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Abstract Lately, derived from the explosion of high-dimensionality, researchers in
Machine Learning became interested not only in accuracy, but also in scalability.
Although scalability of learning methods is a trending issue, scalability of feature
selection methods has not received the same amount of attention. This research an-
alyzes the scalability of state-of-the-art feature selection methods, belonging to fil-
ter, embedded and wrapper approaches. For this purpose, several new measures are
presented, based not only on accuracy but also on execution time and stability. The
results on seven classical artificial datasets are presented and discussed, as well as
two cases study analyzing the particularities of microarray data and the effect of
redundancy. Trying to check if the results can be generalized, we included some ex-
periments with two real datasets. As expected, filters are the most scalable feature
selection approach, being INTERACT, ReliefF and mRMR the most accurate meth-
ods.

1 Introduction

In the last years, the dimensionality of datasets involved in data mining applications
has increased steadily, as can be seen in [52]. This advent of large-scale data carries
new opportunities and challenges to computer scientists, giving the opportunity for
discovering subtle population patterns and heterogeneities that were not possible with
small-scale data. However, the massive sample size and high dimensionality of data
introduce new computational challenges, including among others the appropriateness
of the measurements for error rate and scalability. Large-scale data are encountered in
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various areas, as Internet search, social networks, finance, business sectors, meteorol-
ogy, genomics, complex physics simulations, biological, and environmental research.
The characteristics of volume, velocity, variety and veracity bring challenges to cur-
rent machine learning techniques, making it not only desirable but essential to scale
up machine learning techniques for modeling and analyzing big data from various
domains. Several conferences and challenges have been celebrated in the last years,
such as PASCAL Large Scale Learning Challenge in the 25th International Confer-
ence on Machine Learning (ICML 2008), the NIPS (Neural Information Processing
Systems) 2011 Workshop on Big Learning, in which, among several other points,
there was one devoted to methods for dealing with huge numbers of features or the
2013 IEEE International Conference on Big Data. During these last years, various ap-
proaches trying to deal with the problem of scalability in machine learning [1,6,48,
39] and even some studies comparing the scalability properties of several algorithms
have been published [36,37].

A dataset is said to be of high dimensionality when it presents some of the fol-
lowing characteristics: the number of learning samples is very high; or the number
of input features is very high; or the number of groups or classes to be classified is
very high. A special case of high dimensionality is the one that occurs when having
a much higher number of features than samples, so many of the features can be irrel-
evant or redundant. These features can have negative effect on learning models, and
decrease their performance significantly [52]. As a typical example, DNA microarray
data could contain more than 30000 features with a sample size of usually less than
100. With datasets of this type, most techniques can become unreliable.

Theoretically, having more data should give more discriminating power. How-
ever, the nature of high dimensionality of data can cause the so-called problem of
curse of dimensionality or Hughes effect [20]. This phenomenon occurs when the
model has to be learned from a finite number of data samples in a high-dimensional
feature space with each feature having a number of possible values (either discrete
of continuous), and so an enormous amount of training data are required to ensure
that there are several samples with each combination of values. The Hughes effect is
therefore known as the situation in which with a fixed number of training samples,
the predictive power of the learner reduces as the feature dimensionality increases.

Dimensionality reduction techniques are usually applied to deal with this prob-
lem, so that the set of features needed for describing the problem can be reduced.
Feature selection is one of those techniques and consists of detecting the relevant fea-
tures and discarding the irrelevant ones in order to reduce the input dimensionality
and, most of the time, to achieve an improvement in performance [14]. The bene-
fits of feature selection have been proven by researchers in diverse high-dimensional
fields such as bioinformatics [3] or intrusion detection [4]. There exist two major ap-
proaches in feature selection: individual evaluation and subset evaluation. Individual
evaluation is also known as feature ranking [15] and assesses individual features by
assigning them weights according to their degrees of relevance. On the other hand,
subset evaluation produces candidate feature subsets based on a certain search strat-
egy. Besides this classification, feature selection methods can also be divided into
three models: filter, wrapper and embedded methods. While wrapper models use a
specific prediction method as a black box to score subsets of features as part of the
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selection process, filter models rely on the general characteristics of the training data
to select features with independence of any predictor. Halfway these two models one
can find the embedded methods, which perform feature selection as part of the train-
ing process of the prediction model. By having some interaction with the classifier,
wrapper and embedded methods tend to give better performance results than filters.

There exists a vast body of feature selection methods in the literature, based on
distinct metrics (e.g. entropy, probability distributions, information theory or the pre-
dictor’s accuracy). The proliferation of feature selection algorithms, however, has not
brought about a general methodology that allows for intelligent selection from ex-
isting algorithms. In order to make a correct choice, a user not only needs to know
the domain well, but also is expected to understand technical details of available al-
gorithms [29]. On top of this, most algorithms were developed when dataset sizes
were much smaller, but nowadays distinct compromises are required for the case of
small-scale and large-scale (big data) learning problems. Small-scale learning prob-
lems are subject to the usual approximation-estimation trade-off. In the case of large-
scale learning problems, the trade-off is more complex because it involves not only
the accuracy of the selection but also other aspects. Stability, that is the sensitivity
of the results to training set variations, is one of such factors, with a few studies
published regarding the behavior of filters in the case in which training set is small,
but the number of features can be high [8,11,13]. The other important aspect, scal-
ability, that is the behavior of the algorithms in the case in which the training set is
increasingly high is still more scarce in the scientific literature [35], and the stud-
ies are mainly concentrated in obtaining scalability in a particular application [30],
modifying certain previously existing approaches [43], or adopting on-line [19] or
parallel [51] approaches. In general, one can say that most of the classical feature
selection approaches that are univariate -that is each feature is considered separately-
have an important advantage in scalability, but at the cost of ignoring feature depen-
dencies, and thus perhaps leading to lower performances than other feature selection
techniques. To improve performance, multivariate techniques are proposed, but at the
cost of reducing scalability [2]. In this situation, the scalability of a feature selection
method becomes extremely important.

In this research, the scalability of state-of-the-art feature selection methods is
studied, checking their performance in an artificial controlled experimental scenario,
contrasting the ability of the algorithms to select the relevant features and to discard
the irrelevant ones when the dimensionality increases and without permitting noise or
redundancy to obstruct this process. For analyzing scalability, new evaluation mea-
sures are proposed, which need to be based not only on the accuracy of the selection,
but also on other aspects such as the execution time or the stability of the returned
features. Finally, real experiments are presented in order to check if the conclusions
extracted from this theoretical study can be extrapolated to real scenarios.

The aim of this work is to provide the interested user with some insights about
the use of feature selection methods and their abilities when it comes to scalability
issues. Although it is well known, for instance, that univariate methods are compu-
tationally less expensive than multivariate ones, it is also interesting to know, among
each group, which methods are the most affordable. Moreover, there are situations
in which an user is willing to sacrifice accuracy of the selection in favor of reducing
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the execution time, and the analysis presented here can help. Finally, through some
of the metrics proposed to measure distinct aspects of scalability, we are able to give
the user an idea about, for example, the minimum amount of data that is necessary to
achieve an acceptable accuracy for an specific feature selection method.

The rest of the paper is organized as follows: Section 2 describes the feature se-
lection methods included in this research; Section 3 presents the artificial datasets
employed; Section 4 introduces the new measures for assessing the scalability. Sec-
tions 5 and 6 report the experimental results on artificial and real data, respectively.
Finally, Section 7 provides the discussion and conclusion.

2 Feature selection

Feature selection consists of detecting the relevant features and discarding the irrel-
evant ones, with the goal of obtaining a subset of features that describes properly
the given problem with a minimum degradation of performance. It presents several
advantages [14], such as:

– Improving the performance of the machine learning algorithms.
– Data understanding, gaining knowledge about the process and perhaps helping to

visualize it.
– Data reduction, limiting storage requirements and perhaps helping in reducing

costs.
– Simplicity, possibility of using simpler models and gaining speed.

2.1 Feature relevance and redundancy

Intuitively, a feature can be seen as relevant if it contains some information about the
target. In a more formal way, John & Kohavi [21] classified features into three disjoint
categories: strongly relevant, weakly relevant, and irrelevant features. According to
them, a feature X is considered strongly relevant when the removal of X results in
a deterioration of the prediction accuracy of an ideal Bayes classifier. A feature X
is said to be weakly relevant if it is not strongly relevant and there exists a subset of
features S, such that the performance of the ideal Bayes classifier on S is worse than
the performance on S∪{X}. A feature is defined as irrelevant if it is neither strongly
nor weakly relevant.

Furthermore, a feature can also be considered as redundant, usually in terms of
feature correlation [46]. It is widely accepted that two features are redundant to each
other if their values are completely correlated, but it might not be so easy to determine
feature redundancy when a feature is correlated with a set of features. According to
Yu & Liu [46], a feature is redundant and hence should be removed if it is weakly
relevant and has a Markov blanket [24] within the current set of features. Since ir-
relevant features should be removed anyway, they are excluded from this definition
of redundant features. Therefore, the optimal subset would contain all the strongly
relevant features and those weakly relevant but non-redundant.
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2.2 Feature selection methods

This work will test the scalability of the three types of feature selection methods:
filters, embedded and wrappers. Some of the methods (Chi-Squared, ReliefF, Infor-
mation Gain, mRMR, FS-P and SVM-RFE) follow the ranking approach, which con-
sists of assessing individual features by assigning them weights according to their
relevance. The remaining algorithms (CFS, FCBF, INTERACT, consistency-based
and the wrapper considered) follow the subset evaluation approach, which consists
of producing candidate feature subsets based on a certain search strategy. The follow-
ing subsections describe the methods chosen for the experimental study.

2.3 Filters

2.3.1 ChiSquared

This univariate filter is based on the χ2 statistic [27] and evaluates each feature in-
dependently with respect to the classes. The higher chi-squared, the more relevant is
the feature with respect to class.

2.3.2 ReliefF

This multivariate method [25] is an extension of the original Relief algorithm [23].
The original Relief works by randomly sampling an instance from the data and then
locating its nearest neighbor from the same and opposite class. The values of the
features of the nearest neighbors are compared to the sampled instance and used to
update relevance scores for each feature. The rationale is that a useful feature should
differentiate between instances from different classes and have the same value for
instances from the same class. ReliefF adds the ability of dealing with multiclass
problems and is also more robust and capable of dealing with incomplete and noisy
data. This method may be applied in all situations, has low bias, includes interaction
among features and may capture local dependencies which other methods miss.

2.3.3 Information Gain

The Information Gain filter [38] is one of the most common univariate methods of
evaluating features. It is a univariate filter that evaluates the features according to
their information gain and considers a single feature at a time. It provides an orderly
classification of all the features, and then a threshold is required to select a certain
number of them according to the order obtained.

2.3.4 mRMR (minimum Redundancy Maximum Relevance)

This multivariate algorithm [34] selects features that have the highest relevance with
the target class and are also minimally redundant, i.e., selects features that are maxi-
mally dissimilar to each other. Both optimization criteria (Maximum-Relevance and
Minimum-Redundancy) are based on mutual information.
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2.3.5 CFS (Correlation-based Feature Selection)

This is a simple multivariate filter algorithm that ranks feature subsets according to a
correlation based heuristic evaluation function [18].The bias of the evaluation func-
tion is toward subsets that contain features that are highly correlated with the class
and uncorrelated with each other. Irrelevant features should be ignored because they
will have low correlation with the class. Redundant features should be screened out
as they will be highly correlated with one or more of the remaining features. The
acceptance of a feature will depend on the extent to which it predicts classes in areas
of the instance space not already predicted by other features.

2.3.6 FCBF (Fast Correlation-Based Filter)

The fast correlated-based filter method [47] is a multivariate algorithm that measure
feature-class and feature-feature correlation. FCBF starts by selecting a set of features
that is highly correlated to the class based on symmetrical uncertainty (SU), which
is defined as the ratio between the information gain and the entropy of two features.
Then, it applies three heuristics that remove the redundant features and keep the fea-
ture that is more relevant to the class. FCBF was designed for high-dimensionality
data and has been shown to be effective in removing both irrelevant and redundant
features. However, it fails to take into consideration the interaction between features.

2.3.7 INTERACT

The INTERACT algorithm [50] is a subset multivariate filter which uses the same
goodness measure as FCBF filter (SU), but it also includes the consistency contribu-
tion, which is an indicator about how significantly the elimination of a feature will
affect consistency. The algorithm consists of two major parts. In the first part, the
features are ranked in descending order based on their SU values. In the second part,
features are evaluated one by one starting from the end of the ranked feature list.
If the consistency contribution of a feature is less than an established threshold, the
feature is removed, otherwise it is selected.

2.3.8 Consistency-based

The filter based on consistency [9,28] evaluates the worth of a subset of features by
the level of consistency in the class values when the training instances are projected
onto the subset of features. From the space of features, the algorithm generates a
random subset S in each iteration. If S contains fewer features than the current best
subset, the inconsistency index of the data described by S is compared with the index
of inconsistency in the best subset. If S is as consistent or more than the best subset,
S becomes the best subset. The criterion of inconsistency, which is the key to success
of this algorithm, specify how large can be the reduction of dimension in the data.
If the rate of consistency of the data described by selected characteristics is smaller
than a set threshold, it means that the reduction in size is acceptable. Notice that this
method is multivariate.
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2.4 Embedded methods

2.4.1 Recursive Feature Elimination for Support Vector Machines, SVM-RFE

This embedded method was introduced by Guyon in [16]. Its novelty relies in the
fact that the importance of a feature is indicated by the weights in a SVM solution.
Therefore, feature selection is done backward by iteratively training a SVM classifier
and removing each time the least important feature according to the SVM’s weights.

2.4.2 Feature Selection - Perceptron, FS-P

FS-P [31] is an embedded method based on a perceptron. A perceptron is a type of
artificial neural network that can be seen as the simplest kind of feedforward neural
network: a linear classifier. The basic idea of this method consists on training a per-
ceptron in the context of supervised learning. The interconnection weights are used
as indicators of which features could be the most relevant and provide a ranking.

2.5 Wrappers

The idea of the wrapper approach is to select a feature subset using a learning algo-
rithm as part of the evaluation function. Instead of using subset sufficiency, entropy or
another explicitly defined evaluation function, a kind of “black box” function is used
to guide the search. The evaluation function for each candidate feature subset returns
an estimate of the quality of the model that is induced by the learning algorithm. This
can be rather time consuming, since, for each candidate feature subset evaluated dur-
ing the search, the target learning algorithm is usually applied several times (e.g. in
the case of 10-fold cross validation being used to estimate model quality). By default,
in the implementation provided in Weka [17], the algorithm starts with the empty set
of features and searches forward –although it also allows backward search–, adding
features until performance does not improve further. The learning algorithm to eval-
uate the goodness of a subset of features is a free parameter, so it allows the user to
choose any desired classifier.

2.6 Computational complexity

Table 1 shows a summary of the methods used in this paper together with their clas-
sification and theoretical complexity (where n is the number of samples and m is the
number of features). Wrappers are excluded from this list because they are formed
by combining a search strategy with an induction algorithm, so there are as many as
combinations of both techniques and their complexity depend on the complexities of
the techniques chosen.
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Table 1 Summary of feature selection methods used in this work. Notice that n is the number of samples
and m is the number of features.

Uni / Functional Structural ComplexityMultivariate view view
Chi-Squared Univariate Ranker Filter nm

ReliefF Multivariate Ranker Filter n2m
Information Gain Univariate Ranker Filter nm

mRMR Multivariate Ranker Filter nm2

CFS Multivariate Subset Filter nm2

FCBF Multivariate Subset Filter nmlogm
INTERACT Multivariate Subset Filter nm2

Consistency Multivariate Subset Filter nm2

SVM-RFE Multivariate Ranker Embedded max(n,m)m2

FS-P Multivariate Ranker Embedded nm

3 Artificial datasets

A common problem when testing the effectiveness of a feature selection method on
real data is that the relevant features are usually not known in advance. In these cases,
the performance of the feature selection methods clearly rely on the performance
of the learning method used afterwards and it can vary notably from one method
to another. The main objective of this research is to study the scalability of feature
selection methods with independence of the learning method (i.e. classifier, cluster
method, etc.). For this reason, the authors have chosen to use artificial datasets to
perform this task. The main advantage of these artificial scenarios is the knowledge
of the set of optimal features that must be selected, thus the degree of closeness to
any of these solutions can be assessed in a confident way.

The datasets chosen for this study try to cover different problems: increasing
number of irrelevant features, redundancy, noise in the output, alteration of the in-
puts, non-linearity of the data, etc. These factors complicate the task of the feature
selection methods, which are very affected by them. Besides, some of the datasets
have a significantly higher number of features than samples, which implies an added
difficulty for the correct selection of the relevant features.

3.1 Corral

The Corral dataset [21] has six binary features (i.e. f1, f2, f3, f4, f5, f6), and its class
value is (f1 ∧ f2)∨ (f3 ∧ f4). Feature f6 is irrelevant and f6 is correlated to the class
label by 75%, which means that is has the same value than the class label in 75%
of the samples. Then, the correct behavior for a given feature selection method is to
select the four relevant features (f1, f2, f3, f4) and to discard the irrelevant ones.
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3.2 The Led problem

The LED problem [7] is a simple classification task that consists of, given the active
leds on a seven segments display, identifying the digit that the display is representing.
Thus, the classification task to be solved is described by seven binary features (f1
- f7) and ten possible classes available (C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). A 1 in a
feature indicates that the led is active, and a 0 indicates that it is not active.

3.3 Monk1, Monk2 and Monk3

The MONK’s problems [44] rely on an artificial robot domain, in which robots are
described by six different features (x1, . . . , x6). The learning task is a binary classifi-
cation task. The logical description of the class of the third problems (Monk1, Monk2
and Monk3) are:

Monk1: (x1 = x2) ∨ (x5 = 1)
Monk2: (xn = 1) exactly two n ∈ 1, 2, 3, 4, 5, 6, i.e. two (and only two) of the

six features must be 1 and the others must be 0
Monk3: (x5 = 3 ∧ x4 = 1) ∨ (x5 6= 4 ∧ x2 6= 3)

It is necessary to bear in mind that in Monk3, 5% of the data points are misclassifica-
tions, i.e. noise in the target. This means that the correct class of 5% of the samples
was shifted.

3.4 XOR

In this problem, the class attribute takes binary values. Features f1 and f2 are cor-
related with the class value with XOR operation (i.e., class equals f1 ⊕ f2). This is
a hard dataset for the sake of feature selection because of its non-linearity (unlike
Corral dataset, which is a multi-variate dataset).

3.5 Parity

The parity problem is a classic problem where the output is f(x1, . . . , xn) = 1 if the
number of xi = 1 is odd and f(x1, . . . , xn) = 0 otherwise. In this work we have set
n = 3.

3.6 SD1, SD2 and SD3

These three synthetic datasets (SD1, SD2 and SD3) [53] are challenging problems be-
cause of their high number of features (around 4000 in the original datasets) and the
small number of samples (75), besides of a high number of irrelevant features. These
characteristics reflect the problematic of microarray data, and it is necessary to intro-
duce some new definitions of multiclass relevancy features: full class relevant (FCR)
and partial class relevant (PCR) features. Specifically, FCR denotes genes (features)
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that serve as candidate biomarkers for discriminating all cancer types. However, PCR
are genes (features) that distinguish subsets of cancer types.

SD1, SD2 and SD3 are three-class datasets with 75 samples (each class contain-
ing 25 samples) generated based on the approach described in [10]. Each synthetic
dataset consists of both relevant and irrelevant features. The relevant features in each
dataset are generated from a multivariate normal distribution using mean and covari-
ance matrices [53].

SD1 is designed to contain only 20 FCR. Two groups of relevant genes are gen-
erated from a multivariate normal distribution, with 10 genes in each group. Genes in
the same group are redundant with each other and the optimal gene subset for distin-
guishing the three classes consists of any two relevant genes from different groups.

SD2 is designed to contain 10 FCR and 30 PCR. Four groups of relevant, i.e.,
FCR and PCR, genes are generated from a multivariate normal distribution, with 10
genes in each group. Genes in each group are redundant to each other and in this
dataset, only genes in the first group are FCR genes while genes in the three last
groups are PCR genes. The optimal gene subset to distinguish all the three classes
consists of four genes, one FCR gene from the first group and three PCR genes each
from one of the three remaining groups.

SD3 has been designed to contain only 60 PCR. Six groups of relevant genes
are generated from a multivariate normal distribution, with 10 genes in each group.
Genes in the same group are designed to be redundant to each other and the optimal
gene subset to distinguish all the three classes thus consists of six genes with one
from each group.

It has to be noted that the easiest dataset in order to detect relevant features is
SD1, since it contains only FCR features and the hardest one is SD3, due to the fact
that it contains only PCR genes, which are more difficult to detect.

3.7 Configuration of datasets

For assessing the scalability of the methods, different configurations of these datasets
were used. In particular, the number of features ranges from 23 to 27 while the num-
ber of samples ranges from 23 to 214 (all pairwise combinations). In the case of the
SD datasets, the number of features ranges from 26 to 212 while the number of sam-
ples ranges from 32 to 35. Notice that the number of relevant features is fixed and it
is the number of irrelevant features the one that varies, randomly generated. When
the number of samples increases, the new instances are also generated from a ran-
dom distribution. For example, if we are using the Corral dataset with 24 features,
this means that we kept fixed the original features of the problem (four relevant fea-
tures, one correlated 75% to the class and one irrelevant) and then we added 10 extra
irrelevant features, to complicate the feature selection task.

Table 2 shows a summary of the different artificial datasets employed in this re-
search, depicting the problems covered by them, as well as the number of features and
samples. The column “Relevant features” indicates the relevant features that should
be selected for a good feature selector, according to the definitions given in this sec-
tion. For example, since we have seen that the class label for Monk1 dataset is given
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Table 2 Summary of the synthetic datasets used.

Dataset No. of No. of Relevant False
Noise Non No. feat >>

features samples features correlation linear No. samples

Corral 23 - 27 23 - 214 1-4 X
Led 23 - 27 23 - 214 1-7 X
Monk1 23 - 27 23 - 214 1,2,5
Monk2 23 - 27 23 - 214 1-6 X
Monk3 23 - 27 23 - 214 2,4,5 X
XOR 23 - 27 23 - 214 1,2 X
Parity 23 - 27 23 - 214 1-3 X
SD1* 26 - 212 32 - 35 G1, G2 X
SD2* 26 - 212 32 - 35 G1 −G4 X
SD3* 26 - 212 32 - 35 G1 −G6 X
* Gi means that the feature selection method must select only one feature within the i-th group of features.

by the equation (x1 = x2) ∨ (x5 = 1), this means that the relevant features that
should be selected are features 1, 2 and 5.

The first seven datasets in the table are classical datasets, having more samples
than features, so they will be studied together. SD1, SD2 and SD3 are datasets which
represent the characteristics of microarray data, with more features than samples, and
will be analyzed independently.

Notice that with the set of datasets chosen for this study, we cover different types
of relevance. For example, in the case of XOR dataset, the first two features are
both needed (and they only are relevant in the presence of the other). As for SD
datasets, only one feature per group of relevant features is necessary, so once one
of the features in this groups is selected, the remaining nine become irrelevant, etc.
When we evaluate the ability of the feature selection methods to select the correct
features, we are taking all these types of relevance into account.

4 Evaluation metrics

The goal of this research is to assess the scalability of several feature selection meth-
ods. For this purpose, some evaluation measures need to be defined, covering differ-
ent aspects that must be addressed: accuracy, stability and computational time. First,
we propose some metrics which take into account the accuracy of the selected fea-
tures, motivated by the measures proposed in [40,45,49]. It is also important to have
measures which evaluate the stability of feature selection, i.e. the insensitivity of the
result of a feature selection algorithm to variations in the training set. For this reason,
new metrics for assessing this issue will also be proposed, based on [22,26,42]. Last
but not least, the training time (which will be reported in seconds) is also a measure
of success for the scalability of a feature selection method.
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Regarding the accuracy and stability, the evaluation measures used in this work
are also divided in two types: the ones devoted to subset methods and those devoted
to ranking methods. For the sake of clarity, we have decided that all these measures
are desirable to be minimized. Therefore, the measures related to how accurate the
selection is are focused on the error, while the metrics related to the stability are
now considered as related to the distance between rankings or subsets of features. All
these measures but the training time are bounded between 0 and 1.

In the next subsections, the measures for accuracy and stability evaluation are
described in which:

– feat sel stands for the subset of selected features, in the case of subset methods,
or for the ranking of features returned, in the case of rankers.

– feats is the total set of features,
– feat rel is the subset of relevant features, and feat irr represents the subset of

irrelevant features (both of them known a priori).

4.1 Measures for ranker methods

This section describes the evaluation measures applied to the feature selection meth-
ods which return an ordered ranking of the features. In order to evaluate the accuracy
of the rankers, the following measures are proposed:

– The ranking loss (R) evaluates the number of irrelevant features that are better
ranked than the relevant ones. The fewer irrelevant features are on the top of the
ranking, the best classified are the relevant ones. Notice that pos stands for the
position of the last relevant feature in the ranking.

R = pos − #feat rel
#feats − #feat rel

– The average error (E) evaluates the mean of Ei, in which i ∈ feats sel and Ei

is the average fraction of relevant features ranked above a particular feature i.

Ei =
∑

j;feat sel(j) ∈ feat rel ∩ j<i − #feat rel × (#feat rel − 1)
2

#feat irr × #feat rel

In relation with the distance, these are the proposed measures:

– The Spearman-distance (S) is a metric which measures dissimilarity between
rankings of features. It is complimentary of the Spearman correlation coefficient
(ρ), which is defined as the Pearson correlation coefficient between the ranked
variables. Therefore, the Spearman-distance between two rankings, A and B, is
obtained by subtracting the Spearman correlation coefficient from 1, where d is
the distance between the same feature in both rankings.

S(A,B) = 1− ρ = 1−
(

1− 6
∑

d2

#feats(#feats2−1)

)
– The Kendall-distance (K) is a metric that counts the number of pairwise dis-

agreements between two ranking lists A and B. The larger the distance, the more
dissimilar the two lists are.
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K(A,B) =
∑
{i,j}∈P K̄i,j(A,B)

where

P is the set of unordered pairs of distinct elements in A and B
K̄i,j(A,B) = 0 if i and j are in the same order in A and B

K̄i,j(A,B) = 1 if i and j are in the opposite order in A and B

4.2 Measures for subset methods

Analogously to the previous section, this subsection presents the measures used when
using subset feature selection methods. The measures to evaluate the error in selecting
relevant features are:

– The Hamming loss (H) measure evaluates how many times a feature is misclas-
sified (selected when is irrelevant or not selected when is relevant)

H = #(feat sel ∩ feat irr) + #(feat not sel ∩ feat rel)
#(feat rel ∪ feat irr)

– The F1-score is defined as the harmonic mean between precision and recall. Pre-
cision is computed as the number of relevant features selected divided by the
number of features selected; and recall is the number of relevant features se-
lected divided by the total number of relevant features. Therefore, the F1-score
can be interpreted as a weighted average of the precision and recall. Considered
1− F1-score, it reaches its best value at 0 and worst score at 1.

F1 = 2× precision× recall
precision + recall

Finally, two additional measures are proposed to evaluate distance between sub-
sets:

– The Tanimoto-distance (T ) is a metric which measures dissimilarity between sets
of features. It is complimentary of the Tanimoto-coefficient (TC) of the sets A
and B.

T (A,B) = 1− TC = 1− |A∩B|
|A|+|B|−|A∩B|

– The Jaccard-distance (J) is a metric which measures dissimilarity between sets
of samples (in this case, sets of features). It is complimentary of the Jaccard-
index (JI), which is defined as the cardinality of the intersection divided by the
cardinality of the union of the sets A and B. Therefore, the Jaccard-distance is
obtained by subtracting the Jaccard-index from 1, or, equivalently, by dividing the
difference of the sizes of the union and the intersection of two sets by the size of
the union.

J(A,B) = 1− JI = |A∪B| − |A∩B|
|A∪B|
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4.3 Summary of measures

Using the measures described above, related with the error and the distance, and
motivated by the methodology proposed in [41], we define three figures from which
eight scalar measures are extracted that cover jointly the aspects of error, distance
and computational time.

– Error surface: Feature size vs Sample size vs Error. It is obtained by displaying
the evolution of the error measure across the feature-sample space. The following
scalar measures are computed:
1. MinEr: minimum error.
2. Er5%: the minimum amount of data (features x samples) for which the error

drops below a threshold (5% of error).
3. VuEr: volume under the error surface.

– Distance surface: Feature size vs Sample size vs Distance. It is obtained by dis-
playing the evolution of the distance measure across the feature-sample space.
4. MinDi: minimum distance.
5. Di5%: the minimum amount of data (features x samples) for which the dis-

tance drops below a threshold (5% of distance).
6. VuDi: volume under the distance surface.

– Training time surface: Feature size vs Sample size vs Traning time. It is obtained
by displaying the evolution of the training time across the feature-sample space.
7. MaxTt: training time in seconds for the maximum amount of data tested.
8. VuTt: volume under the training time surface.

To obtain these graphs, it is necessary to have a single measure for the error and
the distance. Therefore, since all the measures are bounded between 0 and 1 and are
desired to be minimized, the arithmetic mean of the measures of the same group is
computed, that is,

– Ranker methods:
– error = mean(ranking loss , average error)
– distance = mean(spearman , kendall)
– time

– Subset methods:
– error = mean(hamming loss , F1)
– distance = mean(tanimoto , jaccard)
– time

In Figure 1 we can see an example of how the three measures related to error are
calculated. Notice that this is an example in 2D and that is why we are referring to
AuEr instead of VuEr.

5 Experimental results and scalability analysis

This section shows the scalability results according to the measures explained above.
The experiments are performed such that, for each configuration of a determined
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Fig. 1 Example of scalar measures related to test error vs. training set size

number of features and samples, 10 repetitions are executed, in which the data is ex-
tracted randomly from the complete available dataset. For example, if we are testing
a configuration with 8 features and 16 samples, the samples are selected randomly
from the whole set of samples. The process to extract the features is, however, dif-
ferent. If we are dealing with a dataset which has 4 relevant features (as Corral),
these are fixed and the remained 4 are extracted randomly among the set of irrelevant
features. The reason to repeat this procedure 10 times is to be able to measure the sta-
bility of the methods; i.e. the sensitivity of the algorithms to changes in the training
set. Note, moreover, that a “good” algorithm should be able to select the 4 relevant
features no matter what the 4 remaining features are. Section 5.1 is devoted to show
the scalability of filter methods, while Sections 5.2 and 5.3 are dedicated to wrapper
and embedded methods, respectively. Notice that mRMR and FS-P are implemented
in Matlab, while the remaining feature selection methods are available in the popu-
lar Weka tool [17]. All experiments were carried out on an Intel(R) Xeon (R) CPU
W3550 @ 3.07 QUAD-CORE with 12 GB RAM.

5.1 Scalability of filters

This subsection studies the scalability properties shown by the eight filter meth-
ods considered (FCBF, CFS, consistency-based, INTERACT, InfoGain, ReliefF, Chi-
Squared and mRMR). As an example, Figures 2 and 3 plot an scalar metric of scal-
ability per row (error, distance and time) of ranker and subset methods, respectively,
for Corral dataset.

In this color-based graphs, the x-axis refers to the sample size, while the y-axis
relates to the feature size. Notice that the cold colors represent low values of the
evaluation measures whereas the warm ones stand for high values. If the color scale
changes more in the sample size axis, it means that this metric is more affected by
the sample size than by the feature size. However, if colors are stable in some axis, it
means that this metric is not affected by increments in sample or feature size in each
case.
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In general, the error is more affected by the number of samples than of features.
This means that these methods are not highly affected by irrelevant features (remem-
ber that, when we increase the number of features to test, what we do is to add
irrelevant features) as long as they are provided with enough samples to learn the
classification task. Among the ranker methods (Figure 2), ReliefF seems to be the
method that requires the smallest number of features to achieve a low error, although
at the cost of needing the highest running time (up to 500 seconds). This distinction
in behavior is not so notable in subset methods (Figure 3).

In terms of distance, which is a manner of measuring the stability of the features
selected by the algorithms, ranker methods (Figure 2) present two different behaviors
based on if they are univariate or multivariate. Chi-Square and InfoGain are univari-
ate, i.e. they only consider features independently, therefore when they are trained
with enough samples and features, their results are very stable, specially when the
number of features is fixed. On the other hand, ReliefF and mRMR are multivariate,
i.e. they consider interaction between features. In this case, as expected, these meth-
ods are mainly affected by the number of features, producing more dissimilar results
as the number of features increases. Regarding subset methods (Figure 3), they seem
to be more affected by the sample size. In the case of the Consistency-based filter,
after a determined number of samples, it is not affected by the increase in the number
of irrelevant features. This is happening because it tries to find the minimum number
of features such that any function maps from the values of the features to the class
labels so this method is very effective in selecting a small subset of relevant features.

Regarding the training time, it has to be noted that these plots are not bounded
between 0 and 1, since the time has not been normalized. For this reason, the reader
has to bear in mind that in some cases, such as ReliefF (Figure 2(f)) the time is up to
500 seconds, since this is the only method with a complexity quadratic in the sample
size. In the remaining cases, the times are between 1 second (FCBF) and 12 seconds
(Consistency and INTERACT). As expected, the training times raise significantly
with large amounts of both samples and features. On the contrary, mRMR is more
influenced by the number of features, as its theoretical complexity is quadratic in the
number of features.

For the sake of brevity, it is not possible to plot all the measures for all the datasets
considered in this study, although the supplementary material can be accessed on-
line1. Table 3 depicts the eight scalar measures extracted from the graphs as explained
in Section 4.3 that were calculated for every ranker filter over the first seven datasets
of Table 2. Similarly, results are shown in Table 4 for the subset filters. Notice that
the lower the value, the better the performance of the feature selection method.

It is remarkable the behavior of ReliefF in terms of error, since it is able to achieve
the minimum for all datasets considered. As pointed out in a previous study of state-
of-the-art feature selection methods [5], ReliefF is good choice independently of the
particularities of the data, since it has proven to be effective in detecting redundant
features, even in complex scenarios such as XOR, although this comes at the cost
of requiring more time than other ranker methods. Notice that XOR and Parity are

1 http://www.lidiagroup.org/index.php/en/materials-en.html
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Fig. 2 Measures of scalability of filter ranker selection methods in the Corral dataset

datasets in which the classification task is non-linear, so the remaining methods do
not perform well in this type of scenarios (some minimum errors are up to 77%).

Regarding the distance, it is easy to note that subset methods tend to obtain a
minimum of 0 in more cases than ranker methods. This can be explained because
of the differences between approaches. If we are dealing with a dataset as Corral, in
which only the first four features are relevant and the remaining ones are irrelevant,
even when a ranker method performs correctly and ranks the four relevant features
on the top of the ranking, it needs to deal with the order of the remaining features.
If they are equally irrelevant, the order might be random. This is correct from the
point of view of error measures, but it might lead to high distance values. However,
since subset methods select a subset of the features, if a method performs correctly
then it only selects the four relevant features and discards the rest so it will achieve
satisfactory results both in error and distance measures.
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Fig. 3 Measures of scalability of subset methods in the Corral dataset

In order to determine which feature selection method performs better in terms of
the three groups of measures –error, distance and time–, some statistical tests will
be applied. In particular, the Friedman test [12] is a non-parametric equivalent of
the repeated-measures ANOVA. It ranks the algorithms for each dataset separately,
the best performing algorithm ranked first, the second best ranked second, etc. If the
null-hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test
[32] is similar to the Tukey test for ANOVA and is used when all algorithms are
compared in pairs. The performance of two algorithms is significantly different if the
corresponding average ranks differ by at least a critical difference.

Figure 4 plots the results of the statistical tests carried out to compare the ranker
filters according to their performance on all datasets. The blue bar represents the best
result, the grey bars represent results that are not significantly worse than the best
result, and red bars represent results that are significantly worse than the best result
(marked in blue). Notice that grey bars represent methods that are not statistically
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Table 3 Precision, stability and time measures for ranker filters on classical datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

C
hi

-S
qu

ar
ed

Corral 0.0079 32768 9.1029 0.0167 262144 8.4638 6.0592 18.6429
Led 0.0000 128 2.1988 0.0000 256 3.7704 6.0282 18.4839
Monk1 0.6369 256 30.6699 0.0000 1024 6.0577 6.2042 18.7184
Monk2 0.0117 262144 24.1209 0.0536 2097152 11.8554 6.2060 18.8257
Monk3 0.5958 1024 28.9323 0.0000 524288 8.8972 6.1988 18.6721
Xor 0.7790 128 36.9307 0.0000 512 5.0799 6.1139 18.7577
Parity 0.7232 64 34.1360 0.0000 4096 6.2034 6.1754 18.8630

R
el

ie
fF

Corral 0.0000 4096 4.1150 0.1881 4096 29.0698 515.9786 575.9859
Led 0.0000 256 2.1872 0.0000 512 22.8144 514.8453 581.2695
Monk1 0.0000 32768 25.5442 0.0508 131072 33.0739 595.3573 658.5203
Monk2 0.0000 2048 11.7908 0.2389 65536 31.4784 595.5261 658.0240
Monk3 0.0000 32768 25.3734 0.1841 131072 35.7227 595.0200 658.4013
Xor 0.0000 512 3.2454 0.0254 65536 33.9882 517.1896 578.3513
Parity 0.0000 1024 8.2046 0.0836 65536 32.7301 516.7137 579.7248

In
fo

G
ai

n

Corral 0.0080 32768 9.1012 0.0167 262144 8.4473 6.1201 18.6495
Led 0.0000 128 2.2039 0.0000 128 2.7849 6.0985 18.4220
Monk1 0.6369 256 30.6701 0.0000 1024 6.0498 6.2304 18.6275
Monk2 0.0117 262144 24.1223 0.0536 2097152 11.7702 6.1584 18.6140
Monk3 0.5958 1024 28.9316 0.0042 524288 8.9692 6.1515 18.6950
Xor 0.7790 128 36.9307 0.0000 512 5.0780 6.1464 18.7278
Parity 0.7232 64 34.1360 0.0000 4096 6.2021 6.2804 18.8549

m
R

M
R

corral 0.0080 32768 6.2805 0.1952 4096 28.9932 5.8203 16.6733
Led 0.1464 262144 22.1064 0.0000 1024 24.3721 5.6627 16.3052
Monk1 0.4292 2048 24.5068 0.6638 128 37.3092 5.2267 16.0599
Monk2 0.0000 131072 17.4071 0.3630 65536 35.5783 5.1817 15.9455
Monk3 0.2592 262144 19.0268 0.6653 256 36.6742 5.2082 16.1028
Xor 0.4500 8192 25.8610 0.6751 128 37.8049 5.8208 16.7248
Parity 0.5077 128 27.8600 0.6939 128 37.9318 5.8902 16.7714

worse than the best one but this does not imply that these methods are significantly
better than those marked with red bars. There might be also cases in which meth-
ods with grey bars are significantly better than methods with red bars, as will be
commented throughout the text. For example, in Fig. 4(d) it is easy to see that the
InfoGain bar does not overlap with those bars from ReliefF and mRMR, so we can
say that InfoGain is significantly better than ReliefF and mRMR.

In terms of error, ReliefF clearly outperforms the other methods according to
the minimum error achieved. In fact, and as commented before, in Table 3 one can
see that the minimum error obtained by this algorithm is zero for all datasets. As
expected, this is reflected also in the volume under the curve, where ReliefF is better
than ChiSquared and InfoGain with significant differences. Focusing on the minimum
amount of data for which the error drops below the 5% of its minimum value (Er5%),
InfoGain is the only one which improves significantly its performance with respect
to mRMR, while among the other methods there are no significant differences.

However, when examining the results related with the distance measure, Info-
Gain and ChiSquared are significantly better than ReliefF and mRMR in two metrics
(MinDi and VuDi). This was expected since the former are univariate methods and
the latter are multivariate and, therefore, more sensitive to changes in the training
set. However, InfoGain and mRMR are significantly better than ReliefF in terms of
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Table 4 Precision, stability and time measures for subset filters on classical datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

FC
B

F

Corral 0.0556 2048 6.7892 0.0000 2048 12.5822 1.4894 15.8205
Led 0.0424 8192 4.4189 0.0000 128 2.5076 1.4831 15.7518
Monk1 0.3625 131072 21.7390 0.0000 1024 16.0508 1.5214 15.6129
Monk2 0.0153 262144 19.8610 0.0593 262144 28.2990 1.5487 15.8478
Monk3 0.1983 524288 15.3464 0.0000 4096 14.0688 1.4964 15.8101
Xor 0.4941 1024 25.1410 0.0000 512 23.1093 1.4875 15.7131
Parity 0.4910 1024 25.8070 0.0000 4096 24.4750 1.5799 15.7908

C
FS

Corral 0.0556 8192 7.3681 0.0000 8192 14.6420 6.3441 19.8427
Led 0.0424 8192 4.3379 0.0000 128 2.7192 6.4241 19.9178
Monk1 0.3625 131072 21.5999 0.0000 1024 16.0058 6.4388 19.5991
Monk2 0.0696 2097152 18.2050 0.2000 1024 28.6166 6.4575 19.7130
Monk3 0.2001 524288 15.2719 0.0000 4096 14.3732 6.3198 19.5398
Xor 0.1979 16384 14.3294 0.0000 512 23.4340 6.3857 19.6698
Parity 0.3094 2048 17.7179 0.0000 2048 24.3923 6.4405 19.7047

C
on

si
st

en
cy

Corral 0.0389 2048 5.9283 0.0000 4096 9.6545 12.7385 29.3157
Led 0.0911 4096 6.2874 0.0000 128 1.2504 12.1598 28.0777
Monk1 0.3767 8192 21.5879 0.0000 1024 8.4597 9.4863 24.3099
Monk2 0.4924 1024 28.0370 0.9444 128 59.7000 8.9761 23.4063
Monk3 0.1784 524288 15.1243 0.0000 2048 8.9236 10.9881 26.3761
Xor 0.4948 1024 24.2377 0.8667 1024 52.7780 9.2464 23.9472
Parity 0.4902 512 24.9375 0.9111 128 51.9956 9.3657 24.0343

IN
T

E
R

A
C

T

Corral 0.0556 2048 6.5871 0.0000 2048 12.1686 11.9269 29.0494
Led 0.0424 8192 4.3853 0.0000 128 2.8674 11.7323 28.5087
Monk1 0.3625 131072 21.6233 0.0000 1024 16.0588 12.0135 28.7705
Monk2 0.0153 262144 17.6704 0.0593 262144 27.4113 12.0833 28.7912
Monk3 0.1942 524288 15.1910 0.0000 4096 14.1113 11.9160 28.8462
Xor 0.1979 16384 14.3258 0.0000 512 23.4367 11.9244 28.7487
Parity 0.3094 2048 17.7327 0.0000 2048 24.4046 11.9783 28.8000

Di5%, which means that although mRMR is not the method which achieves the min-
imum distance, it stabilizes rapidly. Finally, with regard to the training time, mRMR
clearly beats the other methods, even when its theoretical complexity is lower than
that of InfoGain and ChiSquared. Remark that ReliefF obtains very good results in
terms of error (0%) even when for XOR and Parity the minimum error obtained by
other methods ranges from 40.87% to 76.50%. Nevertheless, this is accomplished at
the expense of a much longer training time than the other rankers (see Table 3, around
100 times longer).

Figure 5, in turn, displays the results of the statistical tests executed to compare
the different subset filters based on their scalability properties on all datasets. With
regard to the error, the results obtained by INTERACT outperform significantly those
achieved by FCBF and Consistency-based in terms of both MinEr and VuEr. Notice
that this is an interesting result, since INTERACT and FCBF share the first part of
their algorithms, which consists of calculating the feature-class correlation by means
of symmetrical uncertainty. Then, FCBF removes the redundant features based on
the concept of predominant features whereas INTERACT removes features that are
not consistent. In light of these results, it seems that the INTERACT’s strategy is
more adequate for the suite of problems tested in this work. With regard to Er5%, the
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Fig. 4 Comparison of scalability measures for ranker filters (ChiSquared, InfoGain, ReliefF and mRMR)

performance of the filter Consistency-based is significantly better than INTERACT,
which means that the former requires a significantly smaller amount of data than the
latter to achieve its lowest error.

In terms of distance, FCBF achieves a low value in a significantly smaller amount
of data than INTERACT (see Figure 5(e)), as well as outperforms the filter Consistency-
based significantly regarding the minimum distance. As for the training time, FCBF is
the option which requires the lowest training times. Actually, from the subset meth-
ods, it is the only one with a theoretical complexity smaller than quadratic in the
number of features. But also notice that for the other three methods, CFS obtains sig-
nificantly better results than Consistency-based and INTERACT, even when they all
have the same theoretical complexity (O(nm2), see Table 1).

In general terms, one can say that FCBF shows a good behavior in terms of sta-
bility and training time at the expense of a slightly degradation in error. In fact, only
INTERACT is significantly better than FCBF in terms of minimum error (actually,
in 3 out of the 7 datasets considered). However, FCBF requires a maximum training
time around 1 second while InfoGain needs more than 12 seconds. Moreover, FCBF
becomes stable with the smallest amount of data.

In light of those results, Table 5 shows an overview of the behavior of the different
FS methods in the three considered metrics (error, distance and training time), where
the larger the number of dots, the better the behavior. The number of dots is calculated
according to the following. For each metric, we recall the worst value for all methods
and datasets. Each specific result is rated with one bullet if it is below the 20% of the
worst value; two dots if it is between 20% and 40%, and so on. Then, we compute the
mean for each FS method across all datasets. Notice that, since the error and distance
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Fig. 5 Comparison of scalability measures for subset filters (FCBF, CFS, Cons and INTERACT)

measures are not the same for ranking and subset methods, we separate accordingly
the methods to calculate the number of dots, for the sake of fairness.

According to the summary presented in Table 5, it remains clear the predom-
inance of ReliefF in terms of accuracy of the selection, although InfoGain shows
better performance according to stability. The methods that require a smaller training
time in this set of experiments are mRMR and FCBF.

Table 5 Overview of the behavior regarding scalability of classical datasets (notice that the larger the
number of dots, the better the behavior).

Method Error Distance Training time

R
an

ki
ng

Chi-Squared ••• ••••• •••••
ReliefF ••••• •••• •
InfoGain ••• ••••• •••••
mRMR ••• ••• •••••

Su
bs

et

FCBF •••• •••• ••••
CFS •••• ••••• •••
Consistency ••• •••• •
INTERACT •••• •••• •

5.1.1 Case study: SD datasets

These synthetic datasets have a small ratio between number of samples and features,
which makes difficult the task of feature selection. This is the problematic present
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in microarray data, a hard challenge for machine learning researchers. Besides this
particularity of the data, there is a high number of irrelevant features for the task of
gene classification and, moreover, the presence of redundant variables is a critical
issue.

Tables 6 and 7 report the eight scalar measures defined in section 4.3 for the
ranker and subset methods, respectively, along with all the pairwise combinations
between filter and dataset for the SD datasets (three last rows of Table 2). Focusing
on the ranker methods, one can see that in terms of error (MinEr, Er5% and VuEr),
mRMR seems to be the best alternative, obtaining 0% of minimum error with a small
amount of data. In turn, with regard to the distance, Chi-Squared and InfoGain –
univariate methods– return stable rankings (low distance) but they need a significant
amount of data to do it, while ReliefF and mRMR –multivariate methods– show
high distances (in the case of mRMR, over 75%). This might seem surprising, since
one can expect that a method which obtains the minimum error (0%) would also be
highly stable. However, SD datasets have the particularity of consisting of groups
of features equally relevant, but redundant among each other so when one of the
features in the group is selected (or ranked top) the remaining ones in the group are
deemed as irrelevant. Therefore, if we have two groups of relevant features (10 in
each group), as it is the case with SD1 (see Section 3.6), mRMR can be selecting on
the top of the ranking features 1 and 11 in the first repetition, 2 and 12 in the second
repetition and so on. In this case, the error will be 0, but the method will achieve
a high distance since the rankings are very dissimilar. Moreover, when performing
several repetitions of a particular experiment, it is common that low minimum errors
are obtained together with high variance.

Finally, the training time required by mRMR is in the order of thousands of
seconds while the remaining methods require in the order of seconds. The only of
these methods which theoretical complexity is quadratic to the number of features
is mRMR, and thus its time raises significantly as the number of features increases
(in these experiments, up to 4096 features). Notice that ReliefF in this case does not
require high times as in the previous set of experiments, because it is quadratic in
the number of samples and linear in the number of features, and SD datasets have
a small number of samples. To sum up, in this scenario the best ranker in terms of
error seems to be mRMR, but at the cost or requiring large amounts of time and not
being stable. In turn, InfoGain and Chi-Square obtain also acceptable errors, they be-
come stable although require certain amount of data, and the computational cost is
acceptable (low training time).

Table 7 displays the results for the subset filters. First of all, it is worth mentioning
that the poor distance results are due to the fact that the SD datasets have an extremely
high number of features (up to 4096), so the more features, the more difficult is to
select stable subsets of features. Having said that, FCBF is clearly the best option
since it obtained the best results in terms of error and training time, although at the
cost of being the least stable. To sum up, Table 8 provides some guidelines for the
specific scalability aspects considered for the SD datasets. Note that the larger the
number of bullets, the better the behavior.
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Table 6 Precision, stability and time measures for ranker filters on SD datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

C
hi

-S
q SD1 0.0013 995328 2.9749 0.0046 124416 1.9844 1.5427 8.9223

SD2 0.0292 497664 4.5912 0.0110 995328 2.8399 1.5328 8.8875
SD3 0.0506 497664 5.3777 0.0144 995328 3.8343 1.5704 8.9160

R
el

ie
fF SD1 0.0018 995328 2.5605 0.4659 15552 15.6611 6.2052 12.2663

SD2 0.0458 995328 5.4852 0.3294 15552 15.2985 6.2139 12.2390
SD3 0.0348 995328 6.8454 0.5138 31104 15.7350 6.2747 12.2809

IG

SD1 0.0012 995328 2.9873 0.0046 124416 1.9709 1.5720 8.8356
SD2 0.0286 497664 4.5834 0.0112 995328 2.8593 1.5265 8.8789
SD3 0.0516 497664 5.3965 0.0145 995328 3.8127 1.5387 8.8891

m
R

M
R SD1 0.0000 15552 2.2081 0.8482 5184 17.1517 1173.0168 3824.0483

SD2 0.0000 15552 3.9693 0.7537 15552 16.9643 1173.5756 3832.1888
SD3 0.0000 15552 4.3885 0.8606 576 17.0893 1170.2292 3822.7756

Table 7 Precision, stability and time measures for subset filters on SD datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

FC
B

F SD1 0.0000 15552 5.4619 0.9096 1728 17.5728 1.4802 9.2476
SD2 0.0059 31104 5.5995 0.9167 576 17.5259 1.5305 9.4102
SD3 0.0127 31104 5.6006 0.8556 576 17.6263 1.5731 9.4523

C
FS

SD1 0.2558 5184 6.6367 0.7612 124416 16.7912 33.9655 63.9189
SD2 0.2118 15552 6.5132 0.8336 5184 16.8861 33.3939 63.1207
SD3 0.2121 20736 6.4843 0.6889 576 17.0439 39.2505 69.8266

C
on

s

SD1 0.2059 5184 6.6976 0.6713 15552 16.3032 8.5832 17.5273
SD2 0.2186 5184 6.6849 0.7581 15552 16.6353 10.9020 19.2501
SD3 0.2342 10368 6.6529 0.7953 15552 16.8165 12.1414 20.6664

IN
T

SD1 0.1948 5184 6.7782 0.6784 15552 16.5033 8.1722 20.2094
SD2 0.2233 5184 6.6980 0.7819 15552 16.8550 13.5587 22.1351
SD3 0.2236 10368 6.5545 0.7222 576 17.1614 15.6778 23.6967

Table 8 Overview of the behavior regarding scalability of SD datasets (notice that the large the number of
dots, the better the behavior).

Method Error Distance Training time

R
an

ki
ng

Chi-Squared ••• •••• •••••
ReliefF •• ••• •••••
InfoGain ••• •••• •••••
mRMR •••• •• •

Su
bs

et

FCBF ••• •• •••••
CFS •• •• •
Consistency •• •• ••••
INTERACT •• ••• ••••

5.1.2 Case study: varying the redundancy

Redundancy is an important problem for feature selection methods, since selecting
redundant features is not desirable and it can hinder the subsequent process of classifi-
cation. Therefore, in this case study we will analyze the stability of the filter methods



On the scalability of feature selection methods on high-dimensional data 25

when the level of redundancy varies. For this, we chose a dataset used in a recent
research work [33]. It is a synthetic dataset which represents a binary classification
problem where only the first 50 features are relevant to the target class (the total num-
ber of samples and features can be configured by the user). Instances of the positive
class are i.i.d. drawn from a normal distribution with mean µ+ = (1, ..., 1, 0, ..., 0)
—i.e. the first 50 values are ones and the remaining ones are zeros— and covariance
matrix:

Σ =

[
Σ∗50×50 050×50
050×50 I50×50

]
where Σ∗50×50 is the matrix with ones on the diagonal. The mean for the negative
class is taken equal to µ− = (−1, ...,−1, 0, ..., 0). A parameter ρ controls the degree
of redundancy everywhere else. The larger the value of ρ, the more the 50 relevant
features will be correlated to each other.

In these experiments we only analyze the variations in stability under different
values of ρ. This is because, in this scenario, it makes no sense to employ the mea-
sures defined for the error. We know that the 50 first features are the relevant features,
but when a high level of redundancy is induced, it might be possible that not all the
50 first features are necessary for a correct identification of the problem. However,
the error measures defined herein do not take this aspect into account, since the set of
relevant features remains fixed. In fact, what happens is that univariate methods such
as Information Gain or Chi-Square (which do not take interactions between features
into account) seem to obtain better error performance than multivariate methods such
as ReliefF or mRMR, which do not select some of the relevant features when the
degree of redundancy increases.

As for the training time, we think that it is not interesting to measure it in this
case study, since increasing the degree of redundancy does not have an effect on the
training time. For all these reasons, we focus the analysis of this case study on the
stability of the feature selection methods.

Our experimental procedure is as follows. We set the number of features as 100, in
which the first 50 features are the relevant ones. We try different numbers of samples
(2000, 5000, 10 000) and several degrees of redundancy ρ = [0, 0.2, 0.4, 0.6, 0.8],
aiming at checking how this affects to the stability of the selection.

Figure 6 shows the Tanimoto and Jaccard stability metrics for the subset filter
methods (FCBF, CFS, Consistency-based and INTERACT). The behavior of Consis-
tency-based is very unstable. Notice that this method is based on a consistency mea-
sure that attempts to find a minimum number of features that can separate the classes
as consistently as the full set of features—given that an inconsistency is defined as
two instances having the same features but different class labels. The problem with
this method is that it tends to select too small subsets of features, making it very
unstable and even obtaining bad subsequent classification results [5]. If we focus on
the remaining methods, it can be seen that, on the one hand, increasing the degree of
redundancy makes the methods more unstable. This is because this kind of methods
are able to detect redundancy so they do not select some of the 50 relevant features.
But, as the level of redundancy increases, it becomes more difficult to select the same
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subset of features across the different repetitions of the procedure. And, on the other
hand, increasing the number of samples contributes to obtain more stable selections,
since the feature selection methods have more data to decide which features to se-
lect. In light of these experiments, the subset method that seems to be more stable
with respect to increasing redundancy is CFS, which also showed outstanding results
in terms of distance when applied to classical datasets (see Table 5). Actually, CFS
is the only method that is able to improve stability when the number of samples in-
creases. Notice that the remaining methods, when ρ = 0.8 do not become more stable
as the number of samples is larger.

(a) 2000 samples (b) 5000 samples (c) 10000 samples

(d) 2000 samples (e) 5000 samples (f) 10000 samples

Fig. 6 Tanimoto (top) and Jaccard (bottom) stability results when varying the number of samples and the
degree of redundancy (ρ)

Figure 7 depicts the Spearman and Kendall stability metrics for the ranker fil-
ter methods (Chi-Squared, ReliefF, Information Gain and mRMR). We can see two
different behaviors depending on if the methods are univariate (Chi-Squared and In-
formation Gain) or multivariate (ReliefF and mRMR). Univariate methods do not
take into account interaction between features, so they are not capable of detecting
redundancy. This is the reason why their stability is not affected by the increasing
degree of redundancy. They are, in fact, selecting always the 50 fist features over the
irrelevant features, but in different order over the repetitions of the experiment. On
the contrary, multivariate methods can detect redundancy and discard redundant fea-
tures. Therefore, they do not rank all the 50 relevant features over the irrelevant ones.
The problem is that they chose as “relevant” different subsets of features at each rep-
etition of the experiment, and so they become unstable as the degree of redundancy
increases. The mRMR method becomes more stable when increasing the sample size,
because the more samples it has to estimate the mutual information, the more reliable
and stable it will be. However, increasing the sample size does not have the same
effect on the stability of ReliefF. ReliefF decides the relevance score for each feature
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based on aggregating the scores over all instances in a training set, so it is surprising
that having more data would produce less stable results.

(a) 2000 samples (b) 5000 samples (c) 10000 samples

(d) 2000 samples (e) 5000 samples (f) 10000 samples

Fig. 7 Spearman (top) and Kendall (bottom) stability results when varying the number of samples and the
degree of redundancy (ρ)

Trying to shed light on this issue, we compare the behavior of ReliefF on this
synthetic dataset with different levels of overlap with the behavior of ReliefF on the
classical artificial datasets used in the rest of the paper. For the sake of comparison,
in the case of the classical datasets, we are only showing the results when the number
of samples ranges from 2048 to 16384, and the number of features is fixed to 128.
For an easier visualization, we are also displaying how stability changes for ReliefF
when trying different levels of redundancy in the dataset studied in this case study.
Figure 8 presents this comparison, in which the top graphs are related to Spearman
measure and bottom graphs are related to Kendall measure.

As can be seen, on the classical artificial datasets, increasing the level of samples
does not have a big impact on the stability of ReliefF, however, if we focus on the right
part of the figure, we can see a different behavior. When using the redundancy dataset,
we can easily see that for low levels of redundancy, the stability is sort of maintained.
However, when the level of redundancy increases, ReliefF becomes more unstable
as the number of samples increases. This finding suggest that when ReliefF tries
to find the relevant features in an scenario with redundancy, having more samples
makes it more difficult to give the same relevance to the features. This might be
caused by the fact that ReliefF works by selecting randomly a sample and finding
the closest same-class instances and the closets different-class instances. If the level
of redundancy among the relevant features is high enough, it might be possible that
more ties between closest instances would happen, which can increase when having
more instances to check. In this scenario, ReliefF would become more unstable as the
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Fig. 8 Spearman (top) and Kendall (bottom) stability results for ReliefF with different datasets when
increasing the number of samples

number of samples increases. An interesting line of future research might be to study
in depth the behavior shown by ReliefF in the presence of redundant features.

5.2 Scalability of wrappers

This section reveals the scalability of wrapper methods. For this sake, we have chosen
three representative classifiers (C4.5, k-NN and naive Bayes) which will be used to
assess the relative usefulness of the subsets of variables. Notice that the search strat-
egy is best first, starting with the empty set of features and searching forward (which
tends to select larger subsets of features than the backward search strategy). Figure
9 displays the results achieved by the wrapper combined with these three classifiers
applied on the Corral dataset. It can be seen that, in terms of error, C4.5 and k-NN
reported an acceptable behavior, although it seems that they are more affected by the
sample dimension and the minimum error is achieved with around 128 samples. The
minimum error obtained by the wrapper using naive-Bayes is slightly higher, but this
method appears to be more stable. A similar behavior was also shown on the remain-
ing datasets (see Table 9). The wrapper combined with NB shows the poorest results
in terms of error due to two reasons: (a) it cannot solve non-linear problems, such as
Parity or XOR; and (b) since this classifier is robust to irrelevant features, the wrap-
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per search strategy does not need to remove all the irrelevant features because NB
can obtain acceptable classification accuracies even so, but the measures that we are
using in this work get penalized if irrelevant features are included.
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Fig. 9 Measures of scalability of wrappers in the Corral dataset, showing feature size vs. sample size

Table 9 Precision, stability and time measures for wrappers on classical datasets

Dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt

W
-C

4.
5

Corral 0.0548 8192 7.0565 0.5000 4096 25.4117 56.8844 181.8961
Led 0.0439 32768 6.4084 0.5000 4096 23.0851 64.8711 200.3963
Monk3 0.1725 131072 11.8689 0.5000 8192 24.2955 50.9306 168.4447
Parity 0.2104 8192 16.4408 0.7742 4096 33.4075 394.2772 616.2489
XOR 0.0975 1024 10.3626 0.6274 1024 30.6118 183.1688 420.8220

W
-k

-N
N

Corral 0.0167 65536 6.1080 0.5200 8192 25.0587 1539.2690 1720.1047
Led 0.0470 16384 5.2805 0.5167 512 21.2260 919.9601 1125.8321
Monk3 0.2217 16384 12.6873 0.5672 2048 28.0120 1567.8623 1670.3355
Parity 0.1993 1024 17.1441 0.7222 512 32.0195 10073.3259 8702.4207
XOR 0.1712 256 15.1980 0.7046 256 31.8317 11076.9449 7814.4760

W
-N

B

Corral 0.1926 4096 10.9833 0.6230 8192 30.0811 157.3330 262.6080
Led 0.0504 32768 5.2008 0.5000 1024 22.5974 110.8897 302.8381
Monk3 0.3083 8192 13.7294 0.6484 256 29.0853 83.4932 186.0066
Parity 0.4385 2048 18.1368 0.9171 128 34.1900 72.6553 194.4969
XOR 0.3838 256 17.1055 0.9052 256 33.9530 71.8749 197.2576
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In terms of distance, a similar behavior to that of the error is reported in Figure
9. The wrapper combined with C4.5 and k-NN obtained the minimum distance using
around 128 samples, whereas naive Bayes, although being more stable, achieved a
higher minimum distance. Focusing on Table 9, it is easy to note that this circum-
stance also happened with the rest of the datasets. The most different results were
found on the training time. According to Table 9, the wrapper using C4.5 employed
the lowest time on datasets Corral, Led and Monk3. When combining the wrapper
with naive Bayes, the lowest values were achieved on Parity and XOR, whereas the
k-NN classifier caused the wrapper to consume more training time (around 139 times
higher when comparing the MaxTt value on Parity dataset with those of the k-NN
and naive Bayes learning methods).
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Fig. 10 Comparison of scalability measures for wrappers (combined with C4.5, k-NN and naive Bayes)

Figure 10 shows the results of the statistical tests executed to compare the differ-
ent wrapper methods based on their scalability properties on all datasets. The use of
C4.5 and kNN as learning algorithms obtained significantly better results in terms of
error than the use of naive Bayes. With regard to the measures related to the distance,
using kNN seems a good option since it achieves the best results or it is not signifi-
cantly different from the best result for the three scalar measures (MinDi, Di5% and
VuDi). It is interesting to see, from graphs 10(g) and 10(e), that using C4.5 allows the
wrapper to achieve the lowest distance but it requires a significantly larger amount of
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data than the other two methods to do it. Finally, in terms of training time, C4.5 and
naive Bayes required significantly less time than k-NN.

In light of the above, the best learning algorithm to be combined with the wrap-
per seems to be C4.5. Although k-NN shows a good behavior in terms of error and
distance, the training time is quite high, probably because of the time burden required
to sort the samples in order to find the nearest neighbors. C4.5 achieves a lower error
and distance in a shorter time. Notice that studying the scalability of wrapper methods
is not as straightforward as with filters, since the former involve learning algorithms,
which add more complexity to the task. Moreover, wrappers select features based on
the classification performance, so it might happen that some result that we consider
poor according to the measures proposed in Section 4.3, turn out to obtain outstand-
ing classification results. Having said that, Table 10 provides some guidelines for the
specific scalability aspects considered for wrapper methods based only on the ex-
periments carried out here. Notice that this comparison is only among the wrapper
methods, not including the other types of methods tested in these experiments. Again,
the larger the number of bullets, the better the behavior.

Table 10 Overview of the behavior regarding scalability of wrappers (notice that the large the number of
dots, the better the behavior).

Method Error Distance Training time
W-C45 •••• •• •••••
W-k-NN •••• ••• •••
W-NB ••• •• •••••

5.3 Scalability of embedded methods

Finally, this section studies the scalability of two embedded methods: FS-P and SVM-
RFE. Figure 11 shows the results obtained with Corral dataset. As can be seen, the
maximum training time required by SVM-RFE is almost 18000 seconds. This high
time is due to the recursive nature of the method thus preventing its application to the
remaining datasets, that are more complex than Corral.

In terms of error (Figure 11 and Table 11), the embedded methods seem to be
more affected by the number of samples than of features. Both of them achieved the
minimum error with around 128 samples, but FS-P performed better. Regarding the
distance, their performance is comparable to those of the multivariate ranker filters
ReliefF and mRMR, being more affected by the number of features than of samples,
due to the possible combinations of features.

Focusing on the training time, SVM-RFE requires a much longer time than FS-P.
For this reason, FS-P seems to be a better option since in the rest of the measures
the performance is similar. However, only one dataset is not enough to draw strong
conclusions. For this reason, FS-P was applied to the remaining datasets. Tables 12
and 13 report the eight scalar measures defined in section 4.3 after applying the FS-P
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Fig. 11 Measures of scalability of embedded methods in the Corral dataset, showing feature size vs.
sample size

Table 11 Precision, stability and time measures for embedded methods on Corral dataset

MEthod MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt
SVM-RFE 0.0017 16384 5.5982 0.3138 2048 26.0390 17959.8755 7808.8825
FS-P 0.0000 4096 1.6481 0.4422 4096 13.8323 76.1025 116.2191

embedded method to classical and SD datasets, respectively. In terms of error, FS-P
obtains the best results with Corral and Led datasets while it shows a poor perfor-
mance with non-linear datasets, such as XOR or the Monk problems. This result may
be caused because FS-P uses a linear perceptron so it can only solve linear problems.
Regarding stability, FS-P obtains poor results, except for the case of Led dataset, but
at the expense of needing a larger amount of data. Finally, the highest training times
were required by the SD datasets, since they have the largest number of features.
Among the classical datasets (Table 12), it is surprising the maximum training time
obtained with Led dataset, which is almost four times that of the remaining datasets.
It can be due to the fact that Led dataset is the only multiclass dataset, which compli-
cates the learning process.

Table 12 Precision, stability and time measures for embedded method FS-P on classical datasets

Method MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt
Corral 0.0000 4096 1.6481 0.4422 4096 13.8323 76.1025 116.2191
Led 0.0000 1024 0.7920 0.2765 16384 11.9760 287.0183 435.4861
Monk1 0.5395 2048 11.2919 0.7919 256 16.1382 77.8572 117.4911
Monk2 0.5776 16384 11.9769 0.7718 512 16.0206 77.1672 117.0610
Monk3 0.4983 2048 10.5079 0.7917 2048 15.9776 77.0355 116.9248
XOR 0.3054 2048 9.2897 0.8003 256 16.0837 78.9096 117.9691
Parity 0.2362 32768 10.5824 0.8108 512 16.0578 77.0948 117.3677
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Table 13 Precision, stability and time measures for embedded method FS-P on SD datasets

Method MinEr Er5% VoEr MinDi Di5% VoDi MaxTt VoTt
SD1 0.0135 995328 4.6949 0.7888 5184 11.2110 582.1999 695.6317
SD2 0.0884 995328 7.0557 0.6103 1728 10.9029 581.9035 694.7263
SD3 0.1054 995328 7.4857 0.7308 10368 11.1356 578.1531 695.1090

In this case, we have not provide a summary table with dots, since the comparative
would not be complete, as SVM-RFE was only applied to Corral dataset.

6 Real datasets

In order to check if the behavior shown by the different feature selection methods
can be extrapolated to the real world, two real datasets were chosen. These datasets
present different properties for the analysis to be performed, whereas one has a large
number of features, the other one has a large number of samples. The first one, Colon
Cancer2, is a microarray binary dataset with 2000 features and 62 samples, very sim-
ilar to the SD family of datasets introduced in Section 3, which consists of detecting
if a patient has colon cancer or not. The second dataset, called KDD Cup 993, is a
benchmark dataset in the intrusion detection field. It contains 494 021 samples repre-
sented by employing 41 features, in which the task is to distinguish between an attack
and a normal connection.

When it comes to real datasets, the desired output is not known a priori, so instead
of using the error measures defined in Section 4, we had to use the classification error.
For this sake, we have opted for calculating this error with a SVM classifier and a 5-
fold cross validation.

For KDD Cup 99 dataset, we have performed experiments in which the samples
range from 23 to 214, and the number of features between 23 and 24, using also the
available 41 of the original dataset. Analogously, for Colon dataset, the number of
samples tested is 32, 33 and the maximum (62) while the number of features ranges
from 26 to 210 and includes the maximum (2000).

6.1 Scalability of filters

Figures 12 and 13 show the level graphs for ranker and subset methods, respectively.
In general, the errors are quite low, especially when having a sufficient number of
features and samples. Notice, however, that this might be also a merit of the classifier
used to compute the error, since in this case we are not aware of the relevant features
a priori.

In terms of distance, it might seem surprising to see the plots concerning distance
for ReliefF and mRMR. In previous experiments (Section 5.1), these plots showed a

2 Colon Cancer dataset is available on http://datam.i2r.a-star.edu.sg/datasets/
krbd

3 KDD Cup 99 dataset is available on http://kdd.ics.uci.edu/kddcup99/kddcup99.
html
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“horizontal” pattern, i.e. they seem to degrade when the number of features increased,
as a result of evaluating more combinations of features. However, in this case the pat-
tern is “vertical” and the results improve as the number of samples increases. Notice
that in this case the number of samples is significantly smaller than in the previous
experiment, so it is expected that when having such a small set of samples for such a
large number of features to evaluate in the presence of others, random results occur,
leading to extremely different rankings. Moreover, in these real experiments we can-
not ensure that the relevant features are always present in the different configurations
of samples and features. This erratic behavior is also shown by subset filters, as can
be seen in Figure 13. Since ChiSquare and Information Gain do not take interaction
between features into account, more stable results are obtained.

With regard to the training time, among the ranker methods mRMR was the one
which required the highest one, as it is quadratic to the number of features. As for the
subset methods, and as happened in the previous experiments, FCBF is the approach
that requires the lowest running time.

Figures 14 and 15 are dedicated to the scalability analysis of ranker and sub-
set methods, respectively, on the KDD Cup 99 dataset. Like it happened with Colon
dataset, the results in terms of error are quite satisfactory, although it has to be re-
minded that this might be also a merit of the SVM classifier. With regard to the
distance, for both ranker and subset methods the results are very irregular. This is
caused by the fact that with real datasets, the relevant features are not known a priori
so we cannot ensure that they are included in the set of features and samples to test.
Notice that, for each execution of n samples and m features, these are selected ran-
domly from the whole dataset, and this is repeated 10 times to evaluate the stability,
so the feature selection methods have to deal with very different sets of data. How-
ever, when dealing with artificial datasets, we fixed the relevant features so they are
included in every execution, and they are the irrelevant features those that are samples
randomly. In this latter case, it is easier for a feature selection method to obtain stable
selections.

Regarding the training time, it is noticeable that the highest one was achieved
by ReliefF, as expected, since it degrades quadratically when the number of samples
increases, and the KDD Cup 99 dataset has more samples than features. Tables 14
and 15 depict the numerical results from these experiments, supporting the analysis
performed above.

Table 14 Precision, stability and time measures for ranker filters on real datasets

filter-dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt
chisquared-colon 0.0333 18000 1.5942 0.0000 7936 1.5940 0.6810 3.4860
chisquared-kddcup99 0.0104 131072 1.2498 0.0000 131072 12.9097 2.3232 11.3446
relieff-colon 0.0444 2304 1.4508 0.0000 7936 6.7189 0.6926 3.4151
relieff-kddcup99 0.0084 262144 1.0907 0.1071 8192 21.6267 172.3317 252.5261
infogain-colon 0.0333 18000 1.5815 0.0000 7936 1.6029 0.6678 3.4680
infogain-kddcup99 0.0104 131072 1.2126 0.0000 16384 13.0735 2.3172 11.3569
mrmr-colon 0.0333 18000 1.5090 0.0000 7936 6.7274 229.9029 450.1347
mrmr-kddcup99 0.0308 1312 1.5807 0.1500 65536 17.8095 0.4451 2.0204
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Fig. 12 Measures of scalability of ranker selection methods in the Colon dataset

Table 15 Precision, stability and time measures for subset filters on real datasets

filter-dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt
fcbf-colon 0.1000 54000 2.0955 0.0000 3968 6.6089 0.6915 3.6158
fcbf-kddcup99 0.0449 32768 2.9742 0.1333 32768 15.3748 1.0354 10.8304
cfs-colon 0.0111 18000 1.6019 0.0000 3968 6.4831 8.4432 9.5253
cfs-kddcup99 0.0250 512 2.4682 0.0000 262144 13.8616 2.3600 11.8342
cons-colon 0.1452 15872 2.4580 0.0000 3968 6.7341 1.1232 4.6749
cons-kddcup99 0.0232 262144 2.4855 0.0400 131072 17.0028 4.3950 15.6335
int-colon 0.0111 18000 1.5792 0.0000 3968 6.5561 2.0580 5.8275
int-kddcup99 0.0250 512 1.8250 0.0933 131072 12.9825 4.2328 16.6535
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Fig. 13 Measures of scalability of subset methods in the Colon dataset

6.2 Scalability of wrappers

In this subsection we present experiments with wrapper methods. Since the character-
istics of microarray data prevent the use of wrappers because they tend to overfit due
to the extremely high number of features versus a extremely small number of sam-
ples, the Colon dataset was not included. Even so, for KDD Cup 99 the maximum
number of samples to test was downgraded to 1024. Figure 16 plots the level graphs
whereas Table 16 reports the numerical details. As happened with filters, the errors
are also low, which might raise the question of if it is worth using wrappers –given
their computational burden– instead of filters –which are a less expensive approach–.

Regarding the distances obtained by the wrappers, it seems that they are highly
unstable, for the same reason explained in the previous subsection. Finally, the results
in terms of training time confirm the trend seen with artificial datasets, with k-NN re-
quiring the highest time. Notice that, for the training time, the results are not bounded
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Fig. 14 Measures of scalability of ranker selection methods in the KDD Cup 99 dataset

between 0 and 1, since the time has not been normalized, so the maximum values of
the axes are different from one method to another.

Table 16 Precision, stability and time measures for wrapper methods on KDD Cup 99 dataset

method-dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt
c45-kddcup99 0.0153 41984 1.0715 0.7261 8192 10.1141 16.0380 31.5529
knn-kddcup99 0.0336 32768 0.9415 0.7113 16384 10.3375 185.0736 229.5728
n-b-kddcup99 0.0153 41984 0.5895 0.6943 512 9.9817 14.9804 27.9467
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Fig. 15 Measures of scalability of subset methods in the KDD Cup 99 dataset

6.3 Scalability of embedded methods

Figure 17 and Table 17 show the scalability results for KDD Cup 99 since, as hap-
pened with wrappers, the computational burden of embedded methods prevent their
use on Colon dataset, which has 2000 features. Both methods (SVM-RFE and FS-P)
achieve very low errors (under 1%) and are quite unstable, although it has to be noted
that FS-P is more affected by the number of features. The running time is surprisingly
low, although it has to be reminded that the maximum number of features is 41.

Table 17 Precision, stability and time measures for embedded methods on KDD Cup 99 dataset

method-dataset MinEr Er5% VuEr MinDi Di5% VuDi MaxTt VuTt
fs-kddcup99 0.0094 1312 0.3426 0.4394 256 8.7551 12.5350 29.9188
svm-kddcup99 0.0063 512 0.2650 0.3307 256 8.2131 1.4487 8.7761
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Fig. 16 Measures of scalability of wrappers in the KDD Cup 99 dataset, showing feature size vs. sample
size
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Fig. 17 Measures of scalability of embedded methods in the KDD Cup 99 dataset, showing feature size
vs. sample size

6.4 Analysis of results and another approach

In general, it is difficult to know if the conclusions drawn with artificial datasets can
be extrapolated to real datasets. The first obstacle that we found is that in real datasets
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it is impossible to know the relevant features a priori, therefore the measures proposed
in this work to evaluate the efficiency of the feature selection methods in that sense are
useless. With real datasets, we have opted for using the classification error, although
in this way the goodness of the specific classifier also plays an important role. The
minimum error for KDD Cup 99 was achieved by the embedded method SVM-RFE,
although ReliefF also obtained a remarkable result. As for Colon dataset, both CFS
and INTERACT obtained the lowest error rates. Concerning distance, the compara-
tive with the artificial experiments is not fair either, since in that scenario the relevant
features were always present so it was easier to produce stable selections. Lastly, in
terms of time, especially when using filters, the different methods showed the same
trends as with artificial datasets. ReliefF and mRMR were again the two filters than
required the highest training times; the former when the number of instances is high
(KDD Cup 99) and the latter when the number of features is high (Colon).

An alternative to using the classification error would be to apply each feature
selection method on the whole dataset and deem the selected features as relevant.
In this way, it is possible to employ the same error measures used in the rest of the
paper, which were defined in Section 4. As an example, in Figure 18 we show the
scalability results or ranker methods in the Colon dataset. If we compare these results
with those obtained when using the classification error (see Figure 12), the main
differences are related to the error, as expected. When using the classification error
(Figure 12), it possible that a given classifier can disregard the presence of irrelevant
features, leading to low errors. However, when using the measures defined in Section
4 (Figure 18), the inclusion of an irrelevant feature on the top of the ranking is highly
penalized.

In terms of distance, the results with this new approach (Figure 18) are slightly
better than the previous one (Figure 12). This is happening because with the new
approach, and as happened with the artificial datasets, the relevant features are fixed
and present in all subsets of features and samples, making easier to achieve stabler
selections of features. Regarding the time, the results are practically identical. For the
sake of brevity, we are not including the rest of the graphs in this paper, but they can
be accessed online4.

7 Discussion and conclusions

With the advent of high dimensional datasets in machine learning, feature selection
has received an important amount of attention from researchers and data-mining prac-
titioners due to its capacity to improve both performance and computational efficien-
cies. In this scenario, scalability is becoming a very important trending issue. An
algorithm is said to be scalable if it is suitable, efficient and practical when applied
to large datasets. However, the current state is that the issue of scalability is far from
being solved although it is present in a diverse set of problems.

In this paper, we present an analysis of the scalability of feature selection meth-
ods, which has not received much consideration in the literature. The scenario chosen

4 http://www.lidiagroup.org/index.php/en/materials-en.html
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Fig. 18 Measures of scalability of ranker selection methods in the Colon dataset with an alternative ap-
proach

to check the scalability of classical feature selection methods was a set of 11 artificial
datasets, so as to be able to assess the degree of closeness to the optimal solution in
a confident way, independently of the classifier. In our opinion, this type of analysis
has to be done on controlled scenarios, with a manageable size, to be able to give the
reader an idea about how scalable the classical methods are before applying them to
an extremely high-dimensional problem. Therefore, if a given method is not scalable
even on this controlled scenario, it would not be worthy applying it to a big real prob-
lem. On the contrary, if the performance of such method is promising, it would be a
good candidate to be applied in a Big Data scenario.

A total of eight well-known filter-based feature selection algorithms were evalu-
ated, covering both ranking and subset methods. Moreover, some representatives of
embedded and wrapper methods were also considered in this study. For determin-
ing the scalability of the methods, several new measures were proposed, based not
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only on the accuracy but also on the execution time and stability, and their adequacy
was demonstrated. In light of the experimental results, some guidelines have been
proposed:

– Among the subset filters, INTERACT obtained good scalability results, especially
in terms of minimum error and distance. However, if we are interested in really
low training times, FCBF showed an acceptable accurate results in a short training
time.

– As for the ranker methods, ReliefF turned out to be very precise in selecting the
relevant features, although this comes at the prize of large training times when
the number of samples is high. On the other hand, the ranker method mRMR also
achieved good results in terms of error, but the training time raises significantly
when it deals with large amounts of features.

– With regard to the stability of the filters evaluated, i.e. the sensitivity of the meth-
ods to variations in the training set, univariate ranker methods (such as Chi-
Squared or Information Gain) are more stable than multivariate methods (such
as ReliefF or mRMR), since the latter have to deal with interactions between
features. It is worth mentioning that subset methods, although being also multi-
variate, are much more stable than their counterparts within the ranker approach.
This is happening because ranker methods have to order all the features, even the
irrelevant ones, while subset methods only select the relevant features so if they
are behaving correctly, it is easier to select consistent subsets of features.

– As expected, the scalability of the wrapper methods depends on the classifier
chosen, being C4.5 a good option in terms of scalability.

– When using embedded methods, the well-known SVM-RFE algorithm achieves
promising results in terms of error at the cost of requiring high training times.

– In general, the authors suggest the use of filters, since they carry out the feature
selection process with independence of the induction algorithm and are faster than
embedded and wrapper methods, scaling better to Big Data problems.

Finally, the feature selection methods were also tested over two real datasets, try-
ing to check if the conclusions drawn on artificial data could be extrapolated. The
obtained results were difficult to compare, since the set of relevant features was not
known a priori. In any case, some behaviors were again shown by the tested meth-
ods. For example, univariate rankers (Information Gain and Chi-Squared) were again
more stable than multivariate rankers (ReliefF and mRMR) and, in terms of time,
ReliefF required the highest training time when dealing with a dataset with a large
number of features while mRMR did the same when dealing with large amounts of
features.

In light of these results, it becomes clear that state-of-the-art feature selection
methods will have scalability problems when approaching Big Data. In general, one
can say that most of the classical feature selection approaches that are univariate
-that is each feature is considered separately- have an important advantage in scal-
ability, but at the cost of ignoring feature dependencies, and thus leading to lower
performances than other feature selection techniques. To improve performance, mul-
tivariate filter techniques are proposed, but at the cost of requiring high training times.
These multivariate methods are based on computing pairwise correlations in their al-
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gorithms designs. Imagine the implications of this when dealing with a million of fea-
tures; it would be necessary to cope with a trillion of correlations. Note that this poses
an enormous challenge for machine learning researchers that has not been addressed
yet. The need for scalable yet efficient methods is obvious, since as demonstrated
in this work, existing feature selection methods will be inadequate to cope with this
unprecedented number of features, either in terms of training time or efficiency in
selecting the relevant features.
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