (99)

𝑇𝜀 ⋅ �⃗�𝑖 = (𝜎𝜀𝑛𝜀0) ⋅ �⃗�𝑖 = −𝑓𝜀𝑅0 ⋅ �⃗�𝑖 on 𝜉3 = 0, (𝑖 = 1, 2) (100)

𝑇𝜀 ⋅ 𝑣𝜀𝑖 = (𝜎𝜀𝑛𝜀1) ⋅ 𝑣
𝜀
𝑖 = −𝑓𝜀𝑅1 ⋅ 𝑣

𝜀
𝑖 on 𝜉3 = 1, (𝑖 = 1, 2) (101)

where 𝑇𝜀 is the traction vector and 𝜎𝜀 is the stress tensor given by

𝜎𝜀𝑖𝑗 = −𝑝𝜀𝛿𝑖𝑗 + 𝜇

(
𝜕𝑢𝜀𝑖
𝜕𝑥𝜀𝑗

+
𝜕𝑢𝜀𝑗

𝜕𝑥𝜀𝑖

)

=
3∑

𝑛=0

𝜉𝑛3

[
−

∞∑
𝑘=−2

𝜀𝑘�̄�𝑛,𝑘𝛿𝑖𝑗 + 𝜇
∞∑
𝑘=0

𝜀𝑘
3∑

𝑚=1

2∑
𝑙=1

(
𝜕(�̄�𝑛,𝑘𝑚 𝑎𝑚𝑖)

𝜕𝜉𝑙

(
∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟(𝛼𝑟

𝑙
𝑎1𝑗 + 𝛽𝑟

𝑙
𝑎2𝑗)

)

+
𝜕(�̄�𝑛,𝑘𝑚 𝑎𝑚𝑗)

𝜕𝜉𝑙

(
∞∑
𝑟=0

(𝜀𝜉3ℎ)
𝑟(𝛼𝑟

𝑙
𝑎1𝑖 + 𝛽𝑟

𝑙
𝑎2𝑖)

))]

+ 𝜇
∞∑
𝑘=0

𝜀𝑘
3∑

𝑛=1

3∑
𝑚=1

𝑛𝜉𝑛−13 �̄�𝑛,𝑘𝑚

[
∞∑
𝑟=0

𝜀𝑟𝜉𝑟+13 ℎ𝑟−1
(
𝛼𝑟3(𝑎𝑚𝑖𝑎1𝑗 + 𝑎𝑚𝑗𝑎1𝑖)

+ 𝛽𝑛3 𝑟(𝑎𝑚𝑖𝑎2𝑗 + 𝑎𝑚𝑗𝑎2𝑖)
)
+

1
𝜀ℎ

(𝑎𝑚𝑖𝑎3𝑗 + 𝑎𝑚𝑗𝑎3𝑖)

]
, (𝑖, 𝑗 = 1, 2, 3) (102)

and vectors 𝑛𝜀0, 𝑛
𝜀
1 are, respectively, the outward unit normal vectors to the lower and the upper surfaces, that is

𝑛𝜀0 = 𝑠0�⃗�3 (103)
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16 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

𝑛𝜀1 = −𝑠0
𝑣𝜀3‖𝑣𝜀3‖ (104)

where

𝑠0 = −1 or 𝑠0 = 1 (105)

is fixed (𝑛𝜀0 = �⃗�3 or 𝑛𝜀0 = −�⃗�3, depending on the orientation of the parametrization �⃗�), and

𝑣𝜀1 = �⃗�1 + 𝜀

(
𝜕ℎ

𝜕𝜉1
�⃗�3 + ℎ

𝜕�⃗�3
𝜕𝜉1

)
(106)

𝑣𝜀2 = �⃗�2 + 𝜀

(
𝜕ℎ

𝜕𝜉2
�⃗�3 + ℎ

𝜕�⃗�3
𝜕𝜉2

)
(107)

𝑣𝜀3 = 𝑣𝜀1 × 𝑣𝜀2 = �⃗�1 × �⃗�2 + 𝜀

[
𝜕ℎ

𝜕𝜉2
(�⃗�1 × �⃗�3) + ℎ

(
�⃗�1 ×

𝜕�⃗�3
𝜕𝜉2

+
𝜕�⃗�3
𝜕𝜉1

× �⃗�2

)
+

𝜕ℎ

𝜕𝜉1
(�⃗�3 × �⃗�2)

]

+ 𝜀2
[(

𝜕ℎ

𝜕𝜉1
�⃗�3 + ℎ

𝜕�⃗�3
𝜕𝜉1

)
×

(
𝜕ℎ

𝜕𝜉2
�⃗�3 + ℎ

𝜕�⃗�3
𝜕𝜉2

)]
(108)

‖𝑣𝜀3‖ = ‖�⃗�1 × �⃗�2‖ + 𝜀ℎ

[
�⃗�3 ⋅

(
�⃗�1 ×

𝜕�⃗�3
𝜕𝜉2

)
+ �⃗�3 ⋅

(
𝜕�⃗�3
𝜕𝜉1

× �⃗�2

)]
+ 𝑂(𝜀2) (109)

Typically, the friction force is of the form

𝑓𝜀𝑅𝛼 = 𝜌0𝐶
𝜀
𝑅‖�⃗�𝜀‖�⃗�𝜀 on 𝜉3 = 𝛼, (𝛼 = 0, 1) (110)

where 𝐶𝜀
𝑅 is a small constant. Let us assume that it is of order 𝜀 (see [35] or [47]), that is,

𝐶𝜀
𝑅 = 𝜀𝐶1

𝑅 (111)

If we assume that the pressures and the friction forces on the upper and lower surfaces admit a development in powers
of 𝜀 too:

𝜋𝑖(𝜀) =
∞∑
𝑟=0

𝜀𝑟𝜋𝑟
𝑖 , (𝑖 = 0, 1) (112)

𝑓(𝜀)𝑅𝛼 =
∞∑
𝑘=1

𝜀𝑘𝑓𝑘𝑅𝛼 , (𝛼 = 0, 1) (113)

condition (98) can now be written (using (102), (103)) as:

(𝜎𝑖𝑗𝑎3𝑗)𝑎3𝑖 = −�̄�0 +
2𝜇

𝜀ℎ
�̄�13 = −𝜋0 (114)

Next, we identify the terms multiplied by the same power of 𝜀, we obtain (for 𝜀−2, 𝜀−1 and 𝜀0) taking into account (69),
(70) and (77):

�̄�0,−2 = �̄�0,−1 = 0 (115)

�̄�0,0 = 𝜋0
0 −

2𝜇√
𝐴0

div
(√

𝐴0�⃗�0
)
− 2𝜇

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
𝐴1

𝐴0
(116)

From (54), (115), (78), (71), (60), (74), (59) and bearing in mind (70), (75), (115) we get:

�̄�2,0𝑖 = 0, (𝑖 = 1, 2) (117)
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RODRÍGUEZ and TABOADA-VÁZQUEZ 17 of 26

�̄�3,13 = 0 (118)

�̄�2,0 = 0 (119)

�̄�3,1𝑖 = 0 (𝑖 = 1, 2) (120)

�̄�1,0𝑖 = 𝑊0
𝑖 − 𝑉0

𝑖 , (𝑖 = 1, 2) (121)

�̄�2,1𝑖 = −
ℎ
2
𝐴1

𝐴0
(𝑊0

𝑖 − 𝑉0
𝑖 ). (𝑖 = 1, 2) (122)

Boundary condition (99) can be written (using (104)) as follows:(
𝜎𝜀𝑖𝑗𝑣

𝜀
3𝑗

)
⋅ 𝑣𝜀3𝑖 = −𝜋𝜀

1‖𝑣𝜀3‖2 on 𝜉3 = 1 (123)

and, using (102), (108), (109) and (112) to substitute 𝜎𝑖𝑗 , vector 𝑣3, its module and 𝜋𝜀
1 into the above condition, we identify

the terms multiplied by 𝜀0 (the terms multiplied by 𝜀−2 and 𝜀−1 trivially vanish):

−
3∑

𝑛=0

�̄�𝑛,0‖�⃗�1 × �⃗�2‖2 + 2𝜇

ℎ

3∑
𝑛=1

𝑛�̄�𝑛,13 ‖�⃗�1 × �⃗�2‖2
+
2𝜇

ℎ

3∑
𝑛=1

2∑
𝑚=1

𝑛�̄�𝑛,0𝑚 ‖�⃗�1 × �⃗�2‖�⃗�𝑚 ⋅

[
𝜕ℎ

𝜕𝜉2
(�⃗�1 × �⃗�3) + ℎ

(
�⃗�1 ×

𝜕�⃗�3
𝜕𝜉2

+
𝜕�⃗�3
𝜕𝜉1

× �⃗�2

)
+

𝜕ℎ

𝜕𝜉1
(�⃗�3 × �⃗�2)

]
= −𝜋0

1‖�⃗�1 × �⃗�2‖2 (124)

Taking into account (119), (72), (58), (117), (118), (71), (78), (116), (121) and, that

(�⃗�1 × �⃗�3) ⋅ �⃗�2 = (�⃗�3 × �⃗�2) ⋅ �⃗�1 = −‖�⃗�1 × �⃗�2‖ (125)

(
�⃗�1 ×

𝜕�⃗�3
𝜕𝜉2

)
⋅ �⃗�2 =

(
𝜕�⃗�3
𝜕𝜉1

× �⃗�2

)
⋅ �⃗�1 = 0 (126)

Equation (124) can be written as follows:

𝜋0
0 +

𝜇

ℎ

(
ℎ√
𝐴0

div
(√

𝐴0
(
�⃗�0 − �⃗�0

))
+ ∇ℎ ⋅

(
�⃗�0 − �⃗�0

))
= 𝜋0

1 (127)

Boundary conditions (100) on 𝜉3 = 0 have been re-written using (102), (103) and (113), then we identify the terms
multiplied by each power of 𝜀:

∙ 𝜀−1:

�̄�1,0𝑖 = 0, (𝑖 = 1, 2) (128)

and from (121):

𝑊0
𝑖 = 𝑉0

𝑖 , (𝑖 = 1, 2) (129)

∙ 𝜀0 (keeping in mind (69), (73)):

𝜕

𝜕𝜉𝑖

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
+

2∑
𝑚=1

𝑉0
𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑖

⋅ �⃗�3

)
+

1
ℎ

2∑
𝑚=1

�̄�1,1𝑚 �⃗�𝑚 ⋅ �⃗�𝑖 = 0, (𝑖 = 1, 2) (130)
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18 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

∙ 𝜀 (considering (76), (79)):

𝑠0𝜇

[
2∑

𝑚=1

𝑉1
𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑖

⋅ �⃗�3

)
+

1
ℎ

2∑
𝑚=1

�̄�1,2𝑚 �⃗�𝑚 ⋅ �⃗�𝑖

]
= −𝑓1𝑅0 ⋅ �⃗�𝑖 . (𝑖 = 1, 2) (131)

If we sumEquation (130) (𝑖 = 1) multiplied by 𝛼01 and Equation (130) (𝑖 = 2) multiplied by 𝛽01 (andwe repeat the process
analogously multiplying by 𝛼02 and 𝛽

0
2) we obtain:

�̄�1,1𝑖 = −ℎ
2∑
𝑙=1

(
𝐽0,0
𝑖𝑙

𝜕

𝜕𝜉𝑙

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
+ 𝑉0

𝑙
𝐷0
𝑖𝑙

)
, (𝑖 = 1, 2) (132)

Coefficients 𝐷0
𝑖𝑙
are defined in (A34).

We do the same operations from (131) to get:

�̄�1,2𝑖 = −ℎ
2∑

𝑚=1

(
𝑠0
𝜇
𝐽0,0𝑖𝑚

(
𝑓1𝑅0 ⋅ �⃗�𝑚

)
+ 𝑉1

𝑚𝐷
0
𝑖𝑚

)
, (𝑖 = 1, 2) (133)

From (78), (71), (122), (85), (66), taking into account (128), (129), (115), (70), we have:

�̄�2,13 = 0 (134)

�̄�1,0 = 0 (135)

�̄�2,1𝑖 = 0, (𝑖 = 1, 2) (136)

�̄�3,23 = 0 (137)

�̄�3,2𝑖 = −
ℎ2

6𝜈
𝑓1,0𝑖 , (𝑖 = 1, 2) (138)

Next, we yield from (81), (77), (69), (73), (134) and (118):

𝜕ℎ
𝜕𝑡

= �̄�1,13 (139)

= −ℎ

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
𝐴1

𝐴0
−

ℎ√
𝐴0

div
(√

𝐴0�⃗�0
)

(140)

and, now, (116) reads (using (140))

�̄�0,0 = 𝜋0
0 +

2𝜇

ℎ
𝜕ℎ
𝜕𝑡

(141)

Boundary conditions (101) can be rewritten taking into account (102), (104), (106)–(109) and (113). Then we identify the
terms multiplied by the each power of 𝜀:

∙ 𝜀0 (considering (58), (117), (128), (70), (120), (136)) we re-obtain (130)
∙ 𝜀 (using (125)—(126), bearing in mind (76), (118), (134), (120), (70), (58), (117), (128), (136) and dividing by ‖�⃗�1 × �⃗�2‖):

𝜇

{
𝜕�̄�1,13
𝜕𝜉𝑖

+
2∑

𝑚=1

�̄�0,1𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑖

⋅ �⃗�3

)
+

1
ℎ

3∑
𝑛=1

2∑
𝑚=1

𝑛�̄�𝑛,2𝑚 (�⃗�𝑚 ⋅ �⃗�𝑖) +
1
ℎ
𝜕ℎ

𝜕𝜉𝑖
�̄�1,13

−
2∑
𝑙=1

(
𝛼0
𝑙

𝜕ℎ

𝜕𝜉1
+ 𝛽0

𝑙

𝜕ℎ

𝜕𝜉2

)[ 2∑
𝑚=1

𝜕�̄�0,0𝑚
𝜕𝜉𝑙

(
�⃗�𝑚 ⋅ �⃗�𝑖

)
+

3∑
𝑚=1

�̄�0,0𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑙

⋅ �⃗�𝑖

)]
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RODRÍGUEZ and TABOADA-VÁZQUEZ 19 of 26

−
2∑

𝑚=1

𝜕�̄�0,0𝑚
𝜕𝜉𝑖

𝜕ℎ

𝜕𝜉𝑚
+

ℎ√
𝐴0

𝜕�̄�0,03
𝜕𝜉𝑖

𝐼 +
1√
𝐴0

3∑
𝑚=1

�̄�0,0𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑖

⋅ 𝜂(ℎ)

)

+
1√
𝐴0

2∑
𝑚=1

�̄�1,1𝑚 (�⃗�𝑚 ⋅ �⃗�𝑠)𝐼

}
= 𝑠0

(
𝑓1𝑅1 ⋅ �⃗�𝑖

)
(𝑖 = 1, 2) (142)

where coefficients 𝐼 and 𝜂(ℎ) are defined in (A36) and (A49) respectively.

Now, we replace in (142) the terms �̄�1,13 , �̄�0,03 , �̄�0,0𝑖 , �̄�0,1𝑖 , �̄�1,1𝑖 and �̄�1,2𝑖 (𝑖 = 1, 2) by the expressions obtained in (139), (69),
(73), (79), (132) and (133) respectively, and taking into account (138), we can write:

𝜕2ℎ

𝜕𝑡𝜕𝜉𝑖
+

1
ℎ
𝜕ℎ

𝜕𝜉𝑖

𝜕ℎ
𝜕𝑡

+
2
ℎ

2∑
𝑚=1

�̄�2,2𝑚 (�⃗�𝑚 ⋅ �⃗�𝑖)

−
2∑
𝑙=1

(
𝛼0
𝑙

𝜕ℎ

𝜕𝜉1
+ 𝛽0

𝑙

𝜕ℎ

𝜕𝜉2

)[ 2∑
𝑚=1

𝜕𝑉0
𝑚

𝜕𝜉𝑙

(
�⃗�𝑚 ⋅ �⃗�𝑖

)
+

3∑
𝑚=1

𝑉0
𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑙

⋅ �⃗�𝑖

)]

−
2∑

𝑚=1

𝜕𝑉0
𝑚

𝜕𝜉𝑖

𝜕ℎ

𝜕𝜉𝑚
−

1√
𝐴0

2∑
𝑚=1

𝑉0
𝑚

[(
𝜕�⃗�𝑚
𝜕𝜉𝑖

⋅ 𝜂(ℎ)

)
− ℎ𝐼

(
�⃗�3 ⋅

𝜕�⃗�𝑚
𝜕𝜉𝑖

)]

+

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)[
𝐻0
3𝑖3 +

1√
𝐴0

(
𝜕�⃗�3
𝜕𝜉𝑖

⋅ 𝜂(ℎ)

)]

=
𝑠0
𝜇

(
𝑓1𝑅1 + 𝑓1𝑅0

)
⋅ �⃗�𝑖 +

ℎ
2𝜈

2∑
𝑚=1

𝑓1,0𝑚 (�⃗�𝑚 ⋅ �⃗�𝑖) (𝑖 = 1, 2) (143)

Next, we multiply (143) by 𝐽0,0𝑗𝑖 for 𝑗 = 1, 2 and we sum in 𝑖 = 1, 2. In this way we are able to infer the terms �̄�2,2𝑖

2
ℎ
�̄�2,2𝑖 = −

2∑
𝑙=1

𝜕𝑉0
𝑖

𝜕𝜉𝑙
𝐽0,0
3𝑙

−
2∑

𝑚=1

𝑉0
𝑚

(
2∑
𝑙=1

𝐽0,0
3𝑙
𝐻0
𝑖𝑙𝑚

+
ℎ𝐼√
𝐴0

𝐷0
𝑖𝑚

)

−
2∑

𝑗=1

𝐽0,0𝑖𝑗

(
𝜕2ℎ

𝜕𝑡𝜕𝜉𝑗
+

1
ℎ
𝜕ℎ

𝜕𝜉𝑗

𝜕ℎ
𝜕𝑡

−
2∑

𝑚=1

𝜕𝑉0
𝑚

𝜕𝜉𝑗

𝜕ℎ

𝜕𝜉𝑚
−

1√
𝐴0

2∑
𝑚=1

𝑉0
𝑚

(
𝜕�⃗�𝑚
𝜕𝜉𝑗

⋅ 𝜂(ℎ)

))

−

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

) 2∑
𝑗=1

𝐽0,0𝑖𝑗

[
𝐻0
3𝑗3 +

1√
𝐴0

(
𝜕�⃗�3
𝜕𝜉𝑗

⋅ 𝜂(ℎ)

)]

+
𝑠0
𝜇

2∑
𝑗=1

𝐽0,0𝑖𝑗

(
𝑓1𝑅1 + 𝑓1𝑅0

)
⋅ �⃗�𝑗 +

ℎ
2𝜈

𝑓1,0𝑖 , (𝑖 = 1, 2) (144)

We can rewrite Equations (65) considering (73), (69), (141), (132) and (144) to substitute �̄�0,0𝑖 (𝑖 = 1, 2, 3), �̄�0,0, �̄�1,1𝑖 (𝑖 = 1, 2)
and �̄�2,2𝑖 (𝑖 = 1, 2) respectively by the expressions obtained previously:

𝜕𝑉0
𝑖

𝜕𝑡
+

2∑
𝑙=1

𝜕𝑉0
𝑖

𝜕𝜉𝑙
(𝑉0

𝑙
− 𝐶0

𝑙
) +

2∑
𝑘=1

𝑉0
𝑘

(
𝑅0
𝑖𝑘
+

2∑
𝑙=1

𝑉0
𝑙
𝐻0
𝑖𝑙𝑘

)

= −
1
𝜌0

2∑
𝑙=1

𝐽0,0
𝑖𝑙

𝜕𝜋0
0

𝜕𝜉𝑙
+ 𝜈

[
2∑

𝑚=1

2∑
𝑙=1

𝜕2𝑉0
𝑖

𝜕𝜉𝑙𝜕𝜉𝑚
𝐽0,0
𝑙𝑚

+
2∑

𝑘=1

2∑
𝑙=1

𝜕𝑉0
𝑘

𝜕𝜉𝑙
�̄�0,0
𝑖𝑘𝑙

+
2∑

𝑘=1

𝑉0
𝑘
�̄�0,0
𝑖𝑘

+ 𝜅0𝑖

]

+ �̄�0
𝑖 −

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
𝑄0
𝑖3 (𝑖 = 1, 2) (145)
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20 of 26 RODRÍGUEZ and TABOADA-VÁZQUEZ

where coefficients �̄�0,0
𝑖𝑘𝑙
, 𝑅0

𝑖𝑘
, �̄�0,0

𝑖𝑘
, 𝜅0𝑖 and �̄�

0
𝑖 are defined in (A42), (A45), (A48), (A50) and (A52) respectively.

Remark 4. Equation (145) is exactly the same as Equation (25) (see (A51)-(A54)).

Taking into account (10), (26), (27), (56), (58), (69), (70), (73), (115), (117), (128), (141), (135), (119) and (72), we can prove
the following result:

Theorem 2. If we assume that there exist asymptotic expansions (49)–(53) and (112)–(113), and that the hypothesis (28) and
(111), and the boundary conditions (98)–(101) hold, then the solution of model (42)–(48) verifies

𝑢𝑘(𝜀) = 𝑉0
𝑘
+ 𝑂(𝜀), (𝑘 = 1, 2) (146)

𝑢3(𝜀) =
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3 + 𝑂(𝜀), (147)

𝑝(𝜀) = 𝜋0
0 +

2𝜇

ℎ
𝜕ℎ
𝜕𝑡

+ 𝑂(𝜀), (148)

where𝑉0
𝑘
(𝑘 = 1, 2) are the solutions of the Equations (145). Thus, the velocity, �⃗�𝜀, and the pressure, 𝑝𝜀, defined in the original

domain, satisfy

𝑢𝜀𝑖 =
2∑

𝑘=1

𝑉0
𝑘

𝜕𝑥𝑖
𝜕𝜉𝑘

+

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
𝑁𝑖 + 𝑂(𝜀), (𝑖 = 1, 2, 3) (149)

𝑝𝜀 = 𝜋0
0 +

2𝜇

ℎ𝜀
𝜕ℎ𝜀

𝜕𝑡
+ 𝑂(𝜀). (150)

Remark 5. As stated in Remark 3, the steps of [42] could be followed to prove (146)–(148) obtaining error estimates.

7 CONCLUSIONS

In this article, we propose a two-dimensional flowmodel of a viscous fluid between two very closemoving surfaces andwe
show (using a formal asymptotic expansion of the solution) that its asymptotic behavior, when the distance between the
two surfaces tends to zero, is the same as that previously obtained in [1] for the Navier-Stokes equations. In fact, we have
justified that, under the assumptions about the boundary conditionsmade in Subsection 6.1, the solution of the newmodel
approaches the solution ofmodel (91) as 𝜀 tends to zero, just as in the previous work [1], where we showed that the solution
of the Navier-Stokes equations approaches the solution of (17). And, we have also seen that, under the assumptions about
the boundary conditions shown in Subsection 6.2, the solution of the the new model tends to the solution of (145), as it
happened in our prior article [1] with the solution of the Navier-Stokes equations (see (25)).
As we have already pointed out in Remarks 3 and 5, the justification of Theorems 1 and 2 is based on the formal asymp-

totic expansion of the solution of model (42)–(48). This could be seen as an engineering approach to the justification of the
newly derived model. We have also commented, in Remarks 3 and 5, on how, following the steps of [42], error estimates
could be obtained and, thus Theorems 1 and 2 could be mathematically proved.
As it is well known, numerical solution of three-dimensional Navier-Stokes equations requires large computational

resources, and solving these equations in such a thin domain presents even more numerical problems, while solving the
new two-dimensional model presented here is much easier.
On the other hand, aswehave alreadymentioned, the newmodel has the same asymptotic behavior as theNavier-Stokes

equations, so, in a certain sense, it encompasses the two limit models presented in Subsections 6.1 and 6.2.
For all the above reasons, the new model proposed in this article can be considered a good option for calculating vis-

cous fluid flow between two nearby moving surfaces, without the need to decide a priori whether the flow is typical of a
lubrication problem or it is of thin fluid layer type, and without the enormous computational effort that would be required
to solve the Navier-Stokes equations in such a thin domain.
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RODRÍGUEZ and TABOADA-VÁZQUEZ 21 of 26

We are currently working on performing numerical simulations that allow us to compare the accuracy and computation
time required for each of the models that we have mentioned in this article. We hope to be able to present the results of
these simulations very soon.
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APPENDIX A: COEFFICIENTS DEFINITION
In this appendix, we introduce some coefficients that depend either only on the lower bound surface parametrization, �⃗�
or on both the parametrization and the gap ℎ. We will use these coefficients throughout this article.
In the first place, the coefficients of the first and second fundamental forms of the surface parametrized by �⃗� have been

denoted by 𝐸, 𝐹, 𝐺 and 𝑒, 𝑓, 𝑔, respectively:

𝐸 = �⃗�1 ⋅ �⃗�1 (A1)

𝐹 = �⃗�1 ⋅ �⃗�2 (A2)

𝐺 = �⃗�2 ⋅ �⃗�2 (A3)

𝑒 = −�⃗�1 ⋅
𝜕�⃗�3
𝜕𝜉1

= �⃗�3 ⋅
𝜕�⃗�1
𝜕𝜉1

(A4)

𝑓 = −�⃗�1 ⋅
𝜕�⃗�3
𝜕𝜉2

= −�⃗�2 ⋅
𝜕�⃗�3
𝜕𝜉1

= �⃗�3 ⋅
𝜕�⃗�1
𝜕𝜉2

= �⃗�3 ⋅
𝜕�⃗�2
𝜕𝜉1

(A5)

𝑔 = −�⃗�2 ⋅
𝜕�⃗�3
𝜕𝜉2

= �⃗�3 ⋅
𝜕�⃗�2
𝜕𝜉2

(A6)

and, from them, we define:

𝐴0 = ‖�⃗�1‖2‖�⃗�2‖2 − (
�⃗�1 ⋅ �⃗�2

)2
= 𝐸𝐺 − 𝐹2 = ‖�⃗�1 × �⃗�2‖2 (A7)

𝐴1 = ‖�⃗�2‖2(�⃗�1 ⋅ 𝜕�⃗�3𝜕𝜉1

)
+ ‖�⃗�1‖2(�⃗�2 ⋅ 𝜕�⃗�3𝜕𝜉2

)

−
(
�⃗�1 ⋅ �⃗�2

)(
�⃗�1 ⋅

𝜕�⃗�3
𝜕𝜉2

+ �⃗�2 ⋅
𝜕�⃗�3
𝜕𝜉1

)
= −𝑒𝐺 − 𝑔𝐸 + 2𝑓𝐹 (A8)

𝐴2 =

(
�⃗�1 ⋅

𝜕�⃗�3
𝜕𝜉1

)(
�⃗�2 ⋅

𝜕�⃗�3
𝜕𝜉2

)
−

(
�⃗�1 ⋅

𝜕�⃗�3
𝜕𝜉2

)(
�⃗�2 ⋅

𝜕�⃗�3
𝜕𝜉1

)
= 𝑒𝑔 − 𝑓2 (A9)

𝑀 =

(
𝐺 −𝐹
−𝐹 𝐸

)
(A10)

The following coefficients are involved in the change of variable defined in Section 2:

𝛼𝑖 = 𝛼0𝑖 + 𝜀𝜉3ℎ𝛼
1
𝑖 + 𝜀2𝜉23ℎ

2𝛼2𝑖 +⋯ , (𝑖 = 1, 2) (A11)

𝛼3 =
𝜉3
ℎ

(
𝛼03 + 𝜀𝜉3ℎ𝛼

1
3 + 𝜀2𝜉23ℎ

2𝛼23 +⋯
)
, (A12)

𝛽𝑖 = 𝛽0𝑖 + 𝜀𝜉3ℎ𝛽
1
𝑖 + 𝜀2𝜉23ℎ

2𝛽2𝑖 +⋯ , (𝑖 = 1, 2) (A13)

𝛽3 =
𝜉3
ℎ

(
𝛽03 + 𝜀𝜉3ℎ𝛽

1
3 + 𝜀2𝜉23ℎ

2𝛽23 +⋯
)
, (A14)

𝛾3 =
1
𝜀ℎ

, 𝛾1 = 𝛾2 = 0, (A15)

where

𝛼01 =
‖�⃗�2‖2
𝐴0

=
𝐺

𝐸𝐺 − 𝐹2
(A16)
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𝛼11 =

�⃗�2 ⋅
𝜕�⃗�3
𝜕𝜉2

− 𝛼01𝐴
1

𝐴0
= −

𝑔 + 𝛼01𝐴
1

𝐴0
(A17)

𝛼𝑛1 = −
𝛼𝑛−21 𝐴2 + 𝛼𝑛−11 𝐴1

𝐴0
, 𝑛 ≥ 2 (A18)

𝛼02 = 𝛽01 = −
�⃗�2 ⋅ �⃗�1
𝐴0

= −
𝐹

𝐴0
(A19)

𝛼12 = 𝛽11 = −

�⃗�2 ⋅
𝜕�⃗�3
𝜕𝜉1

+ 𝛼02𝐴
1

𝐴0
=

𝑓 − 𝛼02𝐴
1

𝐴0
(A20)

𝛼𝑛2 = 𝛽𝑛1 = −
𝛼𝑛−22 𝐴2 + 𝛼𝑛−12 𝐴1

𝐴0
, 𝑛 ≥ 2 (A21)

𝛼03 =

𝜕ℎ

𝜕𝜉2
�⃗�1 ⋅ �⃗�2 −

𝜕ℎ

𝜕𝜉1
‖�⃗�2‖2

𝐴0
= −𝛼01

𝜕ℎ

𝜕𝜉1
− 𝛼02

𝜕ℎ

𝜕𝜉2
(A22)

𝛼13 =

�⃗�2 ⋅

[
𝜕ℎ

𝜕𝜉2

𝜕�⃗�3
𝜕𝜉1

−
𝜕ℎ

𝜕𝜉1

𝜕�⃗�3
𝜕𝜉2

]
− 𝛼03𝐴

1

𝐴0
= −𝛼11

𝜕ℎ

𝜕𝜉1
− 𝛼12

𝜕ℎ

𝜕𝜉2
(A23)

𝛼𝑛3 = −
𝛼𝑛−23 𝐴2 + 𝛼𝑛−13 𝐴1

𝐴0
, 𝑛 ≥ 2 (A24)

𝛽02 =
‖�⃗�1‖2
𝐴0

=
𝐸

𝐴0
(A25)

𝛽12 =

�⃗�1 ⋅
𝜕�⃗�3
𝜕𝜉1

− 𝛽02𝐴
1

𝐴0
= −

𝑒 + 𝛽02𝐴
1

𝐴0
(A26)

𝛽𝑛2 = −
𝛽𝑛−22 𝐴2 + 𝛽𝑛−12 𝐴1

𝐴0
, 𝑛 ≥ 2 (A27)

𝛽03 =

𝜕ℎ

𝜕𝜉1
�⃗�1 ⋅ �⃗�2 −

𝜕ℎ

𝜕𝜉2
‖�⃗�1‖2

𝐴0
= −𝛽01

𝜕ℎ

𝜕𝜉1
− 𝛽02

𝜕ℎ

𝜕𝜉2
(A28)

𝛽13 =

𝜕ℎ

𝜕𝜉1

(
�⃗�1 ⋅

𝜕�⃗�3
𝜕𝜉2

)
−

𝜕ℎ

𝜕𝜉2

(
�⃗�1 ⋅

𝜕�⃗�3
𝜕𝜉1

)
− 𝛽03𝐴

1

𝐴0
= −𝛽11

𝜕ℎ

𝜕𝜉1
− 𝛽12

𝜕ℎ

𝜕𝜉2
(A29)

𝛽𝑛3 = −
𝛽𝑛−23 𝐴2 + 𝛽𝑛−13 𝐴1

𝐴0
, 𝑛 ≥ 2 (A30)

The next set of coefficients depend on the parametrization �⃗� and, some of them also depend on function ℎ:

𝐵
𝑗
𝑙𝑘
= 𝛼

𝑗
𝑙
(�⃗�1 ⋅ �⃗�𝑘) + 𝛽

𝑗
𝑙
(�⃗�2 ⋅ �⃗�𝑘), (𝑗 = 0, 1, 2; 𝑙 = 1, 2, 3; 𝑘 = 1, 2, 3) (A31)

𝐶0
𝑙
= 𝛼0

𝑙

(
�⃗�1 ⋅

𝜕�⃗�
𝜕𝑡

)
+ 𝛽0

𝑙

(
�⃗�2 ⋅

𝜕�⃗�
𝜕𝑡

)
(𝑙 = 1, 2, 3) (A32)
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𝐶
𝑖,𝑗
𝑙

= 𝛼𝑖
𝑙

(
�⃗�1 ⋅

𝜕�⃗�
𝜕𝑡

)
+ 𝛽𝑖

𝑙

(
�⃗�2 ⋅

𝜕�⃗�
𝜕𝑡

)
+ 𝛼

𝑗
𝑙

(
�⃗�1 ⋅

𝜕�⃗�3
𝜕𝑡

)
+ 𝛽

𝑗
𝑙

(
�⃗�2 ⋅

𝜕�⃗�3
𝜕𝑡

)
(𝑙 = 1, 2, 3; 𝑖 = 1, 2; 𝑗 = 0, 1, 2) (A33)

𝐷
𝑗
𝑖𝑘
= 𝛼

𝑗
𝑖

(
�⃗�3 ⋅

𝜕�⃗�𝑘
𝜕𝜉1

)
+ 𝛽

𝑗
𝑖

(
�⃗�3 ⋅

𝜕�⃗�𝑘
𝜕𝜉2

)
(𝑖 = 1, 2, 3; 𝑘 = 1, 2, 3; 𝑗 = 0, 1) (A34)

𝐻
𝑗
𝑖𝑙𝑘

= 𝛼
𝑗
𝑖

(
�⃗�1 ⋅

𝜕�⃗�𝑘
𝜕𝜉𝑙

)
+ 𝛽

𝑗
𝑖

(
�⃗�2 ⋅

𝜕�⃗�𝑘
𝜕𝜉𝑙

)
(𝑙 = 1, 2; 𝑖, 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2) (A35)

𝐼 =

(
�⃗�1 ×

𝜕�⃗�3
𝜕𝜉2

)
⋅ �⃗�3 +

(
𝜕�⃗�3
𝜕𝜉1

× �⃗�2

)
⋅ �⃗�3 (A36)

𝐽
𝑖,𝑗
𝑙𝑚

= 𝛼𝑖
𝑙
𝐵
𝑗
𝑚1 + 𝛽𝑖

𝑙
𝐵
𝑗
𝑚2 (𝑙,𝑚 = 1, 2, 3; 𝑖, 𝑗 = 0, 1, 2) (A37)

𝜄𝑛
𝑙𝑚

= ℎ𝑛
𝑛∑
𝑠=0

𝐽𝑠,𝑛−𝑠
𝑙𝑚

, (𝑙,𝑚 = 1, 2; 𝑛 = 0, 1, 2, 3) (A38)

𝐾
𝑗,𝑖
𝑙

=
2∑

𝑚=1

(
𝜕𝛼

𝑗
𝑙

𝜕𝜉𝑚
𝐵𝑖𝑚1 +

𝜕𝛽
𝑗
𝑙

𝜕𝜉𝑚
𝐵𝑖𝑚2 + 𝛼

𝑗
𝑙
𝐻𝑖
𝑚𝑚1 + 𝛽

𝑗
𝑙
𝐻𝑖
𝑚𝑚2

)
, (𝑙 = 1, 2, 3; 𝑖, 𝑗 = 0, 1) (A39)

𝐿𝑛,𝑟
𝑖𝑘𝑙

= ℎ𝑛−𝑟
2∑

𝑚=1

𝐻0
𝑖𝑚𝑘

𝑛−𝑟∑
𝑠=0

(𝐽𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ 𝐽𝑠,𝑛−𝑟−𝑠
𝑚𝑙

)

+ ℎ𝑛−𝑟−1𝛿𝑖𝑘

𝑛−𝑟∑
𝑠=0

[
ℎ𝐾𝑠,𝑛−𝑟−𝑠

𝑙
+ 𝑠

2∑
𝑚=1

𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ 2𝑟𝐽𝑠,𝑛−𝑟−𝑠
3𝑙

+ 𝑠𝐽𝑠,𝑛−𝑟−𝑠
𝑙3

]
(𝑖, 𝑙 = 1, 2; 𝑘 = 1, 2, 3; 𝑛 = 0, 1, 2, 3; 0 ≤ 𝑟 ≤ 𝑛) (A40)

𝐿𝑛,𝑟
3𝑘𝑙

= ℎ𝑛−𝑟

[
2∑

𝑚=1

(
𝜕�⃗�𝑘
𝜕𝜉𝑚

⋅ �⃗�3

) 𝑛−𝑟∑
𝑠=0

(𝐽𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ 𝐽𝑠,𝑛−𝑟−𝑠
𝑚𝑙

) + 𝛿𝑘3

𝑛−𝑟∑
𝑠=0

𝐾𝑠,𝑛−𝑟−𝑠
𝑙

]

+ℎ𝑛−𝑟−1𝛿3𝑘

[
𝑛−𝑟∑
𝑠=1

𝑠
𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ 2𝑟
𝑛−𝑟∑
𝑠=0

𝐽𝑠,𝑛−𝑟−𝑠
3𝑙

+
𝑛−𝑟∑
𝑠=1

𝑠𝐽𝑠,𝑛−𝑟−𝑠
𝑙3

]
(𝑘 = 1, 2, 3; 𝑙 = 1, 2; 𝑛 ≥ 0; 0 ≤ 𝑟 ≤ 𝑛) (A41)

�̄�0,0
𝑖𝑘𝑙

= 𝐿0,0
𝑖𝑘𝑙

+
1
ℎ
𝜕ℎ

𝜕𝜉𝑘
𝐽0,0
𝑖𝑙

−
𝛿𝑖𝑘
ℎ
𝐽0,0
3𝑙
, (𝑖, 𝑙 = 1, 2; 𝑘 = 1, 2, 3) (A42)

𝑄0
𝑖𝑘
= 𝛼0𝑖

(
�⃗�1 ⋅

𝜕�⃗�𝑘
𝜕𝑡

)
+ 𝛽0𝑖

(
�⃗�2 ⋅

𝜕�⃗�𝑘
𝜕𝑡

)
−

2∑
𝑙=1

𝐻0
𝑖𝑙𝑘
𝐶0
𝑙
, (𝑖 = 1, 2; 𝑘 = 1, 2, 3) (A43)

𝑄0
3𝑘

=

(
�⃗�3 ⋅

𝜕�⃗�𝑘
𝜕𝑡

)
−

2∑
𝑙=1

(
�⃗�3 ⋅

𝜕�⃗�𝑘
𝜕𝜉𝑙

)
𝐶0
𝑙

(𝑘 = 1, 2) (A44)

𝑅0
𝑖𝑘
= 𝑄0

𝑖𝑘
+ 𝐻0

𝑖𝑘3

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)
(𝑖 = 1, 2; 𝑘 = 1, 2) (A45)

𝑆𝑛,𝑟
𝑖𝑘

=
𝑛−𝑟∑
𝑠=0

2∑
𝑙=1

[
ℎ𝑛−𝑟

(
2∑

𝑚=1

𝜕2�̄�𝑘
𝜕𝜉𝑙𝜕𝜉𝑚

⋅ (�⃗�1𝛼
0
𝑖 + �⃗�2𝛽

0
𝑖 )𝐽

𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ 𝐻0
𝑖𝑙𝑘
𝐾𝑠,𝑛−𝑟−𝑠
𝑙

)

+ ℎ𝑛−𝑟−1𝐻0
𝑖𝑙𝑘

(
2𝑟𝐽𝑠,𝑛−𝑟−𝑠

3𝑙
+ 𝑠

2∑
𝑚=1

𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+ 𝑠𝐽𝑠,𝑛−𝑟−𝑠
𝑙3

)]
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+𝑟𝛿𝑖𝑘ℎ
𝑛−𝑟

𝑛−𝑟∑
𝑠=0

[
2∑

𝑚=1

𝐻𝑛−𝑟+1
𝑚𝑚3 +

1
ℎ
𝐾𝑠,𝑛−𝑟−𝑠
3 +

1

ℎ2

(
(𝑠 − 1)

2∑
𝑚=1

𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠3𝑚 + (𝑟 + 𝑠)𝐽𝑠,𝑛−𝑟−𝑠33

)]
(𝑖 = 1, 2, 𝑘 = 1, 2, 3, 𝑛 = 0, 1, 2, 3, 0 ≤ 𝑟 ≤ 𝑛) (A46)

𝑆𝑛,𝑟
3𝑘

= ℎ𝑛−𝑟
𝑛−𝑟∑
𝑠=0

[
2∑

𝑚=1

(
2∑
𝑙=1

𝜕2�⃗�𝑘
𝜕𝜉𝑙𝜕𝜉𝑚

⋅ �⃗�3𝐽
𝑠,𝑛−𝑟−𝑠
𝑙𝑚

+

(
𝜕�⃗�𝑘
𝜕𝜉𝑚

⋅ �⃗�3

)(
2𝑟
ℎ
𝐽𝑠,𝑛−𝑟−𝑠3𝑚 + 𝐾𝑠,𝑛−𝑟−𝑠

𝑚 +
𝑠
ℎ
𝐽𝑠,𝑛−𝑟−𝑠𝑚3 +

𝑠
ℎ

2∑
𝑙=1

𝜕ℎ

𝜕𝜉𝑙
𝐽𝑠,𝑛−𝑟−𝑠
𝑚𝑙

))

+ 𝛿3𝑘
𝑟
ℎ

(
𝐾𝑠,𝑛−𝑟−𝑠
3 +

𝑟 + 𝑠
ℎ

𝐽𝑠,𝑛−𝑟−𝑠33 +
𝑠 − 1
ℎ

2∑
𝑚=1

𝜕ℎ

𝜕𝜉𝑚
𝐽𝑠,𝑛−𝑟−𝑠3𝑚 + ℎ

2∑
𝑚=1

𝐻𝑛−𝑟+1
𝑚𝑚3

)]

(𝑘 = 1, 2, 3, 𝑛 ≥ 0, 0 ≤ 𝑟 ≤ 𝑛) (A47)

�̄�0,0
𝑖𝑘

= 𝑆0,0
𝑖𝑘

+

(
𝐼√
𝐴0

−
𝐴1

𝐴0

)
𝐷0
𝑖𝑘
−

1
ℎ

2∑
𝑙=1

𝐽0,0
3𝑙
𝐻0
𝑖𝑙𝑘

−
1

ℎ
√
𝐴0

2∑
𝑗=1

𝐽0,0𝑖𝑗

(
𝜕�⃗�𝑘
𝜕𝜉𝑗

⋅ 𝜂(ℎ)

)
(𝑖 = 1, 2; 𝑘 = 1, 2, 3) (A48)

𝜂(ℎ) =
𝜕ℎ

𝜕𝜉2
(�⃗�1 × �⃗�3) + ℎ

(
�⃗�1 ×

𝜕�⃗�3
𝜕𝜉2

+
𝜕�⃗�3
𝜕𝜉1

× �⃗�2

)
+

𝜕ℎ

𝜕𝜉1
(�⃗�3 × �⃗�2) (A49)

𝜅0𝑖 =
2∑
𝑙=1

𝜕

𝜕𝜉𝑙

(
𝜕�⃗�
𝜕𝑡

⋅ �⃗�3

)(
𝐿0,0
𝑖3𝑙

−
𝐴1

𝐴0
𝐽0,0
𝑖𝑙

)
−
𝐽0,03𝑖
ℎ2

𝜕ℎ
𝜕𝑡

−
3
ℎ

2∑
𝑘=1

𝐽0,0
𝑘𝑖

𝜕2ℎ

𝜕𝜉𝑘𝜕𝑡

+

(
𝜕𝑋
𝜕𝑡

⋅ �⃗�3

)[
𝑆0,0𝑖3 −

1
ℎ

2∑
𝑙=1

𝐽0,0
3𝑙
𝐻0
𝑖𝑙3

−
1

ℎ
√
𝐴0

2∑
𝑙=1

𝐽0,0
𝑙𝑖

(
𝜕�⃗�3
𝜕𝜉𝑙

⋅ 𝜂(ℎ)

)]
(𝑖 = 1, 2) (A50)

where 𝛿𝑖𝑗 is the Kronecker Delta.
Finally, we have the coefficients that include the external density of volume forces and the friction force

𝐹0
𝑖 = ∫

1

0
𝑓0𝑖 𝑑𝜉3 +

𝑠0
𝜌0ℎ

(
𝑓1𝑅1 + 𝑓1𝑅0

)
⋅
(
𝛼0𝑖 �⃗�1 + 𝛽0𝑖 �⃗�2

)
(𝑖 = 1, 2) (A51)

�̄�0
𝑖 =

𝑠0
𝜌0ℎ

2∑
𝑗=1

𝐽0,0𝑖𝑗

(
𝑓1𝑅1 + 𝑓1𝑅0

)
⋅ �⃗�𝑗 +

1
2
𝑓1,0𝑖 + 𝑓0,0𝑖 (𝑖 = 1, 2) (A52)

It can be proved that

𝑓𝑛,0𝑖 = 0 (𝑖 = 1, 2; 𝑛 ≥ 1) (A53)

so we obtain

𝐹0
𝑖 = �̄�0

𝑖 =
𝑠0
𝜌0ℎ

2∑
𝑗=1

𝐽0,0𝑖𝑗

(
𝑓1𝑅1 + 𝑓1𝑅0

)
⋅ �⃗�𝑗 + 𝑓0,0𝑖 (𝑖 = 1, 2) (A54)
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