
The Journal of Systems and Software 213 (2024) 112035

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Local features: Enhancing variability modeling in software product lines✩

David de Castro, Alejandro Cortiñas, Miguel R. Luaces, Oscar Pedreira ∗, Ángeles Saavedra Places
Universidade da Coruña, Centro de Investigación CITIC, Database Lab., Elviña, 15071, A Coruña, Spain

A R T I C L E I N F O

Keywords:
Software product line engineering
Variability specification
Feature models
Web-based geographic information systems

A B S T R A C T

Context and motivation: Software Product Lines (SPL) enable the creation of software product families with
shared core components using feature models to model variability. Choosing features from a feature model
to generate a product may not be sufficient in certain situations because the application engineer may need
to be able to decide on configuration time the system’s elements to which a certain feature will be applied.
Therefore, there is a need to select which features have to be included in the product but also to which of its
elements they have to be applied.
Objective: We introduce local features that are selectively applied to specific parts of the system during product
configuration.
Results: We formalize local features using multimodels to establish relationships between local features and
other elements of the system models. The paper includes examples illustrating the motivation for local features,
a formal definition, and a domain-specific language for specification and implementation. Finally, we present a
case study in a real scenario that shows how the concept of local features allowed us to define the variability of
a complex system. The examples and the application case show that the proposal achieves higher customization
levels at the application engineering phase.
1. Introduction

Software Product Lines (SPL) support the semi-automatic develop-
ment of families of software products. The products in the family are
built from a set of common core assets and share many features, although
they differ in others. The SPL development paradigm structures the
development process in two phases: the domain engineering phase and
the application engineering phase. The goal of the domain engineering
phase is to analyze, design, and build the components of the product
family and the SPL platform. A key activity of this phase is the analysis
and modeling of variability, that is, the identification of the features
that can be present in the products of the family and the relationships
between them. The goal of the application engineering phase is the
configuration and generation of a specific product. The application
engineers select which features must be present in that product and the
SPL platform generates it by adapting and combining the core assets
according to the selected features (Weiss and Lai, 1999; Pohl et al.,
2005). SPLs mean a great advance in the development of software
product families since the automatic generation of these products led
to a considerable reduction of development costs and an increase in
product quality. This is the reason why there are more and more SPLs
orientated to very different application domains (Weiss et al., 2006),

✩ Editor: Laurence Duchien.
∗ Corresponding author.
E-mail addresses: david.decastro@udc.es (D. de Castro), alejandro.cortinas@udc.es (A. Cortiñas), luaces@udc.es (M.R. Luaces), oscar.pedreira@udc.es

(O. Pedreira), asplaces@udc.es (Á.S. Places).

from the generation of software for airplanes (Sharp, 1998), software
for IoT devices (Iglesias et al., 2019), web portals (Trujillo et al., 2007),
or virtual stores (Rincon et al., 2015), just to name a few examples.

A feature represents a characteristic of a system and can be related to
a functionality, a design decision, or other elements of the system (Pohl
et al., 2005; Apel and Kästner, 2009b; Apel et al., 2016; Benavides
et al., 2010). The variability of a SPL is usually described in a feature
model, a hierarchical tree that represents the features that may or
may not be present in any of the products of the family, and the
relationships between them (Pohl et al., 2005; Apel et al., 2016). In
the domain engineering phase, feature models allow domain engineers
to define the variability of the SPL, which is essential in the design
of the different components. In the application engineering phase, the
SPL platform allows the application engineer to generate a product
of the family by selecting the features that must be present in that
product. In this way, it is possible to generate software that contains
only those functionalities that are necessary. For example, although
all e-commerce stores are very similar and share many features, there
are some functionalities that may differ, such as the payment methods:
some allow payment by credit card, some with PayPal, and some with
vailable online 27 March 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2024.112035
Received 5 March 2023; Received in revised form 16 January 2024; Accepted 22 M
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

arch 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:david.decastro@udc.es
mailto:alejandro.cortinas@udc.es
mailto:luaces@udc.es
mailto:oscar.pedreira@udc.es
mailto:asplaces@udc.es
https://doi.org/10.1016/j.jss.2024.112035
https://doi.org/10.1016/j.jss.2024.112035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

b
a

s
f
h
e
2
2
c
2
o
c
B
f

e
d
t
i
s
a
p
H
i
e
f
t
N
r

o
m
a
d

Fig. 1. Excerpt of the example feature model of a file storage system.
Fig. 2. Excerpt of the example feature model of a file storage system SPL supporting granular control.
oth options. These payment methods are features of the product family
nd can be present in some products but not in others.
Managing variability with feature models is insufficient in many

cenarios because the level of customization they allow can be limited
or complex systems. This is why extensions to the feature model
ave been developed to improve variability modeling. Among these
xtensions are feature models with attributes (Czarnecki et al., 2002,
005b; Benavides et al., 2005; Batory et al., 2006; Voelter and Visser,
011), which allow adding additional information to a feature; or
ardinality-based feature models (Riebisch et al., 2002; Czarnecki et al.,
002, 2004, 2005a), which allow defining cardinalities on subtrees
f the feature model, that can then be replicated according to those
ardinalities, therefore creating several instances of the same feature.
oth extensions considerably improve the level of expressiveness of the
eature models.
Problem Statement
In previous real projects where we applied the SPL paradigm, we

ncountered certain scenarios that highlighted the necessity for a more
etailed level of product specification and customization beyond what
raditional feature models could offer. The problem we have identified
s that in certain situations, it is desirable to be able to express that
ome functionality of a product is applied only to specific parts of it,
nd these parts cannot be identified during the domain engineering
hase but must be identified during the application engineering phase.
ence, we found that it is not sufficient to decide whether a feature
s included or not in the product; we also need to specify to which
lements of the system the feature will be applied. In other words, the
eatures selected in the product configuration cease to be global (for
he entire product) and become local (for specific parts of the product).
ext, we present some examples to illustrate the motivation for this
esearch problem.
Motivating examples
File storage. Many software systems must manage a large number

f files. Consider, for example, a SPL for managing a family of docu-
ent management systems for administrative processes in the public
dministration (with functionalities such as directory management,
ocument storage, document review and approval workflows, etc.) The
2

Fig. 3. Excerpt of the example cardinality-based feature model of a file storage system
SPL.

data model of this software product line would have a large number
of classes in which one of their properties would be a file (e.g., the
employee record would have a profile photography, the regulation class
would have the official gazette file, the citizen complaint class would
have a collection of supporting evidences, etc.). This SPL could also
have three alternatives for storing the files: storing them on a local hard
drive, storing them on a cloud server with fast access, and storing them
on a cloud server with cheaper but slower access time. Each of these
alternatives would be represented as a feature in the feature model
of the SPL (e.g., Local Hard Drive, Fast Cloud Server, and
Slow Cloud Server, in the feature model excerpt shown in Fig. 1).
Let us consider an additional requirement: since there is a substantial
number of classes containing file attributes, potentially reaching the
order of hundreds, which is justifiable in the context of an extensive
document management software product family, we aim to have the
capability to individually select the storage type for each file, providing
granular control over the storage mechanism. The application engineer
may need to select different storage options for different classes of files
attending to the product’s requirements and to optimize the access-
time/cost trade-off. For example, in the case of a profile photograph, it
is essential to serve it from a fast cloud server due to the significance
of speed for optimal user experience. On the other hand, a gazette file,

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.
Fig. 4. Specialization of the example in Fig. 3.
Fig. 5. Excerpt of the example solution with features binding for a file storage system
SPL.

which may not require rapid access, can be served from the local hard
drive. Lastly, citizen complaint evidences, being infrequently accessed,
can be efficiently served from a slow cloud server.

There are already ways of addressing this scenario using the current
state of the art:

(i) An approach would be to use a feature model similar to the one
shown in Fig. 1. The application engineer would only be able
to select one of the three features for a specific product, and it
would be applied uniformly to all files across all classes. As a
result, the SPL would not be able to meet the requirement that
each file can utilize a different storage system.

(ii) The second solution would involve replicating the subtree shown
in Fig. 1 as many times as the number of classes for which
the File Storage feature can be applied. This would result
in a feature diagram with dozens of replicated subtrees (see
Fig. 2). During the application engineering phase, the engineer
would have to indicate for each class which of the three storage
alternatives would be applied. We believe that this solution leads
to an unnecessarily complex feature diagram, which also neces-
sitates a complex product configuration during the application
engineering phase.

(iii) The third solution would involve applying cardinality-based fea-
ture models. The File Storage feature would be cloned as
many times as there are classes with files in the data model
(see Fig. 3, with the notation of Czarnecki et al. (2005a) for
the cardinality-based feature model). Each clone of the subtree
would be associated with a class of the model using an attribute
in the File Storage feature (see Fig. 4). While managing the
tree is simpler than in the previous case, during the application
engineering phase engineers would still have to indicate the
choice again for each class in the data model. Furthermore, the
association between the features and the classes to which they
will be applied is established as an attribute of the feature, which
weakens such an association.

(iv) Another alternative is shown in Fig. 5. Our feature model could
have a root feature File with two mandatory children, Stor-
age Type and File Type. The feature Storage Type feature
would have three children, each representing a file storage alter-
native (local HD, fast cloud server, and slow cloud server). The
3

feature File Type would have as many children features as file
types we would need to store in the system (such as profile pic-
ture, for example). The decision of which storage option would
be applied to each file type would be decided at the product’s
configuration time by binding child features of File Type with
children features of Storage Type. Another possibility would
be establishing the relationships between the file types and the
applied storage types through cross-tree constraints in the fea-
ture model. The main drawback of this solution is that it would
imply incorporating all the file types of a particular product into
the feature model as features that may not be relevant to other
products. This would generate an artificially complex feature
model since it would have to incorporate elements that are not
necessarily relevant features. In this sense, the feature model
would become something like a supermodel that incorporates
elements already defined in other system models, which we
believe would be a bad design approach violating the principle
of separation of concerns. In addition, we would still need to
formalize how the binding between the two groups of features
would be modeled or defined.

(v) Finally, another possible alternative would be having in our
feature model an abstract feature File Type with as many
children as types of files we would need to store in the system
(again, examples include profile picture, gazette, etc.) These
features could have an attribute storageType that would
specify if that file is stored in a local hard drive, fast cloud server
or slow cloud server (see Fig. 6). This alternative shares one
significant drawback with alternative (iv), that is, we would be
incorporating into the feature model features that represent the
types of files of a particular product that may not be relevant
for other products. In addition, the specification of the storage
type of the files would be expressed in a weak way, since these
storage alternatives would no longer appear as features in the
feature model (and we consider they are features that should
appear in the feature model).

We believe that these five solutions can be improved. In the case of
option (i), the solution falls short of meeting the requirements during
the application generation phase, as it does not allow the engineer to
configure which alternative would be applied to each class. Regarding
solutions (ii) and (iii), we find them to be complex, as the feature
model repetitively includes the same subtree numerous times, which
could be avoided. Additionally, the engineer would need to indicate
the chosen storage alternative for each class, even if all classes use the
same alternative and only one of them uses a different one. In the case
of solution (iv), the feature model would have to incorporate elements
already defined in the data model as features, resulting in an artificially
complex feature model. Finally, in the case of solution (v), the features
representing the variability regarding storage options would disappear
from the feature model (something we consider a bad design), and
the relationship between the file types and the applied storage option
would be defined in a weak way.

Scenarios similar to the one presented in the previous example can
emerge when features represent transversal elements of the software,

as exemplified in the following two examples.

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

a

i
t
m
i
t
t
e
t
r
a
e
d
d
s
s
a
d

i
C
t
a
t

u
p
w
d
a
A
i
t
p
p
t
d
s
m
(
p
e
s
r
a

c
m
H
p
t
S

t
c
e
t

Fig. 6. Excerpt of the example solution with features representing file types with
ttributes for defining the storage alternative.

Access Logging. A common requirement for many software systems
s to maintain a log of who (and when) performed modifications on
he data (in some cases, it is also necessary to keep the original and
odified data). This requirement can be included as a functionality
n the feature model. This way, the application engineer would have
he possibility to specify for each generated product whether the func-
ionality is included or not. However, in most cases, the application
ngineer would not want this functionality to apply to all data in
he system but only to those for which user access auditing may be
equired. If the application engineer were to apply the functionality to
ll data, it would entail storing and managing logs that the application
ngineer does not actually need, which we consider a poor design
ecision. Therefore, in this example, the application engineer would
esire the ability to include the functionality in the product but also to
pecify which data in the system it will be applied to. The situation is
imilar to the previous case. The application engineer wishes to select
functionality but does not want it to be applied to all elements in the
ata model; instead, they want to choose specific ones.
Data Export. Many enterprise applications allow users to export data

n formats like CSV for certain classes in the data model. Data export in
SV can be modeled as a feature in a feature model. However, similar
o the previous examples, we may not want this functionality to be
vailable for all classes in the system’s data model, but only for those
hat are required based on the specific software product’s requirements.
Definition: Global and Local Features
We faced scenarios similar to these ones in real projects, which led

s to propose the concepts of global features and local features. Our
roposal includes defining software variability at two levels: global,
hich comprises features that apply to variation points defined in the
omain engineering phase and local, which comprises features that
pply to variation points defined in the application engineering phase.
global feature retains the semantics found in current feature models;
t represents features that can be present in any of the products within
he product family. On the other hand, a local feature in a software
roduct line is a functionality that, when selected for inclusion in a
roduct, will be applied solely to specific elements defined in other sys-
em models. That is, during the domain engineering phase, the engineer
etermines that some features may be applied to certain elements of the
ystem models. During the application engineering phase, the engineer
ust associate these features with the specific elements of the system
specified in other system models) to which they will be applied. Our
roposal includes using multimodels to specify the binding (Siegmund
t al., 2020) between local features and the elements specified in other
ystem’s models. Thus, the formality of the proposal is improved with
espect to other alternatives such as using a configuration file at the
pplication engineering phase.
Fig. 7 shows how the previous example would be solved with the

oncept of local features. In the domain engineering phase, the feature
odel would specify that there are three alternatives to store files.
owever, these features are not associated with predefined variation
oints of the SPL, since, in the excerpt shown in Fig. 7, the three fea-
ures Local Hard Drive, Fast Cloud Server and Slow Cloud
erver are all local features. In the application engineering phase,
4

he engineer can select a global feature to be applied to all files in all
lasses by default if no local features are specified. Furthermore, the
ngineer may select local features to be applied to specific elements of
he data model. In the example shown in Fig. 7, an excerpt from the
data model has two classes, Profile and CitizenComplaint. The
class Profile is associated with the feature Fast Cloud Server,
as it may be necessary to retrieve these files quickly. Similarly, the class
CitizenComplaint is associated with the feature Slow Cloud
Server, since evidence files require a lot of storage space and are
not often accessed. The files in other classes (e.g., the regulation class)
are stored as local files because Local Hard Drive was selected as
the global feature. In this way, we could select a predefined storage
alternative for all classes, but we would be able to customize the storage
alternative for specific classes by associating them with local features.
This approach leads to simpler feature models and simpler product
configurations in the application engineering phase.

In the rest of the article, we develop the concepts of global and
local features and how they can be implemented in practice. From
the point of view of modeling and specification, we decided to imple-
ment global and local features through the concept of multimodels,
which has already been used in some previous works as a way to
specify the relationships between feature models and other system’s
models (Gonzalez-Huerta et al., 2013). From the point of view of
the practical specification of global and local features, we propose
using a Domain-Specific Language (DSL) that enables the application
engineer to define a product specification including the aforementioned
relationships between local features and other system elements. We
introduced the concept of local features informally in a previous con-
ference paper (de Castro et al., 2022), in which we showed a specific
industrial experience that motivated the need for local features in some
SPLs.

Finally, the article presents an application case in a real scenario
in which we applied the concept of local features to a SPL for the
generation of geographic information systems (GIS), that is, systems in
which many of the entities have a geo-spatial component as part of
their attributes. This application case shows how the concept of local
features allowed us to specify and configure how the features related to
data visualization can be applied and adapted to the user visualization
requirements in a real system.

The rest of the paper is organized as follows. Section 2 provides an
overview of previous work. Section 3 explains our proposal, conceptu-
ally, with a brief example, and shows the changes that had to be made
to our SPL’s variability models to support it. Section 4 presents a case
study to illustrate our proposal with an existing GIS web application,
showing an example step by step. Finally, Section 5 concludes the paper
and comments on some ideas for future work.

2. Background and related work

2.1. Software product lines and feature modeling

Software Product Lines (SPL) are one of the solutions adopted by
the software industry to develop quality software in reduced time.
An SPL is a platform that supports the development of a family of
software products that share a set of common features but that can vary
in others. To semi-automate the development of one of the software
products of the family, an SPL allows the engineer to select the features
that should be present in that product. Then, the SPL assembles and
adapts a set of core components to generate that product based on
the selection of features. The variability in the features of the product
family is represented in a feature model, which represents the features of
the product family and the relationships between them. This approach
tries to bring to software development the production schemes that
have been applied in the last century in other industries, such as the
production of automobiles, for example. There are many examples of
applications of SPL in real scenarios. For example, companies in the

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

m
s
s
a
e
s
t
t
f
c
p
e

e
c
o
o
f
B
w
a
f
c
a
K

e
r
a

2

i
o
s
w
e
o
d

2

Fig. 7. Example of application of local features to a public administration system.
m
p
E
b
a
r
i
r
n
t
t
t
m
e

r
I
t
w
T
f
p
o
m
s

O
a
a
e
i
a
g
p
t
s
i
r
i
i
b

3

a
l

aviation sector have SPL oriented toward generating software for their
aircrafts (Sharp, 1998), and there are SPLs oriented toward generating
e-commerce web applications (Rincon et al., 2015).

Feature modeling (Kang et al., 1990) is the de facto variability
representation for SPLs (Sousa et al., 2016; Benavides et al., 2010;
Galindo and Benavides, 2020; Apel and Kästner, 2009a). A feature
odel is a tree where the features (end user-visible characteristics of a
oftware system (Kang et al., 1990)) of a product line are hierarchically
tructured. Each feature can be decomposed into several sub-features,
nd they can be mandatory, optional, or alternative features (Pohl
t al., 2005). Every product in the product line is specified by the
et of features included in it. Besides the relationship between a fea-
ure and its sub-features, we can define cross-tree constraints between
he features, for example, including feature A implies that
eature B is also included. These are the components of what
an be considered basic feature models. However, previous works have
roposed several extensions to these basic feature models (Benavides
t al., 2010; Alférez et al., 2019).
Cardinality-based feature models (Riebisch et al., 2002; Czarnecki

t al., 2002, 2004, 2005a) allow defining UML-like multiplicities or
ardinalities for the features. These cardinalities determine the number
f instances of a feature that can be included in a product, and each
f these features can include a specific set of sub-features. Extended
eature models (Czarnecki et al., 2002, 2005b; Benavides et al., 2005;
atory et al., 2006; Voelter and Visser, 2011) allow to link features
ith attributes; this is, each product can include extra information for
selected feature beyond its own selection. These attributes can be,
or example, a number within a specific range, or a string literal, and
an be used within the constraints between the features. Both of the
pproaches have been used together (Czarnecki et al., 2002, 2005b;
arataş et al., 2013) to obtain a flexible and complete variability model.
However, these extensions to basic feature models only allow for

xpressing certain variability elements in an SPL. Specific domains
equire additional models and relationships between them to express
dditional variability.

.2. Multimodel description of software product lines

A multimodel is a set of interrelated models, each of them represent-
ng a different viewpoint of the system. Each viewpoint is an abstraction
f a system part with a specific purpose and is represented through a
pecific model (Barkmeyer et al., 2003). In a multimodel description,
e can establish relationships between these different viewpoints (mod-
ls) so that one element of one viewpoint can be related to an element
f another. The relationships between elements of different models are
efined outside those models, in a specific model of relationships.
Fig. 8 shows a metamodel of multimodels (González-Huerta et al.,
5

012). The left side of the figure contains the classes representing a i
odel of the system. As we can see in the figure, the class View-
ointModel represents a particular model, which is composed of
ntities and Relationships between those entities. There will
e as many viewpoint models as there are of interest in the domain,
nd each viewpoint model will, in turn, have as many entities and
elationships as necessary to represent the concepts and relationships
n the corresponding view model. On the right side of the figure, the
est of the classes represent the concept of multimodel and its compo-
ents. A Multimodel is composed of ViewpointModels and Mul-
imodelRelationships. A MultimodelRelationship defines
he relationship between MultimodelEntities, each of them ex-
ending an Entity of a specific ViewpointModel. In addition, the
ultimodel can also contain MultimodelAttributes associated to
ither a MultimodelEntity or a MultimodelRelationship.
Previous works have already used the concept of multimodel to

epresent information of a software product line. González-Huerta,
nsfram, and Abrahão (Gonzalez-Huerta et al., 2013) used multimodels
o model the relationships between features, elements of the soft-
are architecture, and quality attributes of the software product line.
his multimodel allows the platform to assess the fulfillment of non-
unctional quality attributes based on the selection of features and the
resence of specific software architecture components in the definition
f the product to be generated. The information contained in the
ultimodel even allows to make recommendations on the features that
hould be selected to meet those non-functional requirements.
We have decided to use the multimodel approach instead of CVL or

VM (Pohl et al., 2005; Metzger et al., 2007) because we found it to be
straightforward approach to establish relationships between features
nd other elements. Additionally, it has been used in previous works to
stablish similar associations, and in terms of practical implementation,
t seemed like an easy and manageable option. Moreover, both OVM
nd CVL can be defined using multimodels, so we are using a more
eneral approach. On the other hand, CVL was dropped due to legal,
atent-related issues (Berger and Collet, 2019). Similarly, OVM aims
o separate the description of feature variability from the rest of the
oftware artifacts providing a powerful way to handle feature variabil-
ty and configuration, but it is not specifically designed to represent
elationships between models in a direct or formalized manner. Also,
n OVM the association between the features and the variation points
s defined in the domain engineering phase, and it is not expected to
e modified in the application engineering phase.

. Local features in software product lines

In this section, we introduce and formalize the concept of global
nd local features. We first present the formalization of global and
ocal features using multimodels, and then we provide an example of

ts application.

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

3

o
o
i
i
d
h
a
h
e
s

Fig. 8. A metamodel of multimodels (González-Huerta et al., 2012).
Fig. 9. A metamodel of multimodels with the inclusion of local features.
e

.1. Definition of global and local features

The definition of global and local features assumes that the products
f the family supported by the SPL are defined by multiple models. One
f these models must necessarily be a feature model. A local feature
s a feature in a software product line that, if selected to be included
n a product, it will be applied only to specific elements defined in
ifferent system models, as defined by the engineer. A global feature
as the semantics they have in current feature models. It represents
feature that can be present in any of the family’s products. As we
ave already mentioned, local features will be applied only to specific
lements of the system defined in other system’s models. The other
ystem’s models can represent different viewpoints of the system, such
6

as its architecture, data model, or visualization configuration. The
relationship between a local feature and the elements in other models
to which it will be applied is modeled using multimodels. As we can
see in Fig. 9, our multimodel for a SPL comprises all the models of
the system (i.e. a FunctionalModel and other ViewpointMod-
els) and defines a MultimodelRelationship, AppliedTo, that
associates a local feature of the feature model with any MultiMod-
lEntity in another model. Notice that a MultiModelEntity
can represent different things in different metamodels. For example,
a class can be a MultiModelEntity in a certain viewpoint of the
system, but a method can also be a MultiModelEntity in a different
viewpoint model. Notice also that, since AppliedTo inherits from

MultiModelRelationship, it can only connect sources and targets

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

w
t
i
F
t
f

r
a
u
u
o

Fig. 10. Definition of local features in SPL.
hich are both MultiModelEntities. Thus, we incorporated to
he multimodel the class FeatureModelMultimodel, which just
nherits from FeatureModel. In Fig. 9, it can also be seen that a
unctionalModel is composed of many FeatureModel. One of
hem is the global feature model, and the other ones are the local
eature models.
Throughout the article, we will explain with examples the existing

elationships between different models with the feature model for the
pplication of local features. To illustrate these relationships, we will
se columns to represent different models of the system, and we will
se arrows with the annotation applied to to indicate the association
f features with elements of the other models. Fig. 10 shows a simple
example. The figure illustrates the product configuration of an unspeci-
fied system model with two objects of the same class on the left column.
On the right column, it depicts the functional model consisting of two
local features that apply only to those objects (Local feature 1 and
Local feature 2) and a global feature model with features that affect the
complete system (Global features). In this example, you can observe
that for Object1, only Local feature 1 is applied, whereas for Object2,
Local feature 2 is applied. It is important to note that due to space
constraints, the tree of local features has not been depicted alongside
the tree of global features. However, these local features would also be
present within the global feature tree to enable the definition of global
behaviors. Additionally, this setup allows the overwriting of specific
behaviors only for the objects of interest. The behavior of these local
features will be discussed in more detail below with concrete examples.

3.2. Example

In order to see how local features are applied in practice, the
following is a case example of an SPL oriented to the generation of
e-commerce stores. The applications generated by the SPL are intended
for the sale of products that can be very varied: from digital products,
such as films, songs, books, etc., to physical products, such as pencils or
pens. These products can be found sorted by categories and even sub-
categories. Payment can be made online and, finally, these applications
will have a product catalog where products are grouped by categories.

Fig. 11 shows the multimodel of this SPL, which consists of two
models: a catalog model (on the left) and a set of feature models (on the
right). The catalog model consists of a class CategoryComposite
that inherits from Category, which has only one attribute named
name. These two classes represent the categories and subcategories
of the products using the composite pattern. Hence, the application
engineer can describe the catalog model of an e-commerce store by
defining a tree of categories.

The right side of Fig. 11 shows the functional model, which contains
a global feature model (on the right) and a local feature model (on the
left):
7

• E-Commerce: this is the global feature model, i.e. the selection
of one of the features in this feature tree affects the whole
product. Within this tree are the features related to payment
methods (Payment), whose payment can be made by bank trans-
fer (BankTransfer) or by credit card (CreditCard). In turn,
there is a second feature, Catalog, which adds the functionality
of being able to visualize the products in catalogs grouped by
categories. The features within its feature tree are grouped in two
subtrees: Preview and Layout. The Preview features sub-
tree contains the features related to the preview of the products
in the catalog, so depending on the feature selected here the
product preview will change. The NoPreview feature does not
activate the product preview, AudioSnippet, VideoSnippet
and TextSnippet activate the audio, video or text preview, re-
spectively, adding the corresponding audio, video or epub player.
The other sub-tree of features, Layout, contains the features
associated with how the different products are arranged within
a catalog; this can be in the form of a grid (by selecting the Grid
feature) or in the form of a list (List feature).

• CategoryDisplay: this is a local feature model that is a subset
of the CategoryDisplay tree of the global feature model
seen before, so that each Category class of the data model is
related to a CategoryDisplay. Hence, for each category that
is created by the application engineer, could have a Category-
Display feature tree that defines the specific preview and layout
of the products of the category. In the case that this does not exist,
the behavior that this CategoryDisplay would be the default
one defined in the E-Commerce tree.

In Fig. 12, we show an instance of the model in Fig. 11 representing
the configuration of a specific product. On the left side on the figure,
there is the specification of the different categories of the product.
On the right side, the chosen functionalities (from the feature models)
that the product will have (both global and local ones that apply only
to certain categories). For this example we have defined two main
categories, OfficeSupplies and DigitalContent (instances of the Catego-
ryComposite class) and two subcategories, Pencils and Films (instances
of the Category class). The category Pencils is not associated with
any local feature. Being a physical product, the more suitable way
to represent them in a store is through a list and without preview.
Since the global feature model already has the default behavior of
listing the elements of a category (List) and not having a preview
(NoPreview), no local feature has been associated to it to change
this behavior. On the other hand, there is the Films category, which,
unlike the previous category, can be previewed. Hence, it is associated
to the feature VideoSnippet through the applied local feature model
with the root feature CategoryDisplay. The feature Grid is also
selected for this category, since this type of layout can be more attrac-
tive to potential buyers and gives prominence to the preview. Finally,

there are other global features that affect the entire product; in this

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.
Fig. 11. Sample SPL model for the generation of e-commerce applications.
Fig. 12. Example of product configuration with the SPL.
d
s
n
F
a
a

case, the feature Payment and its selected subfeature, CreditCard
(so you can only pay by card), and the mandatory feature Catalog
(the selection of these characteristics is represented in the diagram with
green checks to facilitate comprehension).

By modeling variability in this way, making use of local features, it
is possible to have different ways of previewing according to the nature
of the product that is for sale. If the model did not have local features,
the generated product could not have the preview of the products since
pencils are not a video and therefore cannot contain a preview. How-
ever, by having local features, it is possible to configure the product as
shown in Fig. 12. This example shows the practical usefulness of local
features and how they improve the level of expressiveness of the feature
models. Not only can we choose the features we want our product to
have, but we can also specify which specific elements of the product to
be generated will have those features.

4. Case study: developing geographic information systems with
local features

In this section, we describe the case study that in fact motivated
the need for local features. First, we introduce the context for the case
study, and afterward, we describe how our proposal was applied and
implemented in our case.
8

4.1. Context

In a previous work, we addressed the development of Geographic
Information Systems (GIS) with SPLs (Cortiñas et al., 2017). The main
characteristic of GIS is that they manage entities with a geospatial
component. This characteristic affects all the software layers, from the
database, which has to support geospatial data types and operations,
to the user interface, which usually presents the information in maps
and layers. GIS also support specific functionalities, such as route
calculation or data processing based on their spatial representation.
These systems are intensively used in public administrations and pri-
vate companies since they are a typical tool in managing infrastructures
(such as supply or transportation networks) or mobility scenarios (such
as logistics or mobile workforces), for example.

Organizations such as ISO1 or OGC2 have made an important stan-
ardization effort in GIS. The result is that most GIS have the same
oftware architecture and share tools, libraries, and software compo-
ents in their development, independently of their application domain.
urthermore, GIS in different application domains share many function-
lities. This was the motivation to explore the application of an SPL
pproach to GIS: our SPL comprises the features that may appear in a

1 International Organization for Standardization, https://iso.org
2 Open Geospatial Consortium, https://www.ogc.org

https://iso.org
https://www.ogc.org

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

G
i

P
a
d
w
t
d
m
a
W
a
v
T
t
t
G
a
a
s
T
f
o
d
t
c
b
c
a

w
c
t
t
i
s
g
o
w
n

Fig. 13. Example of a product generated with a single map viewer.
o
f
a
n
o

i
t
b
u
e
t
a
a
a
f
v

t
r
i
d
i
e
a
s
e

o
f
s
a
o
e
p
c
w
u
a

b

IS and allows the engineer to select which of them must be included
n a specific product.
At the Databases Laboratory3, we have been working on a Software

roduct Line that generates web-based GIS applications; that is, web
pplications that allow users to visualize and interact with geographic
ata, mainly through maps, as well as to offer other functionalities that
ere identified as common for GIS after an analysis of the domain (Cor-
iñas et al., 2017). This SPL has been employed in the industry for
eveloping several products, including heritage management, facility
anagement, reduced-mobility accessibility, and public transport man-
gement (see Fig. 13). Some of these products are large-scale, such as
ebEIEL4. This is a product family with similar functionalities such
s map viewing and user location. However, managing the functional
ariability of different products is not enough in the domain of GIS.
he main difference when developing two GIS appears in the model of
he domain. For example, a GIS product for a parcel company requires
he system to manage the drivers, warehouses, and roads. In contrast, a
IS oriented to promote tourism in a region requires managing hotels,
ttractions, or natural landscapes. The data model or domain of a GIS
ffects its whole functionality, starting with the information that is
hown in the map viewers and the way this information is drawn.
herefore, the architecture of our SPL is described by three models: a
eature model, a data model, and a visualization model. The variability
f functionalities is modeled as a feature model, through which the
omain engineer can select which of them are required for each of
he GIS products to generate. The data model is defined as an UML
lass diagram that describes the entities, properties and relationships
etween entities for the product. Finally, the visualization model allows
onfiguring the different maps that the application will have, as well
s the layers and styles with which they will be represented.
During these projects, it was observed that while time-to-market

as significantly reduced, the resulting products always presented a
ommon issue. The functionality defined through feature selection in
he feature model is consistently applied in a general manner, without
he ability to customize it for specific parts of the system. For example,
f a functionality affecting the map viewer of the application was
elected, it would be applied in the same way across all maps in the
enerated product. However, some features may need to be applied
nly to certain elements of the system. For instance, a GIS generated
ith the SPL would have different maps, and certain features would be
ecessary for some maps but not for others. Current feature modeling

3 Databases Laboratory website: https://lbd.udc.es/.
4 https://webeiel.dacoruna.gal
9

1

ptions do not account for this, requiring additional adaptation efforts
or each product that software developers must carry out, resulting in
separation of the product from the product family. Therefore, it is
ecessary to be able to specify features that affect only a specific part
f a system.
WebEIEL5 is a web application dedicated to publishing geographic

nformation collected by the Provincial Council of A Coruña, Spain,
hat we will use a paradigmatic example. Most of the data handled
y WebEIEL has a geographic dimension, and it is shown to the
ser via map viewers with different layers (each layer represents one
ntity), styled depending on the data represented. There are different
ypes of map viewers. For example, sometimes the application shows
full-fledged map viewer that displays a large collection of layers
nd provides complex functionality to the user; and sometimes the
pplication requires just a simple map viewer that displays one or
ew layers and provides almost no functionality to the user beyond its
isualization.
WebEIEL’s data model is composed of entities that describe infras-

ructures (e.g., road network) and facilities (e.g., hotels, parks, etc.)
elated to the municipality where they are located. The data model
s not very complex since most of the relationships are spatial (they
o not require foreign keys in the database) and, at the same time, it
s extensive because it includes around a hundred entities. Among the
ntities, there are different types regarding the functionalities of the
pplication. For example, there are entities that should not be modified,
uch as the municipalities, whereas other entities need to be created and
dited from the application, such as water treatment plants or hotels.
The first version of WebEIEL was developed in 2008–2010, and was

perational until December 2022. It has been technologically outdated
or a long time, as resources to its maintenance were scarce. In 2022, we
tarted a project to upgrade WebEIEL to use current technology, using
previously implemented Software Product Line for the generation
f web-based Geographic Information Systems (Cortiñas et al., 2017),
volved in a posterior work which describes the DSL used to generate
roducts of this SPL (Alvarado et al., 2020). The version of WebEIEL
urrently deployed has been generated by the SPL, and modified after-
ards by a development team. An example of a map viewer, a concept
sed all over the section, can be seen in Fig. 14, and accessed in the
ctual application6.

5 WebEIEL website: https://webeiel.dacoruna.gal
6 Example of map viewer showing hotels, among other layers, in We-
EIEL website: https://webeiel.dacoruna.gal/map-viewer/movilidad?hash=
677844039765

https://lbd.udc.es/
https://webeiel.dacoruna.gal
https://webeiel.dacoruna.gal
https://webeiel.dacoruna.gal/map-viewer/movilidad?hash=1677844039765
https://webeiel.dacoruna.gal/map-viewer/movilidad?hash=1677844039765

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.
Fig. 14. WebEIEL screenshot.
Fig. 15. Product Line Feature Model (simplified excerpt, only 18 of the 175 features of our FM are displayed).
V
o
e

Briefly explained, our SPL generates web-based GIS that can be
specified using three models: a feature model (see Fig. 15), used to
determine the functionalities of a product; a data model (see Fig. 16),
that allows the application engineer to define the entities and relation-
ships of the domain of a specific product; and a visualization model (see
Fig. 17), so the application engineer can configure a product to have
different map viewers, each one showing different layers with data.
By creating multiple maps, the application engineer can categorize
information and tailor the maps’ content to specific user groups, making
them more appealing and user-oriented. For instance, a map designed
for tourists might display only hotels and parks, while another map
tailored for a city council worker could show the running water net-
works. Moreover, this approach significantly enhances the application’s
performance by avoiding the slowdown caused by loading too many
layers simultaneously.
10
In the feature model (see Fig. 15), the left-most branch defines
features related to the entities defined in the data model (Entity).
Form generates detailed views of the entities. Depending on the sub-
features Creatable and Editable, these detailed views provide
the possibility of creating new elements, or editing existing ones. The
feature List generates listings for each entity, in which all of its
elements are displayed in a paginated table. These listings may allow
the user to access the detail view of the elements (feature FormAc-
cess, which implies the feature Form), and may be filterable (feature
Filterable).

The second branch defines features associated with the maps (Map-
iewer). The sub-features shown activate functionalities such as ge-
locating the user (UserGeolocation), grouping the geographic
lements of a layer by their location (Clustering), and managing the
map layers (LayerManager). The latter allows the user to hide and

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

s
o
c

h
i
t
r

m
a
M
d
o
t
w
f
i

u
a
w
m
f
c
b
s

Fig. 16. Product line data metamodel.
Fig. 17. Product line visualization metamodel (simplified excerpt).
m
(

e
w
m

how a specific layer of the map, and also includes two sub-features:
ne to switch the style of a layer (StyleSelector), and other to
hange the opacity of a layer (OpacitySelector).
The last branches define features to decide if the application has a

orizontal menu in the top or a left sided vertical menu (Menu and
ts children); to include a CSV importer that allows loading data into
he database from a CSV file (CSVImporter); and to handle user
egistration and authentication (UserManagement).
The data model (see Fig. 16) is one of the three models of our
ultimodel. It allows the application engineer to specify the domain of
product, and is somehow a simplified version of the Object Relational
apping model, also very similar to UML. The application engineer
efines the entities represented by the Entity class, the properties
f the entities in the Property class and the relationships between
he entities represented with the Relationship class. This difference
ith respect to ORM/UML is that our model does not provide support
or defining everything that is possible to do with ORM/UML, such as
nheritance.
Finally, we have the visualization model (see Fig. 17) where the

ser can define maps (Map), layers that present different data (Layer),
nd the relationship between these two elements, that serves to identify
hich layers belong to each map (LayerInMap). The represented
odel is a condensed version of the complete model, aimed at simpli-
ying the solution’s comprehension. To achieve this simplification, all
lasses related to styles have been omitted. These classes are responsi-
le for defining how a layer is visualized in a map, including aspects
11

uch as color representation and geometry opacity. o
Fig. 18. Example of a simple data model for a web-based GIS.

Going back to WebEIEL, we have selected, for our example, sim-
plified excerpts of the data model, shown in Fig. 18, and of the
visualization model, shown in Fig. 19. The data model contains two
entities, Municipality and Hotel, whereas the visualization model con-
tains two maps: MunicipalityMap, that contains a layer to represent
municipalities (MunicipalityLayer), and HotelsMap which contains a
layer that represents hotels (HotelsLayer), and a layer that represents
unicipalities (MunicipalityLayer). Both maps also contain a base layer
BaseLayer) that will work as map background.
We have already mentioned above that the requirements for the

ntity Municipality are different from the ones for the entity Hotel:
e do not want the users of our product to create, edit nor remove
unicipalities, but they can do that for hotels. Therefore, since at least

ne of the entities for the product require these functionalities, we need

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

l

d
a
r
a
o
u
m
i
M
t
v
o

Fig. 19. Example of a simple visualization model for a web-based GIS.
a
t
d
c
T
E
(
i

i
a
t
i
t
n
C
t
f
o
E
f

e
e
e
p
o
d
t
r
s
t
s
t
i
i
f
w
s
E

to select the features Creatable and Editable (see Fig. 15). The
problem is that these functionalities will be affecting all the entities of
the data model, and then a user would be able to modify a municipality.
To prevent this, a developer needs to modify the generated source code
of the product and remove functionalities for some of the entities.

Let us assume that the MunicipalityMap, since it only has one over-
ay, do not require a layer manager, whereas the HotelsMap, having two
overlays, requires a layer manager. This is the same case than before:
since at least one of the map viewers needs to have a layer manager,
the analyst has to select the feature LayerManager, and a developer
needs to remove the functionality after the product is generated.

Obviously, having to modify the generated products straight after
the generation only to remove features is far from ideal, since it
rises the time to market, the maintenance costs, and the evolution
complexity for the whole product family of the product. In the next
section we explain how we adopted local features to solve the problems
described, showing the changes made to the design of the product line,
and also how we approached the implementation.

4.2. Developed solution

First step is to identify local features. We can do that by splitting the
original feature model (see Fig. 15) into pieces. The result is shown
in Fig. 20, where we can see four different feature models. One of
them, GIS-SPL, is a global features model and it is not linked to
any element, while the other three root features can be applied to
specific elements of the other models, so they are local feature models
(we omitted all the elements which have no local features applied).
Thus, the EntityFeature is applied to the Entity class of the
ata model, whereas the MapFeature and the LayerFeature are
pplied to the Map the LayerInMap classes of the visualization model,
espectively. Hence, when instantiating each of the linked elements,
subset of the local features can be selected, and they will affect
nly and exclusively the element in question. This association can be
nderstood from two points of view. From the point of view of the
odel element, the association represents the functionality available
n the product for that specific element. For example, if the entity
unicipality is associated with the feature List, it means that
his entity can be browsed in a list of the product. From the point of
iew of the feature, the association represents the specific configuration
f the functionality. For example, if the feature LayerManager is
12

L

ssociated with an specific instance of a Map entity, it represents
hat specific map will have a layer manager. In case the element
oes not have a specific configuration associated with it, the default
onfiguration will be the one specified in the global feature model.
hat is why in Fig. 20, within the global feature model, the features
ntityFeature, MapFeature and LayerFeature are repeated
for space reasons their subtrees are not shown in the figure, being
dentical to the local feature models above them).
As this new mechanism provides more expressiveness to the SPL,

t is possible to modify the initial feature model of the SPL to take
dvantage of the additional expressiveness. For example, the Clus-
ering feature in Fig. 15 is a child of the MapViewer feature because
t was not possible to represent that a map is composed of layers, and
hat some of them may be clustered if needed. With the new mecha-
ism, we have enough expressiveness to be able to indicate that the
lustering feature is applied only to certain layers, and therefore
he feature is a child of the feature LayerFeature. In addition, some
eatures from the original feature model have been grouped depending
n the elements they affect. This is why new features appear, such as
ntityFeature, LayerFeature and MapFeature that group the
unctionality of entities, layers and maps respectively.
Taking this paradigm change into account, let us follow with the

xamples described in Section 4.1. First of all, we have two different
ntities, Municipality and Hotel, which require different features. Both
ntities have a number of properties such as id or name. Some of these
roperties are marked as required, so the user who creates objects
f these entities must specify at least those marked as required. The
ecision of which properties are required and which are not is up to
he domain engineer and, in this example, we have decided to mark as
equired only those that we consider essential when creating an object,
uch as its identifier and name. In addition, both entities are related
o each other since a hotel is located within a municipality. Fig. 21
hows an object diagram that defines the entities of the example and
he features associated to each entity from the feature model defined
n Fig. 20. We can see how the Municipality entity is linked to a
nstance of the local feature EntityFeature, and some of its sub-
eatures are selected (Form, List, FormAccess, and Filterable),
hile Creatable and Editable are not selected. However, we can
ee that the entity Hotel has all the sub-features of the local feature
ntityFeature.
In order to define these models, we have used a Domain Specific
anguage (DSL), which evolves from the one used in Alvarado et al.

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

H

I
s
e
w

v
m
l
t
u
S
u
a

r
t
s
e

(2020), that allow us to define the data model, the visualization model,
and the local features of the elements that may have one. The DSL was
specified with a BNF grammar and its parser was implemented with
ANTLR7. The resulting architecture is as shown in Fig. 22. The SPL
presented in this application case is based on an annotative derivation
engine we developed in a previous project, and which was presented
at SPLC’22 (Cortiñas et al., 2022). The derivation engine receives a
JSON file with the specification of the configurations that have to be
applied to the source code templates and generates the final product.
This derivation engine supports the concept of multimodel, since the
JSON configuration file must contain the product’s feature model, but
also other models such as the data model, visualization model, or
navigation model (although other types of models could be used in
different SPLs). This derivation engine is freely available8. The DSL
used for the examples described is shown next.

1 CREATE ENTITY Municipality (
2 id Long IDENTIFIER,
3 name String DISPLAY_STRING REQUIRED,
4 geom Polygon,
5 hotels Hotel RELATIONSHIP(1..1, 0..*)

BIDIRECTIONAL
6) WITH FEATURES (Form, List, FormAccess, Filterable);
7

8 CREATE ENTITY Hotel (
9 id Long IDENTIFIER,
10 name String DISPLAY_STRING REQUIRED,
11 stars Integer,
12 capacity Integer,
13 geom Point,
14 municipality Municipality RELATIONSHIP MAPPED_BY

hotels
15) WITH FEATURES (Form, Creatable, Editable, List,

FormAccess, Filterable);

Listing 1: Definition of entities for the WebEIEL product

Listing 1 shows the definition of the entities Municipality (L1) and
otel (L8). For both, a series of properties are defined (such as id, name

or capacity) and, at the end of the definition, the features that are
associated to each entity are indicated by means of the statement WITH
FEATURES.

The example of the MunicipalityMap and the HotelsMap can be seen
in Fig. 23 and in Fig. 24. The former shows an object diagram that
defines a simple map viewer that displays the municipalities. The map
contains two layers: the municipalities and a base layer (e.g., the Open-
StreetMap9 tiles to show the map context). This map viewer requires no
features, since it provides few functionality to the user (i.e., the user
cannot change the layers and cannot use the geolocation feature).

1 CREATE GEOJSON LAYER municipalitiesLayer AS
Municipalities FOR Municipality

2 WITH STYLES (
3 blueColor DEFAULT
4);
5

6 CREATE MAP municipalitiesMap AS Municipalities map
WITH LAYERS (

7 baseLayer IS_BASE_LAYER DEFAULT_BASE_LAYER,
8 municipalitiesLayer
9), WITH CENTER [[40.712, -74.227], [40.774, -74.125]

];

Listing 2: Definition of the municipalities layer and map

7 www.antlr.org
8 https://github.com/AlexCortinas/spl-js-engine
9

13

OpenStreetMaps website: https://www.openstreetmap.org/
Listing 2 shows the definition of the municipalities map in the DSL.
t first defines the municipalitiesLayer (L1), just setting its name and a
tyle10. Then, it defines (L6) the municipalitiesMap that shows the differ-
nt municipalities of the province using the layer municipalitiesLayer. As
e can see, there is not mention to any feature since none is required.
Fig. 24 shows an object diagram that defines a more complex map

iewer, HotelsMap, that displays both hotels and municipalities. The
ap contains three layers: the hotels, the municipalities and a base
ayer. The map viewer provides much more functionality to the user
han MunicipalitiesMap. In this case, the user can change the layers, and
se the geolocation feature to zoom the map to his/her current position.
imilarly, the hotels layer also provides more functionality (i.e., the
ser can change the style and the geographic objects are clustered to
void cluttering the map at low scales).

1 CREATE GEOJSON LAYER hotelsLayer AS Hotels FOR Hotel
2 WITH STYLES (
3 starsStyle DEFAULT,
4 capacityStyle
5);
6

7 CREATE MAP hotelsMap AS Hotels map WITH LAYERS (
8 baseLayer IS_BASE_LAYER DEFAULT_BASE_LAYER,
9 municipalitiesLayer,
10 hotelsLayer WITH FEATURES (StyleSelector,

Clustering)
11), WITH CENTER [[40.712, -74.227], [40.774, -74.125]

]
12 WITH FEATURES (LayerManager, UserGeolocation);

Listing 3: Definition of the hotel layer and map

Listing 3 shows the definition of the hotels map in the DSL. Line
1 it defines the hotelsLayer with multiple styles that represent the
hotels depending of their number of stars or its capacity (starsStyle and
capacityStyle respectively). Then, the HotelsMap is defined containing
a base layer, the municipalities, and the hotels (L7). The hotelsLayer is
linked to the features StyleSelector and Clustering (to be able
to switch between its different styles, and to cluster the objects to avoid
cluttering the map). Besides that, the HotelsMap is linked to the features
LayerManager and UserGeolocation.

1 CREATE GIS WebEIEL WITH FEATURES (TopMenu,
UserManagement);

Listing 4: Definition of the WebEIEL product with global features

Finally, we have to define the features that are global to the product.
Listing 4 shows an example that selects the TopMenu feature and the
UserManagement feature from the feature model shown in Fig. 15.

This case study shows that our proposal allows a much deeper
level of customization when defining maps and layers because the
features are assigned to each of them individually. It is important to
remark that this level of customization is possible because some of the
features of the feature model have been associated with parts of the
product by means of the DSL. Furthermore, in our implementation of
the SPL, a product does not include every time all the features and
only activates them for the selected entities/elements. The features will
only be included if there is an entity or element that has it selected.
For example, if no entity of the model has selected the forms feature
(i.e., Form), the source code associated with this feature will not be
included in the product.

The complete object diagram of the example can be seen in Fig. A.25
(that can be found in Appendix). The object diagram represents the
esult of instantiating entities, maps and layers with the DSL to generate
he WebEIEL product. The diagram shows how each element has a
eries of associated features independent of the others, as it has been
xplained throughout this section.

10 The visualization model includes styles for the layers, which have been
omitted for clarity in the excerpts and explanations.

https://github.com/AlexCortinas/spl-js-engine
https://www.openstreetmap.org/

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.
Fig. 20. Diagram representing the integration of the features with the concrete elements of the application.
4.3. Discussion

Next, we present a summary of the application of local features to
entities, maps, and layers. The data model of WebEIEL consists of 107
entities:

• 17 entities are used to represent indicators computed from the
data and they are just pairs of (administrative region, indicator
value). Therefore, these entities do not have an associated form
(i.e., these entities do not require the feature Form) and they are
only listed applying the feature Filterable.

• 11 entities represent the context of the maps (e.g., provinces, mu-
nicipalities, hidrography, etc.). These entities have an associated
form (feature Form), and hence they are listed applying the local
features FormAccess and Filterable. However, since their
values must not be modified, visualizing them as in a non-editable
form was the best decision and the local features Creatable and
Editable are not applied.

• The other 79 entities have associated forms with the features
Creatable and Editable, and are listed with the FormAc-
cess and Filterable features.

WebEIEL also includes 54 maps. 44 of them do not need the fea-
tures LayerManager nor UserGeolocation because they display
province-wide indicators with a single layer where geolocating the user
is not useful. The remaining 8 maps need the feature LayerManager
and UserGeolocation because they use multiple layers and show
detailed data. The product has 150 layers. In this case, the feature
Clustering was not applied to any of those layers, the feature
OpacitySelector was applied to all of them, and the StyleSe-
lector was applied to some of the layers depending on the particular
needs of each case.
14
These numbers show the high degree of customization that was
necessary to apply to the entities, maps, and layers of the system. The
case study shows how the concept of local features was applied in a
real, non-trivial SPL. The description of the case study shows that the
concept of local feature appears in many parts of this SPL, and the
resulting solution shows the feasibility and adequacy of the concept
of local features for modeling and specifying variability in systems
where some features must be bound to specific elements of the system
specified in other system’s models. As we have explained in the study of
alternatives presented in the introduction, addressing this requirement
with existing variability modeling proposals would result in solutions
that we consider unsatisfactory, either because they lead to artificially
complex feature models or because they lead to bad design decisions.

5. Conclusions and future work

SPLs have become a relevant paradigm in the development of
families of software products, with many success cases in industrial
settings. SPLs reduce development costs and increase product quality by
allowing us to semi-automatically develop software products from a set
of core assets that are adapted and customized based on the selection
of features that must be present in the product we want to generate.
In this article, we presented the concept of local feature, which brings
the possibility of associating features to the system’s elements to which
they should be applied in the application engineering phase, that is,
when the product to be generated is defined and configured. This
allows us to apply features to custom system elements, and not just
to pre-established variation points decided at the domain engineering
phase. Local features allow us to further customize the products gen-
erated with the software platform, which consequently allows us to
better meet software requirements, as we have seen in many examples

throughout the article.

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.
Fig. 21. Object diagram of the entities.
Fig. 22. Architecture diagram.
The article develops the concept of local features to propose a prac-
tical implementation. In our proposal, the feature model comprises two
types of features: global and local. Global features are either selected
or not selected when configuring a product and, if selected, they are
applied at a predefined variation point (in the domain engineering
15

phase). In the case of local features, if they are selected for a new
product, they must be associated to the system’s elements to which
they must be applied. Therefore, the variation points affected by a
local feature are decided at the application engineering phase, that is,
when we define and build a new product. Since we need to associate
local features to other system’s elements, we model local features using

the concept of multimodel, which allows us to establish associations

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

b
d
u

w
l
m
W
I
c
m
o

Fig. 23. Object diagram of the municipalities map.
Fig. 24. Object diagram of the hotels map.
etween features and elements of other system’s models, such as the
ata model. We have provided different examples that illustrate the
sefulness of the concept of local features in real scenarios.
In order to demonstrate the usefulness and benefits of this approach,

e applied our proposal to an SPL for GIS applications. One of the prob-
ems to be solved regarding the implementation of local features is the
echanism to define their associations with other system’s elements.
e proposed a domain specific-language to define these associations.
n the application case, we showed how local features could be used to
ustomize the application of the features regarding data visualization in
aps based on the application requirements. The visualization model
16

f a GIS defines which maps the users will see and how the information
regarding entities with a geo-spatial component is organized into layers
that will be part of those maps. The definition of the visualization
model is not standard, that is, each GIS has its own visualization model
depending on the requirements (for example, the visualization models
would be different for a GIS for road management than that of a
GIS for electricity supply management). This allowed us to decide in
the application engineering phase which features would be applied to
each elements of the visualization model. This application case allowed
us to show that our proposal allows us to achieve a higher level of
customization of the products generated with the SPL.

The application case we have presented in Section 4 shows how lo-

cal features were implemented with a DSL. This DSL was implemented

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.
Fig. A.25. Excerpt of WebEIEL object diagram.
R

A

A

A

A

B

B

B

as part of a real project and it is, therefore, specific of the domain
of GIS (since we considered that in this way it would be easier to
use). However, as future work, we are considering the design of a
more generic domain specific language that allows us to specify the
associations between local features and elements from other system’s
models.

CRediT authorship contribution statement

David de Castro: Conceptualization, Methodology, Software, Val-
idation, Writing – original draft, Writing – review & editing. Ale-
jandro Cortiñas: Conceptualization, Formal analysis, Investigation,
Methodology, Resources, Software, Validation, Writing – original draft,
Writing – review & editing. Miguel R. Luaces: Conceptualization,
Formal analysis, Funding acquisition, Investigation, Methodology, Re-
sources, Software, Supervision, Validation, Writing – original draft,
Writing – review & editing. Oscar Pedreira: Conceptualization, For-
mal analysis, Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation, Writing –
original draft, Writing – review & editing. Ángeles Saavedra Places:
Conceptualization, Formal analysis, Funding acquisition, Investigation,
Methodology, Resources, Validation, Writing – original draft, Writing –
review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Alejandro Cortnas Alvarez, Miguel Angel Rodriguez Luaces, Oscar Pe-
dreira, Angeles Saavedra Places reports financial support was provided
by Spain Ministry of Science and Innovation. David de Castro Celard,
Alejandro Cortnas Alvarez, Miguel Angel Rodriguez uuaces, Oscar Pe-
dreira, Angeles Saavedra Places reports financial support was provided
by Xunta de Galicia.

Data availability

No data was used for the research described in the article.
17
Acknowledgments

This work has been partially funded by the following grants:
0064_GRESINT_1_E partially funded by EU through the Interreg Spain-
Portugal/POCTEP; PID2022-141027NB-C21 (EarthDL): partially funded
by MCIN/AEI/10.13039/501100011033 and EU/ERDF A way of mak-
ing Europe; PID2021-122554OB-C33 (OASSIS): partially funded by
MCIN/AEI/10.13039/501100011033 and EU/ERDF A way of making
Europe; GRC: ED431C 2021/53, partially funded by GAIN/Xunta de
Galicia; CITIC is funded by the Xunta de Galicia through the col-
laboration agreement between the Department of Culture, Education,
Vocational Training and Universities and the Galician universities for
the reinforcement of the research centers of the Galician University
System (CIGUS).

Appendix. WebEIEL object diagram

See Fig. A.25.

eferences

lférez, M., Acher, M., Galindo, J.A., Baudry, B., Benavides, D., 2019. Modeling
variability in the video domain: language and experience report. Softw. Qual. J.
27 (1), 307–347. http://dx.doi.org/10.1007/s11219-017-9400-8.

Alvarado, S.H., Cortiñas, A., Luaces, M.R., Pedreira, O., Places, A.S., 2020. Developing
web-based geographic information systems with a DSL: proposal and case study. J.
Web Eng. 167–194. http://dx.doi.org/10.13052/jwe1540-9589.1923.

pel, S., Batory, D., Kästner, C., Saake, G., 2016. Feature-Oriented Software Product
Lines. Springer.

pel, S., Kästner, C., 2009a. An overview of feature-oriented software development. J.
Object Technol. 8 (5), 49–84. http://dx.doi.org/10.5381/jot.2009.8.5.c5.

pel, S., Kästner, C., 2009b. An overview of feature-oriented software development. J.
Object Technol. 8 (5), 49–84.

arkmeyer, E., Barnard, A., Denno, P., Flater, D., Libes, D., Steves, M., Wallace, E.,
2003. Concepts for Automating Systems Integration. Tech. Rep. NISTIR 6928, NIST
- National Institute of Standards and Technology, http://dx.doi.org/10.6028/NIST.
IR.6928.

atory, D., Benavides, D., Ruiz-Cortes, A., 2006. Automated analysis of feature
models: Challenges ahead. Commun. ACM 49 (12), 2–3. http://dx.doi.org/10.1145/
1183236.1183264.

enavides, D., Segura, S., Ruiz-Cortés, A., 2010. Automated analysis of feature models
20 years later: A literature review. Inf. Syst. 35 (6), 615–636. http://dx.doi.org/

10.1016/j.is.2010.01.001.

http://dx.doi.org/10.1007/s11219-017-9400-8
http://dx.doi.org/10.13052/jwe1540-9589.1923
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb3
http://dx.doi.org/10.5381/jot.2009.8.5.c5
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb5
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb5
http://dx.doi.org/10.6028/NIST.IR.6928
http://dx.doi.org/10.6028/NIST.IR.6928
http://dx.doi.org/10.6028/NIST.IR.6928
http://dx.doi.org/10.1145/1183236.1183264
http://dx.doi.org/10.1145/1183236.1183264
http://dx.doi.org/10.1145/1183236.1183264
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001

The Journal of Systems & Software 213 (2024) 112035D. de Castro et al.

B

C

C

C

C

C

C

G

G

G

I

K

K

M

P

R

R

S

S

T

V

W

W

D
U
t
f
A
g
s

A
d
i
I
g

M
A
i
d
f
o
U
S

O
o
H
i
g
i
j
p
d

A
D
S
o
a
S

Benavides, D., Trinidad, P., Ruiz-Cortés, A., 2005. Automated reasoning on feature
models. In: Proceedings of the 17th International Conference on Advanced Infor-
mation Systems Engineering. (CAiSE’05), pp. 491–503. http://dx.doi.org/10.1007/
11431855_34.

erger, T., Collet, P., 2019. Usage scenarios for a common feature modeling language.
In: Proceedings of the 23rd International Systems and Software Product Line
Conference-Volume B. pp. 174–181.

ortiñas, A., Luaces, M.R., Pedreira, Ó., 2022. Spl-js-engine: A JavaScript tool to
implement software product lines. In: Proceedings of the 26th ACM International
Systems and Software Product Line Conference - Volume B. SPLC’22, ACM Press,
pp. 66–69. http://dx.doi.org/10.1145/3503229.3547035.

ortiñas, A., Luaces, M.R., Pedreira, O., Places, A.S., Perez, J., 2017. Web-based
geographic information systems SPLE: Domain analysis and experience report. In:
Proceedings of the 21st International Systems & Software Product Line Conference.
SPLC’17, vol. 1, pp. 190–194. http://dx.doi.org/10.1145/3106195.3106222.

zarnecki, K., Bednasch, T., Unger, P., Eisenecker, U., 2002. Generative programming
for embedded software: An industrial experience report. In: Proceedings of the
International Conference on Generative Programming and Component Engineering.
GPCE’02, vol. LNCS 2487, Springer-Verlag, pp. 156–172. http://dx.doi.org/10.
1007/3-540-45821-2_10.

zarnecki, K., Helsen, S., Eisenecker, U., 2004. Staged configuration using feature
models. In: Proceedings of the International Conference on Generative Programming
and Component Engineering. GPCE’04, vol. LNCS 3154, Springer, pp. 266–283.
http://dx.doi.org/10.1007/978-3-540-28630-1_17.

zarnecki, K., Helsen, S., Eisenecker, U., 2005a. Formalizing cardinality-based feature
models and their specialization. Softw. Process: Improv. Pract. 10 (1), 7–29.
http://dx.doi.org/10.1002/spip.213.

zarnecki, K., Helsen, S., Eisenecker, U., 2005b. Staged configuration through spe-
cialization and multilevel configuration of feature models. Softw. Process Improv.
Pract. 10 (2), 143–169. http://dx.doi.org/10.1002/spip.225.

de Castro, D., Cortiñas, A., Luaces, M.R., Pedreira, Ó., Places, Á.S., 2022. Improving
the customization of software product lines through the definition of local features.
In: Proceedings of the 26th ACM International Systems and Software Product Line
Conference (SPLC’22) - Volume a. ACM, pp. 199–209. http://dx.doi.org/10.1145/
3546932.3547006.

alindo, J.A., Benavides, D., 2020. A python framework for the automated analysis of
feature models: A first step to integrate community efforts. In: Proceedings of the
24th ACM International Systems and Software Product Line Conference. SPLC’20,
vol. B, pp. 52–55. http://dx.doi.org/10.1145/3382026.3425773.

onzález-Huerta, J., Insfran, E., Abrahão, S., 2012. A multimodel for integrating
quality assessment in model-driven engineering. In: Proceedings of the 8th Interna-
tional Conference on the Quality of Information and Communications Technology.
QUATIC’12, pp. 251–254. http://dx.doi.org/10.1109/QUATIC.2012.14.

onzalez-Huerta, J., Insfran, E., Abrahão, S., 2013. Defining and validating a
multimodel approach for product architecture derivation and improvement. In:
Proceedings of the International Conference on Model-Driven Engineering Lan-
guages and Systems. MODELS’13, vol. LNCS 8107, Springer, pp. 388–404. http:
//dx.doi.org/10.1007/978-3-642-41533-3.

glesias, A., Iglesias-Urkia, M., López-Davalillo, B., Charramendieta, S., Urbieta, A.,
2019. Trilateral: Software product line based multidomain IoT artifact generation
for industrial CPS. In: Proceedings of the 7th International Conference on Model-
Driven Engineering and Software Development. MODELSWARD’19, pp. 64–73.
http://dx.doi.org/10.5220/0007343500640073.

ang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-021,
Software Engineering Institute, pp. 1–161.

arataş, A.S., Oğuztüzün, H., Doğru, A., 2013. From extended feature models to
constraint logic programming. Sci. Comput. Program. 78 (12), 2295–2312. http:
//dx.doi.org/10.1016/j.scico.2012.06.004.

etzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y., Saval, G., 2007. Disambiguating
the documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis. In: 15th IEEE International Requirements
Engineering Conference. (RE 2007), IEEE, pp. 243–253.

ohl, K., Böckle, G., Linden, F.V.D., 2005. Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, p. 467. http://dx.doi.org/10.1007/3-
540-28901-1.

iebisch, M., Böllert, K., Streitferdt, D., Philippow, I., 2002. Extending feature diagrams
with UML multiplicities. In: Proceedings of the 6th World Conference on Integrated
Design & Process Technology (IDPT2002). pp. 1–7.

incon, L., Rodriguez, G., Martinez, J.C., Alvarez, G.I., Pabon, M.C., 2015. Creating
virtual stores using software product lines: An application case. In: Proceedings of
the 10th Computing Colombian Conference. CCC’15, pp. 71–78. http://dx.doi.org/
10.1109/ColumbianCC.2015.7333414.
18
Sharp, D., 1998. Reducing avionics software cost through component based product line
development. In: Proceedings of the 17th DASC. AIAA/IEEE/SAE. Digital Avionics
Systems Conference, vol. 2, pp. G32/1–G32/8. http://dx.doi.org/10.1109/DASC.
1998.739846.

iegmund, N., Ruckel, N., Siegmund, J., 2020. Dimensions of software configuration: On
the configuration context in modern software development. In: Procs. of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2020). ACM Press, pp.
338–349. http://dx.doi.org/10.1145/3368089.3409675.

ousa, G., Rudametkin, W., Duchien, L., 2016. Extending feature models with relative
cardinalities. In: Proceedings of the 20th International Systems and Software
Product Line Conference. SPLC’16, pp. 79–88. http://dx.doi.org/10.1145/2934466.
2934475.

rujillo, S., Batory, D., Diaz, O., 2007. Feature oriented model driven development:
A case study for portlets. In: Proceedings of the 29th International Conference on
Software Engineering. ICSE’07, pp. 44–53. http://dx.doi.org/10.1109/ICSE.2007.
36.

oelter, M., Visser, E., 2011. Product line engineering using domain-specific languages.
In: Proceedings of the 15th International Software Product Line Conference.
SPLC’11, pp. 70–79. http://dx.doi.org/10.1109/SPLC.2011.25.

eiss, D.M., Clements, P., Krueger, C.W., 2006. Software product line hall of fame. In:
Proceedings of the 10th International Software Product Line Conference. SPLC’06,
p. 237. http://dx.doi.org/10.1109/SPLINE.2006.1691614.

eiss, D.M., Lai, C.T.R., 1999. Software Product-Line Engineering - A Family-Based
Software Development Process. Addison-Wesley.

avid de Castro is an Ph.D. in computer science student at the Database Lab of the
niversity of A Coruña (Spain). He graduated in M.Sc. in Computer Science from
he University of A Coruña in 2021 and he started his research journey during his
inal project, entitled "Domain Specific Language for Geographic Indicator Visualization
pplications", where he entered into the world of model-driven development and Geo-
raphic Information Systems. His research topics of interest are geographic information
ystems, software product lines and application lifecycle management.

lejandro Cortiñas is an Assistant Professor at the Database Lab of the Universidade
a Coruña (Spain). He received a Ph.D. in Computer Science from the same university
n 2017 for his thesis, entitled ‘‘Software Product Line for web-based Geographic
nformation Systems’’. His research topics of interest include software product lines,
enerative programming, geographic information systems, and spatial big data.

iguel R. Luaces received his M.S. degree in Computer Science from the University of
Coruña (Spain) in 1998 and a Ph.D. in Computer Science from the same university

n 2004. He undertook research in the area of spatial, temporal and Spatio-temporal
atabases at the FernUniversität Hagen (Germany) under the ChoroChronos project
unded by the European Union. Today, he is an Associate Professor at the University
f A Coruña, and he is currently the coordinator of the Databases Laboratory of the
niversity of A Coruña. His research interests include Geographic Information Systems,
patio-temporal Databases, Software Engineering, and Web-based Information Systems.

scar Pedreira has an M.Sc. and Ph.D. degree in Computer Science from the University
f A Coruña, Spain. He is an Associate Professor since 2008 at the same institution.
e is a researcher of the Database Laboratory. His research interests include topics
n databases (algorithms for similarity search, data structures and algorithms for
raph databases, geographic information systems), and in software engineering (process
mprovement, testing, MDE, and SPL). He has co-authored many articles published in
ournals and conferences relevant to the research areas mentioned. He has continuously
articipated in research projects and technology and knowledge transfer projects with
ifferent companies.

ngeles Saavedra-Places is currently an Associate Professor at the Computer Science
epartment of the University of A Coruña. She received her Ph.D. in Computer
cience in 2003 from the same university. Her research interests are in the areas
f Digital Humanities, Web Information Systems, Geographic Information Systems
nd Software Engineering. For further details about her CV see: http://lbd.udc.es/
howResearcherInformation.do?id=5.

http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/11431855_34
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb10
http://dx.doi.org/10.1145/3503229.3547035
http://dx.doi.org/10.1145/3106195.3106222
http://dx.doi.org/10.1007/3-540-45821-2_10
http://dx.doi.org/10.1007/3-540-45821-2_10
http://dx.doi.org/10.1007/3-540-45821-2_10
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1002/spip.225
http://dx.doi.org/10.1145/3546932.3547006
http://dx.doi.org/10.1145/3546932.3547006
http://dx.doi.org/10.1145/3546932.3547006
http://dx.doi.org/10.1145/3382026.3425773
http://dx.doi.org/10.1109/QUATIC.2012.14
http://dx.doi.org/10.1007/978-3-642-41533-3
http://dx.doi.org/10.1007/978-3-642-41533-3
http://dx.doi.org/10.1007/978-3-642-41533-3
http://dx.doi.org/10.5220/0007343500640073
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb22
http://dx.doi.org/10.1016/j.scico.2012.06.004
http://dx.doi.org/10.1016/j.scico.2012.06.004
http://dx.doi.org/10.1016/j.scico.2012.06.004
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb24
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/3-540-28901-1
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb26
http://dx.doi.org/10.1109/ColumbianCC.2015.7333414
http://dx.doi.org/10.1109/ColumbianCC.2015.7333414
http://dx.doi.org/10.1109/ColumbianCC.2015.7333414
http://dx.doi.org/10.1109/DASC.1998.739846
http://dx.doi.org/10.1109/DASC.1998.739846
http://dx.doi.org/10.1109/DASC.1998.739846
http://dx.doi.org/10.1145/3368089.3409675
http://dx.doi.org/10.1145/2934466.2934475
http://dx.doi.org/10.1145/2934466.2934475
http://dx.doi.org/10.1145/2934466.2934475
http://dx.doi.org/10.1109/ICSE.2007.36
http://dx.doi.org/10.1109/ICSE.2007.36
http://dx.doi.org/10.1109/ICSE.2007.36
http://dx.doi.org/10.1109/SPLC.2011.25
http://dx.doi.org/10.1109/SPLINE.2006.1691614
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb34
http://refhub.elsevier.com/S0164-1212(24)00078-5/sb34
http://lbd.udc.es/ShowResearcherInformation.do?id=5
http://lbd.udc.es/ShowResearcherInformation.do?id=5

	Local features: Enhancing variability modeling in software product lines
	Introduction
	Background and Related Work
	Software Product Lines and Feature Modeling
	Multimodel Description of Software Product Lines

	Local Features in Software Product Lines
	Definition of Global and Local Features
	Example

	Case study: developing Geographic Information Systems with local features
	Context
	Developed solution
	Discussion

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. WebEIEL object diagram
	References

