Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 225 (2023) 227-236

www.elsevier.com/locate/procedia

27th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems (KES 2023)

Deep feature analysis in a transfer learning approach for the
automatic COVID-19 screening using chest X-ray images

Daniel I. Moris®*®, Joaquim de Moura®®*, Jorge Novo®®, Marcos Ortega®"

4Centro de Investigacion CITIC, Universidade da Corufia, A Corufia, Spain
YVARPA Research Group, Instituto de Investigacion Biomédica de A Coruiia (INIBIC),
Universidade da Coruiia, A Corunia, Spain

Abstract

COVID-19 is a challenging disease that was declared as global pandemic in March 2020. As the main impact of this disease is
located in the pulmonary regions, chest X-ray devices are very useful to understand the severity of the disease on each patient.
In order to reduce the risk of cross-contamination, the radiologists are recommended to use portable devices instead of fixed
machinery, as these devices are easier to decontaminate. Moreover, the development of reliable and robust methodologies of
computer-aided diagnosis systems is very relevant to reduce the workload that expert clinicians are experiencing in the current
moment. In this work, we propose a comprehensive analysis of the deep features extracted from portable chest X-ray captures to
perform a COVID-19 screening. We also study the optimal characterization of the problem with a lower dimensionality, contrasting
the results of the feature selection methods that were chosen. Results demonstrated that the proposed approach is robust and reliable,
obtaining a 90.43% of accuracy for the test set, using only 46.85% of the deep features in the context of poor quality and low detail
X-ray images obtained from portable devices.
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) represents a great challenge for the health services worldwide [27],
mainly caused due to the easy spread of the pathogen that causes this disease, the SARS-CoV-2. As consequence, the
World Health Organization was forced to declare the COVID-19 as a global pandemic in 11" March 2020. To diagnose
this disease, the gold-standard is the RT-PCR test [23]. However, this diagnostic tool is insufficient to know the extent
and the severity of the COVID-19 on each patient. Despite the SARS-CoV-2 can harm several parts of the body, the
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Fig. 1: Examples of portable chest X-ray images of 3 different classes. (a) Normal class. (b) Pathological class. (¢) COVID-19 class.

main affectation of this virus is located in the lung area. Therefore, chest X-ray imaging, a medical imaging modality
that has been used to diagnose other common pulmonary pathologies as the pneumonia [7] or the tuberculosis [16]
during the last decades, can be very useful to understand that state and the evolution of the disease for each case. To
prevent the virus from spreading, radiologists are asked to prioritize the portable chest X-ray captures over any other
image modality, because these devices are easier to decontaminate [14]. However, portable devices obtain captures
with a lower level of detail, an aspect that makes it harder for clinicians to perform a reliable diagnosis.

Computer-aided diagnosis (CAD) methods are very useful to help the human experts in their diagnostic tasks. In
particular, in the last years, the medical image analysis domain has benefited from the development of deep learning
strategies, which are very powerful to deal with raw data. As COVID-19 diagnosis is a very relevant task, many
contributions have addressed this problem. As reference, the work from Hussain et al. [11] extracts morphological
and texture features from chest X-ray images. Then, the authors use those features to train classical machine learning
algorithms. The contribution from Zhu et al. [30] uses deep network architectures to determine the severity of COVID-
19 using chest X-ray images. In the work of De Moura et al., 2022 [5], the authors prove the capabilities of several
representative state-of-the-art deep learning models to solve the problem of COVID-19 screening using 3 different
publicly available datasets. On its hand, the work from Wang et al. [28] proposes the use of a custom deep network
tailored to the task of COVID-19 detection in chest X-ray images known as COVID-Net. Moreover, Keidar et al. [12]
makes a comparison among several different deep learning models for COVID-19 detection in chest X-ray images.
Apostolopoulos et al. [1] developed a methodology that extracts potentially representative COVID-19 biomarkers
in chest X-ray images for a further classification. The proposal of Turkoglu [25] consists in the development of a
methodology that performs a deep feature extraction using several parts of pre-trained networks to achieve a set
of combined features. These combined features are then fed to a Support Vector Machine algorithm to distinguish
between 3 classes: COVID-19, Normal and Pneumonia. Finally, it is worth to mention the contribution of Ullah et al.
[26], that proposes a multi-task method to detect COVID-19 on chest X-ray images that is supported by other more
well-known tasks (such as detection of pneumonia, pleural effusion or lung opacities) following a semi-supervised
learning scheme that uses an adversarial autoencoder.

Specifically, given the relevance of portable chest X-ray imaging for the diagnosis of this relevant pandemic pathol-
ogy, several computational approaches have been recently proposed. As reference, De Moura et al., 2020 [3] devel-
oped a methodology focused on COVID-19 screening using portable chest X-ray images. Particularly, the authors
used a dataset that was divided in 3 different classes: Normal, Pathological and COVID-19. Additionally, Moris et
al., 2021a [18] proposed data augmentation approaches using cycle-consistent adversarial networks for improving
COVID-19 screening in portable chest X-ray images. In another proposal, Morfs et al., 2021b [17] contributed with
a comprehensive analysis of the screening of COVID-19 approaches in chest X-ray images from portable devices,
considering 6 representative state-of-the-art deep network architectures. Some examples of captures provided by this
kind of portable devices can be seen in Fig. 1.

Despite the satisfactory results that were obtained in these works, most of them only partially address this relevant
problem of global interest. Moreover, many of these works have some important limitations which are present in
Convolutional Neural Network (CNN) architectures. Particularly, this kind of neural networks require high amounts
of data and a great computational capability to deal with the back-propagation step which is necessary to train deep
models. In addition, as the considered CNN models have layers with a notably high dimensionality, the works lack of
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a detailed behavioral analysis of the extracted deep features. This kind of analysis is very important to know which is
the set of features that obtains the optimum separability among classes reducing, at the same time, the original dimen-
sionality of the problem. Particularly, in the context of medical imaging, deep feature extraction has been explored as
an alternative to end-to-end approaches in domains such as chest X-ray [6], Computerized Tomography (CT) [20] or
Optical Coherence Tomography (OCT) [4], among many others.

Given this important gap in the literature, in this work, we propose a comprehensive deep features analysis in a
transfer learning-based approach for the automatic COVID-19 screening using portable chest X-ray images. For this
purpose, we design a fully automatic methodology to distinguish X-ray images between 2 different classes: NON-
COVID-19 and COVID-19. In particular, the proposed approach performs a deep feature extraction using several
different pre-trained CNN models (VGG-16, AlexNet, Inception-V3 and ResNet-18), where the deep features are
extracted from different fully-connected layers of these models. Apart from that, we also perform an exhaustive
analysis of the optimal feature selection strategy that best characterizes the problem with a lower dimensionality
and facilitates the learning process. This is supported by the removal of redundant and unnecessary features. To this
aim, 3 different feature selection methods are selected: ReliefF, CFS and LLCFS. Afterward, we train and test a
conventional machine learning model (a Support Vector Machine, abbreviated as SVM) to perform the classification
using the previously selected deep feature set, considering a transfer learning strategy that reduces the computing
capability requirements and simplifies the complexity of the original problem. In particular, the results demonstrate a
competitive performance, with a 0.9043 of accuracy using only 46.86% of the whole set of features. This is a desirable
characteristic for clinical settings, given the usual low capacity of the computational resources that are available in
these environments, as they usually lack of advanced Graphics Processing Units (GPUs) to support the load of complex
deep learning pipelines. Despite the existence of many works that address the problem of COVID-19 screening, to the
best of our knowledge, this is the only work that addresses such an exhaustive analysis of the deep features extracted
from an automatic screening model to detect COVID-19 using portable chest X-ray images.

2. Methodology

The methodology herein proposed, which is schematically described in Fig. 2, is divided in 3 main steps: “Deep
Features Extraction”, “Selection of Useful Features” and “Classification”. Each of these steps is discussed in depth
below.

Deep Features Selection of Classification
g | Extraction Useful Features

' ‘ | ‘ Non COVID-19
Machine
-

“I'Learning
Model

1

= VGG-16 ReliefF SVM | ,
1 > [AlexNet > >[CFS D i 1 COVID-19
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ResNet-18

Fig. 2: Main overview of the proposed methodology, composed of 3 different steps: (I) deep features extraction, (II) selection of useful features and
(IIT) classification.

2.1. Deep Features Extraction

Convolutional Neural Networks (CNN) have a particular architectural design that is suitable to reduce the dimen-
sionality of a specific problem, extracting deep features from images. Then, this set of features can be used to perform
a classification process [8]. In this work, we consider 4 different and representative deep network architectures pre-
trained in the ImageNet dataset for the deep feature extraction: VGG-16, AlexNet, Inception-V3 and ResNet-18.
Moreover, we also choose several different fully-connected layers of each architecture, to make a more detailed anal-
ysis and to obtain a greater performance of the method.
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. VGG-16 model [21]. This architecture is composed of 16 weighted layers. These layers can be divided in 13

convolutional layers and 3 fully-connected layers. The fully-connected layers are named as FC6, FC7 and FCS,
having a dimensionality of 4096, 4096 and 1000 features, respectively.

. AlexNet model [15]. This architecture is divided in different layers, namely, convolutional and pooling layers,

rectified linear unit (ReLU) layers (that add non-linearity) and 3 fully-connected layers which are denoted as
FC6, FC7, FC8, having 4096, 4096 and 1000 features, respectively.

. Inception-V3 model [22]. This deep model, similarly as in the previous case, is composed of several cascaded con-

volutional and pooling layers, and a final fully-connected layer with 1000 features which is denoted as FC1000.

. ResNet-18 model [10]. This kind of deep network architecture was proposed to overcome the vanishing gradient

problem [24] adding identity shortcut connections in certain parts of the architecture, skipping one or more layers.
The particular implementation herein considered has a depth of 18 layers.

Selection of Useful Features

One of the most important steps while using the deep features extracted from pre-trained models is the selection
of the optimal subset of features that maximizes the separability between classes [2]. This deep feature selection
step is very advantageous due to 2 main reasons. First, it reduces the size of the deep features set, thus minimizing
the computational requirements and the time spent in the learning process. On the other hand, the selection of the
optimal features removes irrelevant information that could significantly reduce its performance. In this way, to do
the deep feature selection, 3 different algorithms were considered, based on the criteria of a previous related work
that performed deep feature extraction with OCT images [4]: ReliefF, CFS (Correlation based Feature Selection) and
LLCFS (Learning-based Clustering Feature Selection). A detailed explanation of each feature selection algorithm can
be seen below:

1.

3.

ReliefF is a commonly used feature selection algorithm and is an extension of the Relief strategy [13]. ReliefF
computes a score for each feature. Once the values are computed for the whole set of features, they can be
ranked to select the top features that are more likely to be useful for the proposed problem. In order to do so, the
algorithm computes the difference between the probabilities. In this way, feature scores are computed as specified
in Eq. I:

r(A) = P(A = Z|C) — P(A = Z|D) (D

where Z refers to a specific value of the attribute A, C is the nearest neighbor to the current value that belongs to
a different class and D is the nearest neighbor that belongs to the same class.

CFS algorithm [9] (Correlation-based feature selection) is based on the idea that the features with the greatest
discriminatory capability are the most representative to predict the class, besides avoiding features that have
correlations among them. With this definition, the expression of the CFS strategy is defined as stated in Eq. 2:

Tee = ilE @
Vk+k(k—1) 7

where k denotes the amount of features, 7; refers to the average correlation that exists between the ensemble
of features and the sample label while the value 7; express the average value of the inter-correlation that exists
between features.

LLCFS is a feature selection algorithm based on the Local Learning-Based Clustering (LLC) [29] that uses the
concept of kernel learning. The LLCFS method gives each feature (that can also be called as kernel in this
context) a specific weight value, which is then included in the regularization of the LLC algorithm to reflect the
importance of each feature in the problem. To do so, the considered function to perform the feature selection
process is the local discriminant function that is shown in Eq. 3:

LA = AW + b (3)
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where A denotes an arbitrary attribute, w¢ denotes the regression coefficient given the cluster ¢ and the i* I feature

and bf the same, but with the bias terms.
2.3. Classification

After the appropriate set of deep features is obtained, we train a suitable classification model, the Support Vector
Machine (SVM) [19], following the same criteria as in [4]. In this context, the objective of the selected algorithm is
to maximize a margin hyperplane to properly differentiate between 2 classes: COVID-19 and NON-COVID-19.

3. Results and Discussion

The developed methodology was validated using a dataset provided by the Complexo Hospitalario Universitario
de A Coruna (CHUAC), that was specifically designed for the purposes of this work. The images were captured by
2 models of portable chest X-ray devices: Agfa drl100E and Optima Rx200. The set of images has a wide amount of
different resolutions in the range between 712 x 742 and 1554 x 1910 pixels. Originally, the dataset is divided in 3
different classes: Normal, Pathological and COVID-19. The class Normal is composed of 717 samples from patients
without evidences of being affected by pulmonary diseases that, however, could present pathological affectation in
other regions. The class Pathological is composed of 717 samples obtained from patients that have evidences of
pulmonary affectation from diseases different from COVID-19. Finally, the class COVID-19 is composed of 717
genuine COVID-19 cases. For the methodology validation purposes, the class Normal and the class Pathological are
merged together to create a new class NON-COVID-19, while the class COVID-19 remains the same. Therefore, we
train with a total of 1434 images for the NON-COVID-19 class and 717 images for the COVID-19 class, that keeps
a proportion of % and % between classes, respectively. The input dataset is randomly divided in 2 different sets, with
a 70% of the samples for training and the remaining 30% of samples for testing. Moreover, for the classification, we
used a 10-fold cross-validation. In the same way, it is important to remark that the process is repeated 5 times and, in
order to understand the global behavior of the models, the mean accuracy and the corresponding standard deviation
are computed. One important aspect of the experimental procedure is that all the experiments were performed using
different architectural settings, particularly, AlexNet, VGG-16, Inception-V3 and ResNet-18. In the same way, we
use 3 different feature selection algorithms, in particular, ReliefF, CFS and LLCFS. Moreover, other element that we
change is the fully-connected layer that is selected: FC6, FC7 or FC8/FC1000.

In this validation process, firstly, we use the feature selection algorithms to achieve the optimal subset of deep
features. In Fig. 3, 4 and 5 we depict the performance evolution as the number of deep features used to train the
models increases. There, the evolution is only shown for 400 features, as there is no further improvement with a
greater number of deep features. This aspect can be seen notably in Fig. 6, where the performance of all the models is
depicted. In fact, from 400 features onwards, the performance starts to experience a slight drop. However, in that part
of the training process, the accuracy values are very stable. In the same way, the performance of the models is very
similar and satisfactory in all the cases.

On the other hand, the Tables 1, 2 and 3 show the optimal feature subset size for each classification model con-
figuration that have been obtained for the training stage. The overall summarized idea of the results is that all the
configurations obtain a satisfactory performance. Particularly, the best performance using the features that were ex-
tracted from the FC6 layer was obtained with the VGG-16 model and the LLCFS feature selection algorithm with a
90.66% of mean accuracy, as it is shown in Table 1. In the case of the FC7 layer, the best performance is obtained
using the VGG-16 architecture and the ReliefF algorithm with a mean accuracy of 90.62% as it is depicted in Table 2.
Finally, for the case of the features that were selected from the FC8/FC1000 layer, the best performance is once again
obtained using the same configuration as in the first scenario (VGG-16 and LLCFS feature selection algorithm) with
a mean accuracy of 90.41% as can be seen in Table 3. With regard to the size of the optimal subsets, it was of 2129
features in the case of the FC6 layer, 3584 features in the case of the FC7 layer and 655 features in the case of the
FC8/FC1000 layer.

In addition, the performance in test is shown in Tables 4, 5 and 6. There, it can be seen that the results depict a
similar scenario as in the case of the training stage. All models are able to obtain satisfactory results, discriminating
between NON-COVID-19 and COVID-19 using the optimal subset of deep features. In this case, the best performance
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Fig. 3: Accuracy evolution with respect to the number of used deep features that were obtained from the fully-connected layer FC6. (a) AlexNet
model. (b) VGG-16 model.
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Fig. 4: Accuracy evolution with respect to the number of used deep features that were obtained from the fully-connected layer FC7. (a) AlexNet
model. (b) VGG-16 model.

Table 1: Accuracy results achieved during the training stage by each deep model considering the optimal subset of features extracted by the fully-
connected layer denoted as FC6.

Deep FC6

Model | Feature selector | N°of features | Min. Accuracy | Max. Accuracy | Mean Accuracy | Std. Accuracy
AlexNet CFS 1919 0.8845 0.8971 0.8919 0.0048
AlexNet ReliefF 3666 0.8805 0.9011 0.8912 0.0075
AlexNet LLCFS 2529 0.8712 0.8991 0.8831 0.0101
VGG-16 CFS 2390 0.8958 0.9137 0.9031 0.0069
VGG-16 ReliefF 927 0.8991 0.9117 0.9053 0.0049
VGG-16 LLCES 2129 0.8997 0.9163 0.9066 0.0071

Table 2: Accuracy results obtained during the training stage achieved by each deep model considering the optimal subset of features extracted by
the fully-connected layer FC7.

Deep FC7
Model | Feature selector | N°of features | Min. Accuracy | Max. Accuracy | Mean Accuracy | Std. Accuracy
AlexNet CFS 3985 0.8838 0.9024 0.8900 0.0075
AlexNet ReliefF 501 0.8858 0.9037 0.8926 0.0069
AlexNet LLCFS 846 0.8858 0.9037 0.8919 0.0072
VGG-16 CFS 562 0.8851 0.9077 0.8958 0.0085
VGG-16 ReliefF 3584 0.9011 0.9117 0.9062 0.0038
VGG-16 LLCFS 3410 0.8971 0.9077 0.9008 0.0053

obtained for the features extracted from the FC6 layer is achieved with the VGG-16 model and the LLCFS feature
selection algorithm, with an accuracy of 90.43%. For the case of the features extracted from the FC7 layer, the best
performance was achieved by the VGG-16 with the ReliefF algorithm as feature selector, with an accuracy of 89.44%.
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Fig. 5: Accuracy evolution with respect to the number of used deep features that were obtained from the fully-connected layer FC8/FC1000. (a)
AlexNet model. (b) VGG-16 model. (c) Inception-V3 model. (d) ResNet-18 model.
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Fig. 6: Evolution of the accuracy values training with the whole subsets of deep features that were obtained from the used CNN networks, extracting
the deep features from the fully-connected layers FC8/FC1000.

Finally, in the case of the FC8/FC1000 layer, the best accuracy value is achieved by 2 different configurations: using
the AlexNet with the CFS feature selection algorithm and using the VGG-16 with the CFS algorithm. In both cases,
the obtained mean accuracy value was of 88.84%. With respect to the number of features used by each configura-
tion, it is remarkable that only the 46.85% and the 12.23% of the deep features from the FC6 and the FC7 layers,
respectively, were necessary. With regard to the 2 different configurations in the case of the FC8/FC1000 that achieve
the best performance, the AlexNet with the CFS feature selection algorithm uses only 65.50% of the whole amount
of features while the VGG-16 with the CFS algorithm uses the 17.40% of the deep features. As it can be seen, the
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Table 3: Accuracy results achieved during the training stage by each deep model considering the optimal subset of features extracted by the fully-
connected layer denoted as FC8 or FC1000.

Deep FC8/FCI000
Model Feature selector | N of features | Min. Ac Max. A 'y | Mean A Sid. Ac
AlexNet CFS 290 0.8931 0.9057 0.8988 0.0046
AlexNet ReliefF 52 0.8765 0.9037 0.8871 0.0101
AlexNet LLCFS 174 0.8858 0.9017 0.8904 0.0066
VGG-16 CFS 184 0.8964 0.9104 0.9015 0.0058
VGG-16 ReliefF 163 0.8931 0.9117 0.9020 0.0068
VGG-16 LLCFS 655 0.9004 0.9130 0.9041 0.0053
Tnception-V3 CFS 158 0.8884 0.9050 0.8965 00060
Tnception-V3 RelielF 3 0.8838 0.9011 0.8915 0.0066
Tnception-V3 LLCFS 819 0.8977 0.9084 0.9023 0.0041
ResNet-18 CFS 64 0.8705 0.8898 0.8786 0.0073
ResNet-18 ReliefF 573 0.8772 0.8997 0.8846 0.0089
ResNet-18 LLCFS 292 0.8712 0.8971 08313 0.0101

Table 4: Best accuracy values achieved in test using the different deep network architectures and the optimal subset of features extracted from the
fully-connected FC6 layer.

Deep FCo

Model | Feature selector | % of Features | Accuracy
AlexNet CFS 51.97% 0.8818
AlexNet ReliefF 22.63% 0.8884
AlexNet LLCES 58.34% 0.8711
VGG-16 CFS 61.74% 0.9023
VGG-16 ReliefF 89.50% 0.8857
VGG-16 LLCES 46.85% 0.9043

Table 5: Best accuracy values obtained in test using the considered deep network architectures and the subset of features extracted from the fully-
connected FC7 layer.

Deep FC7

Model | Feature selector | % of Features | Accuracy
AlexNet CFS 83.25% 0.8818
AlexNet ReliefF 46.85% 0.8917
AlexNet LLCFES 13.72% 0.8758
VGG-16 CFS 20.65% 0.8857
VGG-16 ReliefF 12.23% 0.8944
VGG-16 LLCFS 97.29% 0.8778

Table 6: Best accuracy obtained during the test stage using the different deep model architectures and the optimal subset of features extracted from
the fully-connected FC8/FC1000 layer.

Deep FC8/FC1000
Model Feature selector | % of Features | Accuracy
AlexNet CFES 65.50% 0.8884
AlexNet ReliefF 16.30% 0.8837
AlexNet LLCFS 18.40% 0.8844
VGG-16 CES 17.40% 0.8884
VGG-16 ReliefF 5.20% 0.8851
VGG-16 LLCFS 29.00% 0.8837
Inception-V3 CFES 81.90 0.8778
Inception-V3 ReliefF 22.30% 0.8764
Inception-V3 LLCFS 15.80% 0.8764
ResNet-18 CFS 29.20% 0.8698
ResNet-18 ReliefF 57.30% 0.8718
ResNet-18 LLCFS 6.40% 0.8731

best performance obtained using the features extracted from the FC6 layer outperforms the best performance obtained
using both the FC7 and the FC8/FC1000 layers. This is due to the fact that the FC6 is a shallower layer, having a
more global representation of the overall condition and more global characteristics of the samples. However, the per-
formance drop is slightly noticeable. Thus, the results of the methodology proposed in this contribution prove to be
robust and reliable, despite using a representation with a lower dimensionality. Therefore, this approach has proven to
be efficient in terms of memory requirements.

The scientific community has been making significant efforts to address the problem of COVID-19 screening using
portable chest X-ray images. To the best of our knowledge, this study represents the first comprehensive analysis of
deep features extracted from multiple architectures for this purpose. It is important to note that portable chest X-ray
images tend to have lower quality compared to traditional chest X-ray images, but they were widely used during the
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COVID-19 pandemic due to the need for fast and accessible screening. Despite this challenge, our proposed method
achieved competitive performance while utilizing only a fraction of the features, demonstrating the efficiency of the
system and reducing memory requirements compared to end-to-end approaches. This aspect is desirable in clinical
settings, that usually struggle to implement the end-to-end approaches in daily practice due to the lack of advanced
computing resources. Furthermore, this approach has the potential for application in various other biomedical imaging
modalities. It is important to note that there is no possibility to compare our proposed approach in fair conditions with
other works of the state-of-the-art, given that the dataset herein used was specifically tailored for the study and is
unavailable publically. In the same line, to the best of our knowledge, this is the only dataset that has been tailored to
perform studies with portable chest X-ray images exclusively. Nevertheless, it is remarkable that the achieved results
are in line with the performance of the state-of-the-art approaches.

4. Conclusions

In this work, we proposed an efficient fully automatic methodology to perform an exhaustive analysis of the deep
features extracted from portable chest X-ray images of COVID-19 patients to distinguish between 2 classes: NON-
COVID-19 and COVID-19. Therefore, the method herein proposed can provide a useful tool to reduce the workload
that health care services are suffering due to the global pandemic of COVID-19. To do so, we have considered a
pipeline that can be divided in 3 different steps. Firstly, we extract a set of deep features with several different remark-
able deep network architectures: AlexNet, VGG-16, Inception-V3 and ResNet-18. These features are extracted from
several fully-connected layers from each deep model. In particular, we use the FC6 and the FC7 from the AlexNet and
the VGG-16 models as well as the FC8/FC1000 from the AlexNet, the VGG-16, the Inception-V3 and the ResNet-18.
Secondly, we perform an exhaustive analysis of the set of extracted deep features, to determine the set of features that
optimally separates between the 2 classes. To do so, we use 3 different and representative feature selection algorithms:
the ReliefF, the LLCFS and the CFS. Finally, the different subsets of features are used to train an SVM model, that
performs the image classification. Despite the complexity of the proposed scenario, the model is able to accurately
separate the NON-COVID-19 and the COVID-19 cases, achieving the best global accuracy value of 90.43% in test.
The best result was obtained with the deep features extracted from the VGG-16 pre-trained model and filtered with
the LLCFS feature selection algorithm, using only the 46.85% of the whole amount of features retrieved from the FC6
layer. Therefore, the method proves its robustness dealing with the proposed scenario, providing a better understand-
ing of the problem thanks to the analysis of the deep features. In addition, this work represents a powerful alternative
to optimize the use of computational resources and to reduce the complexity of the original problem. This is a criti-
cal aspect in clinical environments, given that the available computational resources are usually of low capacity. As
possible lines of future work, this analysis could be complemented evaluating the performance obtained with other
machine learning classifiers.
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