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Abstract. The Epiretinal Membrane (ERM) is an ocular pathology
that can cause permanent visual loss if left untreated for long. Despite
its transparency, it is possible to visualise the ERM in Optical Coher-
ence Tomography (OCT) images. In this work, we present a study on
the impact of the analysis region on the performance of an automatic
ERM segmentation methodology using OCT images. For this purpose, we
tested 5 different sliding windows sizes ranging from 14×14 to 224×224
pixels to calibrate the impact of the field of view under analysis. Fur-
thermore, 3 different approaches are proposed to enable the analysis of
the regions close to the edges of the images. The proposed approaches
provided satisfactory results, with each of them interacting differently
with the variations in window size.
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1 Introduction

The Epiretinal Membrane (ERM) is an ocular pathology consisting of a thin
fibrocellular layer of tissue that may appear over the retina. Although this film
is mainly transparent, its development over the photosensitive tissue of the eye
can lead to complications. Once it reaches a certain stage, the ERM may start
to contract over itself. Since it is adhered to the tissue of the retina, it may
exert a traction. This traction deforms the underlying tissue, producing wrinkles
or puckers. If the ERM is present over the macula, the part of the eye that
is responsible for sharp vision, the deformations it might induce can lead to
visual distortion, a loss of vision and, eventually, may cause a macular hole.
If treated on time, the ERM may be removed while preserving patient vision.
Conversely, a late diagnosis may lead to irreversible deformations of the tissue
and the consequent vision loss [12].
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Optical Coherence Tomography (OCT) is an ocular imaging technique that
uses low coherence light to sweep the tissue and obtain three-dimensional visu-
alisations of the underlying histological structure [8, 10]. Despite being mostly
transparent, the ERM can be visualised in OCT imaging. Its appearance is that
of a bright film located in the boundary between the vitreous body and the reti-
nal tissue, an area that is known as the Inner Limiting Membrane, or ILM. Due
to the high visibility and the advantages that this imaging technique supposes
in terms of cross-sectional visualisation, OCT is a standard imaging modality
used for the detection and assessment of the ERM [5].

Typically, the ERM is diagnosed by an ophthalmologist visually inspecting
each OCT slice. This process can become tiresome and repetitive, due to the
great volume of images to analyse and may lead to subjectivity in the detec-
tion. Because of this, various works have approached the automatisation of this
screening process. Wilkins et al. [14] first proposed a semi-automatic approach,
involving an initial manual annotation made by an expert and a progressive
automatic refinement of the affected area. More recently, some works have intro-
duced fully automatic methods for ERM presence classification in OCT images.
Sonobe et al. [13] trained a Convolutional Neural Network (CNN) to determine
the pathology that each image presented, and compared the results with those
obtained with Support Vector Machines (SVMs). In this comparison, the deep
learning methods achieved much better results than the SVMs. Parra-Mora et
al. [11] used four convolutional neural network architectures for the classification
of OCT slices. These models achieved high performance in discriminating ERM
cases.

On the other hand, few studies have addressed the segmentation of the ERM
in OCT slices. As reference, Baamonde et al. proposed different ways to charac-
terise the ERM in OCT images using conventional hand-crafted features [4, 3, 1].
Additionally, the authors present a multi-stage methodology for the conversion
of a segmentation problem into a classification one by extracting a series of ver-
tical image patches from the OCT slices [2]. This classification is performed by
extracting and selecting a subset of relevant features and using classical machine
learning techniques. In the work of Gende et al. [6], the authors presented a
complete methodology in which a series of square windows is extracted around
the ILM. These windows are then classified by a CNN, automatising the fea-
ture extraction and selection process by allowing the deep learning models to
be trained directly from the image patches. This methodology was able to out-
perform the previous methods while also considerably simplifying the inference
process. However, the effects of different window sizes that calibrate the field of
view under analysis on this methodology has not been assessed. Furthermore,
this methodology is limited in the amount of tissue it can analyse close to the
image edges, since windows cannot be extracted outside of the image bounds, as
illustrated in Fig. 1.

In this work, we present a study on the impact that the size of the extracted
windows has on the performance of the classification models for the segmentation
of the ERM. In this study, we compare the results obtained using five window
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Fig. 1. Illustration of the limitations of the existing methodology concerning image
boundaries. Those spots lying on the highlighted areas cannot be directly analysed.

sizes ranging from 14 × 14 to 224 × 224. Furthermore, we analyse 3 different
approaches to overcome the limitations posed by the existing methodologies in
terms of analysing the areas that are close to the image bounds: A basic, Zero
Padding approach in which the part of the windows lying outside of the image
bounds is filled with zeros; a Border Extension approach in which the final
column is extended outwards and a Border Reflection approach in which the
image is reflected along the vertical axis around the image border.

2 Methodology

2.1 ERM segmentation methodology

In order to segment the ERM in each OCT slice, we followed the three-step
methodology proposed by Gende et al. [6]. The first step is to obtain the location
of the ILM, the area that is susceptible to ERM proliferation. Next, a series of
windows is extracted from the OCT image. Each of these windows is centred
on an ILM pixel, and contains the visual information surrounding the point of
interest. Finally, each window is classified by using a DenseNet-121 [9] classifier,
returning a label for each ILM pixel indicating if the spot is healthy or diseased.
This architecture has been used in similar medical image segmentation tasks
with encouraging results [6, 7]. By accumulating all of these labels and assigning
them to the original ILM pixels, a segmentation of the ERM can be produced,
as illustrated in Fig. 2.

2.2 Impact of the region of analysis

The size of the extracted windows has an impact on the amount of visual infor-
mation that is incorporated into the classification process, that is, the field of
view that is particularly under analysis to determine each potentially patholog-
ical case. This in turn translates into an impact on the ability of the system to
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Fig. 2. Summary of the ERM segmentation methodology. Windows are extracted from
the original OCT slice. These windows are classified by a CNN, and the resulting class
labels are used to reconstruct a segmentation of the ERM.

discriminate between healthy and diseased spots. Additionally, in the window
extraction process, pixels close to the edges of the image cannot be directly anal-
ysed, since the area surrounding each of these pixels would lie out of bounds. This
constraint becomes more restrictive the more the window width is increased.

In order to study the impact that the field of view has on the performance
of the ERM segmentation methodology, different configurations were tested and
analysed. On the one hand, a series of DenseNet-121 models were trained using
five different window sizes: 14×14, 28×28, 56×56, 112×112, and 224×224 pixels.
Furthermore, 3 different approaches aimed at overcoming the limitations related
to image boundaries were tested. A schematic representation of the proposed
approaches can be seen in Fig. 3.

– Zero Padding: This baseline approach consists of filling the area of the
window lying out of bounds with zeros. This way, no additional information is
incorporated into the classification process. This approach creates a synthetic
border at the point where the original image ends.

– Border Extension: The second approach consists of replicating the final
row or column of original image pixels outwards until the edge of the window.
This avoids generating a synthetic border at the edge of the image, but in
turn may incorporate more noise in the window.

– Border Reflection: The final approach reflects the original image along the
axis located at its edge. This way, the original look of the image is preserved,
providing a more seamless transition where the original image border would
be located and replicating the information already contained in the window.

3 Results and Discussion

The five window sizes that determine the fields of view under analysis were
combined with the three approaches for a total of 15 different configurations.
For each of these configurations, a series of CNNs were trained and evaluated.
To train and validate these models, a dataset consisting of 2,427 OCT slices
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Fig. 3. Detailed viewts of each of the three proposed approaches that allow the analysis
of pixels close to the image boundary.

belonging to 20 patients was used. Out of these 20 patients, 8 presented ERM
signs while 12 were healthy. In each OCT image, ERM presence or absence
was marked as a height value for each column. In total, 251,994 columns were
annotated as pathological, out of a total of 1,308,160 image columns. The models
were trained using a 4-fold cross-validation at the eye level, ensuring each eye
appears in a test set once. Online augmentation was used in the form of random
shear transformations, rotations, intensity variations and horizontal flipping. The
loss employed was Cross-entropy, and Adam was used for optimisation. Training
was allowed to run for a maximum of 75 epochs for each configuration, saving
the model that performed best in validation for testing.

The results that were obtained by testing each of the proposed configurations
can be found on Table 1. As for the proposed approaches that enable analysis
close to the image edges, the Zero Padding approach is the most affected by
window size, achieving Dice scores of 0.573 and 0.517 with the more extreme
window sizes, comparatively worse than the 0.675 obtained with windows of the
size 112×112. While the Border Extension approach decays in performance with
larger windows, as is expected from the approach that has the biggest impact on
the look of the patches, it outperforms the other two for the smaller window sizes
of 14 × 14 and 28 × 28. The Border Reflection approach gives the overall best
result out of the three proposed when combined with windows of size 56 × 56,
with a Dice Coefficient of up to 0.699.

Complementarily, Fig. 4 shows an example of the segmentation results pro-
duced by models trained with the Border Reflection approach for different win-
dow sizes. As we can see, the obtained results show that intermediate window
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Table 1. Test results for each of the proposed configurations. Bold indicates best
results for each of the metrics.

14x14 28x28 56x56 112x112 224x224

Zero Padding Approach

Accuracy 0.821±0.039 0.863±0.019 0.869±0.016 0.879±0.015 0.859±0.050
Precision 0.526±0.131 0.633±0.135 0.621±0.122 0.657±0.126 0.647±0.156
Recall 0.660±0.243 0.692±0.201 0.726±0.165 0.709±0.075 0.565±0.324
Specificity 0.860±0.037 0.906±0.029 0.899±0.019 0.920±0.011 0.905±0.081
Jaccard 0.414±0.152 0.486±0.141 0.506±0.145 0.513±0.088 0.373±0.197
Dice 0.573±0.152 0.645±0.122 0.663±0.125 0.675±0.075 0.517±0.245

Border Extension Approach

Accuracy 0.832±0.042 0.859±0.020 0.858±0.042 0.870±0.022 0.861±0.032
Precision 0.559±0.135 0.625±0.111 0.604±0.141 0.682±0.098 0.649±0.140
Recall 0.678±0.203 0.701±0.150 0.703±0.186 0.652±0.219 0.604±0.212
Specificity 0.871±0.033 0.898±0.024 0.891±0.023 0.920±0.045 0.915±0.051
Jaccard 0.440±0.148 0.490±0.111 0.493±0.168 0.481±0.130 0.434±0.145
Dice 0.601±0.137 0.652±0.096 0.647±0.153 0.641±0.122 0.594±0.142

Border Reflection Approach

Accuracy 0.827±0.036 0.859±0.031 0.882±0.017 0.871±0.025 0.840±0.039
Precision 0.549±0.123 0.635±0.171 0.697±0.142 0.656±0.142 0.618±0.111
Recall 0.665±0.179 0.687±0.177 0.744±0.172 0.684±0.157 0.649±0.188
Specificity 0.869±0.019 0.906±0.032 0.917±0.041 0.917±0.008 0.888±0.067
Jaccard 0.429±0.131 0.485±0.148 0.544±0.118 0.505±0.144 0.440±0.079
Dice 0.592±0.123 0.644±0.128 0.699±0.094 0.662±0.128 0.608±0.077

Original OCT IMAGE Ground Truth

Border Reflection 14x14 Border Reflection 56x56 Border Reflection 224x224

Fig. 4. Examples of the results obtained for different window sizes combined with the
Border Reflection approach.
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sizes tend to give better results than either of the extreme sizes. In addition, a
smaller field of view tends to leave out relevant information for the classification,
while a wider one may include visual features of regions unrelated to the patch
on which the window is centred.

4 Conclusions

The early detection of the ERM in OCT images is paramount in order to pre-
serve patient vision. In this work, we propose a series of improvements for the
automatic segmentation of this relevant pathology in OCT slices. These consist
in three different approaches that enable the analysis of the slices close to the
image borders. Furthermore, we study the impact that five different window sizes
have on the performance of the detection of the ERM and its combination with
the three proposed approaches. These combinations were trained and validated
on a representative dataset consisting of 2,427 OCT scans. The satisfactory re-
sults that were obtained show that intermediate window sizes provide the best
performance, with the Zero Padding approach being most affected by either very
small or very large windows. For the two smaller window sizes, the Border Ex-
tension approach performed better than the other two. Out of all the tested
configurations, the Border Reflection approach combined with windows of size
56 × 56 provides the best results, achieving a Dice Coefficient of 0.699 ± 0.094,
this way providing a robust and accurate segmentation of the ERM, contributing
to the early diagnosis of this pathology.
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