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ARTICLE INFO ABSTRACT

Keywords: Recent clinical studies have emphasized the importance of understanding the morphology and mechanics of the
CAD system ciliary muscle. The ciliary muscle plays a vital role in various functions related to the anterior segment of the
A?jOCT eye, including the regulation of intraocular pressure and the maintenance of the shape of the crystalline lens. To
Ciliary mu.Sde advance research in this area, we propose a fully automated methodology for the segmentation and biomarker
Segmentation s . . .

Biomarkers measurement of the ciliary muscle in two different scan depths (6 mm and 16 mm), which are commonly

used by clinicians to analyze biomarkers. Our methodology aims to provide repeatable, and immediate results
through an exhaustive analysis of different network architectures, encoders, and transfer learning strategies.
We also extracted a comprehensive set of relevant biomarkers, including parameters that provide essential
information about its behavior during the accommodation process, overall dimensions, and biomechanical
properties. These biomarkers can help clinicians and researchers in the diagnoses and monitor of different
ocular diseases such as glaucoma, myopia, and presbyopia and develop new therapeutic strategies, potentially
leading to more effective treatments and improved patient outcomes. Our methodology achieved accurate
qualitative and quantitative results, with high accuracy values of 0.9665 + 0.1280 and 0.9772 + 0.0873 for the
best combinations for 6 mm and 16 mm, respectively. Our proposed system provides a valuable and automatic
tool for clinicians and researchers in the segmentation and analysis of the ciliary muscle in AS-OCT images.

Deep learning

1. Introduction lead to changes in the ciliary muscle and affect aqueous humor flow,
leading to increased intraocular pressure and vision loss [1-4].
The ciliary muscle is a key structure of the eye, playing an important

role in the regulation of accommodation and thus, in our ability to focus

The ciliary muscle is a smooth muscle ring located in the vascular
layer of the human eye, responsible for regulating visual accommoda-

tion and aqueous humor flow. This control over lens shape is vital for
clear vision, allowing the eye to focus on objects at varying distances.
Contraction of the ciliary muscle relaxes the zonular fibers attached to
the lens, making it more spherical for close-up vision, while relaxation
tautens these fibers, flattening the lens for improved distance vision.
Proper ciliary muscle function is indispensable for optimal visual
acuity, involving complex physiology influenced by the autonomic
nervous system, the sympathetic and parasympathetic systems, and
other factors like lens capsule elasticity. Abnormalities or dysfunctions
in the ciliary muscle can lead to a range of ocular disorders and visual
impairments. Similarly, conditions such as glaucoma and uveitis can

on near and distant objects. The morphology and physiology of the
ciliary muscle have been studied extensively, and many clinical studies
have been developed over the years to investigate its implications in
the development and progression of myopia, refractive error, axial
ametropia, accommodation, and other related conditions. For instance,
Chen et al. [5] reviewed the implications of the ciliary muscle in
myopia development and progression, while Baley et al. [6] studied
the relation between ciliary body thickness and refractive error in
school-age children. Sheppard et al. [7] proposed an analysis of ciliary
muscle morphologic changes with accommodation and axial ametropia,
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and Lossing et al. [8] measured the changes in ciliary muscle thick-
ness with accommodation in young adults. Moreover, Lewis et al. [9]
investigated the morphology of the ciliary muscle during accommo-
dation in a population of children, while Buckhurst et al. [10] an-
alyzed the interrelationships between biometric and morphological
characteristics of anterior and posterior segments with reference to
temporal and nasal ciliary muscle thickness. Pucker et al. [11] studied
the relationship between refractive error and ciliary muscle thick-
ness in different muscle regions, and Kuchen et al. [12] investigated
the relationships between ciliary muscle thickness, refractive error,
and axial length in adults with anisometropia. Tabernero et al. [13]
studied the implication of presbyopia in the ciliary muscle function,
finding that it continues working. Wagner et al. [14] provided an
in-depth analysis of the morphological changes of the ciliary muscle
during accommodation by evaluating ciliary muscle thickness pro-
files, while their study [15] investigated the accommodation process
in emmetropes and myopes regarding morphologic changes of the
ciliary muscle and power changes of the lens for different accom-
modation demands. Fernidndez-Vigo et al. [16] proposed a study to
obtain ciliary muscle measurements and identify correlations in a large
population of healthy subjects. Additionally, Shi et al. [17] investi-
gated the cross-sectional area and thickness of the ciliary muscle and
their correlation with accommodative lag in hyperopic anisometropic
children, while Li et al. [18] evaluated the effects of age on the
morphologies of the crystalline lens, ciliary muscle, Schlemm’s canal,
and trabecular meshwork. Furthermore, Zhang et al. [19] analyzed
the morphological characteristics of the ciliary muscle and explored
its relationship with different ocular biometric parameters in myopic
young Chinese adults, while Kaphle et al. [20] studied the relation
between accommodation-induced changes in ciliary muscle dimensions
and emmetropes and myopes. Finally, Ren et al. [21] characterized
the ciliary body in healthy Chinese subjects, and Anderson et al. [20]
analyzed the relationship between ciliary muscle thickness and Down
syndrome.

Anterior Segment Optical Coherence Tomography (AS-OCT) imag-
ing has become an indispensable tool for assessing various ocular
conditions [22], including the analysis of the ciliary muscle. This
non-invasive, real-time, and in vivo imaging technique allows for high-
resolution visualization of anterior segment structures. Initially intro-
duced by Izatt et al. in 1994 [23], AS-OCT has since been adopted in
the ophthalmic field [24-33]. Its main advantage is the remarkable re-
peatability and reproducibility for clinically evaluating morphological
changes in the anterior segment, including the ciliary muscle.

In addition to its numerous applications, the ciliary muscle’s mor-
phological features, as captured by AS-OCT imaging, can serve as
valuable biomarkers for various ocular conditions and diseases. These
biomarkers have the potential to aid in early diagnosis, monitor dis-
ease progression, and evaluate treatment effectiveness [12,15,34-37].
Furthermore, they could provide critical insights into the biomechan-
ical properties of the ciliary muscle, enhancing our understanding of
its role in ocular health and disease. By harnessing the potential of
these biomarkers, researchers and clinicians can collaborate to develop
more targeted and personalized therapeutic approaches, ultimately
improving patient outcomes and overall ocular health.

The AS-OCT images produced are cross-sectional scans, which pro-
vide an accurate representation of the anatomical structures of the
anterior segment. Fig. 1 depicts representative AS-OCT images with the
ciliary muscle manually delineated in green. Accurate segmentation of
the ciliary muscle from AS-OCT images is essential for analyzing its
morphological characteristics.

In recent years, AS-OCT imaging has become a valuable tool for
analyzing the ciliary muscle due to its ability to provide high-resolution
cross-sectional scans of the anterior segment of the eye in a non-
invasive, real-time, and in vivo manner. However, manual segmenta-
tion of the ciliary muscle using the software integrated in the OCT de-
vice is often time-consuming and requires expertise, making it less effi-
cient and less reproducible. To overcome these limitations, researchers

Biomedical Signal Processing and Control 90 (2024) 105851

have proposed various semi-automated tools that provide segmentation
and measurement of the ciliary muscle. For instance, Kao et al. [38]
developed a semi-automatic algorithm for segmentation and morpho-
logical assessment of the dimensions of the ciliary muscle, while Rug-
geri et al. [39] proposed an algorithm to provide corrected thickness
measurements of the ciliary muscle. Laughton et al. [40] designed a
software that extracts morphometric data from the ciliary muscle, while
Straler et al. [41] presented a software for semi-automatic segmenta-
tion of the ciliary muscle. Although these semi-automated systems have
shown promising results, they still require expert intervention, and the
results may differ depending on the expertise of the operator.

To address these limitations, a few fully automatic deep learning-
based approaches have recently been proposed. Recently, Goyanes
et al. [42] published a preliminary study in which they proposed
an initial approach for fully automated ciliary muscle segmentation
using a deep learning-based algorithm. Their method employs a U-Net
architecture to segment the ciliary muscle, achieving high accuracy
and efficiency. Similarly, Cabeza et al. [43] developed an automated
segmentation tool for transscleral OCT images using Fully Convolu-
tional Networks (FCNs). Straf3er & Wagner [44] present a convolutional
neural network trained for the automatic segmentation of the ciliary
muscle in AS-OCT images. Chen et al. [45] developed an automatic
segmentation framework for the ciliary muscle that can be used to
analyze the morphological parameters of the ciliary muscle and its
dynamic changes during accommodation. These approaches offer a
significant improvement in accuracy, reproducibility, and efficiency
for researchers and clinicians, providing a standardized and objective
analysis of the ciliary muscle, allowing for more reliable diagnosis
and monitoring of ocular diseases. Additionally, Wagner et al. [14]
and Cabeza et al. [43] extract the ciliary muscle thickness profile to
evaluate the morphological changes during accommodation.

Despite the growing and very recent interest in deep learning-based
approaches for automated segmentation of the ciliary muscle using AS-
OCT images, there is still a significant gap in the state of the art. These
methods have not been thoroughly evaluated by clinicians across the
most commonly used AS-OCT scan depths, and extracting and evalu-
ating biomarkers from the ciliary muscle remains a challenge due to
the difficulties in obtaining labeled images. Therefore, further research
is required to develop fully automated methods that can accurately
and reproducibly segment and analyze the ciliary muscle across various
AS-OCT scan depths while overcoming these challenges.

In this study, we address the existing gap by presenting a fully
automated two-step methodology for the segmentation and analysis
of the ciliary muscle in AS-OCT images at two commonly used scan
depths (6 mm and 16 mm), which are typically employed in daily
clinical practice. The proposed methodology comprises two critical
steps: ciliary muscle segmentation and extraction of biomarkers. To
achieve this, we employ two deep learning-based approaches: U-Net
and Feature Pyramid Network (FPN), combined with two different
encoders, ResNet-18 and ResNet-34. After exhaustively evaluating these
approaches, we select the optimal segmentation model and extract
relevant biomarkers for subsequent analysis.

Our proposed system is designed in close collaboration with clini-
cians and offers the automatic extraction of six significant biomarkers
that are commonly measured manually in clinical practice for analy-
sis and diagnostic purposes. These biomarkers include ciliary muscle
length (CML), ciliary muscle area (CMA), ciliary muscle thickness
measured at 1 mm (CMT1), 2 mm (CMT2), and 3 mm (CMT3) from
the scleral spur and complete ciliary muscle thickness profile (CMT
profile). These biomarkers allow for a comprehensive evaluation of
the ciliary muscle morphology and its behavior during the accom-
modation process, providing essential information about its overall
dimensions and biomechanical properties. Clinicians and researchers
can use these biomarkers to help to diagnose and monitor ocular
diseases such as glaucoma, myopia, and presbyopia, and develop new
therapeutic strategies [10,15,34]. The proposed methodology has the
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Fig. 1. Illustration of AS-OCT images (a) and the images with the ciliary muscle manually delimited in green (b).

potential to provide clinicians and researchers with a valuable tool for
the automated segmentation and analysis of the ciliary muscle in AS-
OCT images, offering benefits in ophthalmology research and clinical
practice. We outline the main strengths of our proposed methodology
as follows:

« First, our fully automated system, developed in close collabora-
tion with clinicians, provides accurate and objective measure-
ments of important biomarkers related to the ciliary muscle.
These biomarkers, which are typically calculated by clinicians for
their daily practice, can be used to evaluate ciliary muscle mor-
phology and behavior during the accommodation process. This
can offer supplementary insights into different ocular conditions.
By focusing on the biomarkers that are most relevant to clinical
practice, our system ensures that the extracted parameters have
direct applicability and value in real-world settings.

Second, the elimination of manual segmentation and measure-
ments reduces inter- and intra-observer variability and ensures
repeatable and instantaneous analysis. This not only improves
the reliability and consistency of the measurements but also
saves time for clinicians and researchers, simplifying their work.
Wagner et al. [14] and Strafler & Wagner [44] provide valuable
insights into the importance of the repeatability of biomarkers
derived from both semi-automated and fully-automated analysis.
Finally, our proposed methodology offers a powerful tool for
the automated segmentation and analysis of the ciliary mus-
cle in AS-OCT images, providing essential information about its
overall dimensions and biomechanical properties. This has the
potential to benefit ophthalmology research and clinical practice
by helping in the diagnosis and monitoring of ocular diseases
such as glaucoma as well as the development of new therapeutic
strategies.

Considering these aspects, although some of the techniques we
employ might be established, the integration, optimization, and fo-
cus on tangible clinical benefits lend our work a distinct value. The
potential clinical significance of our research, especially the accurate
segmentation of the ciliary muscle in AS-OCT images, hints at profound
implications for the ophthalmology field.

To provide a comprehensive understanding of our work, this manu-
script is structured as follows: Section 2 provides an overview of the
dataset, as well as the software and hardware utilized in the exper-
iments. Section 3 details the proposed methodology, including the

network architectures, training procedures, data augmentation tech-
niques, transfer learning, and evaluation criteria. Section 4 presents and
discusses the results obtained from the experiments. Finally, Section 5
summarizes the contributions made by this study and highlights the key
takeaways from the results.

2. Materials

In this section, we provide comprehensive details regarding the
dataset utilized in this study, as well as the software and hardware
employed during the research. By thoroughly detailing the dataset
and tools utilized, we aim to ensure transparency and reproducibil-
ity, thereby enabling other researchers to build upon our work and
reproduce the results.

2.1. Dataset

In this study, we utilized a custom dataset specifically designed for
our research. The dataset used for the segmentation task contained
1035 AS-OCT images and their corresponding ciliary muscle labels,
which were divided into two subsets based on the scan depth of 6 mm
and 16 mm, with 931 and 104 images, respectively. Fig. 2 shows the
visual differences between the two types of images with an example
of each subset, AS-OCT images captured at a shallower depth (6 mm)
may exhibit higher resolution and more distinct features of the ciliary
muscle, whereas those at a deeper depth (16 mm) might provide a
broader view of the internal structures, albeit with lesser detail. In
addition, a dataset comprising of 732 images with a scan width of
6 mm was employed to evaluate the performance of our automated
biomarker extraction approach. In close collaboration with clinical ex-
perts, our approach has been designed to automatically extract five key
biomarkers that are typically measured manually in clinical practice.
These biomarkers include ciliary muscle length (CML), ciliary muscle
area (CMA), and ciliary muscle thickness measured at 1 mm (CMT1),
2 mm (CMT2), and 3 mm (CMT3) from the scleral spur. Complemen-
tary, we extract the complete ciliary muscle profile. By aligning our
methodology with the needs and expertise of clinicians, we ensure
that the extracted biomarkers are highly relevant and valuable for the
analysis and diagnosis of ocular conditions, facilitating the adoption of
our automated system in real-world clinical settings.

All the AS-OCT images were acquired as part of a cross-sectional
study conducted at the International Centre for Advanced Ophthal-
mology in Madrid, Spain. The study recruited healthy subjects who
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underwent routine eye examination between 1 February 2018 and 21
January 2019. The eligible patients were of Caucasian descent with a
spherical refractive error between —6 to +6 diopters, had no previous
ocular pathology found in the examination, an intraocular pressure
of (IOP) <= 21 mmHg, and had no previous ocular surgery. The
study protocol adhered to the tenets of the Declaration of Helsinki and
was approved by the Center’s Review Board. Patients who gave their
informed consent underwent a medical history and a complete ophthal-
mologic examination followed by SS-OCT, which included visual acuity
and cycloplegic refractive error, slit-lamp biomicroscopy, tonometry
with Canon TX 10® pneumotonometer (Canon Inc.; Tokyo, Japan),
and posterior segment ophthalmoscopy. The SS-OCT CM analyses were
conducted using the DRI-Triton® device by Topcon Corporation, Tokyo,
Japan. This equipment operates with a central wavelength of 1050 nm
and possesses an axial resolution of 8 pm and a lateral resolution of
20 pm, performing 100,000 A-scans per second.

The OCT images were captured prior to pupil dilation, with scans
administered by a proficient examiner while the subjects were seated
upright. Participants were guided to maintain either maximum tempo-
ral or nasal gaze during scans to facilitate precise examination of the
ciliary body at the 3- and 9-o’clock positions. To assure stable fixation
throughout the scan, we used an auxiliary fixation light. The fixation
point was determined with a goniometer, marked 602 from the central
axis of the device and approximately 60 cm distant, ensuring subjects’
chin and forehead were securely positioned to avoid movement during
the procedure.

Inclusion of images was contingent on obtaining a sufficient quality
threshold, with a Signal Strength Intensity (SSI) exceeding 40. OCT
scans were carried out under uniform mesopic lighting conditions, set
at 7 EV or 320 lux, as verified by a SEKONIC Flash mate K-3085®
lightmeter.

To acquire cross-sectional images of the ciliary body, the anterior
segment lens of the device was used, applying the 6-mm and 16-
mm “line” capture modes. The CM was visualized as a hyporeflective
triangular structure, discerned by distinctive layers and interfaces.
Detailed measurements of different aspects of the ciliary body were
obtained, including the length, area, and thickness at specified points,
and incorporated additional evaluations like the anterior chamber an-
gle and iris thickness at a particular distance from the scleral spur
in the captured OCT images. The images were exported in the JPEG

(d)

Fig. 2. Example of AS-OCT images (1st column) and its corresponding ciliary muscle manually labeled (2nd column) with a scan width of (a, b) 6 mm and (c, d) 16 mm.

(Joint Photographic Experts Group) format. We aimed to maintain
a high-quality representation of the original data while ensuring the
accessibility and compatibility of the images with our processing and
analysis tools.

2.2. Software and hardware

This research utilized Python (version 3.9.9) as the primary pro-
gramming language to write all the code. We used PyTorch (version
1.8.1), an open-source machine learning framework, for the training
and validation of the models. The Segmentation Models PyTorch li-
brary [46] was utilized in our methodology to train and evaluate
different models and encoders for ciliary muscle segmentation. This
library provides a wide range of popular and state-of-the-art segmenta-
tion models and encoders that can be easily adapted and fine-tuned for
different applications. For image processing purposes, we used OpenCV
(version 4.5.2), an open-source computer vision library. The models
were trained, validated, and tested on a computer (Intel® Xeon® GPU
E5-2640 v3 @ 2.60 GHz) with an NVIDIA® GeForce GTX TITAN X GPU.

3. Methodology

In this section, we provide a detailed description of the methodology
employed in this study. As shown in Fig. 3, the proposed system is
designed to take an AS-OCT image as input and perform ciliary muscle
segmentation, followed by automatic extraction of biomarkers from the
segmented image. The resulting output is the original input image with
all the biomarkers depicted, along with their respective measurements
for easy readability. The following subsections provide more detailed
information on the different components of the methodology, including
the network architecture and encoder configurations used for ciliary
muscle segmentation, as well as the automated biomarker extraction
approach.

3.1. Ciliary muscle segmentation

The accurate segmentation of the ciliary muscle is essential for the
automated analysis of AS-OCT images. To achieve this, we employed
two popular network architectures, U-Net and FPN, combined with
two different encoders, ResNet-18 and ResNet-34, to compare their
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Fig. 3. General scheme of the methodology.
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Fig. 4. Architecture diagram of the U-Net network used in our study.

performance and determine which architecture produces better results.
U-Net was selected as the reference architecture for semantic segmen-
tation tasks in medical images due to its ability to accurately segment
complex structures. FPN was chosen because it uses a pyramidal anal-
ysis paradigm at different scales, which can be beneficial for solving
this problem. These network architectures have been widely used in
medical image segmentation tasks and have demonstrated the ability
to accurately identify complex structures and objects within images. By
evaluating these architectures in our study, we aimed to determine the
optimal approach for ciliary muscle segmentation in AS-OCT images.

3.1.1. Network architecture

The U-Net architecture, developed by Ronneberger et al. [47], is a
fully convolutional network that achieves precise segmentation while
requiring only a small number of training images. It is commonly used
in biomedical imaging related tasks and is selected as the reference
architecture for semantic segmentation tasks in medical imaging. The
U-Net architecture consists of a set of operations that reduce the
resolution of the input (known as the “shrinkage path”) on the left side
of the network. The right side of the network (known as the “expansion
path”) consists of blocks that recover the original resolution of the
input. Fig. 4 illustrates the U-Net network architecture. Further details
of its components could be found in [47].

The Feature Pyramid Network (FPN) is a fully convolutional net-
work architecture proposed by Lin et al. [48]. FPN is designed to
address the problem of scale variance that commonly occurs in object
detection tasks in computer vision [49]. In the context of our work,
the ciliary muscle and surrounding structures in AS-OCT images can
exhibit variations in size, shape, and resolution, making the use of
FPN particularly relevant for our application. This architecture uses a
pyramidal analysis paradigm at different scales, allowing the network
to learn representations that are invariant to scale. In particular, FPN
consists of two pathways, a bottom-up and a top-down pathway. Fig. 5
displays the structure of the FPN network architecture that is explained
in detail in [48].

3.1.2. Encoder configurations

The encoder plays a crucial role in the performance of a network
for medical image segmentation. Encoders with more parameters and
depth typically perform better by extracting more complex and high-
level features. However, too many parameters and depth can lead to
overfitting and longer training times. Therefore, a balance must be
found between the encoder’s parameters and depth and the network’s
performance. In this work, we analyzed the performance of the U-Net
and FPN architectures with two encoders: ResNet-18 and ResNet-34.
These encoders were chosen because of their proven effectiveness in
various medical image analysis tasks [50-55]. The aim of our study was
to identify the best combination of network architecture and encoder
to achieve accurate and robust segmentation of the ciliary muscle in
AS-OCT images.

Our proposed approach utilizes two encoders based on the Residual
Neural Convolutional Network [56], which utilizes skip connections to
add the input of a layer to the output of a deeper one. Specifically,
we use the ResNet-18 encoder, which consists of 18 parameter layers
and approximately 11 million parameters, and the ResNet-34 encoder,
which consists of 34 parameter layers and approximately 63 million
parameters. It is worth noting that the ResNet-34 encoder has more
than five times the number of parameters of the ResNet-18 encoder.

Using these two different encoders allows us to analyze the be-
havior of the U-Net and FPN architectures with different numbers of
parameters and depths. The ResNet-18 encoder provides a simpler and
faster alternative to the ResNet-34 encoder with fewer parameters and
lower depth, while the ResNet-34 encoder can extract more complex
and high-level features due to its higher depth and greater number of
parameters.

3.1.3. Training details

We have trained and evaluated the models independently for the
two distinct datasets corresponding to the two scan depths of 6 mm
and 16 mm in order to facilitate the assimilation and adaptation to
the specific characteristics and details intrinsic to each scan depth.



E. Goyanes et al.

Biomedical Signal Processing and Control 90 (2024) 105851

(e |

o

512

ol

IR

256 26

Encoder Decoder

3x3 conyolution

Segmentation output

Fig. 5. Architecture diagram of the FPN network used in our study.

To ensure the robustness and reliability of our training process, we
repeated the training task five times and computed the mean and
standard deviation of the statistics. In each repetition, we randomly
divided the dataset into three smaller subsets: training, validation, and
testing, with 60%, 20%, and 20% of the cases for each subset, respec-
tively. Only one image per eye was taken for the study. Therefore, we
have ensured that images from a single eye are exclusively assigned to
one data set, avoiding any splits between the training, validation and
testing data sets. The training set was used to optimize the network’s
parameters, the validation set was used to monitor the training process
and avoid overfitting, and the testing set was used to evaluate the
final performance of the trained model. By doing the five random
divisions of the data set, we aimed to ensure that the results obtained
are a true representation of the inherent capabilities of the model and
are not merely a byproduct of favorable initial conditions or specific
arrangements of the data during training, thereby providing a more
comprehensive and robust understanding of its capabilities, resilience,
and reliability.

To adjust the network weights and biases, we used the Adam opti-
mization algorithm [57] with a learning rate of 0.0001. The Adam algo-
rithm is a popular optimization technique for deep learning models that
combines the advantages of two other optimization algorithms, namely,
adaptive gradient algorithm and root mean square propagation.

To conduct the training, we used the Dice loss (£LDSC), which
is a commonly used loss function in the field of biomedical image
segmentation. The Dice loss is defined in Eq. (2), where p; . represents
a matrix of predicted values generated by the model for each class, and
Yi uses a one-hot encoding scheme corresponding to the ground truth
labels. Here, i and c¢ represent indices that iterate over all pixels and
classes, respectively.

C N
r -1 1 Z 22,':1 PicYie
DsSC — 17 A N <N
c c=1 21111 Dic + 21111 Yie

The £DSC measures the overlap between the predicted and ground
truth segmentation masks, and aims to maximize the similarity between
the two masks. During the training process, the loss is minimized by
adjusting the network parameters using the Adam optimizer.

@

3.1.4. Data augmentation

In this work, we implemented a data augmentation strategy to
increase the size of our training dataset and address the overfitting issue
caused by the limited amount of available data. This strategy involved
applying various computer vision techniques to the AS-OCT images in
the training set after the initial partitioning, generating new training
samples that better capture the inherent variability of real-world data
and ensuring that new samples derived from the same source are all in
the training set, preventing contamination between the different sets.

Specifically, we employed a combination of affine transformations,
including horizontal flips with a 0.5 probability, scaling with a factor
between 0.5 and 1.5, and translation with a 0.1 factor. Additionally,
we introduced random variations in brightness and contrast with a
0.9 probability and a 0.2 factor range, applied a Gaussian filter using
a randomly sized kernel and a variance range for noise between 10
and 50 with a 0.2 probability, and incorporated blur, motion blur, and
sharpening techniques. These methods were used with a random kernel
size, a limit of 3, and a 0.3 probability, with sharpened images being
overlaid on the original images. Similar augmentation techniques are
used in other relevant works of the state of the art [41,44].

Data augmentation is a widely utilized technique in deep learning,
known for its ability to enhance model performance and generaliza-
tion by increasing the diversity of the training data. By incorporating
these various transformations, we successfully generated new training
samples that better represent the variability found in real-world data,
ultimately improving the robustness and reliability of our models main-
taining a strict separation between the training, validation and test
sets.

3.1.5. Transfer learning

The transfer learning technique consists of training a model using
images from a large dataset before fine-tuning it with a specific dataset.
This technique helps to mitigate the lack of training data that is still
present in many biomedical fields, where acquiring large and annotated
datasets is a challenging task. Transfer learning has shown promis-
ing results in such scenarios and is widely used in computer vision
applications.

In this work, we evaluate the effect of transfer learning by training
the same models from scratch and then using models pre-trained on
ImageNet [58], a large image dataset that contains more than 1.5
million annotated images across 1000 classes. We use these pre-trained
models as initial weights for fine-tuning our models on the AS-OCT
images dataset. By doing so, we leverage the pre-existing knowledge
of the pre-trained models to extract useful features from the AS-OCT
images and enable the models to achieve better performance with a
smaller training dataset.

3.1.6. Evaluation of ciliary muscle segmentation

Precision, Recall, Accuracy, Jaccard and Dice coefficient (Egs. (2),
(3), (4), (5) & (6), respectively), are the most commonly used statistical
metrics in the state of the art [59,60] to quantitatively evaluate and
validate the ciliary muscle segmentation developed by our method.
These metrics are used to compare the predicted segmentation with the
ground truth labels.

Precision = _TIr (2)
TP+ FP
Recall = _Trr 3)

TP+ FN
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Vitreous humor

Fig. 6. Illustrative representation of the key biomarkers automatically extracted from AS-OCT images, including ciliary muscle length (CML), and thickness measurements at 1 mm,

2 mm, and 3 mm from the scleral spur (CMT1, CMT2 and CMT3, respectively).

TP+TN
Accuracy = 4)
TP+TN+FP+FN
TP
accard = ————
Jaceard = o P T FN ®
Dice = L (6)

2XTP+FP+FN
TP, TN, FP and FN depict the number of True Positives, True Negatives,
False Positives and False Negatives, respectively, and are computed
based on the predicted and target labels.

3.2. Automatic extraction of biomarkers

The extraction of biomarkers is an essential step in medical image
analysis, as it enables clinicians and researchers to obtain quantitative
measurements and insights that can aid in diagnosis and treatment
planning. In the context of ciliary muscle segmentation, the automatic
extraction of biomarkers can provide valuable information on the mor-
phology and behavior of the ciliary muscle during the accommodation
process, as well as its relation to various pathologies [6-12,14-21,61—
63].

In this work, we propose an approach for the automatic extrac-
tion of five biomarkers of high clinical importance in ciliary muscle
segmentation, developed in close collaboration with clinical experts:
Ciliary Muscle Length (CML), Ciliary Muscle Area (CMA), and Ciliary
Muscle Thickness measured at 1 mm (CMT1), 2 mm (CMT2), and 3 mm
(CMT3) from the scleral spur. These biomarkers are typically calculated
manually by clinicians and can be extracted automatically using a
deep learning-based method trained on AS-OCT images. Fig. 6 shows
an illustrative representation of how these biomarkers are measured.
Furthermore, we export the complete Ciliary Muscle Thickness Profile
(CMT profile).

CML represents the length of the ciliary muscle, which is calculated
as the maximum width of the muscle, determining the widths at all
heights of the muscle in a straight line. It is expressed in micrometers
(pm). The Posterior Limit is defined as the point on the border of the
ciliary muscle at the height where the muscle has the maximum width.
CMA, on the other hand, represents the area of the ciliary muscle that
can be seen in the images, and is also calculated in micrometers squared
(pm?).

CMT1, CMT2, and CMT3 represent the thickness of the ciliary
muscle measured at 1 mm, 2 mm, and 3 mm from the scleral spur,
respectively. These biomarkers are calculated as the vertical distance
between the top and bottom borders of the ciliary muscle at the
specified distances from the scleral spur. They are also expressed in

micrometers. We also represent the complete ciliary muscle thickness
profile (CMT profile), offering an overall view of the thickness of
the ciliary muscle, with the value of the perimeter of the profile as
quantitative measurement.

Our proposed system is designed to work with the two most com-
mon scan depths (6 mm and 16 mm) used in clinical practice, ensuring
that the methodology is realistic and applicable to a wide range of
clinical scenarios. The automatic extraction of these biomarkers using
our proposed approach can provide clinicians and researchers with
valuable insights into the ciliary muscle, enabling better understanding
and diagnosis of various ocular conditions.

3.2.1. Evaluation of the biomarkers

To ensure the reliability and accuracy of the automatic extraction
of the different biomarkers, we conducted a comprehensive evaluation
of our approach using various statistical metrics and qualitative anal-
ysis techniques. To quantitatively evaluate the extraction of the CMT
profiles, we calculate the perimeter of both, the CMT profile and the
ground truth, comparing these values.

We used a box plot and a Bland-Altman analysis to compare the
measurements calculated by a clinical expert and those calculated by
our approach, in order to assess the differences between them. The box
plot provides a visual representation of the distribution of measure-
ments for each biomarker, allowing us to observe any potential outliers
and compare the ranges of values. The Bland-Altman analysis, on the
other hand, allows us to assess the agreement between the measure-
ments obtained by the two methods by plotting the difference between
the two measurements against their average. This analysis helps us
identify any systematic biases or limits of agreement between the two
methods and it is commonly used to evaluate similar tasks [64-67].
Specifically, the Bland-Altman analysis calculates the mean difference
(bias) between the two methods using Eq. (7):

bias = % Z}(x,. — %)

where x; represent the measurements obtained by the clinical expert
and y; the ones obtained by our approach. We also calculate the 95%
limits of agreement (LoA), which are defined as the mean difference
between the two methods + 1.96 times the standard deviation of the
differences. In order to calculate the differences, our approach results
have been subtracted from the expert calculations.

By presenting strong agreement between our approach and the
expert’s measurements through these evaluation techniques, we can
emphasize the potential of our automated system as a valuable tool
for extracting clinically meaningful biomarkers from AS-OCT images.
This comprehensive evaluation reinforces the reliability, accuracy, and
clinical applicability of our proposed methodology.
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Fig. 7. Evolution of the two architectures (U-Net and FPN) combined with the two encoders (ResNet-18 and ResNet-34) from Scratch in terms of Mean =+ standard deviation for
the 5 randomized repetitions for the 6 mm images. (a) Training accuracy. (b) Validation loss. Results are presented using a logarithmic scale to a better representation of the

results due to the importance of the changes on the first epochs.
4. Results and discussion

In this section, we present the results and discussion of the ex-
periments conducted to evaluate the performance of our approach for
the automated segmentation of the ciliary muscle in anterior segment
optical coherence tomography (AS-OCT) images and the extraction of
different biomarkers. Firstly, we analyze the segmentation performance
on two types of AS-OCT images with a depth of 6 mm and 16 mm,
respectively, which are commonly used by clinicians to analyze the
biomarkers of the ciliary muscle. Secondly, we present the results of the
extraction of biomarkers and their evaluation metrics. These metrics are
essential for clinical practice and research in understanding the mor-
phology and behavior of the ciliary muscle during the accommodation
process and investigating the relationship between the ciliary muscle
and various pathologies.

4.1. Performance of ciliary muscle segmentation

In the following subsections, we present the results of the automated
segmentation of the ciliary muscle in AS-OCT images using the different
neural network configurations developed in this study. Specifically, we
analyze the performance of the networks for images with a depth of
6 mm and 16 mm, which are commonly used by clinicians to analyze
biomarkers of the ciliary muscle. For each type of image, the networks
were trained and validated for 200 epochs, and we established this
number of epochs based on the observation that further training did
not result in any improvement in accuracy or the £ function. Each
experiment was repeated five times using a random seed to ensure the
statistical significance of the results.

4.1.1. Performance of ciliary muscle segmentation in 6 mm images

The training accuracy and validation loss evolution of the networks
are presented in Figs. 7 and 8, respectively, considering 5 random
repetitions for the networks trained from scratch and using transfer
learning strategy. As expected, the networks that use transfer learning
achieve better accuracy values in the early epochs and reach stability
earlier compared to the networks trained from scratch.

Overall, all the neural network configurations perform well for
the automated segmentation of the ciliary muscle in AS-OCT images,
achieving stability before epoch 30 in terms of mean and standard
deviation. The stability of the standard deviation across different con-
figurations highlights the robustness of our approach, which is a highly
desirable feature in a clinical setting. The test results for the reference
metrics are presented in Table 1, with the U-Net and ResNet-34 encoder
using transfer learning achieving the highest values of 0.9665 + 0.1280,

0.8194 +0.1306, 0.8923 +0.1194, 0.9109 + 0.0690, and 0.8969 + 0.1364 for
Accuracy, Jaccard, Dice, Precision, and Recall, respectively.

Moreover, to complement the quantitative evaluation, we present
the qualitative results of the automated segmentation in Fig. 9, which
displays two representative examples of the ciliary muscle segmenta-
tion results obtained from 6 mm AS-OCT images. The resulting seg-
mented image is overlaid on the input image and the manual label to
provide a clear visualization of the segmentation performance. As can
be observed from the figure, the proposed methodology achieves accu-
rate and consistent segmentation of the ciliary muscle, demonstrating
the effectiveness of our approach in providing reliable and objective
measurements. These qualitative results further support the potential
of our methodology to serve as a valuable tool for the automated
segmentation and analysis of ciliary muscle in AS-OCT images for
ophthalmology research and clinical practice.

4.1.2. Performance of ciliary muscle segmentation in 16 mm images

In this subsection, we evaluate the performance of our approach
for ciliary muscle segmentation in 16 mm AS-OCT images. We analyze
the performance of the neural networks trained from scratch and using
transfer learning and present the evaluation metrics for the reference
standards. Additionally, we discuss the strengths and limitations of our
approach based on the obtained results.

The training accuracy and validation loss evolution of the networks
are depicted in Figs. 10 and 11, respectively, considering 5 random
repetitions for the networks trained from scratch and using transfer
learning. As expected, networks that were previously trained obtain
better values in the first epochs and achieve stability earlier than the
ones trained from scratch. Additionally, it is important to note that
compared to the 6 mm images, the training accuracy and validation
loss graphs for the 16 mm images show slightly less stability in the
validation, which can be attributed to the smaller size of this dataset.

In terms of mean and standard deviation, all neural network config-
urations achieved satisfactory results for ciliary muscle segmentation
in AS-OCT images before epoch 30. The test results for the reference
metrics are presented in Table 2, with the FPN architecture using
ResNet-34 encoder and transfer learning approach achieving the best
performance, with the highest values of 0.9772+0.0873, 0.7326 +0.1215,
0.8362 +0.1101, 0.8787 + 0.0890, and 0.8273 + 0.1373 for Accuracy, Jac-
card, Dice, Precision, and Recall, respectively. This stability, combined
with the high performance of our proposed method, reinforces the
robustness and reliability of our approach, making it suitable for use
in a clinical environment where consistent and accurate results are
essential.
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Fig. 8. Evolution of the two architectures (U-Net and FPN) combined with the two encoders (ResNet-18 and ResNet-34) with transfer learning in terms of Mean + standard
deviation for the 5 randomized repetitions for the 6 mm images. (a) Training accuracy. (b) Validation loss. Results are presented using a logarithmic scale to a better representation
of the results due to the importance of the changes on the first epochs.
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Fig. 9. Examples of the resulting segmented regions (green) in 6 mm images overlapped with: (a) the input image and (b) the manual label provided by a clinical expert (gray).

Table 1

Test results in terms of mean + standard deviation for the 5 randomized repetitions for the 6 mm images.
Architecture Encoder Transfer learning Accuracy Jaccard Dice Precision Recall
U-Net ResNet-18 0.9657 +0.1278 0.8106 + 0.1320 0.8867 +0.1200 0.9032 +0.0725 0.8937 +0.1378
U-Net ResNet-34 0.9662 +0.1278 0.8150 +0.1332 0.8891 +0.1219 0.9089 + 0.0724 0.8930 +£0.1411
U-Net ResNet-18 . 0.9662 + 0.1277 0.8151 £0.1313 0.8895 +£0.1197 0.9081 + 0.0695 0.8943 +0.1386
U-Net ResNet-34 . 0.9665 + 0.1280 0.8194 +0.1306 0.8923 +0.1194 0.9109 + 0.0690 0.8969 +0.1364
FPN ResNet-18 0.9660 + 0.1279 0.8136 +0.1299 0.8887 +0.1190 0.9066 + 0.0700 0.8938 +0.1361
FPN ResNet-34 0.9663 +0.1279 0.8170 £0.1323 0.8906 + 0.1207 0.9109 £ 0.0711 0.8940 +0.1383
FPN ResNet-18 . 0.9661 +0.1277 0.8148 +0.1303 0.8895 +0.1189 0.9102 +0.0709 0.8916 +0.1351
FPN ResNet-34 . 0.9640 + 0.1352 0.8183 +£0.1338 0.8907 +0.1248 0.9060 + 0.0852 0.8983 +0.1403

Table 2

Test results in terms of mean + standard deviation for the 5 randomized repetitions for the 16 mm images.
Architecture Encoder Transfer learning Accuracy Jaccard Dice Precision Recall
U-Net ResNet-18 0.9508 + 0.2086 0.6411 +0.2053 0.7492 +£0.2198 0.8325 +0.1858 0.7340 +0.2395
U-Net ResNet-34 0.9586 + 0.1680 0.6120 +£0.2190 0.7240 + 0.2289 0.8164 +0.1854 0.7285 +£0.2573
U-Net ResNet-18 . 0.9604 + 0.1677 0.7119 £0.1613 0.8133 +0.1599 0.8485 +0.1680 0.8015 +0.1797
U-Net ResNet-34 . 0.9521 +0.2091 0.7131 £ 0.1740 0.8110 + 0.1850 0.8544 +0.1879 0.7928 + 0.1931
FPN ResNet-18 0.9758 + 0.0883 0.6546 +0.1973 0.7653 £ 0.1976 0.8541 + 0.1067 0.7647 +0.2330
FPN ResNet-34 0.9759 + 0.0877 0.6544 +0.1985 0.7632 +0.2070 0.8619 +0.1062 0.7554 +0.2336
FPN ResNet-18 . 0.9767 + 0.0875 0.7049 +0.1332 0.8146 +£0.1199 0.8808 + 0.0963 0.7885 + 0.1467
FPN ResNet-34 . 0.9772 £ 0.0873 0.7326 +£0.1215 0.8362 +£0.1101 0.8787 + 0.0890 0.8273 +£0.1373
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Fig. 10. Evolution of the two architectures (U-Net and FPN) combined with the two encoders (ResNet-18 and ResNet-34) from Scratch in terms of Mean + standard deviation for

the 5 randomized repetitions for the 16 mm images. (a) Training accuracy. (b) Validation loss. Results are presented using a logarithmic scale to a better representation of the

results due to the importance of the changes on the first epochs.
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Fig. 11. Evolution of the two architectures (U-Net and FPN) combined with the two encoders (ResNet-18 and ResNet-34) with transfer learning in terms of Mean + standard
deviation for the 5 randomized repetitions for the 16 mm images. (a) Training accuracy. (b) Validation loss. Results are presented using a logarithmic scale to a better representation

of the results due to the importance of the changes on the first epochs.

(a)

(b)

Fig. 12. Cropped examples of the resulting segmented regions (green) in 16 mm images overlapped with: (a) the input image and (b) the manual label provided by a clinical

expert (gray).
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To further demonstrate the effectiveness of our approach, we present
two representative examples of the automated segmentation results ob-
tained from 16 mm AS-OCT images in Fig. 12. The resulting segmented
images are overlaid on the input images and manual labels provided
by clinical experts, highlighting the accuracy and reliability of our ap-
proach in segmenting the ciliary muscle. These results suggest that our
approach is capable of providing reliable and accurate segmentation
of the ciliary muscle in AS-OCT images, commonly used by clinicians
to analyze biomarkers related to the ciliary muscle morphology and
behavior during the accommodation process.

4.2. Results of the automatic extraction of biomarkers

In this subsection, we report on the results of our proposed approach
for the automatic extraction of biomarkers in AS-OCT images of the cil-
iary muscle. Both qualitative and quantitative analyses of the achieved
results are presented.

It is important to emphasize that the automatically extracted bio-
marker measurements are compared to the manual measurements pro-
vided by clinical experts. This comparison serves as a crucial validation
step, ensuring that our method produces reliable and accurate results
that are consistent with the expert assessments.

In Fig. 13, we provide a quantitative analysis of the results through
box plots and Bland-Altman analyses comparing the automatic mea-
surements and those provided by clinical experts for each biomarker.
Overall, the results from the box plots and Bland-Altman analyses,
demonstrate the effectiveness of our approach for the extraction of
biomarkers from AS-OCT images of the ciliary muscle. These results
provide a more comprehensive evaluation of the accuracy and reliabil-
ity of our approach for clinical applications.

Expanding on the quality of the obtained results, our proposed
approach demonstrated good performance not only in quantitative
analysis but also in qualitative analysis. Fig. 14 presents representative
examples of the automatic extraction of biomarkers from 6 mm images,
including the complete CMT profile representation with its perime-
ter and, illustrating the visually accurate and clinically interpretable
results. It is important to note that the robustness of our approach
was also tested with 16 mm images, and the results were similarly
accurate, as shown in Fig. 15. These results highlight the potential of
our approach to aid clinicians in accurately diagnosing and monitoring
ocular diseases, ultimately improving patient outcomes.

4.3. Main limitations

Despite the good results achieves by our approach, there are some
limitations. There is an inherent difficulty in achieving accurate mea-
surements in this previously inaccessible area, even for expert examin-
ers, given the challenges posed by pigmented tissues like the iris root
and the lamina fusca, which obscure clear visualization due to light
penetration limitations. This visualization issues can compromise the
delineation of the studied structures, as well as the precise calculation
of the biomarkers. Despite this challenges, our AS-OCT images offer
high resolution. On the other hand, tissue refractive index distortion
compensation was omitted, possibly impacting measurements of struc-
tures that deviate from the perpendicular to the AS-OCT optical axis.
Additionally, no Laplace correction was applied, which could affect the
accuracy of these measurements. In Fig. 16, we show two examples of
results where the system does not perform an accurate segmentation.
On the other hand, we used metrics bounded in intervals [0,1] and
representing it with standard deviation can indeed imply non-feasible
values. Regarding the biomarkers, the positioning of the posterior
region to calculate the CML measure can be diffuse, favoring slightly
imprecise measures.
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Fig. 14. Representative output examples of the automatic extraction of biomarkers in 6 mm images (a & ¢) and their CMT profile representations with their respective biomarkers
(b & d).
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Fig. 15. Representative output examples of the automatic extraction of biomarkers in 16 mm images (a & c) and their CMT profile representations with their respective biomarkers
(b & d).
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(a)

(b)

Fig. 16. Examples of the resulting bad segmented regions (green) in 6 mm images overlapped with: (a) the input image and (b) the manual label provided by a clinical expert

(gray).
5. Conclusion

Our study presents a novel deep learning-based approach for au-
tomating the segmentation and extraction of biomarkers from AS-OCT
images (6 mm and 16 mm) of the ciliary muscle. The results demon-
strated the efficacy of our approach in achieving accurate segmentation
of the ciliary muscle, as well as in the extraction of different compu-
tational biomarkers, considering the previously mentioned limitations.
The proposed methodology has the potential to reduce the workload
on clinical experts. Moreover, the results presented indicate that our
approach is adaptable and can be extended to other types of AS-
OCT images and biomarkers, potentially benefiting a broader range of
clinical applications.

As future work, we plan to further refine our approach and poten-
tially validate it against a dataset with the Posterior Limit of the ciliary
muscle labeled to ascertain its efficacy and accuracy more comprehen-
sively. Furthermore, integrating the tool into a web platform would
enhance its accessibility and user-friendliness, potentially benefiting a
broader range of clinicians and researchers. In addition, performing
comparative clinical evaluations between normal and pathological con-
ditions will enhance the validity and applicability of our findings in
real-world clinical settings, fortifying the clinical implications of our
work.
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