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Abstract
Motivation: One of the main causes hampering predictability during the model identification and automated design of gene circuits in synthetic
biology is the effect of molecular noise. Stochasticity may significantly impact the dynamics and function of gene circuits, specially in bacteria
and yeast due to low mRNA copy numbers. Standard stochastic simulation methods are too computationally costly in realistic scenarios to be ap-
plied to optimization-based design or parameter estimation.

Results: In this work, we present IDESS (Identification and automated Design of Stochastic gene circuitS), a software toolbox for optimization-
based design and model identification of gene regulatory circuits in the stochastic regime. This software incorporates an efficient approximation
of the Chemical Master Equation as well as a stochastic simulation algorithm—both with GPU and CPU implementations—combined with global
optimization algorithms capable of solving Mixed Integer Nonlinear Programming problems. The toolbox efficiently addresses two types of prob-
lems relevant in systems and synthetic biology: the automated design of stochastic synthetic gene circuits, and the parameter estimation for
model identification of stochastic gene regulatory networks.

Availability and implementation: IDESS runs under the MATLAB environment and it is available under GPLv3 license at https://doi.org/10.
5281/zenodo.7788692.

1 Introduction

The field of Synthetic Biology is making rapid progress to-
ward achieving fully automated design of DNA sequences to
reprogram cells with novel functions and capabilities.
Software tools for the automated design of biocircuits can be
categorized based on whether they focus on the steady-state
input–output behavior (Nielsen et al. 2016) or address the dy-
namics of the biocircuit (Otero-Muras et al. 2016, Tanevski
et al. 2016, Sents et al. 2023), considering the underlying
mathematical models. One milestone within the first category
is CELLO—see the most recent version by Jones et al.
(2022)—based on Boolean logic gates. Importantly, CELLO
is the first design environment that has been calibrated with
experimental data (originally in E.coli, and most recently also
in yeast S.cerevisiae), and it outputs the DNA sequence re-
quired to implement the logic circuit provided as an input.
Within the second category, SYNBADm (Otero-Muras et al.
2016) tackles high levels of biological complexity by combin-
ing dynamic models based on Ordinary Differential
Equations (ODEs) with multiobjective optimization across

parameter and topology spaces. The tool takes as input the
design target behavior defined by the user and delivers as out-
put the specific biocircuit (topology and parameters) needed
to achieve this desired behavior. The scope of SYNBADm is
restricted to the deterministic regime (scenarios in which the
effects of molecular noise can be neglected).
It has been extensively reported how noise can play a cru-

cial role in gene circuit engineering (Beal 2017). There are dif-
ferent sources of noise (Pischel et al. 2017) that can affect the
dynamics of biocircuits, including the inherent stochasticity of
the biochemical reactions involved (intrinsic noise). The im-
pact of stochasticity on the dynamics of gene circuits when
the copy numbers are low is well established. However, auto-
mated design of biocircuits under the effects of molecular
noise is challenging due to the computational cost of stochas-
tic simulations using standard methods.
In this work, we present Identification and automated Design

of Stochastic gene circuitS (IDESS), a software toolbox for auto-
mated design and identification of biocircuits in the stochastic
regime. IDESS is capable of simulating stochastic biocircuits
very efficiently using GPU acceleration for simulation and

Received: 4 May 2023; Revised: 26 October 2023; Editorial Decision: 30 October 2023; Accepted: 20 November 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(11), btad682
https://doi.org/10.1093/bioinformatics/btad682

Advance Access Publication Date: 21 November 2023

Applications Note

https://orcid.org/0000-0001-7340-9737
https://orcid.org/0000-0002-4245-0320
https://orcid.org/0000-0003-2895-997X
https://doi.org/10.5281/zenodo.7788692
https://doi.org/10.5281/zenodo.7788692


global optimization. It includes CPU and GPU parallel imple-
mentations of the Stochastic Simulation Algorithm (SSA)
(Gillespie 1976) and the semi-Lagrangian Simulation method in
SELANSI (Pájaro et al. 2018). This semi-Lagrangian numerical
method simulates a Partial Integro-Differential Equation (PIDE)
model describing the biocircuit dynamics. One significant ad-
vantage of this method is its efficiency to compute the whole
probability distribution of the random variables (protein levels)
describing the state of the system over time. IDESS utilizes
Global Optimization solvers capable of optimizing efficiently
over high dimensional search spaces of continuous real and dis-
crete integer variables, including Mixed Integer Nonlinear
Programming (MINLP) solvers to optimize simultaneously
across parameter and topology search spaces.

2 Main features

IDESS performs simulation, automated design and parameter
identification of gene regulatory circuits combining efficient
methods for simulation of stochastic gene regulatory net-
works with global optimization. The toolbox is implemented
in MATLAB under WINDOWS environment. The main func-
tionalities of the toolbox are summarized next.

• Simulation of stochastic gene regulatory circuits: IDESS
implements the SSA (Gillespie 1976) and the semi-
Lagrangian method (Pájaro et al. 2018) that solves the PIDE
approximating the Chemical Master Equation (CME) of
gene regulatory networks. Both methods can take advantage
of GPU-parallelization in order to improve performance.

• Model calibration of stochastic gene regulatory networks:
IDESS performs maximum likelihood estimation to esti-
mate the parameters of a gene regulatory network model
that best fit the observed/experimental data. The likeli-
hood is optimized across the parameter space using en-
hanced Scatter Search as implemented in the MEIGO
software suite for global optimization (Egea et al. 2014).

• Automated design of synthetic gene circuits: IDESS optimizes
a performance function encoding the target behavior of the
circuit. The optimal design problem is solved as a MINLP
problem (where network topology and parameters are opti-
mized simultaneously) using MEIGO (Egea et al. 2014).

In Fig. 1, we present a sketch of the main features of the
toolbox. In the following section, we provide additional
details regarding the implementation of these functionalities.

3 Implementation

3.1 Simulation

A gene regulatory network or biocircuit formally consists of a
set of N genes that are transcribed into mRNAs and then
translated into proteins, which in turn regulate the expression
of genes in the network (see Table 1). The CME that describes
the dynamics of stochastic gene regulatory circuits consists of
the following system of ODEs (see Ge and Qian 2013):

dP
dt

t;Xð Þ ¼
XM
m¼1

P t;X� mmð Þam X� mmð Þ � P t;Xð Þam Xð Þ; (1)

where P denotes the probability distribution associated to the
N proteins, mm captures the stoichiometry and am the

propensity of each of the reactions and M is the number of
reactions. The dimension of this ODE system exploits in real-
istic scenarios making unfeasible or impractical to solve it di-
rectly. The PIDE model that we use to approximate the CME
is formulated as follows (see Pájaro et al. 2017):
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IDESS implements both the SSA algorithm, and the semi-
Lagrangian method solving the PIDE model. It is important to
note that, while the SSA algorithm provides realizations of the
dynamics (time course trajectories), the PIDE model provides
the whole probability distribution over time. Moreover,
IDESS includes the optional use of GPU parallelization to run
simultaneously a large number of SSA simulations or to
greatly speed up the semi-Lagrangian algorithm for solving
the PIDE model. It is also worth noting that, although the
original formulation takes into account only intrinsic noise,
extrinsic noise can be easily incorporated through the input
function ci Yð Þ in Equation 2.

3.2 Model calibration

In a model calibration problem we start from a regulatory
network with fixed topology, and estimate the parameters
that maximize the probability of reproducing a given set of
data. This probability is provided by the likelihood function.
IDESS can perform model calibration from time course data,
histogram time series or multidimensional displays (dot dis-
plays or contour maps from flow cytometry analyses, e.g.).
The parameters to be estimated include the unknown tran-
scription, translation and degradation rate constants as well
as cooperativities of the regulation. Parameters with known
values are fixed. At each iteration of the optimization algo-
rithm, the candidate vector of parameters is supplied to the
simulation algorithm and the cost function is evaluated. The
Kullback–Leibler divergence measures the distance between
probability distributions (Sequeiros et al. 2023b). IDESS
includes as an illustrative example the parameter estimation
of a Toggle Switch model from time series of protein level dis-
tributions displayed in 2D plots (see Fig. 1).

3.3 Automated design

The automated design problem consists of finding the circuit
topology and parameters that lead to a target functionality
defined a priori. The design objective is encoded in a cost
function that can take different forms depending on the de-
sired behavior. Design objectives might include: (i) target dy-
namics (evolution of the probability distribution of the
proteins over time), (ii) target stationary distribution, (iii) bi-
modal switches with given distance between modes or fixed
probabilities of certain domains, (iv) capacity of adaptation
upon external signals, and (v) oscillatory behavior with given
metrics or optimal robustness against noise.
The decision variables for the design include integer varia-

bles (topology) and real parameters (transcription, transla-
tion, degradation rate constants, cooperativities of the
regulation, and promoter leakages). The user can fix the
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values of some of those parameters (if applicable to the spe-
cific design problem).
IDESS includes as an illustrative example the design of a

three-gene circuit with oscillatory behavior. In this case, the
objective function is the second peak of the autocorrelation
function of the protein stochastic dynamics, such that the
biocircuit obtained as a result of the optimization has maxi-
mum robustness against molecular noise (Sequeiros et al.
2023a).
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Figure 1. Main features of IDESS: (i) simulation of biocircuit dynamics by Semi-Lagrangian (PIDE model) or SSA Algorithms, (ii) parameter estimation from

experimental data for model identification, and (iii) automated design of biocircuits, delivering synthetic gene circuits (topology and parameters) with

predefined target behaviors. IDESS applies CPU and GPU parallel implementations of stochastic simulation and global optimization to accelerate computing.

Table 1. Reactions and propensities of a gene regulatory circuit with n

genes andm reactions.a

Reaction Propensity

1 ! mRNA1 k1m � c1ðXÞ
mRNA1 ! mRNA1 þX1 k1x �mRNA1

mRNA1 ! 1 c1m �mRNA1

X1 ! 1 c1x �X1
..
. ..

.

1 ! mRNAn knm � cnðXÞ
mRNAn ! mRNAn þXn knx �mRNAn

mRNAn ! 1 cnm �mRNAn

Xn ! 1 cnx �Xn

a km and kX are the transcription and translation rate constants and cm
and cX are the degradation rate constants of mRNA and protein,
respectively. cmðXÞ is the input function encoding the regulation by proteins.
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