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Abstract

Since wearable computing systems have grown in importance in the last years,
there is an increased interest in implementing machine learning algorithms
with reduced precision parameters/computations. Not only learning, also
feature selection, most of the times a mandatory preprocessing step in ma-
chine learning, is often constrained by the available computational resources.
This work considers mutual information —one of the most common measures
of dependence used in feature selection algorithms— with a limited number
of bits. In order to test the procedure designed, we have implemented it in
several well-known feature selection algorithms. Experimental results over
several synthetic and real datasets demonstrate that low bit representations
are sufficient to achieve performances close to that of double precision pa-
rameters and thus open the door for the use of feature selection in embedded
platforms that minimize the energy consumption and carbon emissions.
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1. Introduction

With the advent and standardization of wireless connectivity paradigms
and the cost reduction of electronic components, the number and diversity of
Internet of Things (IoT) devices has exploded over the last decade (Ray et al.,
2016). Wearable computing has made successful and significant forays in
fitness domains, health care, fashion and entertainment, among other appli-
cation areas. These devices are usually employed as local systems, and their
fundamental requirements are to work with little computing power and small
memories. However, these requirements become challenging since emerging
computing devices are not just sensor devices: they must perform sophisti-
cated computation, collect and aggregate data for propagation to the cloud,
and respond in real time to user requests. This data must be fed on a ma-
chine learning (ML) system to analyze information and make decisions. Un-
fortunately, limitations in the computational capabilities of resource-scarce
devices inhibit the implementation of the most current ML algorithms on
them. Then, the data must be sent to a remote computational infrastruc-
ture. However, an interest in a different paradigm based on Edge Computing
has emerged. Edge computing refers to computations being performed as
close to data sources as possible, instead of remote locations.

Imagine a health wearable (Figure 1) which measures a high number of
body parameters such as vital signs (electrocardiography, pulse, blood oxy-
gen saturation, respiration, skin temperature, CO2), body kinematics as well
as sensorial, emotional and cognitive reactivity such as electrocardiography,
posture, fall, movement, speed, acceleration or pressure. It is common that
a large number of these features (i.e. body parameters) is not informative
because they are either irrelevant or redundant with respect to a specific
disease or health condition. Therefore, selecting the most relevant features
could significantly improve disease prevention, diagnosis, treatment, disease
management and rehabilitation, and help to discover personal patterns of
interest. Feature selection arises from the need of determining the “best”
subset of variables for a given problem. The use of an adequate feature selec-
tion method can avoid over-fitting and improve model performance, provid-
ing faster and more cost-effective learning models and a deeper insight into
the underlying processes that generate the data (Saeys et al., 2007). Fea-
tures can be categorized in three ways: relevant, irrelevant and redundant
(Huang, 2015). As a result, selecting the relevant features and ignoring the
irrelevant and redundant ones is advisable. The process of feature selection
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is typically performed on a machine using high numerical representation, i.e.
double-precision floating point calculations (64 bits). Using a more power-
ful general purpose processor provides significant benefits in terms of speed
and capability to solve more complex problems. But this capability does not
come without cost; a conventional microprocessor can require a substantial
amount of off-chip support hardware, memory, and often a complex oper-
ating system (Koopman, 1990). In contrast to up-to-date computers, these
requirements are often not met by embedded systems, low energy computers
or integrated solutions that need to optimize the used hardware resources.
However, to the best of our knowledge, reduced-precision approaches have
not been implemented yet in the area of feature selection. And portable
embedded systems, though, call for new feature strategies and methods that
are able to deal with big dimensionality.

Figure 1: Health wearable (Commons, 2001).

The majority of the existing approaches available investigated the effect of
reduced precision in neural networks (Murshed et al., 2019). Han et al. (2016)
presented an energy-efficient engine that performed inference on compressed
deep neural networks and accelerated the resulting sparse matrix-vector mul-
tiplication with weight sharing. Hubara et al. (2017) introduced a method
to train Quantized Neural Networks (QNNs), i.e. neural networks with ex-
tremely low precision weights and activations at run-time. They found that
QNNs achieved prediction accuracy comparable to their 32-bit counterparts.
Jacob et al. (2018) proposed a quantization scheme that relied only on in-
teger arithmetic to approximate the floating-point computations in a neural
network. The authors were inspired by the work of Gupta et al. (2015), which
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leverages low-precision fixed-point arithmetic to accelerate the training speed
of convolutional neural networks. In the area of Bayesian networks, Tschi-
atschek and Pernkopf (2015) considered online learning of these classifiers
with reduced precision parameters in order to facilitate their utilization in
computationally constrained platforms. All above mentioned authors demon-
strated that their proposed reduced-precision algorithms achieved classifica-
tion performances close to that of Bayesian networks classifiers with param-
eters learned by traditional algorithms using double-precision floating point
representation.

In this work, we investigate feature selection by considering the informa-
tion theoretic measure of mutual information with reduced precision param-
eters described in Morán-Fernández et al. (2018). The mutual information
measure is used due to its computational efficiency and simple interpretation.
Therefore, we are able to provide a limited bit depth mutual information,
and —through different feature selection methods based on this measure—
experimentally achieve classification performances close to that of 64-bit rep-
resentations for several real and synthetic datasets. Our reduced precision
approach is designed to analyze user level data, i.e. on-board analysis for
close-loop feedback. It performs the preprocessing step over private “small”
data. Then, this anonymized data could become available in the cloud, by
aggregation of personal data from different users, to obtain “big” data that
can be processed by more powerful processors and/or distributed to experts
for further analysis.

The remainder of this paper is organized as follows. Section 2 provides
the background of mutual information in feature selection. Section 3 presents
our limited bit depth mutual information approach. Section 4 provides and
discusses an experimental study over several real and synthetic datasets in
terms of the ranking similarity and the classification accuracy, as well as a
case study to analyze the robustness against noise of our proposed method.
Finally, Section 5 contains our concluding remarks and proposals for future
research.

2. Mutual information in feature selection

Mutual Information (MI) comes from the field of Information Theory and
it is widely used in both machine learning and statistics. One of its main uses
is feature selection methods, and in fully supervised data, the features X are
ranked using this measure, and the ones finally selected are those having the
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highest mutual information with the class label Y . The mutual information
is defined as the expected logarithm of a ratio:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) ln
p(x, y)

p(x)p(y)
(1)

where p(x, y) = Pr{X = x, Y = y} is the probability mass function
of the joint distribution when the random variable X takes on the value
x from its alphabet X and Y takes on y ∈ Y , while p(x) = Pr{X = x}
and p(y) = Pr{Y = y} are the probability mass functions of the marginal
distributions. In this work, the function is calculated in natural logarithm,
so returned units are “nats”. In practice we have to estimate this from data.
This can be done by using the sample (maximum-likelihood) estimates of the
probabilities p̂ and plug them in the Equation 1. This maximum likelihood
estimator for the mutual information is consistent (Paninski, 2003), and as
a result we have:

I(X;Y ) ≈ Î(X;Y ) =
∑
x∈X

∑
y∈Y

p̂(x, y) ln
p̂(x, y)

p̂(x)p̂(y)
(2)

In order to calculate this we need the estimated distributions p̂(x, y), p̂(x),
and p̂(y). The probability of any particular event p(X = x) is estimated by
maximum likelihood, the frequency of occurrence of an event X = x divided
by the total number of events.

An example. Let us consider a vector Y with 651 observations, in which
the number of occurrences of an event Y = y is 3. The probability p̂(y) will
be:

p̂(y) =
3

651
= 0.00460829493

which it is approximately zero. For real applications, it is not necessary
to store all the decimal digits, which makes mutual information an interest-
ing measure to explore reduced precision. Besides, as the embedded systems
market matures, we will likely see a movement away from full mutual in-
formation (i.e. 64 bit-representation) to limited approaches using a lower
number of bits.

Mutual information definition is useful within the context of feature se-
lection because it gives a way to quantify the output vector. Thus, there
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exist in the literature several feature selection methods based on mutual in-
formation measures (Battiti, 1994; Tesmer and Estévez, 2004; Peng et al.,
2005; Guo and Nixon, 2009). Most methods define heuristic functionals to
assess feature subsets combining definitions of relevant and redundant fea-
tures. Among the different feature selection methods based on mutual infor-
mation, we have chosen three to evaluate our limited bit depth mutual in-
formation approach: MIM (Mutual Information Maximisation) Lewis (1992)
due to its simplicity, JMI (Joint Mutual Information) (Yang and Moody,
2000) and mRMR (minimum Redundancy Maximum Relevance) multivari-
ate filter (Peng et al., 2005) since they showed the best overall trade-off for
accuracy/stability (Brown et al., 2012). In any case, our reduced precision
approach could be easily implemented in any other MI-based feature selection
algorithms.

• MIM ranks the features by their MI score, and selects the top k features,
where k is decided by some predefined need for a certain number of
features or some other stopping criterion.

MIM(Xk) = I(Xk;Y ) (3)

An important limitation is that this assumes that each feature is in-
dependent of all other features and effectively ranks the features in
descending order of their MI content. Thus, this approach does not
take into account the redundancy between the features.

• JMI is focused on increasing complementary information between fea-
tures. The JMI score for feature Xk is

JMI(Xk) =
∑
Xj∈S

I(XkXj;Y ) (4)

This is the information between the targets and a joint random variable
XkXj, defined by pairing the candidate Xk with each feature previously
selected. The idea is if the candidate feature is “complementary” with
existing features, we should include it.

• The mRMR feature selection method selects features that have the
highest relevance with the target class and are also minimally redun-
dant, i.e. it selects features that are maximally dissimilar to each
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other. Both optimization criteria (maximum-relevance and minimum-
redundancy) are based on mutual information. Let S denote the subset
of features we are seeking:

mRMR(Xk) = I(Xk;Y )−
∑
Xj∈S

I(XkXj;Y ) (5)

The mRMR criterion, like JMI, has a strong belief in the pairwise
independence assumptions as the feature set S grows.

Table 1 shows the theoretical complexity of the three methods described
above (Sechidis et al., 2019). Let us assume that we have a dataset of m
samples and n features and we want to select the top-k.

Table 1: Theoretical complexity of the three feature selection methods focus of this work.

Method Complexity
MIM O(k ·m · n)
JMI O(k2 ·m · n)
mRMR O(k2 ·m · n)

3. Limited bit depth mutual information

In information theoretic feature selection, the main challenge is to esti-
mate the mutual information, one of the most common measures of depen-
dence used in machine learning. As said above, to calculate mutual informa-
tion we need to estimate the probability distributions. Internally, it counts
the occurrences of values within a particular group (i.e. its frequency). Thus,
based on Tschiatschek and Pernkopf (2015)’s work for approximately com-
puting probabilities, we investigate mutual information with limited number
of bits by considering this measure with reduced precision counters. To
perform the reduced precision approach, we target a fixed-point representa-
tion instead of the 64-bit resolution used typically by the standard hardware
platforms. Fixed-point numbers are essentially integers scaled by a constant
factor, i.e. the fractional part has a fixed number of digits. We character-
ize fixed-point numbers by the number of integer bits bi and the number
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of fractional bits bf . The motivation to move to fixed-point arithmetic is
two-fold. The first reason is that these bit representation compute units are
typically faster and consume far less hardware resources and power than the
conventional floating-point computations. And, second, low-precision data
representation reduces the memory footprint, enabling larger models to fit
within the given memory capacity and lowering the bandwidth requirements.

Mutual Information parameters are typically represented in the logarithm
domain. For the reduced precision parameters, we compute the number of
occurrences of an event and use a lookup table to determine the logarithm
of the probability of a particular event. The lookup table is indexed in terms
of number of occurrences of an event (individual counters) and the total
number of events (total counter) and stores values for the logarithms in the
desired reduced precision representation. To limit the maximum size of the
lookup table and the bit-width required for the counters, we assumed some
maximum integer number M . The lookup table L is pre-computed such that:

L(i, j) =

[
ln(i/j)

q

]
R

· q (6)

where [·]R denotes rounding to the closest integer, q is the quantization
interval of the desired fixed-point representation (2−bf ), ln(·) denotes the
natural logarithm, and where the counters i and j are in the range {0, ...,M−
1}.

Given certain specific data, the individual counters cij and the popula-
tion C are computed according to Algorithm 1. Following the fixed-point
representation, we assumed some maximum integer number M , where M =
2(bf+bi)−1 in terms of number of fractional bits bf and number of integer bits
bi. After calculating the cumulative count C, we ensure that it is in range.
Different from Tschiatschek’s algorithm, we also divide by two the individual
counters ci when C reaches its maximum value (lines 9–12 in Algorithm 1).
The problem we encountered with the original algorithm was that sometimes
the total counter could be lower than the individual counter. And in order
to estimate the mutual information, it gave us poor approximations of the
logarithmic probabilities.

3.1. Empirical study

Below we empirically evaluate our limited bit depth mutual information
in terms of accuracy —using bias and variance measures— and ranking sim-
ilarity over synthetic data.

8



Algorithm 1 Our reduced precision algorithm for MI

1: Require: Individual counters cij and total counter C; lookup table L
2: for i, j do
3: if cij = M then . maximum value reached?
4: cij ← cij/2 ∀i, j . half counters (round down)
5: end if
6: end for
7: C =

∑
(cij) . sum of the individual counters

8: while C ≤M do . ensure that C is in range
9: C ← C/2

10: cij ← cij/2 ∀i, j . revise index correction
11: end while
12: lij ← L(cij, C) ∀i, j . get the log-probability from lookup table
13: return lij

3.1.1. Accuracy in terms of bias/variance

To evaluate the performance of the reduced precision mutual information
against the full version using a 64-bit representation, we generated synthetic
data with two different degrees of dependency with the target class Y . To
create the data, firstly we generate the values of Y , by taking n samples from
a Bernoulli distribution with p(y = 1) = 0.5. Then, we choose the parameters
p(x|y) that guarantee the desired degrees of dependency in terms of I(X;Y )
and we use these parameters to sample the values of X. All criteria need an
estimate of the mutual information between a feature or a feature set and
the class variable, which is derived from a finite dataset. For that reason, the
accuracy of the estimator plays a crucial role in the ranking of features. The
bias and variance are used to measure the accuracy, which can be defined as:

bias
(
Î(X;Y )

)
= E

[
Î(X;Y )

]
− I(X;Y )

var
(
Î(X;Y )

)
= E

[(
Î(X;Y )− E

[
Î(X;Y )

])2]
Figure 2 shows the results of an experimental study considering two dif-

ferent degrees of dependency, I(X;Y ) = 0.01 and I(X;Y ) = 0.1, and three
sample sizes, 1k, 10k and 100k. Bias/variance is obtained for the different
limited bit depth mutual information versions (4, 8, 16 and 32 bits) and
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the full mutual information (64 bits), which will be the baseline method for
comparison. As can be observed, the bias for 8, 16 and 32 bits converges
to the 64-bit representation. Besides, the reduced precision MI using 4 bits
does not converge but it is consistent, since both bias and variance decrease
as the sample size increases.
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Figure 2: Comparing the performance of our bit limited depth mutual information (4,
8, 16 and 32 bits) with the full mutual information (64 bits) in terms of bias2/variance.
To estimate bias/variance we average over 5000 runs. Please note different axes for the
different variables Bias and Variance.

3.1.2. Similarity rankings

Our limited bit depth mutual information described above will be used
within a feature selection procedure. The output of a feature selection algo-
rithm might be: a scoring over the features, a ranking of the features or a
feature subset. In this section, we aim at illustrating the performance of our
limited bit mutual information in terms of feature ranking variability. Let us
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assume there are d features in total. A ranking r can be formed as a vector
of d distinct natural numbers taken from 1 to d. To measure the similarity of
the feature rankings obtained by the reduced precision mutual information
with different number of bits, we use the Spearman rank-order correlation
coefficient (Best and Roberts, 1975), also commonly called Spearman’s ρ.
This coefficient takes values in the range [−1, 1], where 1 means that the two
rankings are identical, -1 means that there is no correlation between them.
To be able to do this, we need to know the “true” ranking (Sechidis and
Brown, 2018). For this task, we generated various synthetic datasets consist-
ing of d = 10 and d = 20 features with different degrees of dependency with
the target class Y in terms of mutual information. The mutual information
I(X, Y ) population values for each feature are:

• “Easy” scenario with 10 features: [2 4 6 8 10 12 14 16 18 20] ×10−2.

• “Difficult” scenario with 20 features: [2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21] ×10−2.

where a high mutual information translates into a high rank of the feature.
The arity of features is chosen randomly between the following values |X | =
2, 5, 10 and 20. The experiment was repeated taking different sample sizes
from 1000 to 100,000 samples to observe the performance when the sample
size increases. To estimate the Spearman’s ρ we average over 100 runs.

Table 2 shows the Spearman’s ρ obtained for the different limited bit
depth mutual information versions (4, 8, 16 and 32 bits) and the full mutual
information (64 bits). The lower values of the reduced precision approach
using 4 bits shows that the correlation between its ranking and the “true”
ranking is quite poor in both scenarios. However, from 8 bits all the ap-
proaches achieved a Spearman’s ρ coefficient close to 1, which means that
the rankings obtained by these approaches are similar to the “true” rank-
ings. Moreover, we can observe that by increasing the sample size all of the
reduced precision approaches improve their rankings, and they are closer to
the “true” ranking in both scenarios. However, differences between both sce-
narios can be seen when 16 and 32 bits are used. In the difficult scenario,
these limited bit depth MI versions do not get the “true ranking”. This could
be because there is a smaller distance between the population values of the
mutual information, and thus the ranking will change.

In light of the results obtained, we proceed to use our limited bit depth
mutual information approach within a more sophisticated method. In this
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Table 2: Spearman’s ρ coefficient

#Features #Samples #Bits
4 8 16 32 64

10
1000 0.215 0.963 0.983 0.983 0.983
10,000 0.326 0.963 1.000 1.000 1.000
100,000 0.429 0.974 1.000 1.000 1.000

20
1000 0.179 0.975 0.973 0.973 0.973
10,000 0.320 0.973 0.995 0.995 0.995
100,000 0.472 0.984 0.996 0.996 0.996

work, we have chosen to apply this to feature selection. Despite the poor
results using 4 bits, we have kept this approach in order to see how it affects
to the accuracy of feature selection methods.

4. Application in feature selection

Our bit limited depth mutual information described above can be appli-
cable to any method that uses internally the mutual information measure. In
this work, we have chosen to do so within feature selection since this process
has a key role to play in helping reduce high-dimensionality in machine learn-
ing problems (Bolón-Canedo et al., 2015), and it is lately specially relevant
with the advent of Big Data. There is a large number of feature selection
methods that use mutual information as a measure, thus their performance
depending on the accuracy obtained by the mutual information step. As
mentioned before, we have chosen to implement our reduced precision ap-
proach in the MIM, JMI and mRMR filters methods due to their popularity
and good results in the machine learning area, but analogous implementa-
tions could be derived for any other FS method based on mutual information.
We have considered several synthetic —of which the relevant features are al-
ready known— and real datasets. Table 3 details the main characteristics of
the chosen datasets: for each dataset, the number of features, the number
of samples and the number of classes. Experiments were executed in the
Matlab2018a and Weka environments.

• UCI datasets (Lichman, 2013). This is a collection of datasets of which
we have selected Arcene, Congress, Connect-4, Splice and Waveform,
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Table 3: Characteristics of the datasets.

Dataset Type #Features #Samples #Classes
Arcene Real 10,000 200 2
Congress Real 16 435 2
Connect-4 Real 42 45,038 3
CorrAL-100 Synthetic 100 100,000 2
GISETTE Synthetic 5000 6000 2
Led-500 Synthetic 500 200,000 10
Splice Real 60 3175 3
Waveform Real 40 5000 3

with small to medium number of samples. The features within each
dataset have a variety of characteristics: some are binary/discrete, and
some are continuous. Continuous features were discretized, using an
equal-width strategy in 5 bins, while features already with a categorical
range were left untouched.

• GISETTE is a handwritten digit recognition problem from the NIPS
2003 Feature Selection Challenge (Guyon et al.). Features were dis-
cretized independently into 10 equal width bins.

• CorrAL-100. The CorrAL dataset (John et al., 1994) has six binary
features (f1, f2, f3, f4, f5, f6), and its class value is (f1 ∧ f2) ∨ (f3 ∧
f4). Feature f5 is irrelevant and f6 is correlated to the class label
by 75%. CorrAL-100 was constructed by adding 93 features irrelevant
binary features to the previous CorrAL dataset. The data for the added
features was generated randomly. The correct behavior for a given
feature selection method is to select the four relevant features and to
discard the irrelevant and correlated ones. The correlated feature is
redundant if the four relevant features are selected and, besides, it is
correlated to the class label by 75%, so if one applies a classifier using
only this feature, a 25% of error should be obtained.

• LED-500. The LED problem (Breiman et al., 1984) is a simple classifi-
cation task that consists of, given the active LEDs on a seven segments
display, identifying the digit that the display is representing. Thus, the
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classification task to be solved is described by seven binary attributes
and ten possible classes available. A 1 in a attribute indicates that
the LED is active, and a 0 indicates it is not active. Led-500 was
constructed by adding 493 irrelevant binary features.

In the following sections we present and discuss the experimental results
in terms of the quality of the selected features and the classification accuracy.

4.1. Quality of the selected features

To evaluate the similarity between the rankings obtained by the reduced
precision versions and the 64-bit mutual information after performing the
MIM, JMI and mRMR methods, we show the true positive rate for each
dataset. The true positive rate measures the proportion of features that are
correctly identified as such, using the full mutual information version (64
bits) as the ideal ranking. In high dimensional datasets, it is common to
focus only on the top features, so in these experiments we compare only the
k top features, with k = 5, 10 and 20 for all datasets except Congress, for
which only the results with the 5 and 10 top features are shown as it has
only 16 features.

Figures 3, 4 and 5 show the true positive rate (TPR) over the eight
datasets presented in Table 3. The datasets are sorted in ascending order by
their number of total features. As can be seen, for the datasets with less than
100 features —Congress, Waveform, Connect-4 and Splice—, our reduced
precision approach using only 16 bits selected the same 5, 10 and 20 features
that the full version. Moreover, for the smaller datasets in terms of sample
size, Congress and Splice, the reduced precision approach was able to achieve
a 100% true positive rate even using 8 bits. When the number of features
of the dataset increases, the performance of our reduced precision version
using 16 bits started to decrease, and the same effect appears for datasets
with high number of samples. The challenge with high dimensionality can
be clearly seen in the Arcene dataset, where the limited bit depth MI using
4 bits does not select correctly any feature. For CorrAL-100 dataset, even
the reduced precision version using only 4 bits was able to return the same 5
top features of the full version using 64 bits. It might be happening because
this dataset has four relevant features (f1, f2, f3 and f4) and another feature
that is correlated to the class label by 75%. This means that there is a slight
difference between the mutual information values of these features and the
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Figure 3: True positive rate of the different reduced precision approaches using MIM.
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Figure 4: True positive rate of the different reduced precision approaches using JMI.

16



4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top

(a) Congress

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(b) Waveform

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(c) Connect-4

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(d) Splice

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(e) CorrAL-100

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(f) Led-500

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(g) GISETTE

4 8 16 320

0.2

0.4

0.6

0.8

1

Number of bits

TP
R

 

 

5−top
10−top
20−top

(h) Arcene

Figure 5: True positive rate of the different reduced precision approaches using mRMR.
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rest of features. Therefore, we can say that in general, 16 bits are sufficient
to select the same features that the full version using 64 bits.

Comparing the results between the different feature selection methods, we
can see that JMI performs better —in some cases— than MIM and mRMR
when 8 bits are used. This could be because JMI criterion has the best trade-
off in terms of stability and flexibility over other feature selection methods
based on Information Theory due to its nature (it balances the relevancy and
redundancy terms and includes the conditional redundancy) (Brown et al.,
2012).

4.2. Classification accuracy

After the feature selection process, and in order to estimate whether the
reduced precision in the feature selection process might affect classification,
a study using classifiers was carried out. At this point, it is necessary to
clarify that including classifiers in our experiments is likely to obscure the
experimental observations related to feature selection performance using a
limited number of bits, since they include their own assumptions and partic-
ularities. Therefore, in these experiments, we used a simple nearest neighbor
algorithm (with number of neighbors k = 3) (Aha et al., 1991) as classifier
since it makes few assumptions about the data, and we avoid the need for
parameter tuning. To estimate the error rate we computed a 5-fold cross val-
idation. For evaluating the performance of the reduced precision approaches,
we compared the results obtained when using the ranking built with 4, 8, 16,
32 and 64 bits. Due to the large number of results, some tables have been
moved to Appendix A.

To explore the statistical significance of our classification results, we an-
alyzed the ranks of the reduced precision approaches by using a Friedman
test with the Nemenyi post-hoc test. Figures 6, 7 and 8 present the critical
difference diagrams, introduced by Demšar (2006), where groups of meth-
ods that are not significantly different (at α = 0.10) are connected. As can
be seen for the three different k top selected features and JMI and mRMR
methods, 64, 32 and 16 bits perform better on average but with no statistical
significance over the reduced precisions approaches using only 4 and 8 bits,
with the exception of mRMR (Figure 8). In the case of MIM, although there
is no statistical significance over the reduced precisions approaches, the best
performance is not always achieved through versions with 16, 32 or 64 bits.
This could be because this last method assumes that each feature is indepen-
dent of all other features. However, where features may be interdependent,
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this is known to be suboptimal. In general, it is widely accepted that a useful
and parsimonious set of features should not only be individually relevant, but
also should not be redundant with respect to each other—features should not
be highly correlated (Brown et al., 2012).

In summary, these experiments demonstrate that with a small number of
bits the rankings change, but this variation does not affect significantly the
classification accuracy, since this measure is the ultimate form of evaluation
of the goodness of a feature ranking method.

4.3. Case study: Dealing with noise in the inputs: LED

The LED dataset consists of correctly identifying seven LEDs that repre-
sent numbers between 0 and 9. Some irrelevant features were added forming
the Led-500 dataset (493 irrelevant features). In order to make this dataset
more complex, different levels of noise in the inputs (6%, 10% and 20%)
were added (de Amorim and Hennig, 2015). In this manner, the tolerance
to different levels of noise of the bit limited depth MI tested will be checked.
Note that, as the attributes take binary values, adding noise means assigning
to the relevant features an incorrect value. Besides, and unlike the Led-500
dataset used above, the number of samples was reduced to 10,000 so that its
volume does not affect the study of noise.

In this case study, we consider JMI as the feature selection method due
to the results obtained in Section 4.1. Figure 9 depicts detailed results of
these experiments. It is interesting to note that the presence of noise does
not seem to influence our limited bit depth MI, except in the case of 20%
of noise and 5-top features. The reduced precision approach was not able to
achieve a 100% true positive rate using just 8 bits.

With regard to the classification accuracy, it decreases as the level of
noise increases, as expected (Table 4). However, the results using 4 bits are
somewhat misleading. The 4-bit reduced precision version achieved better
results in terms of classification accuracy than other versions with a larger
number of bits. This is happening because —due to the high number of
features of LED dataset and the low values of mutual information (99%
under 0.006, see Figure 10)— the reduced precision approach does not get
to sort the features by following the JMI criterion and it returns the feature
ranking following its order in the original dataset. And, in this particular
synthetic dataset, the classification task to be solved is described by the first
seven binary attributes.
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Figure 6: Critical difference diagrams showing the average ranks after applying MIM on
the four reduced precision approaches (4, 8, 16 and 32 bits) and the full version (64 bits)
for three different k-top selected features.
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Figure 7: Critical difference diagrams showing the average ranks after applying JMI on
the four reduced precision approaches (4, 8, 16 and 32 bits) and the full version (64 bits)
for three different k-top selected features.
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Figure 8: Critical difference diagrams showing the average ranks after applying mRMR
on the four reduced precision approaches (4, 8, 16 and 32 bits) and the full version (64
bits) for three different k-top selected features.
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Figure 9: True positive rate of the different reduced precision approaches using JMI over
LED dataset with different levels of noise (6%, 10% and 20%).

Figure 10: Histogram of frequency distribution values of mutual information of LED
dataset.
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Table 4: Classification accuracy (%) and standard deviation for LED dataset with different
levels of noise (6%, 10% and 20%).

Top Noise #Bits
features (%) 4 8 16 32 64

5

0 100.00± 0.00 89.67± 0.00 89.67± 0.00 89.67± 0.00 89.67± 0.00
6 94.00± 0.00 84.16± 0.00 84.16± 0.00 84.16± 0.00 84.16± 0.00
10 90.00± 0.01 81.10± 0.01 81.10± 0.01 81.10± 0.01 81.10± 0.01
20 80.00± 0.01 64.52± 0.01 72.27± 0.01 72.27± 0.01 72.27± 0.01

10

0 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
6 94.00± 0.00 94.00± 0.00 94.00± 0.00 94.00± 0.00 94.00± 0.00
10 90.00± 0.00 90.00± 0.00 90.00± 0.00 90.00± 0.00 90.00± 0.00
20 80.00± 0.01 80.00± 0.01 80.00± 0.01 80.00± 0.01 80.00± 0.01

20

0 98.71± 0.00 98.93± 0.00 98.75± 0.00 98.79± 0.00 98.79± 0.00
6 92.52± 0.00 92.18± 0.01 92.33± 0.01 92.23± 0.01 92.23± 0.01
10 87.90± 0.00 87.85± 0.00 87.99± 0.01 87.84± 0.01 87.84± 0.01
20 76.65± 0.00 76.48± 0.00 76.39± 0.00 76.39± 0.00 76.39± 0.00

4.4. Comparison with baseline method

As we mentioned above, (Tschiatschek and Pernkopf, 2015) proposed
Bayesian Network classifiers when reducing the precision of the probability
parameters. Since mutual information also needs to estimate probabilities,
our work was built upon this idea. In order to analyze Tschiatschek’s al-
gorithm on the mutual information measure, we generated synthetic data in
the same way as in Section 3. The degree of dependence with the target class
in terms of mutual information was fixed to 0.1 and the number of samples
to 10,000. All criteria need an estimate of the mutual information between
a feature or a feature set and the class variable, which is derived from finite
dataset. For that reason, the accuracy of the estimator plays a crucial role
in the ranking of features. To measure the accuracy we use the Mean Square
Error (MSE), which is calculated from the ground truth we know from ar-
tificial data. To estimate MSE we averaged over 5000 runs. Both look up
tables are calculated in natural logarithm, so the returned units are “nats”.

Figure 11 compares Tschiatschek’s algorithm with our proposal in terms
of MSE. As can be seen, for the reduced precision approaches using only
4 and 8 bits, Tschiatschek’s algorithm obtained high values of MSE while
our proposed limited bit mutual information method achieved values close
to zero. Besides, we can observe that with 16 and 32 bits both algorithms
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converge. It is necessary to clarify that Tschiatschek and Pernkopf (2015)
performed their experiments using 10 bits. As we aimed to explore the
effect of the reduced precision with a small amount of bits, we redefined
this algorithm with the aim of achieving better performance for our limited
bit mutual information version.

4 8 16 320

10

20

30

40

Number of bits

M
SE

Tschiatschek
Our proposal

Figure 11: Comparing the performance of Tschiatschek’s algorithm with our proposed
reduced precision mutual information in terms of Mean Square Error, I(X;Y ) = 0.1.

5. Conclusions

Since the development and commercialization of wearable technology is
growing expansively, we have seen an opportunity to develop machine learn-
ing methods, specifically feature selection algorithms, in computationally
constrained platforms. In this work we have proposed mutual information
using reduced precision parameters within a feature selection procedure. Ex-
perimental results over several synthetic and real datasets have shown that
16 bits are sufficient to return the same feature ranking than that of 64-bit
representation. As a result, meaningful benefits will be provided when im-
plementing mutual information in embedded systems for on-device analysis.
Having on device machine learning has some tremendous profits regarding
privacy, reliability, efficient use of network bandwidth and power saving.

From the experiments carried out, we can draw some conclusions and
make some recommendations to the users:

• Our reduced precision approach will not be adequate if there is a small
distance between the population values of the mutual information. Be-
sides, the ranking will be more unstable in the bottom of the list, where
the features contain less and less information.

25



• When the number of features of the dataset increases, we will need more
bits. Nevertheless, it is important to note that our reduced precision
approach was designed to analyze user level data. If we are working in
a big data scenario, data is probably collected from different users, and
so it would be processed either by more powerful central processors or
distributed in different nodes by further analysis.

• Regarding the three feature selection methods used to test our limited
bit depth mutual information, we have found that JMI was the most
stable. However, if we take into account the computational cost of
these methods, MIM seems to the most appropriate for this scenario.

• With respect to the presence of noise, it does not seem to influence ap-
preciably our limited bit depth MI . In terms of classification accuracy,
and as expected, it decreases as the level of noise increases.

The results obtained by the proposed approach open the door to its use
in other feature selection algorithms based on MI and as preprocessing step
of some low precision classifiers (Tschiatschek and Pernkopf, 2015). Thus,
while initial finding are promising, further research is necessary. As future
research, we plan to use our limited bit depth mutual information in a Markov
Blanket context.

Acknowledgment

This research has been financially supported in part by the Spanish Min-
isterio de Economı́a y Competitividad (research project TIN2015-65069-C2-
1-R), by European Union FEDER funds and by the Conselleŕıa de Industria
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Appendix A. Tables for the experimental study

This appendix reports the experimental results achieved in this work.
Tables A.1, A.2 and A.3 depict the classification accuracy (%) and standard
deviation for the MIM, JMI and mRMR feature selection methods, respec-
tively.

29



Table A.1: Classification accuracy (%) and standard deviation for MIM method.

Top Dataset #Bits
features 4 8 16 32 64

5

Congress 92.64± 0.03 94.25± 0.01 94.02± 0.02 94.02± 0.02 94.02± 0.02
Waveform 71.54± 0.01 69.46± 0.01 68.30± 0.01 68.30± 0.01 68.30± 0.01
Connect-4 71.81± 0.00 69.42± 0.00 71.97± 0.00 71.97± 0.00 71.97± 0.00
Splice 89.32± 0.01 88.25± 0.01 88.2± 0.01 88.25± 0.01 88.25± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 79.83± 0.00 79.83± 0.00 79.83± 0.00 79.83± 0.00 79.83± 0.00
GISETTE 89.65± 0.01 86.75± 0.01 84.10± 0.01 84.10± 0.01 84.10± 0.01
Arcene 72.50± 0.04 81.00± 0.07 76.00± 0.04 76.00± 0.04 76.00± 0.04

10

Congress 91.95± 0.02 93.10± 0.02 93.10± 0.02 93.10± 0.02 93.10± 0.02
Waveform 79.80± 0.02 78.66± 0.02 78.66± 0.02 78.66± 0.02 78.66± 0.02
Connect-4 74.72± 0.01 74.32± 0.01 76.55± 0.01 76.55± 0.01 76.55± 0.01
Splice 84.38± 0.01 86.30± 0.01 86.55± 0.01 86.55± 0.01 86.55± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 92.17± 0.00 90.17± 0.00 90.68± 0.00 90.68± 0.00 90.68± 0.00
Arcene 73.50± 0.05 80.00± 0.05 81.00± 0.02 81.00± 0.02 81.00± 0.02

20

Waveform 80.12± 0.01 79.32± 0.01 80.06± 0.01 80.06± 0.01 80.06± 0.01
Connect-4 78.51± 0.01 76.56± 0.00 77.76± 0.00 77.76± 0.00 77.76± 0.00
Splice 79.05± 0.02 79.09± 0.01 78.99± 0.01 78.99± 0.01 78.99± 0.01
CorrAL-100 97.75± 0.00 97.81± 0.00 97.74± 0.00 97.74± 0.00 97.74± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 93.42± 0.01 91.40± 0.01 91.47± 0.00 91.47± 0.00 91.47± 0.00
Arcene 78.50± 0.05 81.50± 0.06 83.50± 0.04 83.50± 0.04 83.50± 0.04
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Table A.2: Classification accuracy (%) and standard deviation for JMI method.

Top Dataset #Bits
features 4 8 16 32 64

5

Congress 90.80± 0.00 93.79± 0.00 95.86± 0.00 95.86± 0.00 95.86± 0.00
Waveform 60.74± 0.00 75.08± 0.00 75.26± 0.00 75.26± 0.00 75.26± 0.00
Connect-4 89.10± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00
Splice 89.10± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00 88.44± 0.00
CorrAL-100 90.62± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00
GISETTE 85.88± 0.00 89.23± 0.00 91.38± 0.00 91.38± 0.00 91.38± 0.00
Arcene 78.50± 0.05 83.00± 0.05 83.00± 0.05 83.00± 0.05 83.00± 0.05

10

Congress 92.41± 0.02 95.17± 0.02 94.25± 0.02 94.25± 0.02 94.25± 0.02
Waveform 66.04± 0.01 79.94± 0.00 79.94± 0.00 79.94± 0.00 79.94± 0.00
Connect-4 71.37± 0.01 75.96± 0.01 76.49± 0.01 76.49± 0.01 76.49± 0.01
Splice 85.38± 0.01 87.05± 0.01 87.02± 0.01 87.02± 0.01 87.02± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 91.25± 0.00 90.28± 0.01 92.67± 0.01 92.67± 0.01 92.67± 0.01
Arcene 79.00± 0.08 80.50± 0.11 80.50± 0.11 80.50± 0.11 80.50± 0.11

20

Waveform 72.84± 0.01 80.04± 0.01 79.92± 0.01 79.92± 0.01 79.92± 0.01
Connect-4 77.90± 0.00 77.66± 0.00 78.41± 0.00 78.41± 0.00 78.41± 0.00
Splice 80.03± 0.01 79.05± 0.01 79.34± 0.01 79.34± 0.01 79.34± 0.01
CorrAL-100 97.80± 0.00 97.68± 0.00 97.76± 0.00 97.68± 0.00 97.68± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 93.57± 0.00 93.57± 0.00 93.72± 0.00 93.72± 0.00 93.72± 0.00
Arcene 77.50± 0.07 83.00± 0.09 83.00± 0.09 83.00± 0.09 83.00± 0.09
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Table A.3: Classification accuracy (%) and standard deviation for mRMR method.

Top Dataset #Bits
features 4 8 16 32 64

5

Congress 94.02± 0.02 94.71± 0.02 94.71± 0.02 94.71± 0.02 94.71± 0.02
Waveform 71.24± 0.01 73.44± 0.02 76.26± 0.01 76.26± 0.01 76.26± 0.01
Connect-4 69.39± 0.00 69.51± 0.00 70.74± 0.00 70.74± 0.00 70.74± 0.00
Splice 87.97± 0.01 89.20± 0.01 87.99± 0.01 87.97± 0.01 87.97± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00 89.95± 0.00
GISETTE 84.82± 1.21 87.87± 0.97 89.63± 0.72 89.63± 0.72 89.63± 0.72
Arcene 70.50± 0.04 76.50± 0.06 76.50± 0.06 76.50± 0.06 76.50± 0.06

10

Congress 99.07± 0.03 99.05± 0.02 99.05± 0.02 99.05± 0.02 99.05± 0.02
Waveform 77.78± 0.01 78.88± 0.016 79.74± 0.01 79.74± 0.01 79.74± 0.01
Connect-4 70.84± 0.00 71.35± 0.00 72.61± 0.00 72.61± 0.00 72.61± 0.00
Splice 84.50± 0.01 86.80± 0.01 86.80± 0.01 86.80± 0.015 86.80± 0.01
CorrAL-100 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Led-500 100.00± 0.00 100.000± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 89.42± 0.65 90.47± 0.52 91.65± 0.70 91.65± 0.70 91.65± 0.70
Arcene 69.00± 0.04 75.00± 0.08 75.00± 0.08 75.00± 0.08 75.00± 0.08

20

Waveform 78.16± 0.01 80.08± 0.01 80.08± 0.01 80.08± 0.01 80.08± 0.01
Connect-4 73.16± 0.00 71.98± 0.00 74.18± 0.00 74.18± 0.00 74.18± 0.00
Splice 77.51± 0.02 79.31± 0.01 79.18± 0.01 79.18± 0.01 79.18± 0.01
CorrAL-100 97.72± 0.00 97.68± 0.00 97.77± 0.00 97.77± 0.00 97.77± 0.00
Led-500 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
GISETTE 92.38± 0.64 91.50± 0.56 93.57± 0.27 93.57± 0.27 93.57± 0.27
Arcene 73.00± 0.05 80.00± 0.06 80.00± 0.06 80.00± 0.06 80.00± 0.05
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