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Abstract

Patients at high risk of contracting COVID-19 require specialized monitoring throughout their illness to ensure optimal treatment
at each stage. To support this monitoring, Computer-Aided Diagnosis (CAD) methods analyze clinical data to estimate the most
likely outcome for each patient, using various clinical variables such as symptoms, medical history, and laboratory results to
predict outcomes. Despite the numerous proposals for COVID-19 diagnosis using CAD methods, the lack of explainability in
many machine learning models poses a challenge in incorporating these methods into clinical practice. Additionally, other crucial
tasks such as estimating the risk of death or severe forms of the disease must be considered to identify cases that require greater
monitoring. To overcome these challenges, we propose an explainable methodology for estimating the risk of hospitalization and
death in COVID-19 patients using clinical data. Our methodology employs four machine learning algorithms, three feature selection
methods, and a decision tree to provide explainability. Our approach achieves an accuracy of 86.16% ± 0.74% for the estimation of
hospitalization risk with 29 features, and an accuracy of 86.40% ± 1.80% for the estimation of the risk of death with 26 features.
Moreover, our methodology provides valuable insights into the relationship between clinical variables and patient outcomes, which
can inform more robust and informed clinical decision-making and improve our understanding of the disease. We demonstrate the
potential of our transparent and effective CAD methods to support clinical decision-making in COVID-19 patient care and further
research, offering a promising solution to overcome the challenges in incorporating CAD methods into clinical practice.
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1. Introduction

The COVID-19 pandemic has had a significant impact on public health worldwide, with over 300 million cases
and 5 million deaths reported as of February 2023, according to WHO reports. COVID-19 is an acute infectious
disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can severely affect the
respiratory tract tissues [4]. In severe cases, patients may require hospitalization, mechanical ventilation, or admission
to an Intensive Care Unit (ICU) [29]. Given the acute nature of this infection, it is essential to quickly evaluate the
patient’s condition and manage healthcare resources as efficiently and effectively as possible, particularly for patients
who require more personalized monitoring.

Several studies have shown that pre-existing health conditions, such as diabetes, hypertension, and obesity, can
increase the risk of severe illness and death in COVID-19 patients [22, 8, 31]. Additionally, clinical variables obtained
from laboratory tests, such as blood tests, chest X-rays [16, 17], and CT scans, can provide valuable information to
predict a patient’s risk of severe illness or death [9]. In this context, Computer-Aided Diagnosis (CAD) methods, es-
pecially those supported by artificial intelligence (AI) strategies, can retrospectively analyze the correlation between
pre-existing conditions, clinical variables, and patient outcomes [25]. These methods can not only help better under-
stand the impact of variables from a clinical perspective but also facilitate the development of automatic methods that
can estimate a patient’s probable outcome based on their previous records.

However, one of the primary challenges in developing CAD methods is that many of them are based on machine
learning (ML) algorithms with a black-box structure, making it difficult to include these methodologies in ordinary
clinical practice [14]. The lack of explainability is one of the primary challenges with black-box ML models. In re-
cent years, there has been an increased interest in explainable artificial intelligence (often abbreviated as XAI) [7]
whose aim is to leverage different techniques to give machine learning pipelines the capability to explain the taken
decisions, being the shapley additive explanations algorithm (denoted as SHAP) [15] one of the most popular strate-
gies. Moreover, other white-box algorithms, like the decision trees, can help overcome this challenge by providing an
automatically derived set of rules that explain the pathway followed by the model to make a decision, which can help
clinicians to understand and accept the model’s decisions. Another significant challenge in developing CAD methods
is selecting the most appropriate set of features to characterize the problem. To address this issue, significant efforts
have been made in the research community to propose automatic methods that can select the optimal subset of features
for a given medical imaging problem, being specially useful when working with a considerable amount of features
[5]. Decision trees can also be useful in this regard, as they provide a clear understanding of the relationship between
different features and their impact on patient outcomes, helping to identify the most relevant features for accurate
predictions.

Several studies have investigated methods for diagnosing, assessing the severity of, and predicting outcomes for
COVID-19 patients and identifying those at higher risk. Apart from that, some of these works also include XAI
methods in their pipelines to give explainability to the decisions made by the classification models. As reference,
Bottrighi et al. [1] proposed a study that uses several ML models to estimate the risk of COVID-19 patients based on
records with 43 different features, including demographics, chest X-ray and computerized tomography (CT) findings,
complications, and treatments. Liu et al. [13] used omics-data and ML to perform COVID-19 diagnosis and sever-
ity prediction. Thimoteo et al. [24] used explainable boosting machine and logistic regression models to diagnose
COVID-19 through blood test results. The authors also used black-box models, such as support vector machine and
random forest, which are complemented by the SHAP algorithm to provide explainability in this context. Rostami et
al. [20] developed a COVID-19 diagnosis method using blood test data that adds explainability with a decision tree.
Weizman et al. [28] developed a scoring system based on an MLmodel to predict the outcome of hospitalized patients,
including the risk of being admitted to the ICU and the risk of death. Another interesting contribution in this field is
the work of Yagin et al., [30] that uses the SHAP method to identify gene biomarkers that can help to determine a
COVID-19 positive or negative. Despite the abundance of studies that have been conducted on COVID-19, there is
still a pressing need for more comprehensive and interpretable models that can better estimate the risk of severe illness
and death in COVID-19 patients. Previous studies have focused on different aspects of COVID-19 diagnosis, severity
evaluation, and outcome prediction, but none of them have provided an exhaustive study of the risk estimation that
includes explainability and feature selection analysis. The use of explainable models is particularly important for the
successful adoption of these methods in clinical practice, as clinicians need to understand the reasoning behind the
model’s predictions to trust and accept them.
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COVID-19 through blood test results. The authors also used black-box models, such as support vector machine and
random forest, which are complemented by the SHAP algorithm to provide explainability in this context. Rostami et
al. [20] developed a COVID-19 diagnosis method using blood test data that adds explainability with a decision tree.
Weizman et al. [28] developed a scoring system based on an MLmodel to predict the outcome of hospitalized patients,
including the risk of being admitted to the ICU and the risk of death. Another interesting contribution in this field is
the work of Yagin et al., [30] that uses the SHAP method to identify gene biomarkers that can help to determine a
COVID-19 positive or negative. Despite the abundance of studies that have been conducted on COVID-19, there is
still a pressing need for more comprehensive and interpretable models that can better estimate the risk of severe illness
and death in COVID-19 patients. Previous studies have focused on different aspects of COVID-19 diagnosis, severity
evaluation, and outcome prediction, but none of them have provided an exhaustive study of the risk estimation that
includes explainability and feature selection analysis. The use of explainable models is particularly important for the
successful adoption of these methods in clinical practice, as clinicians need to understand the reasoning behind the
model’s predictions to trust and accept them.
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In this work, we make a significant contribution to the existing literature by providing a comprehensive study
of risk estimation for COVID-19 patients. To achieve this, we utilize four state-of-the-art ML algorithms and three
representative feature selection approaches to choose the optimal subset of features that can maximize the performance
of the ML models. One of the most significant contributions of our work is the use of decision trees to increase the
explainability of the ML models’ decisions. This feature is particularly crucial for clinicians to understand and accept
the model’s decisions and successfully adopt this methodology, given the black-box nature of many ML models.

In particular, we conduct two representative analyses in our study. The first estimates the risk of hospitalization,
while the second estimates the risk of death. These analyses provide critical information for allocating healthcare re-
sources more efficiently and identifying patients who require more personalized monitoring and intensive care. In both
scenarios, our study includes an exhaustive analysis of the optimal subset of features and a thorough understanding
of how the number of these features affects the performance of the models with different feature selection methods.
This information is essential for improving the accuracy of the risk estimation and enhancing the generalizability of
the methodology to other medical applications.

We believe that our proposed methodology can offer valuable insights to clinicians, medical researchers, and health-
care professionals in the fight against the COVID-19 pandemic. By providing an explainable approach to risk estima-
tion, our work can help clinicians better understand the impact of variables from a clinical perspective and facilitate
better management of healthcare resources for those patients who require more personalized monitoring. Our pro-
posed approach can also be generalized to other medical applications, where the development of explainable models
can aid in the interpretation and acceptance of the model’s predictions.

2. Dataset

The dataset used in this study was specifically designed for our research purposes and was provided by the Com-
plexo Hospitalario Universitario de A Coruña (Galicia, Spain). It comprises records of 3217 COVID-19 patients (that
corresponds with 3217 unique patients) and contains 29 variables related to clinical features, outcomes (survival or
death), and cohort information (hospitalized or non-hospitalized). The clinical variables included in the dataset are age,
sex, height (in centimeters), weight (in kilograms), and body mass index (BMI), which was calculated from the height
and weight variables. In addition to these variables, the dataset also includes information about pre-existing health
conditions that patients may have had, such as diabetes, arterial hypertension (AHT), chronic obstructive pulmonary
disease (COPD), liver disease (LD), leukemia, lymphoma, neoplasm, asthma, human immunodeficiency virus (HIV),
solid organ transplant (transplant), chemotherapy in the last 3 months, corticosteroids in the last 3 months, and bio-
logical treatment, including the type of biological treatment if applicable. Furthermore, the dataset includes the results
of various clinical lab tests, such as lymphocyte count, percentage of lymphocytes, D-dimer test results, lactate de-
hydrogenase (LDH), creatinine, glomerular filtration rate (GFR), C-reactive protein (CRP), ferritin, and interleukin-6
(IL-6) protein test results. It is worth mentioning that the selection of the most relevant variables to characterize each
patient for the proposed studies was done in accordance with the Head of Infectious Diseases Department of the
aforementioned institution.

3. Methodology

we are able to match the conclusions drawn from the feature ranking with the clinical explainability provided by
the decision tree

In this section, we present our explainable framework that combines a feature selection process with four types of
ML models and a decision tree to add the explainability. The aim of separating the classification with high-accuracy
black-box models and the decision trees (a glass-box model) is to match the clinical explainability provided by the
decision trees with the discussion of the feature rankings. This balances the need for accuracy with the need for
interpretability. An overview can be seen in Fig. 1. This proposal is divided into four different steps. In the 1st step, a
data curation and balancing process is carried out. For the 2nd step, three feature selection algorithms were chosen to
obtain the optimal subsets of features that will be then fed to the ML models. In the 3rd step, the 4 chosen ML models
are trained. Finally, in the 4th step, the Decision Tree is trained. This trained model is analyzed afterward, to study the
inferred rules that can give explainability about the decisions taken by the algorithm. Each step of our methodology is
explained in more detail in the following subsections.
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Fig. 1: Overview of the methodology that depicts the 4 followed steps. 1st step: data curation and balancing. 2nd step: feature selection with 3
different methods. 3rd step: training of 4 different ML models. 4th step: training of decision tree and explainability.

3.1. Data curation and balancing

As the dataset was obtained in a real clinical context, it is necessary to address some common issues that can
arise. Firstly, it is important to distinguish between two types of variables: discrete and continuous. Discrete variables
correspond to preconditions and treatments for each patient, and missing values were filled with a 0-padding in these
cases. In contrast, missing values in continuous variables (e.g., height, weight) were filled with -1. Moreover, as
another step of data curation, the variables are normalized to a range [0, 1] involving the maximum and the minimum
of each one. Another important problem with the dataset is class imbalance. In the first analysis (Hospitalized vs Non-
Hospitalized), the majority of cases correspond to the hospitalized class because patients are more likely to have data
recorded when they have a severe condition. In the second analysis (Survival vs Death), the dataset is influenced by the
mortality rate of COVID-19, where a majority of hospitalized patients survive and a smaller fraction die. To address
class imbalance, we employed the SMOTE algorithm [26], which is a data augmentation strategy that synthesizes new
samples from existing ones. SMOTE was chosen over simpler methods like duplicating samples of the minority class
because it provides new and valuable information to the model, and can help improve the accuracy of the analysis.
By using SMOTE, we were able to balance the dataset without losing valuable information. It is important to note
that SMOTE can present important limitations. Firstly, it can increase the risk of overfitting, given that the algorithm
generates new samples interpolating real data, that leads to a strong correlation between the original and the generated
data. Moreover, there is also a risk that the generated data may deviate from the true distribution of the original data.
Added to the previous points, other important problem is that, in case the original data presents noise or outliers, this
could also be reflected in the new generated data. Considering these potential issues, it is important to ensure that the
trained classification models are properly evaluated. In particular, there is no oversampling applied to the test set, to
ensure that the models’ performance is assessed on real-world data.

3.2. Feature selection

Once we have a properly curated and balanced dataset, we employ three commonly used state-of-the-art algorithms,
based on machine learning models, to assign a weight to each feature: Extra-Trees Classifier (ETC), C-Support Vector
Classification (C-SVC), and Logistic Regression (LR). Using three different scoring algorithms provides a more robust
understanding of the most relevant features, as having multiple perspectives can reinforce the discussion. In particular,
the 3 different scoring algorithms help to ensure that there is an agreement between the methods regarding the most
relevant features, that represents an alternative from relying on a single ranking. Additionally, the feature selection
process is useful for reducing the dimensionality of the data, removing redundant and irrelevant features that could
introduce noise to the models. To this end, we used a Recursive Feature Elimination (RFE) strategy [12] to obtain
smaller feature sets recursively by removing the least important features, finally building a ranking from the most to
the least important. In this context, the classifiers are used to evaluate the importance of each individual feature. This
is measured depending on the impact that the features have on the performance of the model. The three feature scoring
methods used in this study are explained in detail below:

1. Extra-Trees Classifier (ETC) [10]: This method randomly selects several thresholds for each feature and
chooses the most appropriate one as the split rule. This approach helps to avoid overfitting.

2. C-Support Vector Classification (C-SVC) [19]: This algorithm is based on Support Vector Machines and sep-
arates data points by searching for an optimal hyperplane that maximizes the margins between the two classes.

3. Logistic Regression (LR) [3]: This method estimates, for each sample, the probability of belonging to a specific
class based on a set of independent variables.
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In this work, we make a significant contribution to the existing literature by providing a comprehensive study
of risk estimation for COVID-19 patients. To achieve this, we utilize four state-of-the-art ML algorithms and three
representative feature selection approaches to choose the optimal subset of features that can maximize the performance
of the ML models. One of the most significant contributions of our work is the use of decision trees to increase the
explainability of the ML models’ decisions. This feature is particularly crucial for clinicians to understand and accept
the model’s decisions and successfully adopt this methodology, given the black-box nature of many ML models.

In particular, we conduct two representative analyses in our study. The first estimates the risk of hospitalization,
while the second estimates the risk of death. These analyses provide critical information for allocating healthcare re-
sources more efficiently and identifying patients who require more personalized monitoring and intensive care. In both
scenarios, our study includes an exhaustive analysis of the optimal subset of features and a thorough understanding
of how the number of these features affects the performance of the models with different feature selection methods.
This information is essential for improving the accuracy of the risk estimation and enhancing the generalizability of
the methodology to other medical applications.

We believe that our proposed methodology can offer valuable insights to clinicians, medical researchers, and health-
care professionals in the fight against the COVID-19 pandemic. By providing an explainable approach to risk estima-
tion, our work can help clinicians better understand the impact of variables from a clinical perspective and facilitate
better management of healthcare resources for those patients who require more personalized monitoring. Our pro-
posed approach can also be generalized to other medical applications, where the development of explainable models
can aid in the interpretation and acceptance of the model’s predictions.

2. Dataset

The dataset used in this study was specifically designed for our research purposes and was provided by the Com-
plexo Hospitalario Universitario de A Coruña (Galicia, Spain). It comprises records of 3217 COVID-19 patients (that
corresponds with 3217 unique patients) and contains 29 variables related to clinical features, outcomes (survival or
death), and cohort information (hospitalized or non-hospitalized). The clinical variables included in the dataset are age,
sex, height (in centimeters), weight (in kilograms), and body mass index (BMI), which was calculated from the height
and weight variables. In addition to these variables, the dataset also includes information about pre-existing health
conditions that patients may have had, such as diabetes, arterial hypertension (AHT), chronic obstructive pulmonary
disease (COPD), liver disease (LD), leukemia, lymphoma, neoplasm, asthma, human immunodeficiency virus (HIV),
solid organ transplant (transplant), chemotherapy in the last 3 months, corticosteroids in the last 3 months, and bio-
logical treatment, including the type of biological treatment if applicable. Furthermore, the dataset includes the results
of various clinical lab tests, such as lymphocyte count, percentage of lymphocytes, D-dimer test results, lactate de-
hydrogenase (LDH), creatinine, glomerular filtration rate (GFR), C-reactive protein (CRP), ferritin, and interleukin-6
(IL-6) protein test results. It is worth mentioning that the selection of the most relevant variables to characterize each
patient for the proposed studies was done in accordance with the Head of Infectious Diseases Department of the
aforementioned institution.

3. Methodology

we are able to match the conclusions drawn from the feature ranking with the clinical explainability provided by
the decision tree

In this section, we present our explainable framework that combines a feature selection process with four types of
ML models and a decision tree to add the explainability. The aim of separating the classification with high-accuracy
black-box models and the decision trees (a glass-box model) is to match the clinical explainability provided by the
decision trees with the discussion of the feature rankings. This balances the need for accuracy with the need for
interpretability. An overview can be seen in Fig. 1. This proposal is divided into four different steps. In the 1st step, a
data curation and balancing process is carried out. For the 2nd step, three feature selection algorithms were chosen to
obtain the optimal subsets of features that will be then fed to the ML models. In the 3rd step, the 4 chosen ML models
are trained. Finally, in the 4th step, the Decision Tree is trained. This trained model is analyzed afterward, to study the
inferred rules that can give explainability about the decisions taken by the algorithm. Each step of our methodology is
explained in more detail in the following subsections.
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Fig. 1: Overview of the methodology that depicts the 4 followed steps. 1st step: data curation and balancing. 2nd step: feature selection with 3
different methods. 3rd step: training of 4 different ML models. 4th step: training of decision tree and explainability.

3.1. Data curation and balancing

As the dataset was obtained in a real clinical context, it is necessary to address some common issues that can
arise. Firstly, it is important to distinguish between two types of variables: discrete and continuous. Discrete variables
correspond to preconditions and treatments for each patient, and missing values were filled with a 0-padding in these
cases. In contrast, missing values in continuous variables (e.g., height, weight) were filled with -1. Moreover, as
another step of data curation, the variables are normalized to a range [0, 1] involving the maximum and the minimum
of each one. Another important problem with the dataset is class imbalance. In the first analysis (Hospitalized vs Non-
Hospitalized), the majority of cases correspond to the hospitalized class because patients are more likely to have data
recorded when they have a severe condition. In the second analysis (Survival vs Death), the dataset is influenced by the
mortality rate of COVID-19, where a majority of hospitalized patients survive and a smaller fraction die. To address
class imbalance, we employed the SMOTE algorithm [26], which is a data augmentation strategy that synthesizes new
samples from existing ones. SMOTE was chosen over simpler methods like duplicating samples of the minority class
because it provides new and valuable information to the model, and can help improve the accuracy of the analysis.
By using SMOTE, we were able to balance the dataset without losing valuable information. It is important to note
that SMOTE can present important limitations. Firstly, it can increase the risk of overfitting, given that the algorithm
generates new samples interpolating real data, that leads to a strong correlation between the original and the generated
data. Moreover, there is also a risk that the generated data may deviate from the true distribution of the original data.
Added to the previous points, other important problem is that, in case the original data presents noise or outliers, this
could also be reflected in the new generated data. Considering these potential issues, it is important to ensure that the
trained classification models are properly evaluated. In particular, there is no oversampling applied to the test set, to
ensure that the models’ performance is assessed on real-world data.

3.2. Feature selection

Once we have a properly curated and balanced dataset, we employ three commonly used state-of-the-art algorithms,
based on machine learning models, to assign a weight to each feature: Extra-Trees Classifier (ETC), C-Support Vector
Classification (C-SVC), and Logistic Regression (LR). Using three different scoring algorithms provides a more robust
understanding of the most relevant features, as having multiple perspectives can reinforce the discussion. In particular,
the 3 different scoring algorithms help to ensure that there is an agreement between the methods regarding the most
relevant features, that represents an alternative from relying on a single ranking. Additionally, the feature selection
process is useful for reducing the dimensionality of the data, removing redundant and irrelevant features that could
introduce noise to the models. To this end, we used a Recursive Feature Elimination (RFE) strategy [12] to obtain
smaller feature sets recursively by removing the least important features, finally building a ranking from the most to
the least important. In this context, the classifiers are used to evaluate the importance of each individual feature. This
is measured depending on the impact that the features have on the performance of the model. The three feature scoring
methods used in this study are explained in detail below:

1. Extra-Trees Classifier (ETC) [10]: This method randomly selects several thresholds for each feature and
chooses the most appropriate one as the split rule. This approach helps to avoid overfitting.

2. C-Support Vector Classification (C-SVC) [19]: This algorithm is based on Support Vector Machines and sep-
arates data points by searching for an optimal hyperplane that maximizes the margins between the two classes.

3. Logistic Regression (LR) [3]: This method estimates, for each sample, the probability of belonging to a specific
class based on a set of independent variables.
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3.3. Training of the ML models

In this step, the ML models are trained using the optimal subset of features obtained in the previous step. To
provide a more thorough analysis, we have chosen four different common state-of-the-art algorithms: Naive Bayes
(NB), k-Nearest Neighbors (kNN), Random Forest (RF), and Support Vector Machine (SVM). This thorough analysis
helps to assess the generalizability and robustness of the selected features with different modeling techniques, also
minimizing the risk of introducing biases that could appear from tailoring those features to a particular classifier. Thus,
this ensures the independence between the 2 main steps of the methodology (feature selection and classification).

1. Naive Bayes (NB) [27]: This model is a probabilistic classifier based on the Bayes theorem that assumes strong
independence among the features that characterize the problem.

2. k-Nearest Neighbors (kNN) [11]: This classifier stores the samples during the training phase, transferring almost
the full weight of the computation to inference. During inference, when the model is presented with a new sample
whose class is unknown, the distance between that sample and the samples stored during the training phase is
calculated, selecting the k smallest distances. Finally, the input sample will be classified with the same class that
has the majority of those k neighbors. To avoid the situation where k/2 samples belong to one class and the other
k/2 samples belong to the other class, k must be an odd number.

3. Random Forest (RF) [2]: This method builds a forest composed of several decision trees during training time.
Then, the selected output at the inference stage is the most-voted class among all those decision trees.

4. Support Vector Machine (SVM) [18]: This ML algorithm searches for the optimal hyperplane that maximizes
the distance between two classes. Once a new sample is fed to this model, the position on one side or another of
the hyperplane will determine its classification.

3.4. Explainability

In the fourth step, we train a Decision Tree [21] model to provide explainability to the decisions made by the
algorithm, which is one of the strongest points of our work. The aim is to automatically infer a set of rules that
can be extremely useful for clinicians, as it helps them understand not only the most important features but also the
relationship between them and their contribution to deriving the outcome of the patient. To avoid creating excessively
large decision trees, we train the decision tree with only the top 5 features selected by the corresponding feature
selection method. With this, we also avoid the creation of unnecessary rules caused by the existence of outliers or
mislabeled samples. Gini [23] and entropy [6] were chosen as the splitting criteria, and the optimum method was
obtained using cross-validated grid-search. The visualization of the trained decision tree displays the rule that must be
followed at each node. For example, if GFE ≤ 0.039 is the rule, the left branch is followed if the condition is True and
the right branch if it is False. The value of the selected criteria (gini or entropy), the percentage of samples available
at that point of the tree, the ratio of samples for each class, and the majority class are also displayed.

4. Results and Discussion

This section presents the results and discussion for the two provided analyses. The first analysis estimates the risk
of a patient requiring hospitalization (being Non-Hospitalized the positive class and Hospitalized the negative class),
while the second analysis estimates the risk of death (with Death as the positive class and Survival as the negative
class). Firstly, the performance obtained by the chosen classifiers regarding the different feature selection methods
and the number of features that compose the corresponding optimal subset, the feature rankings to discuss the most
relevant variables according to the 3 feature selection methods, and the evolution of the performance when increasing
the number of features are analyzed. Finally, the explainability of the trained decision trees is also discussed for both
analyses. For experimentation purposes, the models are evaluated with the most appropriate classification metrics,
including Accuracy, Recall, Precision, and F1-Score. It is important to consider that accuracy will be biased with the
imbalanced problem proposed in this work, artificially inflating the actual performance. To overcome this issue, we
have also included the recall and precision, that evaluate the actual performance for the positive class, without biases.
It is also worth noting that the dataset was split using a 10-fold cross-validation to ensure that training and validation
sets are independent. As the training process can be performed 10 times, this makes it possible to provide the mean
and the standard deviation of the metrics.

Analysis I: Estimation of the risk of hospitalization. The global results in terms of accuracy for analysis I are
shown in Table 1. In this case, the RF algorithm achieves the highest performance regardless of the chosen feature
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Table 1: Overall comparison of the used classifiers and feature selection methods for the analysis I, where the metrics of the approach with the
highest accuracy are highlighted in gray. The performance can be compared regarding the accuracy and the number of features of each approach.

Classifier Feature selection method # of features Accuracy Recall Precision

NB
ETC 25 72.99% ± 1.13% 94.51% ± 2.13% 66.06% ± 1.16%
C-SVC 13 72.82% ± 1.00% 95.37% ± 1.35% 65.72% ± 1.13%
LR 7 72.48% ± 1.52% 94.88% ± 1.43% 65.52% ± 1.40%

kNN
ETC 19 80.66% ± 1.30% 91.14% ± 1.52% 75.37% ± 1.93%
C-SVC 29 80.97% ± 1.75% 92.19% ± 1.62% 75.32% ± 2.00%
LR 29 80.34% ± 1.80% 91.19% ± 1.74% 74.95% ± 1.85%

RF
ETC 28 86.08% ± 1.18% 89.14% ± 1.98% 84.02% ± 1.60%
C-SVC 28 85.78% ± 0.97% 89.00% ± 1.68% 83.64% ± 1.12%
LR 29 86.16% ± 0.74% 89.52% ± 1.33% 83.91% ± 1.43%

SVM
ETC 25 68.71% ± 1.80% 67.71% ± 2.95% 69.13% ± 2.53%
C-SVC 20 77.19% ± 1.99% 87.35% ± 2.29% 72.60% ± 1.88%
LR 23 77.38% ± 1.55% 87.57% ± 1.85% 72.74% ± 1.66%

Table 2: Feature ranking for analysis I, comparing the results obtained by the 3 feature selection methods.

Position Feature selection method Position (cont.) Feature selection method (cont.)
ETC C-SVC LR ETC C-SVC LR

1 Creatinine Neoplasm Neoplasm 16 Neoplasm LD Creatinine
2 Age Diabetes Diabetes 17 Height Lymphocytes Lymphocytes (%)
3 LDH CCS COPD 18 Asthma CRP Lymphocytes
4 Lymphocytes COPD CCS 19 BMI Chemotherapy CRP
5 AHT IL-6 GFR 20 COPD AgeRange AgeRange
6 CRP Asthma Asthma 21 LD Sex LDH
7 GFR AHT IL-6 22 CCS LDH Height
8 Lymphocytes (%) Lymphoma Lymphoma 23 Lymphoma Leukemia Sex
9 Ferritine GFR AHT 24 Transplant Biological Biological
10 AgeRange Transplant Transplant 25 Biological Type Height Chemotherapy
11 Weight HIV LD 26 Chemotherapy Biological Type Biological Type
12 Diabetes Ferritine Leukemia 27 Leukemia D-Dimer D-Dimer
13 D-Dimer Creatinine BMI 28 Biological Age HIV
14 IL-6 Lymphocytes (%) Weight 29 HIV Weight Age
15 Sex BMI Ferritine

selection algorithm, with the lowest accuracy of 85.78% ± 0.97% and the highest accuracy of 86.16% ± 0.74%. The
second highest-performing configuration is the kNN, with the lowest accuracy of 80.34% ± 1.80% and the highest
accuracy of 80.97% ± 1.75%. It is worth noting the case of SVM, which obtains satisfactory performances with
Logistic Regression and Linear SVC as the feature selection methods, achieving the highest accuracy of 77.38% ±
1.55% in the first case, but drops when using the Extra-Trees Classifier with an accuracy of 68.71% ± 1.80%. Finally,
NB shows consistency among the 3 feature selection methods, with the lowest accuracy of 72.48% ± 1.52% and the
highest accuracy of 72.99% ± 1.13%. Overall, it can be concluded that the highest-performing approach uses Random
Forest as a classifier and Logistic Regression as a feature selector.

The feature ranking for analysis I is shown in Table 2. The ExtraTreesClassifier method produces a different
ranking in the top positions compared to LinearSVC and LogisticRegression. However, there is an agreement between
LinearSVC and LogisticRegression in these positions, with Neoplasm, Diabetes, COPD, CCS, Asthma, Lymphoma,
GFR, and AHT among the top 10 features. In the case of the ExtraTreesClassifier, AHT is also given high importance
(position 5), but the method assigns high scores to other features such as Creatinine, Age, LDH, and variables related
to the amount of Lymphocytes. It is noteworthy that the ExtraTreesClassifier gives great importance to Age and
AgeRange variables to estimate the risk of hospitalization, while they are less relevant in the other two feature selection
methods.

To examine the impact of the number of features on model performance, we selected the highest performing
approach, which was Random Forest with Logistic Regression as the feature selection method. Fig. 2 shows the
evolution of performance as the number of features increases. Overall, the performance tends to improve as the
number of features increases, stabilizing around 20 features despite a slight improvement with the entire set of 29
features. For explainability, we considered the approach with the highest overall performance, selecting the decision
tree built with Logistic Regression as the feature selection method. Fig. 3 and Fig. 4 show the half right and half
left parts of the decision tree, respectively. The most relevant features in the half right part of the decision tree are
GFR, Diabetes and Neoplasm. In particular, GFR is the most important feature in the half right part of the decision
tree, as it is used multiple times to discriminate between Hospitalized and Non-Hospitalized. In this part of the tree,
Diabetes is also present in one node, and Neoplasm appears in two cases. The most significant variables in the half
left part of the tree are directly related to the immune system and breathing capacity of patients. In particular, the
most important variables are Diabetes, CCS, Neoplasm, and COPD. This is notable because COVID-19 typically
affects immunocompromised patients more severely, and COPD significantly increases the risk of hospitalization, as
the disease severely affects the lungs. However, the number of occurences of each variable only partially determines
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3.3. Training of the ML models

In this step, the ML models are trained using the optimal subset of features obtained in the previous step. To
provide a more thorough analysis, we have chosen four different common state-of-the-art algorithms: Naive Bayes
(NB), k-Nearest Neighbors (kNN), Random Forest (RF), and Support Vector Machine (SVM). This thorough analysis
helps to assess the generalizability and robustness of the selected features with different modeling techniques, also
minimizing the risk of introducing biases that could appear from tailoring those features to a particular classifier. Thus,
this ensures the independence between the 2 main steps of the methodology (feature selection and classification).

1. Naive Bayes (NB) [27]: This model is a probabilistic classifier based on the Bayes theorem that assumes strong
independence among the features that characterize the problem.

2. k-Nearest Neighbors (kNN) [11]: This classifier stores the samples during the training phase, transferring almost
the full weight of the computation to inference. During inference, when the model is presented with a new sample
whose class is unknown, the distance between that sample and the samples stored during the training phase is
calculated, selecting the k smallest distances. Finally, the input sample will be classified with the same class that
has the majority of those k neighbors. To avoid the situation where k/2 samples belong to one class and the other
k/2 samples belong to the other class, k must be an odd number.

3. Random Forest (RF) [2]: This method builds a forest composed of several decision trees during training time.
Then, the selected output at the inference stage is the most-voted class among all those decision trees.

4. Support Vector Machine (SVM) [18]: This ML algorithm searches for the optimal hyperplane that maximizes
the distance between two classes. Once a new sample is fed to this model, the position on one side or another of
the hyperplane will determine its classification.

3.4. Explainability

In the fourth step, we train a Decision Tree [21] model to provide explainability to the decisions made by the
algorithm, which is one of the strongest points of our work. The aim is to automatically infer a set of rules that
can be extremely useful for clinicians, as it helps them understand not only the most important features but also the
relationship between them and their contribution to deriving the outcome of the patient. To avoid creating excessively
large decision trees, we train the decision tree with only the top 5 features selected by the corresponding feature
selection method. With this, we also avoid the creation of unnecessary rules caused by the existence of outliers or
mislabeled samples. Gini [23] and entropy [6] were chosen as the splitting criteria, and the optimum method was
obtained using cross-validated grid-search. The visualization of the trained decision tree displays the rule that must be
followed at each node. For example, if GFE ≤ 0.039 is the rule, the left branch is followed if the condition is True and
the right branch if it is False. The value of the selected criteria (gini or entropy), the percentage of samples available
at that point of the tree, the ratio of samples for each class, and the majority class are also displayed.

4. Results and Discussion

This section presents the results and discussion for the two provided analyses. The first analysis estimates the risk
of a patient requiring hospitalization (being Non-Hospitalized the positive class and Hospitalized the negative class),
while the second analysis estimates the risk of death (with Death as the positive class and Survival as the negative
class). Firstly, the performance obtained by the chosen classifiers regarding the different feature selection methods
and the number of features that compose the corresponding optimal subset, the feature rankings to discuss the most
relevant variables according to the 3 feature selection methods, and the evolution of the performance when increasing
the number of features are analyzed. Finally, the explainability of the trained decision trees is also discussed for both
analyses. For experimentation purposes, the models are evaluated with the most appropriate classification metrics,
including Accuracy, Recall, Precision, and F1-Score. It is important to consider that accuracy will be biased with the
imbalanced problem proposed in this work, artificially inflating the actual performance. To overcome this issue, we
have also included the recall and precision, that evaluate the actual performance for the positive class, without biases.
It is also worth noting that the dataset was split using a 10-fold cross-validation to ensure that training and validation
sets are independent. As the training process can be performed 10 times, this makes it possible to provide the mean
and the standard deviation of the metrics.

Analysis I: Estimation of the risk of hospitalization. The global results in terms of accuracy for analysis I are
shown in Table 1. In this case, the RF algorithm achieves the highest performance regardless of the chosen feature
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Table 1: Overall comparison of the used classifiers and feature selection methods for the analysis I, where the metrics of the approach with the
highest accuracy are highlighted in gray. The performance can be compared regarding the accuracy and the number of features of each approach.

Classifier Feature selection method # of features Accuracy Recall Precision

NB
ETC 25 72.99% ± 1.13% 94.51% ± 2.13% 66.06% ± 1.16%
C-SVC 13 72.82% ± 1.00% 95.37% ± 1.35% 65.72% ± 1.13%
LR 7 72.48% ± 1.52% 94.88% ± 1.43% 65.52% ± 1.40%

kNN
ETC 19 80.66% ± 1.30% 91.14% ± 1.52% 75.37% ± 1.93%
C-SVC 29 80.97% ± 1.75% 92.19% ± 1.62% 75.32% ± 2.00%
LR 29 80.34% ± 1.80% 91.19% ± 1.74% 74.95% ± 1.85%

RF
ETC 28 86.08% ± 1.18% 89.14% ± 1.98% 84.02% ± 1.60%
C-SVC 28 85.78% ± 0.97% 89.00% ± 1.68% 83.64% ± 1.12%
LR 29 86.16% ± 0.74% 89.52% ± 1.33% 83.91% ± 1.43%

SVM
ETC 25 68.71% ± 1.80% 67.71% ± 2.95% 69.13% ± 2.53%
C-SVC 20 77.19% ± 1.99% 87.35% ± 2.29% 72.60% ± 1.88%
LR 23 77.38% ± 1.55% 87.57% ± 1.85% 72.74% ± 1.66%

Table 2: Feature ranking for analysis I, comparing the results obtained by the 3 feature selection methods.

Position Feature selection method Position (cont.) Feature selection method (cont.)
ETC C-SVC LR ETC C-SVC LR

1 Creatinine Neoplasm Neoplasm 16 Neoplasm LD Creatinine
2 Age Diabetes Diabetes 17 Height Lymphocytes Lymphocytes (%)
3 LDH CCS COPD 18 Asthma CRP Lymphocytes
4 Lymphocytes COPD CCS 19 BMI Chemotherapy CRP
5 AHT IL-6 GFR 20 COPD AgeRange AgeRange
6 CRP Asthma Asthma 21 LD Sex LDH
7 GFR AHT IL-6 22 CCS LDH Height
8 Lymphocytes (%) Lymphoma Lymphoma 23 Lymphoma Leukemia Sex
9 Ferritine GFR AHT 24 Transplant Biological Biological
10 AgeRange Transplant Transplant 25 Biological Type Height Chemotherapy
11 Weight HIV LD 26 Chemotherapy Biological Type Biological Type
12 Diabetes Ferritine Leukemia 27 Leukemia D-Dimer D-Dimer
13 D-Dimer Creatinine BMI 28 Biological Age HIV
14 IL-6 Lymphocytes (%) Weight 29 HIV Weight Age
15 Sex BMI Ferritine

selection algorithm, with the lowest accuracy of 85.78% ± 0.97% and the highest accuracy of 86.16% ± 0.74%. The
second highest-performing configuration is the kNN, with the lowest accuracy of 80.34% ± 1.80% and the highest
accuracy of 80.97% ± 1.75%. It is worth noting the case of SVM, which obtains satisfactory performances with
Logistic Regression and Linear SVC as the feature selection methods, achieving the highest accuracy of 77.38% ±
1.55% in the first case, but drops when using the Extra-Trees Classifier with an accuracy of 68.71% ± 1.80%. Finally,
NB shows consistency among the 3 feature selection methods, with the lowest accuracy of 72.48% ± 1.52% and the
highest accuracy of 72.99% ± 1.13%. Overall, it can be concluded that the highest-performing approach uses Random
Forest as a classifier and Logistic Regression as a feature selector.

The feature ranking for analysis I is shown in Table 2. The ExtraTreesClassifier method produces a different
ranking in the top positions compared to LinearSVC and LogisticRegression. However, there is an agreement between
LinearSVC and LogisticRegression in these positions, with Neoplasm, Diabetes, COPD, CCS, Asthma, Lymphoma,
GFR, and AHT among the top 10 features. In the case of the ExtraTreesClassifier, AHT is also given high importance
(position 5), but the method assigns high scores to other features such as Creatinine, Age, LDH, and variables related
to the amount of Lymphocytes. It is noteworthy that the ExtraTreesClassifier gives great importance to Age and
AgeRange variables to estimate the risk of hospitalization, while they are less relevant in the other two feature selection
methods.

To examine the impact of the number of features on model performance, we selected the highest performing
approach, which was Random Forest with Logistic Regression as the feature selection method. Fig. 2 shows the
evolution of performance as the number of features increases. Overall, the performance tends to improve as the
number of features increases, stabilizing around 20 features despite a slight improvement with the entire set of 29
features. For explainability, we considered the approach with the highest overall performance, selecting the decision
tree built with Logistic Regression as the feature selection method. Fig. 3 and Fig. 4 show the half right and half
left parts of the decision tree, respectively. The most relevant features in the half right part of the decision tree are
GFR, Diabetes and Neoplasm. In particular, GFR is the most important feature in the half right part of the decision
tree, as it is used multiple times to discriminate between Hospitalized and Non-Hospitalized. In this part of the tree,
Diabetes is also present in one node, and Neoplasm appears in two cases. The most significant variables in the half
left part of the tree are directly related to the immune system and breathing capacity of patients. In particular, the
most important variables are Diabetes, CCS, Neoplasm, and COPD. This is notable because COVID-19 typically
affects immunocompromised patients more severely, and COPD significantly increases the risk of hospitalization, as
the disease severely affects the lungs. However, the number of occurences of each variable only partially determines
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Fig. 2: Evolution of the performance given the number of features in the analysis I, considering the approach with the highest accuracy (Random
Forest classifier with Logistic Regression as feature selector).
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Fig. 3: Half right of the Decision Tree that has been considered to add explainability to Analysis I.
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Fig. 4: Half left of the Decision Tree that has been considered to add explainability to Analysis I.

their actual importance. This can be complemented with the position of the nodes in the tree. Particularly, GFR and
Diabetes and Neoplasm show to have high discrimination capabilities, being positioned in the shallowest levels.

Analysis II: estimation of the risk of death. Table 3 shows the results obtained in terms of accuracy for the
analysis I, regarding the used classifier and the feature selection method, also providing the optimal number of features
obtained in each case. There, it can be seen that the best performance is achieved by the Random Forest algorithm,
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Table 3: Accuracy and number of features comparison given the approaches chosen for experimentation in analysis II. The metrics of the approach
with the highest accuracy are highlighted in gray.

Classifier Feature selection method # of features Accuracy Recall Precision

NB
ETC 2 72.14% ± 1.40% 81.42% ± 1.95% 68.66% ± 2.53%
C-SVC 29 69.88% ± 2.26% 85.10% ± 2.38% 65.24% ± 2.00%
LR 29 70.52% ± 2.31% 84.98% ± 2.55% 65.92% ± 1.97%

kNN
ETC 19 83.29% ± 1.24% 89.96% ± 1.20% 79.36% ± 2.39%
C-SVC 29 82.58% ± 1.84% 90.36% ± 1.88% 78.20% ± 2.70%
LR 29 83.06% ± 1.48% 90.97% ± 1.91% 78.52% ± 2.46%

RF
ETC 17 86.03% ± 1.55% 90.39% ± 2.16% 83.10% ± 1.82%
C-SVC 28 86.15% ± 2.38% 90.36% ± 3.29% 83.28% ± 2.07%
LR 26 86.40% ± 1.80% 90.58% ± 2.98% 83.64% ± 2.09%

SVM
ETC 19 74.06% ± 2.19% 84.80% ± 1.83% 69.79% ± 3.13%
C-SVC 28 73.88% ± 2.79% 82.33% ± 2.87% 70.42% ± 3.38%
LR 25 74.46% ± 2.17% 83.28% ± 1.86% 70.81% ± 3.06%

Table 4: Feature ranking for analysis II, showing the results obtained by the 3 feature selection methods.

Position Feature selection method Position (cont.) Feature selection method (cont.)
ETC C-SVC LR ETC C-SVC LR

1 Lymphocytes (%) Lymphocytes Lymphocytes 16 COPD Biological Leukemia
2 Age Lymphocytes (%) Lymphocytes (%) 17 Diabetes LDH Biological
3 Creatinine Height Height 18 BMI CCS HIV
4 Lymphocytes BMI BMI 19 Asthma Ferritine Diabetes
5 AgeRange Asthma Asthma 20 IL-6 IL-6 Lymphoma
6 LDH Creatinine Creatinine 21 CCS D-Dimer D-Dimer
7 CRP Transplant Transplant 22 LD CRP Ferritine
8 D-Dimer LD LD 23 Lymphoma HIV IL-6
9 GFR COPD COPD 24 Chemotherapy Neoplasm CRP
10 Ferritine Lymphoma Chemotherapy 25 Transplant Diabetes Age
11 Weight AHT GFR 26 Biological Type Age AgeRange
12 Sex Leukemia Weight 27 Leukemia AgeRange AHT
13 Height GFR CCS 28 Biological Biological Type Biological Type
14 AHT Chemotherapy LDH 29 HIV Weight Neoplasm
15 Neoplasm Sex Sex

using the Logistic Regression as feature selection method, with an accuracy of 86.40% ± 1.80% and with an optimum
number of 26 features. In particular, the Random Forest algorithm demonstrates a high performance regardless of the
feature selection method, with a minimum mean accuracy of 86.03% and an optimal subset of 17 features. The next
best performing method is the algorithm kNN, with the lowest mean accuracy of 82.58% ± 1.84% and the highest
mean accuracy of 83.29% ± 1.24%. Finally, this ranking is completed by the SVM and the NB, with a performance
that is notably lower than the other 2 methods. In particular, the lowest performance of the SVM is 73.88% ± 2.79%
and the highest performance of 74.46% ± 2.17%. In the case of NB, the lowest accuracy is 69.88% ± 2.26% while
the highest accuracy is 72.14% ± 1.40%.

The evaluation of how the number of features affects the performance can be seen in Fig. 5 using as reference
the optimal approach for this analysis (with Random Forest as classifier and Logistic Regression as feature selection
method). The evolution depicts a trend of improvement that converges from 25 features onward.

Regarding the feature rankings, they can be found in Table 4. For this analysis, there is greater agreement between
ExtraTreesClassifier and the other two feature selection methods, with Lymphocytes and Lymphocytes (%) ranked
among the most relevant features, but there are still significant differences. Looking at the rankings produced by
LinearSVC and LogisticRegression, the variables related to the amount of Lymphocytes, BMI, Creatinine, Transplant,
COPD, LD, and Creatinine are among the top 10. In the case of ExtraTreesClassifier, in addition to Lymphocytes,
Age, AgeRange, Creatinine, LDH, CRP, D-Dimer, and Ferritine are also ranked in the top 10. It is worth noting that
ExtraTreesClassifier gives a high importance to Age and AgeRange, whereas LinearSVC and LogisticRegression rank
these variables significantly lower, as in the case of Analysis I.

For this second analysis, the set of rules of the trained decision tree can be seen in Fig. 6. In this case, the root node
starts discriminating between those patients with and without missing values for Lymphocytes (%). In particular, the
mentioned percentage of Lymphocytes and the absolute count appear several times in the nodes of the decision tree.
Nevertheless, other variables as Asthma, BMI and Height are considered by the decision tree to build the rules. In
the case of Asthma, this precondition is relevant given that it directly affects the breathing capacity of the patients,
worsening the risk of contracting severe COVID-19. Regarding the variable BMI, it is well-known that overweight
and obesity are risk factors for many pathological conditions. In a similar way as in the previous analysis, the location
of the variables is also relevant having that the percentage of Lymphocytes is one of the most discriminative features,
given that it is placed high in the decision tree, as well as the variables Asthma and BMI.

5. Conclusions

In this work, we have proposed an explainable methodology to identify patients at a higher risk of hospitalization
(Hospitalized/Non-Hospitalized scenario) or death (Survival/Death scenario) in two different analyses. The explain-
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Fig. 2: Evolution of the performance given the number of features in the analysis I, considering the approach with the highest accuracy (Random
Forest classifier with Logistic Regression as feature selector).
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Fig. 3: Half right of the Decision Tree that has been considered to add explainability to Analysis I.

GFR ≤ 0.039
entropy = 1.0

samples = 100.0%
value = [0.5, 0.5]

class = Hospitalized

Diabetes ≤ 1.5
entropy = 0.989

samples = 88.0%
value = [0.439, 0.561]

class = Non-Hospitalized

True

Neoplasm ≤ 0.5
entropy = 0.974

samples = 82.1%
value = [0.405, 0.595]

class = Non-Hospitalized

Neoplasm ≤ 0.5
entropy = 0.417
samples = 6.0%

value = [0.916, 0.084]
class = Hospitalized

COPD ≤ 1.5
entropy = 0.965

samples = 79.8%
value = [0.39, 0.61]

class = Non-Hospitalized

CCS ≤ 1.5
entropy = 0.402
samples = 2.3%

value = [0.92, 0.08]
class = Hospitalized

CCS ≤ 1.5
entropy = 0.959

samples = 78.6%
value = [0.381, 0.619]

class = Non-Hospitalized

CCS ≤ 1.5
entropy = 0.201
samples = 1.2%

value = [0.969, 0.031]
class = Hospitalized

entropy = 0.956
samples = 78.1%

value = [0.377, 0.623]
class = Non-Hospitalized

entropy = 0.0
samples = 0.5%

value = [1.0, 0.0]
class = Hospitalized

entropy = 0.211
samples = 1.1%

value = [0.967, 0.033]
class = Hospitalized

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0]
class = Hospitalized

COPD ≤ 1.5
entropy = 0.416
samples = 2.2%

value = [0.916, 0.084]
class = Hospitalized

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0]
class = Hospitalized

entropy = 0.391
samples = 1.9%

value = [0.923, 0.077]
class = Hospitalized

entropy = 0.567
samples = 0.3%

value = [0.867, 0.133]
class = Hospitalized

COPD ≤ 1.5
entropy = 0.461
samples = 5.2%

value = [0.903, 0.097]
class = Hospitalized

entropy = 0.0
samples = 0.8%

value = [1.0, 0.0]
class = Hospitalized

CCS ≤ 1.5
entropy = 0.487
samples = 4.6%

value = [0.894, 0.106]
class = Hospitalized

CCS ≤ 1.5
entropy = 0.206
samples = 0.6%

value = [0.968, 0.032]
class = Hospitalized

entropy = 0.493
samples = 4.5%

value = [0.892, 0.108]
class = Hospitalized

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0]
class = Hospitalized

entropy = 0.222
samples = 0.5%

value = [0.964, 0.036]
class = Hospitalized

entropy = 0.0
samples = 0.1%

value = [1.0, 0.0]
class = Hospitalized

Fig. 4: Half left of the Decision Tree that has been considered to add explainability to Analysis I.

their actual importance. This can be complemented with the position of the nodes in the tree. Particularly, GFR and
Diabetes and Neoplasm show to have high discrimination capabilities, being positioned in the shallowest levels.

Analysis II: estimation of the risk of death. Table 3 shows the results obtained in terms of accuracy for the
analysis I, regarding the used classifier and the feature selection method, also providing the optimal number of features
obtained in each case. There, it can be seen that the best performance is achieved by the Random Forest algorithm,
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Table 3: Accuracy and number of features comparison given the approaches chosen for experimentation in analysis II. The metrics of the approach
with the highest accuracy are highlighted in gray.

Classifier Feature selection method # of features Accuracy Recall Precision

NB
ETC 2 72.14% ± 1.40% 81.42% ± 1.95% 68.66% ± 2.53%
C-SVC 29 69.88% ± 2.26% 85.10% ± 2.38% 65.24% ± 2.00%
LR 29 70.52% ± 2.31% 84.98% ± 2.55% 65.92% ± 1.97%

kNN
ETC 19 83.29% ± 1.24% 89.96% ± 1.20% 79.36% ± 2.39%
C-SVC 29 82.58% ± 1.84% 90.36% ± 1.88% 78.20% ± 2.70%
LR 29 83.06% ± 1.48% 90.97% ± 1.91% 78.52% ± 2.46%

RF
ETC 17 86.03% ± 1.55% 90.39% ± 2.16% 83.10% ± 1.82%
C-SVC 28 86.15% ± 2.38% 90.36% ± 3.29% 83.28% ± 2.07%
LR 26 86.40% ± 1.80% 90.58% ± 2.98% 83.64% ± 2.09%

SVM
ETC 19 74.06% ± 2.19% 84.80% ± 1.83% 69.79% ± 3.13%
C-SVC 28 73.88% ± 2.79% 82.33% ± 2.87% 70.42% ± 3.38%
LR 25 74.46% ± 2.17% 83.28% ± 1.86% 70.81% ± 3.06%

Table 4: Feature ranking for analysis II, showing the results obtained by the 3 feature selection methods.

Position Feature selection method Position (cont.) Feature selection method (cont.)
ETC C-SVC LR ETC C-SVC LR

1 Lymphocytes (%) Lymphocytes Lymphocytes 16 COPD Biological Leukemia
2 Age Lymphocytes (%) Lymphocytes (%) 17 Diabetes LDH Biological
3 Creatinine Height Height 18 BMI CCS HIV
4 Lymphocytes BMI BMI 19 Asthma Ferritine Diabetes
5 AgeRange Asthma Asthma 20 IL-6 IL-6 Lymphoma
6 LDH Creatinine Creatinine 21 CCS D-Dimer D-Dimer
7 CRP Transplant Transplant 22 LD CRP Ferritine
8 D-Dimer LD LD 23 Lymphoma HIV IL-6
9 GFR COPD COPD 24 Chemotherapy Neoplasm CRP
10 Ferritine Lymphoma Chemotherapy 25 Transplant Diabetes Age
11 Weight AHT GFR 26 Biological Type Age AgeRange
12 Sex Leukemia Weight 27 Leukemia AgeRange AHT
13 Height GFR CCS 28 Biological Biological Type Biological Type
14 AHT Chemotherapy LDH 29 HIV Weight Neoplasm
15 Neoplasm Sex Sex

using the Logistic Regression as feature selection method, with an accuracy of 86.40% ± 1.80% and with an optimum
number of 26 features. In particular, the Random Forest algorithm demonstrates a high performance regardless of the
feature selection method, with a minimum mean accuracy of 86.03% and an optimal subset of 17 features. The next
best performing method is the algorithm kNN, with the lowest mean accuracy of 82.58% ± 1.84% and the highest
mean accuracy of 83.29% ± 1.24%. Finally, this ranking is completed by the SVM and the NB, with a performance
that is notably lower than the other 2 methods. In particular, the lowest performance of the SVM is 73.88% ± 2.79%
and the highest performance of 74.46% ± 2.17%. In the case of NB, the lowest accuracy is 69.88% ± 2.26% while
the highest accuracy is 72.14% ± 1.40%.

The evaluation of how the number of features affects the performance can be seen in Fig. 5 using as reference
the optimal approach for this analysis (with Random Forest as classifier and Logistic Regression as feature selection
method). The evolution depicts a trend of improvement that converges from 25 features onward.

Regarding the feature rankings, they can be found in Table 4. For this analysis, there is greater agreement between
ExtraTreesClassifier and the other two feature selection methods, with Lymphocytes and Lymphocytes (%) ranked
among the most relevant features, but there are still significant differences. Looking at the rankings produced by
LinearSVC and LogisticRegression, the variables related to the amount of Lymphocytes, BMI, Creatinine, Transplant,
COPD, LD, and Creatinine are among the top 10. In the case of ExtraTreesClassifier, in addition to Lymphocytes,
Age, AgeRange, Creatinine, LDH, CRP, D-Dimer, and Ferritine are also ranked in the top 10. It is worth noting that
ExtraTreesClassifier gives a high importance to Age and AgeRange, whereas LinearSVC and LogisticRegression rank
these variables significantly lower, as in the case of Analysis I.

For this second analysis, the set of rules of the trained decision tree can be seen in Fig. 6. In this case, the root node
starts discriminating between those patients with and without missing values for Lymphocytes (%). In particular, the
mentioned percentage of Lymphocytes and the absolute count appear several times in the nodes of the decision tree.
Nevertheless, other variables as Asthma, BMI and Height are considered by the decision tree to build the rules. In
the case of Asthma, this precondition is relevant given that it directly affects the breathing capacity of the patients,
worsening the risk of contracting severe COVID-19. Regarding the variable BMI, it is well-known that overweight
and obesity are risk factors for many pathological conditions. In a similar way as in the previous analysis, the location
of the variables is also relevant having that the percentage of Lymphocytes is one of the most discriminative features,
given that it is placed high in the decision tree, as well as the variables Asthma and BMI.

5. Conclusions

In this work, we have proposed an explainable methodology to identify patients at a higher risk of hospitalization
(Hospitalized/Non-Hospitalized scenario) or death (Survival/Death scenario) in two different analyses. The explain-
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Fig. 5: Evolution of the performance regarding the number of features in the analysis II, taking the approach with the highest accuracy (Random
Forest classifier with Logistic Regression as feature selector).
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Fig. 6: Decision Tree that has been trained to add explainability to Analysis II.

ability of this methodology can help clinicians to better understand the disease and make more informed decisions
based on retrospective data, which is also important for the potential inclusion of the methodology in clinical prac-
tice. For this purpose, we selected four different ML algorithms (Naive Bayes, k-Nearest Neighbors, Random Forest,
and Support Vector Machine), three feature selection methods (Extra-Trees Classifier, Linear Support Vector Clas-
sification, and Logistic Regression), and an additional Decision Tree to provide explainability. We also performed
an exhaustive analysis to find the optimal subset of features. The results demonstrate that the proposed methodology
is suitable for the presented problem, with an accuracy of 86.16% ± 0.74% for identifying patients at high risk of
hospitalization and 86.40% ± 1.80% for identifying patients at high risk of death. Regarding explainability, the analy-
sis I shows the great importance of Glomerular Filtration Rate, Neoplasm, Diabetes, Chronic Obstructive Pulmonary
Disease, and Corticosteroids (variables that are directly related to immunity and breathing capacity) in identifying
patients at high risk of hospitalization. In the case of analysis II, the absolute count and percentage of Lymphocytes
are notably relevant variables to determine the risk of death of a COVID-19 patient. Asthma (directly related to the
breathing capacity of the patients), BMI, and Height (which determine if a patient is overweight) are also relevant.
These analyses could be complemented using other sources of data in future works to improve the performance of
the classification models and add more clinical features to the decisions taken. Moreover, we could also include other
frameworks of explainability, like the SHAP algorithm, to complement the evaluation of the methodology.
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Fig. 5: Evolution of the performance regarding the number of features in the analysis II, taking the approach with the highest accuracy (Random
Forest classifier with Logistic Regression as feature selector).
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Fig. 6: Decision Tree that has been trained to add explainability to Analysis II.

ability of this methodology can help clinicians to better understand the disease and make more informed decisions
based on retrospective data, which is also important for the potential inclusion of the methodology in clinical prac-
tice. For this purpose, we selected four different ML algorithms (Naive Bayes, k-Nearest Neighbors, Random Forest,
and Support Vector Machine), three feature selection methods (Extra-Trees Classifier, Linear Support Vector Clas-
sification, and Logistic Regression), and an additional Decision Tree to provide explainability. We also performed
an exhaustive analysis to find the optimal subset of features. The results demonstrate that the proposed methodology
is suitable for the presented problem, with an accuracy of 86.16% ± 0.74% for identifying patients at high risk of
hospitalization and 86.40% ± 1.80% for identifying patients at high risk of death. Regarding explainability, the analy-
sis I shows the great importance of Glomerular Filtration Rate, Neoplasm, Diabetes, Chronic Obstructive Pulmonary
Disease, and Corticosteroids (variables that are directly related to immunity and breathing capacity) in identifying
patients at high risk of hospitalization. In the case of analysis II, the absolute count and percentage of Lymphocytes
are notably relevant variables to determine the risk of death of a COVID-19 patient. Asthma (directly related to the
breathing capacity of the patients), BMI, and Height (which determine if a patient is overweight) are also relevant.
These analyses could be complemented using other sources of data in future works to improve the performance of
the classification models and add more clinical features to the decisions taken. Moreover, we could also include other
frameworks of explainability, like the SHAP algorithm, to complement the evaluation of the methodology.
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[30] Yagin, F.H., Cicek, İ.B., Alkhateeb, A., Yagin, B., Colak, C., Azzeh, M., Akbulut, S., 2023. Explainable artificial intelligence model for

identifying COVID-19 gene biomarkers. Computers in Biology and Medicine 154, 106619. doi:10.1016/j.compbiomed.2023.106619.
[31] Yu, W., Rohli, K.E., Yang, S., Jia, P., 2021. Impact of obesity on covid-19 patients. Journal of Diabetes and its Complications 35, 107817.

doi:10.1016/j.jdiacomp.2020.107817.


