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Abstract. Recent advances in artificial intelligence and deep learning
models are contributing to the development of advanced computer-aided
diagnosis (CAD) systems. In the context of medical imaging, Optical
Coherence Tomography (OCT) is a valuable technique that is able to
provide cross-sectional visualisations of the ocular tissue. However, OCT
is constrained by a limitation between the quality of the visualisations
that it can produce and the overall amount of tissue that can be anal-
ysed at once. This limitation leads to a scarcity of high quality data, a
problem that is very prevalent when developing machine learning-based
CAD systems intended for medical imaging. To mitigate this problem,
we present a novel methodology for the unpaired conversion of OCT
images acquired with a low quality extensive scanning preset into the
visual style of those taken with a high quality intensive scan and vice
versa. This is achieved by employing contrastive unpaired translation
generative adversarial networks to convert between the visual styles of
the different acquisition presets. The results we obtained in the valida-
tion experiments show that these synthetic generated images can mirror
the visual features of the original ones while preserving the natural tissue
texture, effectively increasing the total number of available samples that
can be used to train robust machine learning-based CAD systems.
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2 M. Gende et al.

Keywords: Optical Coherence Tomography · Generative Adversarial
Networks · Style Transfer · Synthetic Images.

1 Introduction

According to the World Health Organisation, more than 2.2 billion people suffer
from vision impairment. Of these, at least 1 billion have a condition that could
have been prevented or is yet to be addressed. Conversely, a considerable propor-
tion of people with eye conditions who receive timely diagnosis and treatment do
not develop blindness [25]. This motivates the need for accurate and accessible
diagnostic tools that can detect these diseases in their early stages.

Recent advances in medical imaging techniques, plus the development of new
and improved machine learning algorithms, are contributing to build Computer-
Aided Diagnosis (CAD) systems that can help to recognise and prevent these
conditions. These algorithms allow deep learning models to be trained directly
from annotated data. This greatly simplifies the development of CAD systems at
the cost of requiring vast amounts of training images that, unfortunately, are not
always readily available. The problem of data scarcity affects many domains of
application of deep learning [20], but it is especially prevalent in medical imaging
[13], due to the sensitive nature of the data and its acquisition costs.

In the context of medical imaging, Optical Coherence Tomography (OCT)
is a non-invasive imaging technique that can obtain volumetric digitalisations
of the tissue of the eyes. Due to its ability to visualise cross-sections of rele-
vant pathological structures, OCT has been used extensively to diagnose ocular
diseases [19, 18] such as diabetic macular edema [24] or glaucoma [23, 9]. While
OCT-based diagnosis is usually performed by the clinician visually inspecting
several images, this task is considerably labour-intensive and time-consuming,
as well as subjective in nature.

To mitigate this problem and to aid the experts in their undertaking, many
OCT-based CAD systems make use of machine learning algorithms and deep
learning models [3, 15, 22], all while achieving results that are equal to or better
than board-certified specialists [11, 21, 6, 13]. The functions of such systems can
range from the detection and visualisation of pathological structures [5], to the
segmentation and measurement of anatomical parts of the eye that are relevant
for diagnosis [4] or the automatic diagnosis of patients in screening tests [3].
However, as mentioned above, the development process of these systems requires
a considerable amount of data.

To obtain the images, an OCT scanner sweeps the retina of the patient via
interferometry with a low coherence beam of light, obtaining samples for each
point and usually creating a visualisation based on the average of said samples.
The number of samples that is taken has a direct effect on the image quality,
with longer scans over a smaller area of the retina providing higher quality
images than those that are taken over a larger surface, while the latter allow for
a wider portion of the eye to be analysed at once. To simplify the operation,
manufacturers typically provide different scanning presets so that the clinicians
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Fig. 1. Example of two slices from different scanning settings taken from the same
location. a) “Macular Cube” preset. b) “Seven Lines” preset.

can choose which kind of scan they want to perform based on the needs and the
condition of the patient, as well as the time they have available. This usually
tends to result in either small, high-quality volumes that cover a long and narrow
part of the retina or noisier, lower-resolution images that can cover most of the
retina surface. Figure 1 shows an example of the two most representative scan
presets used in clinical practice, displaying a “Macular Cube” preset where 25
OCT slices are sampled at a low rate, resulting in low resolution, noisy images
of the whole retina and a “Seven Lines” preset where only 7 slices are sampled
at a higher rate and quality over a narrow strip of tissue. These two kinds of
presets are the most prevalent in medical services, reference works and publicly
available datasets.

This compromise between OCT slice quality and sampled area places a limit
on the amount of high quality data that can be obtained in a single session,
in this way contributing to the problem of data scarcity that was mentioned
above. This problem has been approached by several authors by applying super-
resolution or reducing the speckle noise present in the images, for reference [8,
1, 12, 26], with varying degrees of success at enhancing the quality of extensive
OCT scans. Despite these results, however, none of these works have addressed
the visual differences that exist between images acquired with different scanning
presets. Moreover, a machine learning system that has been trained with images
acquired with a particular preset may not be able to perform as well when applied
to data from another configuration due to the visual differences between images
of different presets.

In this work, we present a novel fully automatic methodology to address the
issue of data scarcity in OCT imaging. By making use of a Contrastive Unpaired
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Translation Generative Adversarial Network (CUT-GAN) architecture, the vi-
sual style of images acquired with a superior quality preset can be transferred
to data obtained with a more extensive, lower quality preset and vice versa.
This way, the total number of available samples can be effectively multiplied,
contributing to mitigate this problem of data scarcity that is so prevalent when
developing OCT-based CAD systems. Furthermore, this methodology has the
potential to create multi-preset datasets which can then be used to train CAD
systems in a robust manner, without the need to obtain samples acquired with
every preset the system may encounter in service. To the best of our knowledge,
this proposal represents the only study designed specifically for the mutual con-
version of OCT samples acquired with different scanning presets most commonly
used in the health services.

2 Methodology
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Fig. 2. Patch-wise contrastive learning for OCT images. Contrastive loss is obtained
by comparing the inner representations of patches extracted from the input and output
images.

To convert the images between the two scanning presets, a CUT-GAN archi-
tecture was used [17]. This architecture is able to perform unpaired image-to-
image translation between two classes by training in a patch-wise manner while
trying to preserve the mutual information in both input and output images. By
training this architecture on our two classes corresponding to different acquisi-
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tion presets, we can obtain models that are able to perform a “style transfer”,
conferring the visual features of any preset to images taken with another.

This can be achieved by employing a patch-wise contrastive loss. As an image
is propagated through the network, patches of its inner representation, taken as
the output of the encoder part of the generative network, are compared with
the inner representation of the corresponding synthetic generated image. Sim-
ilar inner representations will minimise this contrastive loss. This way, we can
leverage the potential of the encoder part of the network to capture features
that are common to both presets, such as the choroid or the location of the
inner limiting membrane, while taking advantage of the ability of the decoder
part to synthesise preset-specific features such as speckle noise or detailed tissue
texture. This process is illustrated in Figure 2.

For this purpose, we trained a model to make the conversion of images ac-
quired with the “Macular Cube” preset into those of a visual quality matching
the “Seven Lines” configuration. This way, the more numerous, lower quality
“Macular Cube” images can be converted to the visual style of the “Seven Lines”
preset, with the corresponding reduction in speckle noise and the enhancement
in tissue visibility that is characteristic of this more intensive scan, allowing the
generation of synthetic images to be used for over-sampling as if they were orig-
inally acquired with this configuration. Additionally, we trained another model
to carry out the opposite conversion of “Seven Lines” images, conferring them
the visual style and speckle noise of “Macular Cube” samples.

These models were trained for a maximum of 400 epochs, using Adam[10] as
an optimiser with β1 = 0.5, β2 = 0.999 and a learning rate of 2e−4. These were
used to generate the synthetic images of the opposed class by applying them to
the original training samples, as represented in Figure 3.

Original Images Synthetic Images

Cubes Cubes
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Cube to Seven Model

Seven to Cube Model

Contrastive Loss

Contrastive LossContrastive Loss

Discriminant

Discriminant
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Fig. 3. Diagram showing the synthetic image generation methodology. By training two
CUT generative models, we can then transform original “Macular Cube” and “Seven
Lines” images into synthetic images of the opposed class.
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3 Results and Discussion

To train and validate the CUT-based synthetic image generator models, we
used 240 OCT slices acquired from different patients in accordance with the
Declaration of Helsinki, approved by the local Ethics Committee of Investigation
from A Coruña/Ferrol (2014/437) the 24th of November, 2014. The platform used
to acquire the images was a Heidelberg spectralis® OCT scanner configured
with the two aforementioned presets shown in Figure 1. In particular, 120 images
belonged to the “Macular Cube” class with lower overall quality and resolution,
while the remaining 120 were acquired with the “Seven Lines” preset. These
images were resized to a resolution of 256 × 256 pixels and then used to train
both of the CUT-GAN models. The loss curves for the 400 epochs of training
are shown in Figure 4.
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Fig. 4. Training losses for both generative models. G GAN : generator GAN loss,
D real : discriminator loss for real images, D fake: discriminator loss for fake images,
G: generator loss, NCE : Noise Contrastive Estimation loss for images of the original
class, NCE Y : NCE loss for images of the target class.

To evaluate and assess the quality of the synthetic data, an experiment
was performed using the Blind/Referenceless Image Spatial QUality Evaluator
brisque [14], an automatic image quality evaluator commonly used in medical
imaging literature for similar purposes [2, 28, 27]. brisque does not require a
reference image to perform a comparison unlike other metrics such as Structural
Similarity Index Measure or Peak Signal to Noise Ratio. Instead, when analysing
a single image, it returns a score that is indicative of the perceptual quality of
said image. The higher the perceived quality, the lower the brisque score.

In the experiment, the quality score of every original image was assessed
and compared to that of the synthetic ones. The original “Cube” and “Seven”
images achieved an average brisque score of 80.36 ±25.05 and 42.42 ±9.29
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Fig. 5. Examples of original images and the resulting generated picture of the opposite
class. Top: “Macular Cube” to “Seven Lines”. Bottom: “Seven Lines” to “Macular
Cube”. Numbers in white indicate the brisque score.

respectively, while the generated images were rated at 84.59 ±15.47 and 42.91
±7.94, correspondingly, to synthetic generated “Cube” and “Seven” images.
Some examples of original images and their corresponding synthetic generated
samples are displayed in Figure 5. These results show that the generative net-
works are able to mimic the visual features of the target classes whilst preserving
the original tissue structure. Since the available dataset is unpaired, no reference
image-based quality assessment can be performed.

The generative adversarial network training process involves the use of a dis-
criminator that distinguishes between original and synthetic images. The aim of
this discriminator is to guide the training process by providing a loss component
which penalises generated images that do not mimic the visual features of the
original images correctly. However, this discriminator is intentionally simple, in
order to allow the generative model to progressively adjust during training. Fur-
thermore, the training process forces the discriminator to progressively learn the
visual features that distinguish original and synthetic images. This leaves this
discriminator biased towards the training process, which aims to a relative sta-
bility in terms of losses, as can be seen in Figure 4. Because of its simplicity and
bias, this discriminator is a poor candidate for assessing the separability of the
synthetic generated images. In an effort to more objectively assess the validity
of the synthetic samples, an independent separability test was performed. The
aim of this separability test is to verify whether the synthetic generated images
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display the visual features that characterise each of the presets. In this test, a
classifier is first trained to classify the original images according to the visual
features that they display, learning the characteristics that distinguish each pre-
set. When tested on the synthetic generated images, these should be classified
according to the visual features of the preset they are converted to, instead of
those corresponding to the scanning preset that was used to acquire them. By
using a Densely Connected Convolutional Network [7] architecture, which has
demonstrated its advantages for classification tasks in medical imaging [16], we
can achieve an objective validation of the separability of the synthetic data.
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Fig. 6. Training and validation losses in logarithmic scale and accuracies for the
DenseNet-121 classifier. The model with the lowest validation loss is marked with a
red star.

In this separability test, a DenseNet-121 classifier was trained to discern
between “Macular Cube” and “Seven Lines” images from the original dataset.
This dataset was partitioned with 60% of the samples being used for training,
20% for validation and the remaining 20% to test the model. The model was
trained for a maximum of 400 epochs on the training samples, and the checkpoint
which performed best on the validation set was selected for testing. During this
training, we used Adam [10] as an optimiser, with a learning rate of 2e−4,
β1 = 0.5, and β2 = 0.999. The training and validation loss and accuracy curves
are displayed in Figure 6. The loss curves are represented in logarithmic scale in
order to provide a better visualisation.

Afterwards, the synthetic images that were generated by the CUT-GANmod-
els were assigned to their transferred class and tested with this classifier, com-
paring the results with those obtained with the test that used original images.
This process, and the results that were obtained, are represented in Figure 7.
These satisfactory results show that the generative models are able to synthesise
images that can successfully display the visual characteristics of the target class.
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the synthetic images, together with the resulting test confusion matrices.

4 Conclusions

Almost half of the population that suffers from a form of visual impairment is
under-diagnosed or affected by a preventable condition. OCT imaging can be
used to create CAD systems that help to diagnose and assess these pathologies.
However, the necessary compromise between image quality and the amount of
tissue that can be analysed in a single session leads to a scarcity of high quality
data.

In this work, we present a fully automatic methodology for the mutual “style
transfer” of OCT images taken from the two most widely used scanning pre-
sets, constituting the first example of such conversion in the literature. This
method is able to transform noisy, low quality “Macular Cube” OCT scans into
cleaner “Seven Lines”-quality scans while preserving tissue texture, as well as
to perform the inverse transformation. The obtained test results show that these
synthetic images achieve the visual features of their assigned class, with a very
similar brisque score when compared with original images. Additionally, the
results that were produced by the separability test indicate that these synthetic
generated images are clearly separable into their respective target classes. The
ability to mutually transfer the style of multiple presets has the potential to
produce multi-preset datasets with which to train more robust CAD systems.
Moreover, the potential of this methodology is not limited to OCT imaging,
as it is applicable to many other imaging techniques such as angiographies or
retinographies.

As future work, our plans encompass the validation of this synthetic image
generation methodology with human experts, verifying if ophthalmologists are
able to distinguish the original images from the synthetic generated ones. Addi-
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tionally, we plan to evaluate this generative methodology on screening tests by
supplying single-preset datasets with synthetic generated images converted to
other presets, assessing the benefits these may provide on the training of robust
CAD systems designed for the screening of ocular pathologies.
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