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Abstract
Retinal vascular tortuosity is an excessive bending and twisting of the blood vessels in the retina that is associated with
numerous health conditions. We propose a novel methodology for the automated assessment of the retinal vascular tortuosity
from color fundus images. Our methodology takes into consideration several anatomical factors to weigh the importance of
each individual blood vessel. First, we use deep neural networks to produce a robust extraction of the different anatomical
structures. Then, the weighting coefficients that are required for the integration of the different anatomical factors are adjusted
using evolutionary computation. Finally, the proposed methodology also provides visual representations that explain the
contribution of each individual blood vessel to the predicted tortuosity, hence allowing us to understand the decisions of
the model. We validate our proposal in a dataset of color fundus images providing a consensus ground truth as well as the
annotations of five clinical experts. Our proposal outperforms previous automated methods and offers a performance that
is comparable to that of the clinical experts. Therefore, our methodology demonstrates to be a viable alternative for the
assessment of the retinal vascular tortuosity. This could facilitate the use of this biomarker in clinical practice and medical
research.

Keywords Blood vessels · Eye fundus · Ophthalmology · Deep learning · Genetic algorithms

1 Introduction

The retinal vascular tree is a complex network of arteries
and veins that spread out throughout the retina [4, 35]. The
analysis of this vascular network is valuable for the study
and diagnosis of numerous health conditions, including both
ophthalmic and systemic diseases [4, 35]. Additionally, in
contrast to other parts of the human body, the eye allows
the study of the vascular system in vivo and without inva-
sive procedures [10, 35]. In that regard, color photographs
of the eye fundus, such as the one depicted in Fig. 1, can be
obtained using specialized fundus cameras. This is an afford-
able equipment that is commonly available in ophthalmic
services worldwide. In that sense, color fundus images are
considered a reference standard for the analysis of the retina
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and, consequently, numerous efforts have been dedicated to
the study of the vascular network in these images [35, 47].

Different characteristics and abnormalities of the retinal
vasculature have been studied as potential clinical biomark-
ers [35, 47]. Among these, the vascular tortuosity stands out
as one of the most prominent. The retinal vascular tortuosity
is an excessive bending and twisting of the blood vessels in
the retina. Figure 1 depicts representative examples of tortu-
ous and non-tortuous blood vessels. This abnormal curvature
along the course of the blood vessels has been identified as a
relevant biomarker for numerous health conditions, such as
e.g. diabetic retinopathy [9, 42], cardiovascular disease [30,
46], or Alzheimer’s disease [2, 3]. Therefore, the clinical
assessment of the retinal vascular tortuosity in color fundus
images presents a great potential for diagnostic purposes.

Despite its potential applications, the use of the retinal
vascular tortuosity as biomarker in the clinical practice is
hampered by the difficulty of producing an objective and
reliable assessment [37, 39]. The manual assessment of the
vascular tortuosity from color fundus images is a tedious and
time-consuming process. The complete assessment requires
not only to identify potential tortuous bloodvessels but also to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-023-02978-w&domain=pdf
http://orcid.org/0000-0002-9080-9836


866 Medical & Biological Engineering & Computing (2024) 62:865–881

Fig. 1 Representative examples
of (a) color fundus image, (b)
non-tortuous blood vessels, and
(c) tortuous blood vessels

(a) (b) (c)

assess the importance of each of these vessels in the global
context of whole eye [16, 24, 25]. In that regard, depend-
ing on the affected blood vessels, a low level of tortuosity
could be considered non-referable by the clinicians [37, 39].
Additionally, a low degree of twisting and bending in some
vessels could also be considered within normality. There-
fore, the manual assessment of the vascular tortuosity from
color fundus images is strongly conditioned by the clin-
icians’ experience in the identification and study of these
kinds of vascular abnormalities. These challenges motivate
the development of image analysis algorithms for the auto-
mated assessment of the retinal vascular tortuosity, aiming
to produce a reliable and time-efficient analysis.

Over the recent years, several computational approaches
have been proposed for the automatic assessment of the reti-
nal vascular tortuosity [33, 38, 39, 44]. Many of these works
have been focused on the development of quantitative met-
rics for the measurement of the tortuosity of individual blood
vessels. These metrics are usually based on the mathemat-
ical representation of the vessel course. In that regard, the
tortuosity of an individual vessel segment is usually defined
in terms of the geometrical characteristics of the vessel’s
centerline, such as e.g. the curvature [33, 44], the inflection
points [15, 33], or the arc and chord lengths [15, 17]. Fol-
lowing these approaches, the global tortuosity score of the
whole image can be obtained by aggregating the individual
tortuosity values of each vessel segment. This aggregation
is usually performed by means of a weighted average, using
the arc lengths of the vessel segments as weighting factors
[15, 39]. In this case, the importance of each vessel in the
global context of the whole eye is given solely by its length.
However, experienced clinicians usually take into account
additional anatomical characteristics of the eye, performing
a more complex reasoning to assess the importance of each
individual vessel [16, 24, 25]. In that line, Ramos et al. [38]
propose the use of additional anatomical factors to weight
the importance of each individual vessel, such as the caliber
of the vessel, whether the vessel is an artery or vein, and the
distances to representative anatomical structures, as the optic
disc and the fovea. The inclusion of this additional domain-
related knowledge in the algorithm demonstrates to provide
a better prognostic performance, obtaining estimations that
are better aligned with the criteria of the clinicians.

Previous methods have demonstrated to be able to provide
adequate results for the automated assessment of the retinal
vascular tortuosity [38]. However, these methods are limited
by the use of classical image processing techniques for the
extraction of the blood vessels and other relevant anatomical
structures from the images. In that regard, the detection and
analysis of the different anatomical structures in color fundus
images is particularly challenging due to the photographic
nature of these images as well as the varied characteristics of
the retinal anatomy [4]. Firstly, the appearance of color fun-
dus images can be affected by changes in the capture device,
the illumination, or the expertise of the operator. Secondly,
the appearance of the anatomical structures can be affected by
the presence of several diseases. In that regard, the vascular
tortuosity itself involves a substantial change in the morphol-
ogy of the blood vessels, which can affect the performance
of the algorithms. Previous works have addressed the extrac-
tion of retinal blood vessels using classical methods, such
as the analysis of the level-set extrinsic curvature [1, 34],
which allows to directly obtain the centerlines of the vessels.
However, in comparison with modern Convolutional Neural
Networks (CNN), these methods usually offer a lower per-
formance and are less robust to changes in the acquisition of
the images or the presence of pathologies. Therefore, some
relevant tortuous vessels may be left undetected, compromis-
ing the assessment of the vascular tortuosity for the whole
eye.

Additionally, in [38], classical hand-engineered tech-
niques are also used for the extraction of other anatomical
characteristics, which are required to compute the different
anatomical factors. For instance, the detection of the optic
disc is based on the premise that this region is usually the
brightest in the image. Additionally, edge detection filters
and a Hough transform are used to detect the circular shape
of this structure. The optic disc location is used as reference
point in [38] for both the detection of the fovea, using cor-
relation filters, and the measurements of relevant properties
of the previously extracted blood vessels. Thus, an error in
the detection of the optic disc would also impact these sub-
sequent analyses. In that regard, besides the extraction of the
blood vessels, particularly their centerlines, the methodol-
ogy of Ramos et al. [38] requires an additional process for
the measurement of the caliber and the classification of the
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vessels as either arteries or veins. These two tasks are per-
formed at several discrete points for each extracted blood
vessel, performing a local segmentation around each point
using active contour models and analyzing the intensity pro-
files across the vessel. Similarly to the extraction of the blood
vessels, although these methods can provide adequate results
under controlled conditions, modern CNNs demonstrate to
be more effective and reliable alternatives [31, 32].

Deep learning algorithms have shown their effectiveness
and versatility solving numerous computer vision problems.
In particular, in the field of retinal image analysis, DNNs
usually represent the state-of-the-art for the segmentation
and detection of relevant structures in the images as well as
for the diagnosis of relevant health conditions [28]. However,
although DNNs have shown to be able to achieve remarkable
results in the diagnosis of numerous diseases, their appli-
cation in clinical practice is still limited due to the lack of
understanding of their predictions [14, 29]. In that regard,
there is an increasing interest in the development of inter-
pretable automated methods for the diagnosis as well as
automated methods for the estimation of clinical biomark-
ers [14, 27]. These biomarkers, such as the retinal vascular
tortuosity, could be used as aid for the clinicians or be inte-
grated in more complex computer-aided diagnosis systems.

In this work, we propose a robust and explainablemethod-
ology for the automated assessment of the retinal vascular
tortuosity. In order to provide a reliable assessment of this
biomarker, we follow a comprehensive formulation of the
global tortuosity score taking into account several anatomi-
cal factors. For that purpose, the proposed methodology first
performs the robust extraction of the complete arteriovenous
tree, the optic disc, and the fovea using specialized neural
networks. The extracted anatomical structures are used for
the computation of the tortuosity value as well as the relevant
anatomical factors of each individual blood vessel. Then, the
global tortuosity score is obtained by integrating the informa-
tion from all the blood vessels in the image. The weighting
coefficients required for this integration are automatically
adjusted using evolutionary computation.Besides the estima-
tion of the global tortuosity score, the proposedmethodology
also provides visual representations of the tortuosity values
as well as the contribution of each individual blood vessel to
the final score. These visual representations directly explain
the predicted tortuosity score, hence allowing to understand
the decision of the model. In order to validate the proposed
methodology, we conduct several comparative experiments
including previous methods and we also compare the perfor-
mance of our approach against the criteria of different clinical
experts. These experiments are conducted on a dataset of
color fundus images from diabetic patients. This dataset
was explicitly gathered for the purpose of evaluating the
automated assessment of the retinal vascular tortuosity. In
order to ensure a high-quality gold standard, the dataset was

annotated by a group of 5 clinical experts, including a joint
annotation session to elaborate the final consensus ground
truth.

Finally, it is worth noting that our proposal represents the
first approach that integrates deep learning techniques into
the computation of the global tortuosity score. The moti-
vation for this is to provide a more robust extraction of the
relevant anatomical structures. The robust extraction of these
structures under challenging conditions is key for a reliable
and trustworthy assessment of the retinal vascular tortuosity.
Moreover, the use of evolutionary computation techniques
for the adjustment of the required coefficients in the calculus
of the tortuosity score further improves the robustness and
effectiveness of the developed model. Additionally, our pro-
posal offers these advantages while also providing complete
visual explainability of the predictions. This is a valuable
characteristic for the potential adoption of the proposed
methodology in clinical practice andmedical research,where
the understanding of the predictions made by the models is
a critical factor.

2 Methods

The proposed methodology for the automated assessment of
the retinal vascular tortuosity is summarized in the diagramof
Fig. 2. This methodology applies the tortuosity formulation
proposed in [38], which makes use of different anatomical
factors to weight the importance of each individual blood
vessel towards the global tortuosity score. This is intended to
better emulate the process followed by experienced ophthal-
mologists in clinical practice. The proposed methodology
is divided into three different parts. First, anatomical struc-
tures that are relevant for the computation of the tortuosity
score are extracted from the image. In order to perform a
reliable extraction, we use different neural networks that are
specialized in each individual anatomical structure. Then, the
information of these structures is used to compute the tortuos-
ity value for each individual vessel as well as the anatomical
factors that are relevant to assess the importance of each
vessel within the global tortuosity. Finally, the global tortu-
osity score for each image is computed by aggregating the
per-vessel tortuosity values. This is performed by weight-
ing the importance of each vessel in function of the different
anatomical factors. The optimization of the involved weight-
ing parameters is performed using evolutionary computation.

2.1 Extraction of anatomical structures with deep
neural networks

The computation of the global tortuosity score requires the
previous computation of individual vessel segments as well
as several anatomical factors for each individual vessel.
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Fig. 2 Diagram depicting the proposed methodology for the automated assessment of the retinal vascular tortuosity

These anatomical factors are: the caliber of the vessel,
whether the vessel is an artery or vein, the distance to the
optic disc, and the distance to the fovea. In order to address
these requirements, we perform the extraction of the follow-
ing anatomical structures from the images: the arteriovenous
tree, the optic disc, and the fovea.Additionally, in comparison
to previous works, we perform the segmentation and classi-
fication of the complete arteriovenous tree, which allows for
a better estimation of the tortuosity values and the required
anatomical factors. Figure 3 depicts a representative example
of color fundus image showcasing these different structures.

The arteriovenous tree consists of the blood vessels (arter-
ies and veins) that supply and transport blood throughout the
retina. Therefore, this structure can be divided into both an
arterial tree and a venous tree. The extraction of the arteri-
ovenous tree is crucial for the assessment of the tortuosity
because it provides the vessel segments for which the tor-
tuosity values are originally computed. Additionally, it also
provides relevant information such as the caliber of the ves-
sels orwhether anyvessel is an artery or a vein. In contrast, the
optic disc represents the connection point between the optic
nerve and the retina. In this region, the blood vessels naturally

curve to enter and leave the retina, hence the vessel segments
in the optic disc must be discarded from the analysis of the
tortuosity. Additionally, the distance between each individual
vessel and the optic disc is also relevant for the assessment of
the tortuosity. Finally, the fovea is a small spot in the center
of the posterior portion of the retina that is responsible for the
sharp central vision. In this case, the distance between each
individual vessel and the fovea is also relevant for the assess-
ment of the tortuosity. We address the extraction of these
anatomical structures using deep learning techniques, which
are expected to provide better performance and reliability
than previous alternatives, especially in the more challeng-
ing scenarios. In particular, we useDNNs that are specialized
for each individual structure and are trained following state-
of-the-art approaches. The particular approach followed for
each anatomical structure is described below.

2.1.1 Arteriovenous tree

In this work, the extraction of the arteriovenous tree follows
the approach proposed in [32]. In particular, we formulate the
problem as a multi-label segmentation and train a DNN to

(a) (b) (c)

Fig. 3 Example of color fundus image showcasing the anatomical struc-
tures of interest. (a)Original color fundus image. (b)Blood vesselsmaps
overlaid over the original image. White denotes arteries whereas dark
blue denotes veins. Meanwhile, light blue denotes overlapping between

arteries and veins and pink denotes uncertain regions. (c) Locations of
the optic disc and the fovea overlaid over the original image. Dark blue
denotes the optic disc location whereas white denotes the fovea location
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predict three independent output maps: arteries, veins, and
blood vessels. The multi-label formulation means that the
output maps of the network are not mutually exclusively, i.e.
the same pixel can be predicted to belong to more than one
class (e.g. artery and vein at the same time). This is relevant
to the problem at hand because arteries and veins intersect
throughout the image, resulting in crossing points where only
one of them is visible. If the network were to predict only
the visible class (artery or vein), the resulting maps would be
inadequately broken apart in several points (the crossings). In
contrast, themulti-label approach has the potential to provide
full artery and vein maps.

The network training is performed using binary cross-
entropy as loss function for each individual output map. The
global training loss is obtained as the sum of the three indi-
vidual per-map losses. In particular, the global training loss
can be defined as:

LAV tree =
C∑

c

∑

�c

− yc log(pc)− (1− yc) log(1− pc) (1)

where C = {Arteries, Veins, Vessels} denotes the set of
the three considered classes, �c the set of pixels within the
RegionOf Interest (ROI) of class c, pc the predicted value for
class c, and yc the ground truth value for class c. Thepredicted
values pc are bounded in the range [0, 1] by using a sigmoid
function in the final layer of the network. The particular ROI
for each class will be given by the annotations of the training
dataset [32]. The existence of the different ROIs is due to the
fact that, for a few vessels, it may be uncertain for the expert
annotators whether the vessel is an artery or a vein. These
cases will be included in the ROI of the blood vessels but
will be outside of the ROI of arteries and veins (i.e. they are
not considered in the arteries and veins components of the
training loss)

The training of the network is performed on the publicly
available RITE dataset [23]. This dataset was built upon the
DRIVE dataset [43] for vessel segmentation, adding addi-
tional ground truth labels for the distinction between arteries
and veins. The dataset is split into 20 training images and 20
test images. We use the 20 images of the training set. The
size of the images is 768 × 584 pixels.

Following the approach in [32], we use U-Net [41] as
network architecture. This network and its variants are com-
monly used for biomedical image segmentation, including
the extraction of the retinal vasculature [32, 40]. The net-
work parameters are initialized following the method of He
et al. [18]. Similarly to other works addressing the dis-
tinction between arteries and veins, the input images are
pre-processed by performing global contrast enhancement
and local intensity normalization [13, 32]. The training is
performed using the Adam optimization algorithm [26] with

learning rate α = 0.0001 and decay rates β1 = 0.9 and
β2 = 0.999. The training is performed at a constant learn-
ing rate, being stopped when the validation loss does not
improve for 200 epochs. As validation data, we use 25% of
the training set. Data augmentation is applied in the form of
intensity/color transformations, affine transformations, and
horizontal/vertical flipping.

The performance of the final trained model was evaluated
on the test set of the RITE dataset, a standard benchmark
for retinal vasculature segmentation. The model achieves
98.33% AUC in the Receiver Operator Characteristic (ROC)
curve for the segmentation of the blood vessels, as well as
97.38% AUC and 98.00% AUC for the individual segmen-
tation of arteries and veins, respectively. Additionally, after
thresholding to get the class with the highest probability,
the model achieves 79.12% Sensitivity and 98.65% Speci-
ficity for the segmentation of the blood vessels. Similarly, the
model achieves 87.47% Sensitivity and 90.89% Specificity
for the distinction between arteries and veins (considering
artery the positive class).

2.1.2 Optic disc and fovea

In this work, the localization of the optic disc and the fovea
follows the approach proposed in [20]. In that regard, we
formulate the problem as a heatmap regression in which the
target value for each individual pixel depends on its distance
to the target structure. In particular, the maximum value in
the heatmap corresponds to the location of the target struc-
ture and the values of the surrounding pixels progressively
decrease as they are placed farther from that target. This strat-
egy has demonstrated to be successful in the localization of
different anatomical structures [20, 22]. In this work, we train
DNNs to independently predict the heatmaps of the optic
disc and the fovea. Then, the particular locations of these
two structures can be extracted from the predicted heatmaps
by finding their maximum values.

The network training is performed using mean squared
error as loss function. In particular, the training loss can be
defined as:

LOD/Fovea = 1

N

N∑

n

(yn − pn)
2 (2)

where N denotes the number of pixel in the heatmap, pn the
predicted value for pixel n, and yn the ground truth value for
pixel n. As in [20], the ground truth heatmap y presents an
exponential decay with respect to the distance to the target
structure. In particular, the values of the ground truth heatmap
are obtained as:

yn = 1 + tanh(−dn
π

β
) (3)
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where tanh denotes the hyperbolic tangent function, dn the
distance from pixel n to the target location, andβ the distance
at which the heatmap values approximate to zero. The shape
of these ground truth heatmaps is depicted in the example of
Fig. 4.

Following the same methodology, the network is inde-
pendently trained for the localization of the optic disc and
the fovea. The training for the optic disc localization is per-
formed with the images of the DRIVE dataset [43], which is
described in Section 2.1.1. However, the ground truth coordi-
nates of the optic disc locations were manually annotated for
us by a clinical expert. We use the 20 images of the training
set. In contrast, the training for the fovea localization is per-
formed on the public IDRiD dataset [36], which contains the
ground truth coordinates of the fovea location. The dataset is
split into 413 training images and 103 test images.We use the
413 images of the training set. The original size of the images
is 4288 × 2848 pixels. However, the images were resized to
a size of 858 × 570 pixels, which was demonstrated to be
sufficient for the successful localization of the fovea [20].

Following the approach in [20], we use U-Net [41] as
network architecture. This network was demonstrated to be
adequate for the prediction of heatmaps in several works [20,
22]. In this case, in order to facilitate the recognition of the
global context in the images, the network is initialized with
a pre-trained model using the self-supervised multimodal
reconstruction approach proposed in [19, 21]. The training is
performed using the Adam optimization algorithm [26] with
an initial learning rate α = 1e − 5 and decay rates β1 = 0.9
and β2 = 0.999. The learning rate is reduced by a factor
of 10 when the validation loss does not improve for 2500
iterations. After reaching a final learning rate α = 1e − 7,
the training is stopped. As validation data, we use 25% of
the training set. Data augmentation is applied in the form of
intensity/color transformations, affine transformations, and
horizontal/vertical flipping.

2.2 Computation of vessels segments, anatomical
factors, and tortuosity values

The extracted anatomical structures are automatically pro-
cessed to obtain the individual vessel segments and their cor-
responding anatomical factors. The obtained vessel segments

Fig. 4 Shape of the obtained ground truth heatmaps using the hyper-
bolic tangent function

are directly used to compute the per-vessel tortuosity values,
whereas the anatomical factors will be used later for the com-
putation of the global tortuosity score.

2.2.1 Vessel segments

The computation of the individual vessel segments startswith
the binary maps of the arterial and venous trees that are pre-
dicted by the neural network. The process is the same for both
types of vascular maps. First, the skeleton of the vascular
tree is computed using the method of Zhang et al. [48]. This
algorithm iteratively removes the border pixels of the binary
vascular map until no more pixels can be removed without
breaking the connectivity of the blood vessels. The resulting
skeleton is a 1-pixel wide representation of the vascular tree.
Then, the vessels in the optic disc region, which should not
be considered for the analysis of the tortuosity, are removed
from the skeleton. In particular, we remove the vessels that
are within a distance r to the predicted optic disc location,
where the value r depends on the size and field of view of
the images. Taking into consideration the size of the images
in the evaluation dataset (described in Section 2.4), we use a
fixed value of r = 60 pixels. The next step is the decomposi-
tion of the skeleton into individual vessel segments. For this
step, junctions in the skeleton are detected using morpholog-
ical operators. In particular, we apply a hit-or-miss transform
considering all the possible rotations of the T-shaped and Y-
shaped junction patterns. The detected junctions are used to
split the skeleton into individual vessel segments. In general,
at each junction, the skeleton is split into three different seg-
ments. However, as in [38, 39], in those cases where two
potential new segments present matching directions and cal-
ibers, those two segments are kept joined together as a single
vessel segment. The direction of the segments is given by
their tangent lines. Meanwhile, the caliber, which is one of
the anatomical factors considered for the analysis of the tor-
tuosity, is computed as described in Section 2.2.2. Finally,
each vessel segment is defined by the list of its constituent
pixels, and the length of the segment is given by the number
of these pixels.

2.2.2 Anatomical factors

Caliber The caliber of the vessel segments is obtained by
computing the Euclidean distance transform of the binary
vascular maps that are predicted by the network. This oper-
ation assigns to each pixel its distance to the border of the
binary vascular region. Thus, the value assigned to each pixel
of the skeleton will be approximately half the caliber of the
vessel at that particular section. Then, the caliber for each
vessel segment is computed as the average caliber of all the
sections (or pixels) in that vessel.
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Artery-vein distinction The probabilities of being artery or
vein are obtained from the maps predicted by the network
before binarization. The precise probabilities assigned to
each vessel segment are computed as the average along the
segment. The vessel segments are considered to belong to
the class with higher probability.

Distance to the optic disc The distance from any vessel seg-
ment to the optic disc is computed as the average distance
from the pixels of that segment to the optic disc location.

Distance to the fovea The distance from any vessel segment
to the fovea is computed as the average distance from the
pixels of that segment to the fovea location.

2.2.3 Tortuosity values

The tortuosity value of each individual vessel segment is
computed using the metric proposed by Grisan et al. [15].
This metric has demonstrated to provide a better matching
with the criteria of the ophthalmologists in comparison to
other alternatives in the literature [39]. According to [15], the
tortuosity of a vessel segment depends on how many times
the vessel changes its convexity (or curvature sign) and how
large is the amplitude of the curve that is described between
every twoconsecutive convexity changes. In order tomeasure
these parameters, first the vessel is smoothed using a low-
pass filter that removes undesirable noise due to the discrete
nature of the pixel representation [11, 17]. In particular, as in
[38, 39], we apply a Savitzky-Golay filter with polynomial
order 2 combined with a Gaussian filter with sigma value
of 3 pixels. Then, the vessel is split at the inflection points
where its convexity changes. This results inn-subsegments of
constant-sign curvature. An example of inflection points and
subsegments can be seen in Fig. 5. The amplitude of the curve
in each subsegment is measured using the ratio between the
arc length and the chord length of that subsegment. Finally,
this information is integrated into the formal definition of
tortuosity:

τv = n − 1

Lc

n∑

i=1

[
Lcsi

Lxsi
− 1

]
(4)

Fig. 5 Example of tortuous vessel segment consisting of four inflection
points and six subsegments. Black dots denote the inflection points

where Lc denotes the arc length of the whole vessel seg-
ment, Lcsi the arc length of subsegment i , and Lxsi the chord
length of subsegment i .

2.3 Computation of the global tortuosity score using
evolutionary computation

2.3.1 Formulation of the global tortuosity score

The global tortuosity score for a given image is obtained by
aggregating the individual tortuosity values of the different
vessel segments. In particular, taking into consideration the
compositionality property of the vascular tortuosity [17], the
global tortuosity score is obtained by computing theweighted
mean of the per-vessel tortuosity values. Thus, the global
tortuosity score is defined as:

τ f =
∑n

i=1 τvi fi∑n
i=1 fi

(5)

where τvi and fi denote the tortuosity value and theweighting
factor, respectively, of the vessel segment i . The weighting
factor fi weights the importance of each vessel segment i
in the computation of the global tortuosity score. When no
additional anatomical factors are considered, the standard
approach is to use the vessel length as the weighting factor
for each segment, i.e. fi = Lci [38, 39]. However, it is also
possible to include additional anatomical factors in the com-
putation [38]. In that regard, we define the weighting factor
fi for a given vessel segment i as follows:

fi = Lci · [(ωAV · f AV /i + (1 − ωAV ) · (1 − f AV /i )) +
(ωCal · fCal/i ) + (ωdOD · fdOD/i ) + (ωdFov · fdFov/i )]

(6)

where ωAV , ωCal , ωdOD , and ωdFov are the coefficients for
the anatomical factors that denote the probability of being
artery ( f AV ), the caliber in pixels ( fCal ), the distance to optic
disc in pixels ( fdOD), and the distance to fovea in pixels
( fdFov), respectively. Additionally, the term 1 − ωAV rep-
resents the coefficient that is applied to the probability of
being vein (1 − f AV ). This implies that 0 ≤ ωAV ≤ 1. As
the tortuosity must be always a non-negative value, all the
coefficients are subjected to the constraint ωx ≥ 0 ∀ωx ∈
{ωAV , ωCal , ωdOD, ωdFov}. The coefficients of the different
anatomical factors are automatically selected through evolu-
tionary computation as described below (Section 2.3.2).

2.3.2 Estimation of weighting coefficients using
evolutionary computation

In order to obtain the most adequate values for the coef-
ficients of the anatomical factors, an optimization process
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with evolutionary algorithms is performed. In that regard, it
must be noticed that the goal of the methodology herein pre-
sented is to accurately classify the images in function of the
presence of vascular tortuosity. For that purpose, a threshold
φtor t can be used such that retinas are considered tortuous
when their global tortuosity score τ f is superior to φtor t and
non-tortuous otherwise. The performance of this binary clas-
sification can be assessed by means of the Sensitivity (Sen)
and the Specificity (Sp) with respect to the ground truth.
In that regard, we are interested in finding the coefficients
ωx and the threshold φtor t that provide both a high Sen-
sitivity and a high Specificity. However, there is usually a
trade-off between this two metrics, such that optimal solu-
tionswith higher Sensitivity usually present lower Specificity
and viceversa. In this scenario, we perform a multi-objective
optimization to find the solutions that are Pareto optimal with
regards to Sensitivity and Specificity. This optimization pro-
cess is performed with the Non-dominated Sorted Genetic
Algorithm II (NSGA-II) [6], which is an genetic algorithm
commonly used to solve multi-objective optimization prob-
lems [5, 12, 45].

The NSGA-II algorithm iteratively evolves the population
of candidate solutions (the coefficients ωx and the threshold
φtor t , in this case) by performing selection, genetic crossover,
and genetic mutation operations. In that regard, NSGA-II
follows the general outline of a genetic algorithm using a
modified survival and selection process [6]. In particular,
after applying crossover and mutation operators to generate
a new offspring population of candidate solutions, NSGA-II
merges together the parent and offspring populations. This
ensures elitism by allowing the best candidate solutions to
continue to the next generation. The survival of candidate
solutions in each iteration is given by their order accord-
ing to two different criteria. First, the solutions are ranked
according to the non-dominated front to which they belong
in objective space, i.e. solutions towards the Pareto-optimal
front are given precedence. Second, the solutions are sorted
by their crowding distance in objective space, given prece-
dence within the same front level to solutions in less crowded
regions. This guides the selection process towards an uni-
formly spread-out Pareto-optimal front. Then, the selection
of solutions that will be used to generate the new offspring
population is performed with a binary tournament using the
same criteria.

Regarding the operations to generate the new offspring
populations, the crossover is performed using Simulated
Binary Crossover with ηc = 15 and probability pc = 0.9
[5, 8]. Meanwhile, the mutation is performed using Poly-
nomical Mutation with ηm = 20 and probability pm = 0.9
[5, 7]. The population size is 500 and the optimization is
conducted until convergence [5].

The evolutionary optimization process is performed on
the same dataset that we use to validate the complete

methodology, which is described in detail in Section 2.4. In
that regard, it must be noticed that evaluation is performed
using Monte Carlo cross-validation, i.e. the NSGA-II opti-
mization and evaluation are always performed on different
subsets of the dataset. The complete evaluation procedure is
described in detail in Section 2.5.

2.4 Dataset

The methodology is validated on a dataset of color fundus
images that was also used in previous studies [38, 39]. The
dataset consists of 200 color fundus images from a cohort
of diabetic patients. The level of vascular tortuosity in these
images ranges from no visible tortuosity to severe tortuosity.
The images present varying sizes, ranging from 616×550 to
1020×680 pixels, and represent a variety of characteristics
and capture conditions. Figure 6 depicts some representative
examples of images in the dataset.

The annotation of the images was performed by a group
of five clinical experts who are actively involved in the daily
clinical practice of an ophthalmology service. The level of
experience of these clinicians ranged from head of service
to resident physician. The annotation process involved two
individual rating rounds and a joint session where the five
clinical experts discussed their discrepancies. The ratings
resulting from this joint session are used as the consensus
ground truth. This ground truth provides the classification
of the images into two categories: non clinically-relevant
and clinically-relevant vascular tortuosity. Non clinically-
relevant tortuosity includes images with no tortuosity as
well as images with mild tortuosity, which is a common
asymptomatic anomaly in the human body [16]. Meanwhile,
clinically-relevant tortuosity includes images with moderate
or severe tortuosity, which is known to be associatedwith sig-
nificant health risks [16, 25]. Given the absence of standard
measurable criteria for the assessment of the tortuosity, the
distinction between these categories ismade by the clinicians
on the basis of their accumulated knowledge and experience
in the field. Table 1 provides the inter-observer agreement
for the five clinical experts as well as the consensus ground
truth after the final rating round.

2.5 Evaluation procedure

We follow the same evaluation procedure as previous works
[38]. In that regard, the assessment of the global tortuosity is
performed by means of a Receiver Operator Characteristic
(ROC) analysis. In particular, we use the ROC convex hull
curves, which depict ’Sensitivity’ against ’1 - Specificity’ for
different operating points. For the experiments using evolu-
tionary computation, the curves are constructed as in [38].
First, we measure the sensitivity and specificity in the test
set of the different Pareto-optimal solutions provided by the
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Fig. 6 Representative examples
of color fundus images in the
evaluation dataset

evolutionary optimization process. In this case, each indi-
vidual solution represents a different operating point in ROC
space, as each solution includes a classification threshold
to be applied over the obtained tortuosity score. The final
curve is constructed by computing the convex hull of the
different operating points. Besides depicting the curve, we
also use the Area Under the Curve (AUC) as evaluation
metric. The experiments are conducted using Monte-Carlo
cross-validation, hence the optimization and the evaluation
are always performed in independent subsets of the dataset.
In particular, we perform 10 repetitions of the experiments
with 10 independent random splits of the dataset, using 80%
of the data as training set and 20%as test set.We plot the aver-
age curves and report the AUC values as ’mean ± standard
deviation’.

We also perform some experiments without using the
anatomical factors or using only one of them at each time. In
general, these cases do not require the use of weighting coef-
ficients and, therefore, no optimization process is required.
Consequently, the ROC analysis is performed by directly
applying different thresholds over the global tortousity score,
such that each threshold value represents a different operating
point inROCspace. For consistencywith the evaluationusing
evolutionary computation, the final curve is also constructed
by computing the convex hull of the different operating
points. In this case, as no optimization is required, the eval-
uation is performed in a single step using 100% of the data
as test set.

In order to provide an additional frame of references for
the validation, we also evaluate the performance of each indi-
vidual clinical expert when compared against the consensus

Table 1 Inter-observer agreement in terms of Cohen-Kappa score for
the five clinical experts

E2 E3 E4 E5 Rc

E1 0.47 0.56 0.41 0.33 0.55

E2 0.54 0.58 0.53 0.69

E3 0.62 0.58 0.79

E4 0.58 0.65

E5 0.71

A higher value denotes greater agreement. En denotes Expert number
n, whereas Rc denotes the consensus ground after the final rating round

ground truth. Each of the experts will be represented by a
single operating point in ROC space.

3 Results and discussion

3.1 Evaluation of the proposedmethodology

In order to validate the proposed methodology, we perform
a comparison against the method of Ramos et al. [38] and
the different clinical experts. The method of Ramos et al.
[38] follows the same formulation of the global tortuos-
ity score that is applied in our work. In that regard, this
method also requires the selection of optimal weighting coef-
ficients and thresholds using evolutionary computation. To
provide a fair comparison, we perform experiments using
the same training-test splits for both methods. Figure 7
depicts the results of our experiments. These results show
that the proposed methodology clearly outperforms the pre-
vious method. Firstly, our proposal achieves a greater AUC
value, which denotes a better overall performance. Secondly,
as it is shown in the depicted curves, the improvement is par-
ticularly notorious in the regionwith both high sensitivity and
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Fig. 7 Results and comparison for the assessment of the retinal vascular
tortuosity. The plots represent the average curve for each method using
Monte-Carlo cross-validation
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high specificity, which is of especial interest due to its well-
balanced performance. Additionally, whereas the method of
Ramos et al. [38] only outperforms one of the clinical experts,
our proposal is able to surpass the performance of three indi-
vidual experts. This shows that the proposed methodology
could be a valuable tool for the assessment of the retinal vas-
cular tortuosity in real clinical settings, where the combined
opinion of multiple clinicians is usually not available.

The improvement of our proposal with respect to the
method of Ramos et al. [38] can be explained by the use
of DNNs for the extraction of the relevant anatomical struc-
tures, instead of hand-engineered classical computer vision
approaches. In that regard, the reliable extraction of the arte-
riovenous tree, the optic disc, and the fovea is key not only
to the computation of the individual vessel segments but also
to the computation of the different anatomical factors.

3.2 Evaluation without anatomical factors

In the literature, some previous works have approached
the assessment of the retinal vascular tortuosity without
considering the use of anatomical factors. These kinds of
approaches are expected to provide a lower performance.
However, avoiding the use of anatomical factors can also
result in a more computationally efficient approach. There-
fore, it is of interest to study whether the performance benefit
due to the use of DNNs also translates to these more sim-
ple settings. To that end, we perform additional experiments
to evaluate our proposal without the anatomical factors and
compare the performance of this variant against equivalent
previous methods. In these experiments, the global tortuos-
ity score is computed using only the vessel length to weight
the contribution of each individual vessel segment to the
global tortuosity. Consequently, the optimization process to
select the different weighting coefficients and thresholds is
not required.

Figure 8 depicts the results of our experiments without
the anatomical factors. In this case, we compare the perfor-
mance of our proposal against a previous method of Ramos
et al. [39] that do not requires anatomical factors either. The
results show that our proposal also provides adequate results
in this setting and outperforms the method of Ramos et al.
[39]. However, in this case, the performance is lower than the
one achieved using our complete methodology (see Fig. 7).
Firstly, these results demonstrate that the extraction of the
anatomical structures with DNNs also represents an advan-
tage when no anatomical factors are considered. In this case,
the DNNswere used to extract the optic disc and the vascular
map (but not the arterial and venous maps). These structures
are key to compute the vessel segments that are required for
the calculus of the global tortuosity. Secondly, the results also
demonstrate that the use of anatomical factors in our com-
plete methodology provides additional relevant knowledge
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Fig. 8 Results and comparison for the assessment of the retinal vascular
tortuosity without anatomical factors

that is useful for the assessment of the vascular tortuosity. As
shown in the depicted curves, taking into consideration this
additional anatomical knowledge is key to achieve a perfor-
mance that is highly competitive with the clinical experts.

3.3 Analysis of the different anatomical factors
in themethodology

Given that the proposed methodology makes use of a variety
of anatomical factors to improve the performance, in this sec-
tion we study the individual impact of each of these factors
in the assessment of the vascular tortuosity. For that purpose,
we perform additional experiments including the anatomical
factors one at a time. In the case of the caliber, the distance
to the optic disc, and the distance to the fovea, the weight-
ing factor of each vessel is directly computed as the product
of the vessel length and each of these magnitudes (caliber,
distance to optic disc, and distance to fovea). Thus, the opti-
mization process to select the differentweighting coefficients
and thresholds is not required. In that regard, the performance
when using any of these anatomical factors is evaluated using
standard ROC analysis (as in Section 3.2). In contrast, when
using the artery-vein distinction, it is necessary to estimate
the weighting coefficient of arteries against veins to com-
pute the weighting factor of each vessel. This is performed
using the same evolutionary optimization process as if all
the anatomical factors were considered. Although, in this
case, the artery-vein distinction is the only factor included in
the computation. In that regard, the performance when using
artery-vein distinction is evaluated using ROC analysis with
Monte-Carlo cross-validation (as in Section 3.1).

Figure 9 depicts the results of the experiments using the
anatomical factors one at a time.We also include as reference
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Fig. 9 Results for the assessment of the retinal vascular tortuosity using
the individual anatomical factors. * denotes that the method performs
the adjustment of weighting coefficients with evolutionary computation
and the evaluation is performed using Monte-Carlo cross-validation

the results corresponding to the use of all and none of the
anatomical factors. Additionally, Table 2 depicts the results
in terms of AUC and relative improvement with respect to
the baseline without anatomical factors. These results show
that, with the exception of the distance to the optic disc,
the anatomical factors also contribute to a better perfor-
mance when considered in isolation. This means that these
anatomical factors provide relevant knowledge for the assess-
ment of the vascular tortuosity. Additionally, the obtained
results also show a clear ranking of the anatomical factors
in terms of improvement with respect to the baseline, being
artery-vein distinction the anatomical factor that provides a
greater improvement. Nevertheless, the combined use of all
the anatomical factors in the proposed methodology is the
alternative that provides the best results.

Table 2 Results for the assessment of the retinal vascular tortuosity
using the individual anatomical factors

Method AUC(%) Difference (%)

All anatomical factors* 95.21 +2.15

Artery-Vein distinction* 94.61 +1.51

Vessel Caliber 94.12 +0.99

Distance to Fovea 93.82 +0.66

Distance to Optic Disc 92.86 −0.37

No Anatomical Factors 93.2 0.00

Difference (%) is computed as the relative improvement with respect
to the method ’No Anatomical Factors’. * denotes that the method
performs the adjustment of weighting coefficients with evolutionary
computation and the evaluation is performed using Monte-Carlo cross-
validation

Given the slight reduction in performance when using the
distance to the optic disc alone, we perform some additional
experiments to analyze whether this may have an impact in
the overall performance of our proposal. In that regard, first,
we evaluate our complete methodology using all the anatom-
ical factors except the distance to the optic disc. Second, we
also evaluate the performance using a reversed version of
the distance to the optic disc, considering that vessels with
smaller distances may need to be weighted more instead of
the opposite. For these experiments, we define the reversed
distance to the optic disc as RdOD = k − dOD where k is
a constant term aimed to avoid negative values. In this case,
we use k = 600, which is a value slightly greater than the
largest distance in the dataset. The results of these additional
experiments are depicted in Table 3. Firstly, the results show
that the reversed version of the distance to the optic disc
also produces a lower performance than the baseline without
anatomical factors. In that regard, according to our experi-
ments, neither the distance to the optic disc nor the reversed
distance correlate with the importance of the vessels for the
assessment of the global vascular tortuosity. In this scenario,
both the distance and the reversed distance negatively affect
the performance, arguably because they introduce noise in
the predictions. Secondly, the results show that our complete
methodology provides a similar performance regardless of
the inclusion or not of the optic disc distance as one of the
anatomical factors. This indicates that the methodology is
robust to the inclusion of additional anatomical factors, even
when they may have a deleterious effect in the performance
when considered in isolation. The explanation for this is that,
during the evolutionary optimization process, the most ade-
quate combinations of anatomical factors can be learned from
the training data. In that regard, it is worth noting that the
evolutionary algorithm also has the ability to suppress any of
the anatomical factors by drastically reducing its weighting
coefficient. However, it is also possible that the evolution-
ary algorithm could find some combinations of weighting

Table 3 Results for the assessment of the retinal vascular tortuosity
using different alternatives with and without the distance to the Optic
Disc (OD)

Method AUC(%) Difference(%)

All Anatomical Factors* 95.21 +2.15

All but Distance to OD* 95.21 +2.15

Distance to OD 92.86 −0.37

Distance to OD (Reversed) 92.73 −0.50

No Anatomical Factors 93.2 0.00

Difference (%) is computed as the relative improvement with respect
to the method ’No Anatomical Factors’. * denotes that the method
performs the adjustment of weighting coefficients with evolutionary
computation and the evaluation is performed using Monte-Carlo cross-
validation
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coefficients forwhich all the anatomical factors present a pos-
itive or neutral impact, regardless of their deleterious effect
when considered in isolation. In that regard, Figure 10 depicts
the evaluation curves for our proposal both with and without
the distance to the optic disc. These plots show that, despite
the same mean AUC value, the curves are slightly differ-
ent in some areas. Thus, there are some particularly cases
for which the distance to the optic disc has a small positive
impact. Although this is at the expense of a small negative
impact in other cases. Nevertheless, given the small mag-
nitude of these differences, the complete methodology that
we propose demonstrates to be robust to the selection of the
anatomical factors.

3.4 Visual examples and explainability

In order to better comprehend the proposed methodology, in
this section we provide some representative visual examples.
In that regard, Figure 11 depicts visualizations generated at
different steps of the methodology. Firstly, for each input
image, we depict the raw predictions of the DNNs, includ-
ing the heatmap of the optic disc (OD), the heatmap of the
fovea, and the blood vessel maps for arteries and veins. The
predicted locations for the OD and the fovea are given by the
positionof themaximumvalue in the heatmaps,which should
approximately correspond with the center of the depicted
Gaussian blobs (the dark regions). Meanwhile, the blood
vessel maps depict the individual predicted likelihoods of
the arteries and veins in two different colors (red and green).
In this case, dark regions denote overlapping of arteries and
veins, which usually happens in the vessels crossovers. Sec-
ondly, also for each input image, we depict the computed

Fig. 10 Results for the assessment of the retinal vascular tortuosity
with and without the distance to the Optic Disc (OD). The evaluation
is performed using Monte-Carlo cross-validation

skeleton of the retinal vasculature using a colormap to repre-
sent the values of the tortuosity and the different anatomical
factors for each individual vessel segment. In particular, we
provide independent colormaps for tortuosity, caliber, dis-
tance to optic disc (OD), distance to fovea, and artery-vein
distinction. For the latter, the used colors match the ones of
the vessel maps predicted by the network, whereas for the
others the used colors follow the scale depicted in the legend
of the Figure.

Regarding the predictions of the DNNs, the examples
demonstrate that the trained networks are able to precisely
detect the location of the optic disc and the fovea as well as
extract the complete arteriovenous tree. Additionally, these
satisfactory predictions are obtained for two color fundus
images with very different visual characteristics, demon-
strating the robustness of the networks to variations in the
characteristics of the input domain.With regards to the skele-
ton maps depicting the per-vessel tortuosity as well as the
different anatomical factors, the examples also demonstrate
the successful computation of these values.

The previous depicted visualizations can be useful for
understanding the predictions of the proposed methodol-
ogy. However, in order to completely explain the obtained
predictions, our proposal can also provide the weighted tor-
tuosity maps that are obtained after taking into account the
different anatomical factors. It is worth noting that, depend-
ing on their anatomical characteristics, two vessels with
similar tortuosity values can provide very different net con-
tributions to the global tortuosity score. In this regard, the
weighted maps represent the final contribution of each vessel
to the predicted tortuosity score. Thus, they directly explain
the predicted global tortuosity. Figure 12 depicts examples
of these weighted maps obtained from models at different
operating points in ROC space. The different models corre-
spond to different solutions obtained from the evolutionary
optimization process. In this case, we selected four repre-
sentative models that are evenly spread in ROC space. The
best model in terms of balanced accuracy is Model 3. The
coefficients and the threshold that are used in this model are
the following: ωAV = 2.23 × 10−1, ωCal = 8.83 × 10−2,
ωdOD = 1.32 × 10−3, and ωdFov = 6.51 × 10−4, and
φtor t = 2.46 × 10−3. The examples show that the vessels
that contribute the most are usually the same across different
operating points.However, the particular contribution of each
vessel differs from model to model, as each of the models
is adjusted to produce an specific trade-off between speci-
ficity and sensitivity. In this regard, it is worth noting that
In general, the depicted visualizations allow to explain the
prediction of the global tortuosity score in terms of the indi-
vidual blood vessels. This facilitates the understanding of the
final predictions and, consequently, would also facilitate the
adoption of the proposed methodology in clinical practice.
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Input image OD prediction Fovea prediction AV tree prediction

Tortuosity Caliber Distance to OD Distance to Fovea Artery-vein
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Tortuosity Caliber Distance to OD Distance to Fovea Artery-vein

Input image OD prediction Fovea prediction AV tree prediction

Fig. 11 Visual representations generated using the proposed method-
ology for two representative examples of color fundus images. For each
input image, the predictions of the neural networks are depicted in the
same row. Then, for that same input image, per-vessel maps of the
vascular tortuosity and the different anatomical factors are depicted in

the next row. In the case of artery-vein distinction, red denotes arteries
while green denotes veins. In the case of the tortuosity and the remain-
ing anatomical factors, the colors follow the scale depited at the bottom
of the Figure

4 Conclusions

The retinal vascular tortuosity is a relevant biomarker for
systemic and ophthalmic diseases. However, the adoption of
this biomarker in clinical practice is hampered by the diffi-
culty of obtaining an objective and reliable assessment of the
tortuosity. In this context, we propose a robust and explain-
ablemethodology for the automated assessment of the retinal
vascular tortuosity from color fundus images. Our proposal
is based on a comprehensive formulation of the retinal vas-
cular tortuosity, which takes into account several anatomical
factors to weight the importance of each individual blood
vessel. In contrast to previous works, we use specialized
neural networks for the extraction of the required anatomical

structures. In particular, these networks focus on the segmen-
tation and classification of the arterial and venous vascular
trees, the localization of the optic disc, and the localization of
the fovea. Additionally, an evolutionary optimization process
is performed to obtain the most adequate weighting coeffi-
cients for each anatomical factor.

The proposed methodology is validated on a dataset of
color fundus images from diabetic patients with a consen-
sus ground truth and the annotations of five clinical experts.
The obtained results show that our proposal outperforms
previous automated methods and offers a performance that
is comparable to that of the clinical experts. These results
demonstrate that our proposal is a viable alternative for
the assessment of the retinal vascular tortuosity. Moreover,
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Fig. 12 Weighted tortuosity maps that are generated using the pro-
posed methodology for three representative color fundus images. These
weighted maps represent the contribution of each individual blood ves-
sel to the global tortuosity score. For each input image, four different
maps are generated using four representative models evenly spread in

ROC space. Each of the models represents a different solution from the
evolutionary optimization process. The operating point of eachmodel is
described in the plot at the top of the figure,where Sp denotes Specificity
and Sn denotes Sensitivity

besides the estimation of the global tortuosity score, the
proposed methodology also allows to obtain visual repre-
sentations depicting the tortuosity of each blood vessel and
its contribution to the global score. This complementary
information allows to easily understand the predicted global
tortuosity and can potentially facilitate the adoption of our
proposal in clinical practice.

Finally, the obtained results also show that our proposal
is robust to the inclusion of different anatomical factors. In
that regard, in this work we use the same factors that were
previously deemed relevant in the literature. However, future

works could explore different approaches to automatically
discover the anatomical factors that are more relevant for the
assessment of the retinal vascular tortuosity. Additionally,
given the successful results that are achieved in this work for
the assessment of the retinal vascular tortuosity, we consider
that there is a remarkable potential for using this biomarker
in computer-aided diagnosis pipelines and clinical practice.
Thus, exploring the inclusion of this biomarker in clinical
settings for the diagnosis of ophthalmic and systemicdiseases
is a preferential future research direction.
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