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This study aimed to develop a robust classification scheme for stratifying patients based on vaginal microbiome. 
By employing consensus clustering analysis, we identified four distinct clusters using a cohort that includes 
individuals diagnosed with Bacterial Vaginosis (BV) as well as control participants, each characterized by 
unique patterns of microbiome species abundances. Notably, the consistent distribution of these clusters was 
observed across multiple external cohorts, such as SRA022855, SRA051298, PRJNA208535, PRJNA797778, 
and PRJNA302078 obtained from public repositories, demonstrating the generalizability of our findings. We 
further trained an elastic net model to predict these clusters, and its performance was evaluated in various 
external cohorts. Moreover, we developed VIBES, a user-friendly R package that encapsulates the model for 
convenient implementation and enables easy predictions on new data. Remarkably, we explored the applicability 
of this new classification scheme in providing valuable insights into disease progression, treatment response, and 
potential clinical outcomes in BV patients. Specifically, we demonstrated that the combined output of VIBES and 
VALENCIA scores could effectively predict the response to metronidazole antibiotic treatment in BV patients. 
Therefore, this study’s outcomes contribute to our understanding of BV heterogeneity and lay the groundwork 
for personalized approaches to BV management and treatment selection.
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 Introduction

The human vagina is a balanced and dynamic ecosystem, with a 
mplex population of aerobic and anaerobic bacteria, which can reach 
 to 109 cfu/mL of vaginal fluid [41]. Vaginal microbiota is considered 
althy when the bacteria present inside the vagina comprise 90-95% 
ctobacillus spp. However, other studies indicate that it cannot be used 
 the sole criterion for establishing vaginal health [9].
Bacterial vaginosis is an underdiagnosed disease characterized by a 
terogeneous group of individuals with distinct phenotypes and vary-
g responses to treatment [21,33]. This heterogeneity has prompted 
e exploration of alternative classification criteria to stratify patients 
d obtain more specific information about the condition [1,23,42,20].
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Previous studies have demonstrated the usefulness of using bacterial 
species as predictive signatures for different diseases, such as pancreatic 
cancer [15], diabetes [10] or inflammatory bowel disease [17]. Moti-
vated by these findings, our objective was to establish a robust, simple 
and explainable signature of bacterial species that could effectively 
categorize patients into different groups. Furthermore, we developed 
VIBES an user-friendly R package that encapsulates the software for 
convenient implementation.

The reduced diversity of vaginal microbiome simplifies the char-
acterization, interpretation and identification of key microbial players 
and their potential impact on health and disease. To evaluate the ef-
ficacy of our model, we compared its performance with VALENCIA 
community state type (CSTs) [12], an existing and well-established 
classification criteria. While there are shared information between the 
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o approaches, our model provided distinct insights into treatment re-
onse of metronidazole antibiotic.
Both VALENCIA and VIBES are two models generated through dif-

rent approaches that could complementarily explore the vaginal mi-
obiome. Broadly, the main differences that have led to proposing the 
mplementary use of both in terms of features, underlying algorithms, 
xonomic coverage, and class structure are the following: VALENCIA, 
model incorporating up to 199 features, operates on the K-Nearest 
eighbors (KNN) algorithm, while VIBES, on the other hand, utilizes 
e Elastic Net (glmnet) algorithm and encompasses 20 features. One 
table difference between the two models is their taxonomic cover-
e: VALENCIA incorporates taxa ranging from the class level down to 
e species level, while VIBES solely considers species-level taxonomic 
formation. Moreover, VALENCIA presents a class structure consist-
g of five classes, which can further be subdivided into up to thirteen 
bclasses, whereas VIBES features four distinct classes. By combining 
e strengths of both approaches, we aimed to enhance the accuracy 
d comprehensiveness of predictions related to treatment response and 
her clinical factors.
Our study objectives encompassed three main aspects. Firstly, we 

med to introduce a novel clustering approach to stratify BV patients 
sed on their microbiome profiles to provide additional information to 
e VALENCIA. This clustering analysis would help identify distinct pa-
nt groups and facilitate targeted interventions. Secondly, we sought 
 assess the generalizability and robustness of our ML model by eval-
ting its performance across multiple external cohorts. Finally, we 
med to compare the predictive capacity of our classification system 
 terms of treatment responses, further highlighting the value of our 
odel in clinical decision-making.

 Results

Introducing the findings of our scientific inquiry, this article unfolds 
 three distinct sections, each contributing to a comprehensive under-
anding of our research outcomes. In the first section, we delve into the 
sults of consensus clustering, unveiling four clusters that exhibit both 
neralizability and robustness across diverse cohorts. Subsequently, 
e explore the intricacies of VIBES, an explainable, robust, and general-
able machine learning model, in the second section, shedding light on 
 capacity to predict the identified consensus clusters. The third sec-
n of our presentation focuses on a pivotal aspect of our investigation: 
e enhancement of treatment response prediction to metronidazole. 
gether, these sections form a cohesive narrative, elucidating the mul-
aceted dimensions of our study and providing a nuanced perspective 
 the intricacies of our findings.

1. Consensus clustering identifies four generalizable and robust clusters 
ross cohorts

In this study, we used consensus clustering analysis to stratify pa-
nts with BV and healthy individuals, based on the microbiome pro-
es of their vaginal flora. To ensure a robust and generalizable strat-
cation criterion, we selected 22 species that were shared across all 
horts. This strategy effectively minimized the potential for overfit-
g to the discovery cohort, allowing for reliable extrapolation of the 
entified clusters to the other cohorts.
The analysis revealed the presence of four distinct groupings within 
e examined population. We explored various combinations of data 
ansformations (counts, ALR, and CLR), distance methods (Pearson, 
earman, Euclidean, binary, and maximum), and clustering algorithms 
ierarchical clustering, partitioning around medoids, and k-means). 
fter careful consideration, we identified the most optimal configura-
n, involving CLR-transformed data, the Euclidean distance function 
eflecting Aitchison distance), and k-means clustering. This particular 
nfiguration, consisting of 4 robust and stable clusters across multiple 
149

rations, was determined as the most suitable. The number of clusters is
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) was rigorously established using the ConsensusClusterPlus R package, 
ploying a consensus clustering approach to assess stability and ro-
stness. This method ensures a reliable determination of K, supported 
 the consensus matrix and cumulative distribution function (CDF) 
ot, as illustrated in Supplementary Figure S1.
As we mentioned earlier, to assess the robustness of the clusters, 

e conducted a bootstrap analysis using different subsamples. When 
mparing the similarity of the clusters in each of these subsamplings 
 the original clusters (using all the samples), we obtained Adjusted 
nd Index (ARI) values of 0.875 with 50% of the data, 0.878 with 
.5%, 0.935 with 75%, and 0.965 with 90% of the data. This yielded 
 average ARI value of 0.914. The findings suggest that the optimal 
mber of four clusters appears to be determined more by the nature of 
e problem than by the number of samples included in the CCP.
An essential aspect of validating the robustness and generalizability 

 our clustering analysis is to examine the distribution of our identified 
usters across multiple external cohorts. By assessing the consistency 
 cluster assignments in independent datasets, we can ascertain the 
liability and reproducibility of our findings.
Notably, we observed in Fig. 1 a remarkable similarity in the distri-
tion of our clusters across diverse external cohorts. This consistency 
inforces the reliability of our clustering approach and suggests that 
e identified clusters are not specific to our study population alone but 
ther reflect inherent characteristics of BV.
Specifically, VCS-I exhibited a predominance of Lactobacillus species, 

ith higher abundances of Lactobacillus crispatus and Lactobacillus in-
s compared to the other clusters. The difference in abundance of 
ctobacillus crispatus is significant. This cluster was characterized by 
relatively balanced microbiome composition, resembling a healthy 
ginal microbiota.
VCS-II displayed a higher abundance of Lactobacillus iners, without 
esence of Lactobacillus crispatus.
VCS-III demonstrated a significantly higher abundance in another 
ctobacillus species such as Lactobacillus gasseri. These patients dis-
ayed a distinctive microbiome profile, suggestive of an altered vaginal 
vironment.

VCS-IV displayed a higher abundance of Gardnerella vaginalis, Pre-
tella species, Sneathia Sanguinegens and Atopobium vaginae, indicating 
sbiosis and a shift towards a more pathogenic microbiome.
To further assess the validity and uniqueness of our clustering ap-
oach, in Fig. 1 we also compared our identified clusters with the 
bsets defined by the VALENCIA classification method and Nugent 
ore.

The Nugent score categorized patients based on their clinical man-
stations and symptomatology, focusing on the clinical presentation 
 BV rather than the underlying microbiome composition. In contrast, 
r clustering approach was primarily driven by the microbiome species 
undances, allowing for a more granular understanding of the vaginal 
osystem.

Interestingly, we found that some subsets within the VALENCIA 
Ts could be mapped to specific clusters in our analysis. For example, 
tients exhibiting the asymptomatic subset in VALENCIA corresponded 
edominantly to VCS-I in our clustering analysis. This concordance 
ggests that patients within this subset tend to possess a healthier 
ginal microbiota characterized by higher abundances of Lactobacil-
s species, specifically with presence of Lactobacillus crispatus.
However, there were notable differences between the two classifica-
n systems as well. For instance, we observed that certain VALENCIA 
Ts (CST-III, CST-IV-A, and CST-V) did not align directly with any 
ecific cluster in our analysis. Specifically, intermediate clusters from 
BES such as VCS-II and VCS-III show high heterogeneity when com-
red with CST subtypes. This discrepancy indicates that our cluster-
g approach provides additional and complementary insights into the 
icrobiome-based characteristics of BV patients.
In the subsequent sections, we will further explore the character-
tics and clinical implications of each cluster, as well as evaluate the 
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Fig. 1. Heatmap of the 22 species across the 5 cohorts. The pH, the Nugent Score, the clusters generated and the VALENCIA CSTs are shown for each sample.
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rformance of our ML model in predicting treatment responses within 
ese distinct groups.

2. VIBES as an explainable, robust and generalizable machine learning 
odel to predict consensus clusters

Building upon the previous cluster analysis, we developed VIBES an 
astic net model to predict clusters of BV patients. This approach capi-
lizes on the insights gained from earlier cluster analyses and leverages 
e predictive power of ML techniques to enhance the accuracy and ap-
icability of BV cluster prediction.
By integrating the knowledge derived from previous cluster analy-
s, our ML model benefits from the identification of meaningful pat-
rns and relationships among BV patients. This enables the model to 
pture the intricate interplay of variables and features that differenti-
e the various clusters.
In order to gain insights into the important features driving the mod-

’s predictions, we analyzed the variable importance using beta values. 
e beta values in the elastic net model refer to the coefficients as-
gned to each predictor variable and represent the weights/strengths 
signed to each predictor variable in the final model. Fig. 2a displays 
e variable importance of each linear model specific by cluster, pro-
ding an interpretability aspect to our model. In order to assess the 
gnificance of the microbial balance in the vaginal microbiome, we or-
nized the weights of the beta coefficients into groups based on the 
nus classification. This approach allowed us to evaluate the relative 
portance of different microbial taxa in shaping the composition of 
e vaginal microbiota. By grouping the beta weights, we gained in-
ghts into the contributions and potential roles of specific microbial 
nera in maintaining a balanced vaginal ecosystem, contributing to 
 cluster predictions. Thus, Fig. 2a and Supplementary Figure S2 de-
ct the beta coefficients obtained from the elastic net model for the 20 
ecies encompassing all four clusters.
Initially, it should be noted that two species, namely Mageeibacillus 

dolicus and Peptoniphilus lacrimalis, are excluded from the visual rep-
sentation due to their beta coefficients being consistently zero across 
l clusters. This implies that these species do not contribute any sig-
ficant information to the model and have no discernible impact on 
e observed clustering patterns. The analysis reveals that within VCS-
150

the species exhibiting the highest beta value is Lactobacillus crispatus, us
ggesting a robust association between this species and the specific 
uster. Moving to VCS-II, the species Lactobacillus iners, Aerococcus 
ristensenii, Campylobacter ureolyticus, and Staphylococcus haemolyticus
hibit the highest beta values, underscoring their importance in pre-
cting this class. Similarly, in VCS-III, the most influential species are 
ctobacillus iners, Campylobacter ureolyticus, Prevotella bivia, and Fine-
ldia magna. Lastly, VCS-IV presents the most variability in terms of 
portance. Atopobium vaginae, Campylobacter ureolyticus, Lactobacil-
s gasseri, Mycoplasma hominis, and Sneathia sanguinegens obtained the 
ghest beta values in the model. These findings offer valuable insights 
to the discriminatory features of the dataset by revealing the specific 
ecies that drive the classification of each cluster, providing a deeper 
derstanding of the problem.
To assess the performance of our model, we conducted external val-
ations on four separate cohorts. Fig. 2b presents the performance 
etrics, including the Brierś error, Cohenś kappa statistic, accuracy, 
d balanced accuracy, for each cohort. It can be seen that having 
timized the hyperparameter configuration, the values of all mea-
rements improve compared to the first external cross-validation (see 
pplementary data Figure S3). During the validation of the elastic net 
odel, high accuracy values (> 0.91) were achieved, except for the 
lidation cohort 2, which showed a slightly lower accuracy of approx-
ately 0.87. Furthermore, the Brier error in this particular cohort was 
ightly higher compared to the other cohorts, with an approximate 
lue of 0.18. This performance difference may be due to the differ-
ce in the microbiome profile of this cohort compared to the rest of 
e cohorts. Nonetheless, all cohorts demonstrated notably high val-
s of balanced accuracy, surpassing 0.91. In addition, Cohen’s kappa 
as introduced for this validation, which yields very good values (> 
83). The results obtained were highly promising, indicating the mod-
’s effectiveness in predicting BV clusters across different datasets. The 
served metrics consistently demonstrated excellent performance, sug-
sting the robustness of our model in classifying BV patients subtypes.
Alongside model development, we created an R package to stream-
e the utilization of our model for researchers and practitioners in 
e field. This package has been designed to simplify the usage of our 
odel, and it comes with user-friendly functions and comprehensive 
cumentation. We have made sure that it is accessible and convenient 
r a wide range of users. As it is developed in a user-friendly way, it 

es the base packages that come with R installed as a base. The only de-
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Fig. 2. Variable importance and external validation summary using VIBES. a) The betas assigned to each species (and their representation by genus) for each 
cluster-specific model (VCS-I to VCS-IV). b) Performance measures across the four validation cohorts.

pe

ob

m

m

ob

fil

of

w

st

is

VI

in

th

ke

ea
ndency is on the phyloseq [19] package to be able to incorporate the 
jects that this package produces. VIBES utilizes the best-performing 
odel and incorporate a key microbiomics-based signature of selected 
icroorganisms. This package, accepts a matrix, dataframe, or phyloseq
ject containing a vaginal microbiome profile as input. From this pro-
e it returns the probabilities (between 0 and 1) of belonging to each 
 our clusters (VCS-I, VCS-II, VCS-III or VCS-IV) and by consensus to 
hich one it belongs. This output variables could be used in down-
151

ream analysis or in other predictive models. ou
The documentation for the VIBES package, along with a use case, 
 available at https://mall -machine -learning -in -live -sciences .github .io /
BES -docs/.
Overall, our proposal demonstrated strong predictive performance 

 identifying BV clusters. The variable importance analysis enhanced 
e interpretability of the model, aiding in the understanding of the 
y factors driving the predictions. Furthermore, the development of an 
sy-to-use R package aims to facilitate the adoption and application of 

r model in clinical and research settings.

https://mall-machine-learning-in-live-sciences.github.io/VIBES-docs/
https://mall-machine-learning-in-live-sciences.github.io/VIBES-docs/
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Fig. 3. Changes in microbiome profiles after treatment with metronidazole. a) illustrates the variance explained by the extracted factors. In b) show the weight that 
each factor gives to the species. c) represents the heatmap with the abundance of the 22 species over the three-time points (pre-treatment, after one week, and after 
one month) regarding metronidazole treatment. In this case, the cluster labels have been obtained using VIBES. d) shows the prediction performance (RF algorithm 
and mean of the 10 fold-CV) of the VALENCIA CSTs, and with VIBES in relation to the response to metronidazole.
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3. Improving the prediction of treatment response to metronidazole

To assess the utility of our model in predicting treatment response, 
e conducted a longitudinal cohort study consisting of three-time 
ints: pre-treatment, after one week, and after one month. The analy-
s involved the evaluation of microbiome profiles using the MEFISTO 
ethod, capturing the changes in vaginal microbiota following treat-
ent. The results, depicted in Fig. 3a-b, highlight the dynamic alter-
ions observed in the microbiome profiles of responders compared to 
n-responders.

Fig. 3a present the results of the MEFISTO analysis, illustrating 
e shifts in the vaginal microbiome profiles after treatment. Non-
sponders exhibited minimal changes in their microbiome profiles, 
152

dicating a lack of response to the treatment. In contrast, responders pa
monstrated notable alterations, indicating a successful response to 
e intervention.
Building upon the encouraging findings from our previous results, 

e aimed to explore the relationship between the clusters and the vari-
s timepoints. By investigating the temporal dynamics of the clusters, 
e sought to gain a deeper understanding of their behavior and poten-
l implications across different stages or intervals of the study. Fig. 3c 
splays a heatmap of the microbiome profiles across the three-time 
ints. The samples were ordered based on the probabilities assigned by 
r model, and they were labeled with both VALENCIA CSTs and treat-
ent response status. The heatmap uncovers a discernible association 
tween treatment responders and non-responders with the clusters we 
entified. It can be seen that at baseline most patients have a micro-
ome profile with dysbiosis, few Lactobacillus species (except for some 

tients with Lactobacillus iners), an abundance of Atopobium vaginae, 
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d Prevotella amnii. One week after antibiotic ingestion, dysbiosis was 
served to have disappeared in most patients, leaving a predominance 
 Lactobacillus iners. At the end-point, patients who did not respond 
 treatment showed incipient dysbiosis. With regard to stratification, 
ost of the patients who did not recover corresponded to cluster VCS-IV 
d to a lesser extent to VCS-III. This finding highlights the promising 
pability of our model and clusters to capture unique microbiome pat-
rns that are linked to treatment response, suggesting their potential 
 valuable indicators in this context.
Based on this premise, we formulated a hypothesis that the vari-
les obtained from the mentioned package could serve as predictive 
riables for a new prediction model. Thus, we conducted a bench-
ark analysis to predict the response to metronidazole antibiotic in 
etreated patients. Predictors were employed in three distinct combi-
tions of variables, namely VALENCIA, VIBES, and their composite. 
e results of this experiment, as shown in Fig. 3d, revealed an intrigu-
g finding. Remarkably, the combined use of VALENCIA and VIBES 
riables outperformed the individual approaches. This noteworthy out-
me suggests that our identified clusters offer unique and complemen-
ry information beyond what can be captured by VALENCIA alone. 
nsequently, our clusters present valuable insights for predicting treat-
ent response, thereby enhancing clinical decision-making.

 Methods

All experiments have been carried out in R (4.0.2 version) [27].

1. Datasets

To carry out this work, five different cohorts have been used. All of 
em correspond to 16S rRNA sequencing samples obtained from vagi-
l environment. SRA022855 (discovery cohort) [31] has been used 
 compute the reference clusters, as well as to train the ML mod-
s. The remaining cohorts, SRA051298 (validation cohort 1) [38], 
JNA208535 (validation cohort 2) [30], PRJNA797778 (validation 
hort 3) [11], and PRJNA302078 (validation cohort 4) [45], have been 
ed to validate the results. Moreover, we used the validation cohort 4 
 explore the relationship between our stratification methodology and 
e response to metronidazole antibiotic.
In this context, the study employed microbial data from various 
blic repositories, incorporating information from diverse cohorts: 
A022855 featured the vaginal bacterial communities of 396 North 
merican women (Baltimore and Atlanta), aged 12 to 45 (mean age: 
), with participants self-identifying as African American (n=104), 
hite (n=98), Hispanic (n=97), and Asian (n=97). SRA051298 in-
uded data from 220 North American women (Seattle), aged 18 to 
 (mean age: 29), self-identifying as African American (n=75), White 
=97), Asian (n=15), and Others (n=33). PRJNA208535 involved 
e vaginal bacterial communities of 25 North American women (Birm-
gham) over 10 weeks (1657 16S raw samples on the repository), aged 
 to 45 (mean age: 27), with participants self-identifying as African 
merican (n=20) and White (n=5). PRJNA797778 focused on the 
ginal bacterial communities of 39 North American women (Balti-
ore) over 10 weeks (220 16S raw samples on the repository), aged 19 
 45, with participants self-identifying as African American (n=24), 
hite (n=10), Hispanic (n=4), and Asian (n=1). PRJNA302078 ex-
ined the vaginal bacterial communities of 65 Chinese women (Bei-
g) at three time points: pretreatment, one week after treatment, and 
e month after treatment with metronidazole (201 16S raw samples 
 the repository), aged 18 to 53.
The cohorts were obtained by processing the 16S rRNA sequences 
sted in the European Nucleotide Archive (ENA). The samples were 
wnloaded from ENA using the enaBrowserTools. In the case of the 
lidation cohort 2, we only downloaded those with available clinical 
formation. Subsequently, the DADA2 [6] package was used to pro-
153

ss these samples. Non-chimeric assembled amplicon sequence vari- he
Computational and Structural Biotechnology Journal 23 (2024) 148–156

ts (ASVs) were taxonomically assigned (phylum to species) using the 
lva reference database (v138.1) [18].
The discovery cohort was obtained from [40], while the validation 
hort 1 was sourced from [38]. The downloaded data from both co-
rts included clinical information and count tables for Operational 
xonomic Units (OTUs). Unfortunately, the ENA did not provide re-
ble access to demultiplexed samples or their identification. As an al-
rnative, we used the OTU names and accessed the Taxonomy database 
4] to acquire the associated taxonomic categories. For this purpose, 
e used: rentrez [44], taxonomizr [37] and taxize [35].
OTU/ASV tables, taxonomic table, and clinical data of the patients 

ere combined in a phyloseq [19] object. Finally, each phyloseq was 
gregated at the species level, and species not present in all cohorts 
ere filtered out to perform the downstream analysis, resulting in 22 
mmon species.

2. Cluster analysis

For the analysis of patient data in the discovery cohort, the Con-
nsusClusterPlus (CCP) method [43] was employed in this study. The 
llowing parameters were used: a maximum of 6 clusters, 1500 resam-
ing iterations, a resampling threshold of 0.8 without resampling of 
atures, and a comprehensive evaluation of all available distance mea-
res compatible with the clustering algorithm.
Furthermore, we conducted experiments using three distinct data 

ansformation methods (counts, ALR, and CLR) and three clustering 
gorithms (hierarchical clustering, partitioning around medoids, and 
means).

Additionally, a bootstrap analysis was performed alongside the CCP 
ethod to enhance the robustness and reliability of our clustering re-
lts. This process involved creating four distinct subsets by subsam-
ing data, which covered 50%, 62.5%, 75%, and 90% of the original 
taset. Subsequently, we applied the CCP method to each of these sub-
ts, allowing us to assess the stability and consistency of our clustering 
sults in different subsamples. To quantify the similarity of the result-
g clusters from each subset of samples with respect to the clusters 
ith all the samples, the Adjusted Rand Index (ARI) was used. This in-
x measures the agreement between two sets of clusters and provides 
formation about the robustness of the clustering solution. The mclust
ckage [36] was utilized for calculating this index.

3. Supervised classification

We used mlr3 (0.14.1 version) R package [16] to train all ML models. 
ecifically, in the benchmark analysis we used four different algo-
thms: Random Forest (RF) [5], Support Vector Machines (SVM) [8], 
astic Net (glmnet) [13], and eXtreme Gradient Boosting (xGBoost) 
].

A nested cross-validation was performed for training the algorithms 
ing the discovery cohort. This type of validation consists of two CV 
ocesses: the first is an independent internal CV (a holdout of 0.80 for 
aining and 0.20 for validation) for the selection of the best hyperpa-
meters of each algorithm, and the second is an independent external 
 (10-fold CV) to evaluate the model in general. Once all the mod-
s had been trained on the discovery cohort, their performance was 
aluated on the validation cohorts.
For the evaluation of the models, the following measures have 
en calculated: accuracy (Acc), balanced accuracy (B.Acc), Brier er-
r (Brier), and Cohenś kappa coefficient (Kappa).

4. Longitudinal analysis

Furthermore, considering that validation cohort 4 exhibited a re-
onse to BV treatment, our aim was to investigate the dynamics of 
ese clusters across multiple treatment time points. To gain compre-

nsive insights, we employed the MOFA2 package [3] and conducted a 
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EFISTO analysis. This analysis allowed us to extract valuable informa-
n pertaining to the treatment response, including the identification of 
ecies that played a pivotal role and their potential associations with 
e newly discovered clusters. The MEFISTO pipeline enabled us to ex-
ore and uncover important patterns and relationships within the data.

 Discussion

Our study employed the consensus cluster approach to identify dis-
ct clusters within the dataset. The clustering analysis revealed four 
usters that exhibited robust and stable patterns across multiple iter-
ions and large external cohorts. These clusters represented different 
bgroups within the data, highlighting the presence of significant het-
ogeneity. This finding is consistent with previous studies that have 
monstrated the existence of diverse microbial communities within 
milar populations [12].
After performing the cluster analysis, we proceeded to develop a ML 
odel to predict the identified clusters. This step aimed to provide a 
actical and efficient tool for assigning new samples to the appropriate 
uster based on their characteristics. The ML model was trained using 
diverse set of features that exhibited significant discriminatory power 
 distinguishing between the clusters.
To ensure the accessibility and usability of our approach, we further 
veloped an R package, which encapsulates the predictive model and 
ers a user-friendly interface for researchers and practitioners. The 
ckage, named VIBES, provides a comprehensive set of functions and 
ols for data preprocessing and cluster prediction. Its modular structure 
lows for easy integration into existing workflows, facilitating seamless 
plementation in various research and clinical settings.
The predictive performance of our ML model was rigorously eval-
ted using appropriate metrics, such as accuracy, balanced accuracy, 
ppa, and brier error. Cross-validation techniques were employed to 
sess the robustness of the model and guard against overfitting. Ad-
tionally, external validation using independent datasets would help 
nfirm the generalizability and reliability of our approach.
Notably, the variable importance analysis using the elastic net model 
ovided valuable insights into the predictive power of specific vari-
les for each class. Within VCS-I, Lactobacillus crispatus is likely to 
hibit a prominent role, exerting a substancial influence on the over-
l microbial composition, and suggesting its potential role as a key 
dicator for this class. Lactobacillus crispatus is considered a dominant 
cterium in a healthy vaginal microbiota and plays a protective role 
 maintaining microbial balance [32,24,29]. It produces lactic acid as 
byproduct of its metabolism. This metabolic trait contributes to the 
aintenance of an acidic vaginal environment, which serves as a natu-
l defense mechanism against the proliferation of pathogenic bacteria, 
ereby preserving vaginal health. In contrast, as the analysis moves to-
ards VCS-IV, the presence and impact of Lactobacillus crispatus appear 
 diminish, suggesting a lesser contribution to the overall microbial 
namics.

Similarly, VCS-II, VCS-III, and VCS-IV, revealed distinct sets of vari-
les that exhibited high beta values, emphasizing their importance in 
edicting their respective classes.
In VCS-II and VCS-III, Lactobacillus iners appear to be predominant, 

hile it is absent in VCS-I and VCS-IV. Despite the general notion of 
protective effect associated with lactobacilli, there is controversy sur-
unding iners, which has been identified in diseased vaginal samples 
4,26].

Prevotella is known to produce putrescine, cadaverine, and trimethy-
mine, which can contribute to an increase in vaginal pH. Additionally, 
evotella produces ammonium, creating an environment that favors the 
owth of Gardnerella, as observed in VCS-III and VCS-IV.
The production of putrescine, cadaverine, and trimethylamine by 
evotella highlights its potential role in altering the vaginal microenvi-
nment. These metabolites are associated with an increase in vaginal 
154
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ntribute to the development of dysbiosis or vaginal disorders. Fur-
ermore, Prevotella bivia is known to produce enzymes and toxins that 
n contribute to tissue damage and inflammation. It can also interact 
ith other bacteria and host factors, further exacerbating the infection 
 disease progression [22,21,25,28].
In VCS-IV, elevated beta values of the bacterial species Atopobium 
ginae and Sneathia sanguinegens were observed suggesting a potential 
sociation between these bacterial species and the underlying factors 
iving the microbial community dynamics in this particular cluster. 
opobium vaginae is a gram-positive bacterium that produces enzymes 
d metabolites that can disrupt the delicate balance of the vaginal 
osystem and contribute to the development of symptoms associated 
ith BV, leucorrhea, high pH, and the presence of clue cells. It is espe-
ally associated with the formation of a biofilm that favors resistance 
 metronidazole and recurrences [4,20,22,21], as depicted in Fig. 2. 
eathia sanguinegens, formerly known as Leptotrichia sanguinegens, is 
other gram-negative bacterium associated with various gynecologi-
l infections, and has been found to produce virulence factors that 
n contribute to inflammation and tissue damage in the vaginal en-
ronment [2,21,33,39]. Finally, elevated beta values are observed for 
mpylobacter ureolyticus and Mycoplasma hominis, which appears to be 
sociated with an increase in Lactobacillus gasseri. This finding suggests 
potential interplay between these bacterial species within the vagi-
l microbiota. Campylobacter ureolyticus and Mycoplasma hominis are 
own microbial inhabitants of the vaginal ecosystem. Previous studies 
ve implicated these bacteria in various aspects of vaginal health and 
icrobial dysbiosis. The elevated beta values observed in VCS-IV may 
flect an ecological shift or dysregulation in the vaginal microbial com-
unity. This dysbiosis could potentially disrupt the delicate balance of 
neficial and pathogenic microorganisms. Consequently, the increased 
undance of Campylobacter ureolyticus and Mycoplasma hominis may 
eate an environment conducive to the proliferation of Lactobacillus 
sseri. Lactobacillus gasseri, known for its probiotic properties and ben-
cial effects on vaginal health, may respond to the changes in the 
icrobial composition induced by Campylobacter ureolyticus and My-
plasma hominis. It is possible that Lactobacillus gasseri, as a competitive 
d resilient bacterium, increases in abundance as a defense mecha-
sm to restore the vaginal microbiota homeostasis and counteract the 
tential negative effects associated with the presence of Campylobacter 
eolyticus and Mycoplasma hominis.
Our findings align with prior research, which has implicated these 
riables in various aspects of microbial community composition and 
alth outcomes.
It is important to acknowledge the limitations of this study. First, 
e dataset used in our analysis was derived from a specific population, 
hich may limit the generalizability of our findings to other popula-
ns or geographical regions. Furthermore, we selected the discovery 
hort with the largest population of patients to enhance the gener-
izability of our findings and ensure the robustness of the identified 
btypes. It is important to note that the taxonomic assignment in this 
taset was based on OTUs, which may not be the most precise method. 
owever, the results obtained from external datasets, where ASVs were 
ed for taxonomic assignment, validate the robustness of the relation-
ips observed in our dataset. This validation across different datasets 
ggests that our findings hold substantial strength and can be reliably 
plied beyond the initial cohort. Additionally, although the consensus 
usters and elastic net models are widely used and have shown ro-
st performance, they are not without their own inherent biases and 
sumptions. Future studies should aim to validate our findings using 
dependent datasets and alternative clustering algorithms to confirm 
e stability and reproducibility of the identified clusters.

 Conclusion

In conclusion, this paper introduces a novel approach for predicting 

ginal microbiome subtypes using explainable machine learning mod-
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s. By precisely identifying and categorizing these subtypes, a deeper 
derstanding of microbial diversity within the vaginal ecosystem is 
hieved. The findings significantly contribute to our comprehension of 
e complex nature of the vaginal microbiome and its potential impli-
tions for health and disease. Moreover, the ability to predict subtypes 
ens avenues for personalized interventions and targeted therapies 
sed on specific microbial profiles. The research holds promise for 
hancing our understanding of the vaginal microbiome and contribut-
g to improved health outcomes. Future studies can build upon these 
dings to further explore the functional implications of subtypes and 
velop interventions that leverage the individualized characteristics of 
e vaginal microbiome.
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