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A B S T R A C T

The first Quantum Key Distribution (QKD) networks are currently being deployed, but the implementation
cost is still prohibitive for most researchers. As such, there is a need for realistic QKD network simulators.
The QKDNetSim module for the network simulator NS-3 focuses on the representation of packets and the
management of key material in a QKD network at the application layer. Although QKDNetSim’s representation
of a QKD network is insightful, some its components lack the depth that would allow the simulator to faithfully
represent the behaviour of a real quantum network. In this work, we analyse QKDNetSim’s architecture to
identify its limitations, and we present an enhanced version of QKDNetSim in which some of its components
have been modified to provide a more realistic simulation environment.

Code metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00830
Permanent link to Reproducible Capsule –
Legal Code License GNU General Public License (GPL)
Code versioning system used git
Software code languages, tools, and services used C++, Python, NS-3
Compilation requirements, operating environments & dependencies See GitHub repository
If available Link to developer documentation/manual See GitHub Repository
Support email for questions david.soler@udc.es

1. Motivation and significance

Quantum technologies have experienced a significant advance in
recent years [1–3]. In specific, Quantum Key Distribution (QKD) proto-
ols allow two nodes to agree on a key through a quantum channel,
n such a way that it would be impossible for an eavesdropper to
btain the key without being detected [4]. This key can then be used
o encrypt communications between the two nodes.
The number of implemented QKD networks is currently very small

ue to the high cost of the required material and the lack of maturity in
he technology. Thus, researchers must employ simulators that imitate
he behaviour of a quantum network. There are multiple alternatives
epending on the scope of the research [5]: some simulators focus on
epresenting the physical layer of the quantum channel, while others
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allow users to define entire networks in which nodes can execute QKD
between them.

The network simulator NS-3 is widely used in the scientific and
educational communities due to its level of detail and its customising
capabilities. There exists a module implemented for NS-3 for the simu-
lation of quantum networks, named QKDNetSim [6]. The advantages
of QKDNetSim over other simulators come from the granularity of
NS-3: this simulator allows for in-depth configuration of every compo-
nent, and packets sent over the simulated network are fully defined,
including headers for all protocols involved. Unlike other quantum
network simulators, QKDNetSim focuses on a network perspective and
the managing of the key material generated through QKD. The layered
structure of NS-3 also allows QKDNetSim to represent QKD networks
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Fig. 1. Diagram of a QKD communication.

at the application level, in which multiple users and programs share
common QKD resources such as quantum channels and key buffers. This
level of detail, when applied to QKDNetSim’s simulation of quantum
networks, could help newcomers to understand the fundamentals of
quantum communications.

However, QKDNetsim contains some limitations that affect its abil-
ity to faithfully represent the behaviour of a real quantum network.
The main shortcomings of QKDNetSim are in key management: the
nodes do not adequately process the key material that they receive and
the cryptography handler does not function properly. These aspects are
crucial to the architecture of QKD networks, so QKDNetSim’s inability
to simulate them imposes a significant limitation on its usefulness.

For this work we present an enhanced version of the quantum net-
work simulation module QKDNetSim. To this end, we will start with an
analysis of QKDNetSim: of which elements it is composed and to which
degree it imitates the behaviour of a real quantum network, including
the limitations and errors that prevent QKDNetSim from achieving its
purposed objectives. Our implementation will provide enhancements to
overcome the mentioned limitations while maintaining the architecture
of the simulation module. The enhanced version of QKDNetSim can be
employed by researchers to study the behaviour of QKD networks, with
a focus on key synchronisation and management. It can also be used as
a first approach to the design of complex QKD networks and to analyse
their performance.

1.1. QKD network architecture

In experimental settings, the execution of QKD protocols is very
slow and thus it would be very inefficient to block the generation
of a packet to obtain key material through QKD [7]. For that rea-
son, it is common to asynchronously execute the QKD protocol at a
previous time, and store the resulting key material in a buffer to be
consumed when needed [8]. As a result, the processes of generating
nd consuming key material are decoupled, at the cost of managing
he synchronisation of buffers of adjacent nodes.
Due to the high cost of deploying quantum communications in-

rastructure, these devices are usually shared between multiple Ap-

between Applications and QKD devices. In the ETSI GS QKD standards
004 [9] and 014 [10], a QKD Module is composed of multiple QKD
Physical Devices (possibly belonging to different manufacturers) and a
Key Management Entity, or 𝐾𝑀𝐸. The KME contains a Key Database
and is tasked with managing the key material that is shared through
the QKD Physical Devices. An example communication flow between
Applications is shown in Fig. 1: their respective QKD Modules are
tasked with generating the shared key material through a QKD protocol
(such as BB84 [11]) and assigning it a KeyID, which the Applications
can then use to retrieve the cryptographic key.

1.2. QKD simulators

Due to the experimental state of QKD, most researchers rely on
simulators to study the behaviour and structure of quantum networks.
There are a variety of available simulators [5] that focus on different
aspects of quantum networks, whether it be the network structure, the
representation of quantum states or the execution of QKD protocols.

Qunetsim [12] is a simulator written in Python that allows users to
represent quantum networks. The nodes can exchange not only classical
messages, but also qubits that are simulated through different backends
such as 𝑆𝑖𝑚𝑢𝑙𝑎𝑄𝑟𝑜𝑛. Qunetsim mainly focus on simulating the quantum
channels that connect nodes and implementing different QKD protocols
and methods of transmitting information through qubits, including the
use of entangled states. Because of this low-level approach, Qunetsim
does not provide functionalities for key management or buffer syn-
chronisation between QKD nodes. The network is functional, but not
completely simulated as packets do not contain protocol headers as in
real networks.

NetSquid [13] is another alternative written in Python. It also fo-
cuses on the representation of qubits and the simulation of quantum
channels, including the possibility of adding delay, noise and loss
to imitate real conditions. Unlike Qunetsim, NetSquid does formally
represent the behaviour of a real network by employing a discrete-
event simulation engine. However, it also leaves the management of
key material to be implemented by users.
2

lications. There have been efforts to standardise the communication
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Fig. 2. Architecture of QKDNetSim.

. Software description

.1. Original QKDNetSim’s architecture

The module QKDNetSim adds to NS-3 the possibility of creating
uantum channels between pairs of nodes. To this end, the following
omponents are added to each pair of nodes:

• Send/Receive Applications: they simulate programs that create
packets to be encrypted by the rest of QKDNetSim’s compo-
nents. When they are generated or received, they are sent to the
Manager to perform the pertinent cryptographic operations.

• QKD Manager: the central component of the module, which
serves as connection between the others. The Manager processes
incoming and outgoing packets, identifies which operations need
to be performed and calls the pertinent component to execute
them.

• Cryptography Handler: receives petitions from the Manager to
encrypt or decrypt packets. It implements multiple cryptographic
algorithms, and has access to the Key Buffer. Corresponds with
the Object QKDCrypto

• Simulated Quantum Channel: imitates the behaviour of a quan-
tum channel. Each of the nodes possesses a Charging Application,
which constantly generate new shared key material.

• Key Buffer: Stores key material transmitted through the quantum
channel for future use.

The interaction between elements is shown in Fig. 2.
Unlike the simulators mentioned in Section 1.2, QKDNetSim focuses

n the structure of QKD nodes and the components that manage the key
aterial that is generated through QKD protocols. The structure of QKD
odes, with the inclusion of Key Buffers as a fundamental component,
s compatible with ETSI’s definition of a QKD Module, as represented
n Fig. 1.
As mentioned, the quantum channel is simulated through the Charg-

ng Applications that are installed for each pair of connected nodes.
ig. 3 shows the contents of a packet exchanged between the Charging
pplications of two adjacent nodes, which includes (after the label
𝐷𝐷𝐾𝐸𝑌 ) the key material that will be added to the buffers.
QKDNetSim uses buffers to store key material, as introduced in

ection 1.1. the Charging Applications are constantly generating new

key material and storing it into their respective Key Buffers. Whenever
the Send Application generates a new packet, some of the previously
generated key material is consumed to encrypt it.

Fig. 4 shows the amount of key material stored inside a Key Buffer
during a simulation. It increases periodically when the Charging Appli-
cations creates new key material, and it decreases when new packets
are encrypted. It is possible to manually define the maximum and
minimum amounts of key material that the Key Buffer can hold, as
well as the initial amount. As shown in Fig. 4, the Simulated Quantum
Channel only generates new key material when the current amount is
below a ‘‘Threshold’’ value.

2.2. QKDNetSim’s shortcomings

QKDNetSim correctly identifies the components that take part in
a QKD network. However, the implementation of these components
lacks realism in some aspects, which prevent QKDNetSim from provid-
ing a faithful simulation. We highlight the following shortcomings of
QKDNetSim:

The messages sent through the Simulated Quantum Channel are all identical.
The Simulated Quantum Channel is tasked with the creation of new
key material between two nodes. However, all messages exchanged
between the Charging Applications of adjacent nodes contain only a
string of ‘0’s, as can be seen in Fig. 3. Since all the key material that is
created is the same, all packets are encrypted with the same key. The
receiver’s Charging Application does not process 𝐴𝐷𝐷𝐾𝐸𝑌 messages,
since it already knows that the key is a string of ‘0’s. This defeats the
purpose of QKD and makes QKDNetSim a less realistic simulator.

The Key Buffers do not store keys. The key material generated through
the Simulated Quantum Channel is not stored anywhere. This should be
the function of the Key Buffer: instead, it only stores a number which
represents the amount of key material it should have.

Whenever the Simulated Quantum Channel tries to insert new key
material in the Key Buffer, it is discarded and the amount is increased.
A similar process occurs when the Manager requests key material from
the Buffer: a new string of ‘0’s is returned and the amount is decreased
by its length. The plot shown in Fig. 4 represents this amount, since it
is the only metric the Buffer can provide.

Since there is no real key material inside the Buffers, there is also
3

no mechanism for ensuring, maintaining or recovering synchronicity
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Fig. 3. Packet containing key material sent by Charging Application.

Fig. 4. Amount of available key material inside the Key Buffer throughout the simulation.

between Key Buffers of connected nodes. This makes QKDNetSim less
realistic, as it does not represent a problem that needs to be addressed
in real quantum networks.

Encryption is disabled and does not work. The Cryptography Handler
provides implementations for the encryption algorithms AES and One-
Time Pad (OTP). However, these implementations contain errors: they
incorrectly assume keys are represented as an array of bytes, when they
are an array of bits. Thus, whenever the simulator tries to encrypt a
packet, it crashes.

Even if these errors are corrected and packets are adequately en-
crypted, the PCAP still shows them in plaintext. The fact that con-
tents of the PCAP do not correspond to the real messages that were
exchanged makes the simulation harder to understand.

2.3. Description of enhancements to QKDNetSim

As we have shown, QKDNetSim is limited in its representation of
QKD networks since it does not adequately represent tasks related to
key management, which are fundamental operations in real scenarios.
In our improved version of QKDNetSim we provide the following
enhancements to the aforementioned shortcomings:

Key generation and transmission. The Charging Applications now ad-
equately process incoming 𝐴𝐷𝐷𝐾𝐸𝑌 messages. As in the original
module, one of the nodes is designated as ‘‘Primary’’ and the other
as ‘‘Secondary’’: the Primary node is tasked with generating the key
material and sending the 𝐴𝐷𝐷𝐾𝐸𝑌 messages, while the Secondary
receives and processes them.

As mentioned, in the original QKDNetSim all keys are generated by
the Charging Applications as a string of ‘0’s. In our implementation we
provide a new component named ‘‘QKD Random Generator’’ for the

of randomness, but we also provide the option of using a real Quantum
Random Number Generator (QRNG) [14–16], which are commonly
used as a source of entropy in quantum networks.

We have employed IDQuantique’s Quantis QRNG, which is accessi-
ble through a USB interface and has a key generation rate of about
4 Mb/s. Our QKD Random Generator component performs calls to
Quantis’ C++ API to generate the key material that is to be transmitted
through the Simulated Quantum Channel.

Key storage. The Key Buffers are now composed of two different struc-
tures:

1. Raw key material storage: Key material generated by the Simu-
lated Quantum Channel that has not been assigned a KeyID yet.
Its capacity is regulated by the ‘‘MAX’’, ‘‘MIN’’ and ‘‘THRESH-
OLD’’ parameters shown in Fig. 4

2. Key Database: Set of indexed keys with information about their
KeyID and length.

The process of obtaining key material from the raw storage and
inserting it into the Key Database with a KeyID is called reserving. In
our implementation, this is performed by the Cryptography Handler
whenever it requires a key of any length for either encryption or
authentication of Application packets. The reservation of key material
is done in the sender and receiver at the same time, so that both nodes
can access the same key with a specific KeyID. The keys are used only
once and then are removed from the Key Database.

Encryption. Whenever a packet generated by an Application reaches
the Cryptography Handler, it is encrypted and authenticated, including
any TCP/IP headers that it contains. Then, a QKDHeader is added,
which includes the length of the packet, the MessageID, and the KeyIDs
for the encryption and authentication keys. The QKDHeader was also
4

generation of key material. We use NS-3’s PRNG as the default source present in the original QKDNetSim, but since the Key Buffers did not
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Fig. 5. Contents of an encrypted message sent by the Send Application.

ontain a Key Database, the KeyIDs had no meaning. Therefore, the
alues of the QKDHeader were mostly ignored.
The original QKDNetSim omits the logging of encrypted messages

nto a PCAP file, as it only includes their unencrypted version in packet
aptures. Of particular interest are the values inside the QKDHeader.
ig. 5 shows an example packet as logged by the simulator. The values
or ‘‘Encrypted’’ and ‘‘Auth’’ represent the employed algorithms, which
or this packet are OTP and VMAC, respectively.

. Illustrative example

We have prepared an example execution to demonstrate the be-
aviour of the enhanced QKDNetSim module. The simulation consists
f two different nodes, with IPs in the 10.1.1.0/24 network: a sender
nd a receiver. The sender will generate 5 packets and send them to the
eceiver, encrypted with key material generated through the Simulated
uantum Channel. Listing 1 shows the output of an example execution
f QKDNetSim.
ource IP address: 10.1.1.1
estination IP address: 10.1.1.2

0.000000000s −1 QKDRandomGenerator:printCardsInfo(0x5573d19b9c80, "Displaying cards info:")
+0.000000000s −1 QKDRandomGenerator:printCardsInfo(0x5573d19b9c80, "∗ Searching for USB devices

...")
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " Found ", 1, " card(s)")
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " − Details for device #", 0)
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " driver version: ", 0, ".", 1)
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " core version: ", , 60b1c01)
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " serial number: ", , "206361

A410")
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " manufacturer: ", , "id

Quantique")
+0.000000000s −1 QKDRandomGenerator:_printCardsInfo(0x5573d19b9c80, " module ", 0, ": ", "found", "

", "(enabled)")
QKDCrypto:QKDCrypto(0x558a0f5a4d60)
+0.000000000s −1 QKDBuffer:QKDBuffer(0x558a0f5a8460, 0, 1)
+0.000000000s −1 QKDBuffer:Init(0x558a0f5a8460)
+0.000000000s −1 QKDBuffer:QKDBuffer(0x558a0f5a8770, 0, 1)
+0.000000000s −1 QKDBuffer:Init(0x558a0f5a8770)
+0.000000000s −1 QKDRandomGenerator:generateStream(0x7fff0becb050, "Requesting ", 51000, " bytes: ")
+0.000000000s −1 QKDRandomGenerator:generateStream(0x7fff0becb050, "Single call")
+0.000000000s −1 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, "m_Mcurrent:", 0, "size:", 51000, "key

material[0−30]:", 82, 228, 78, 97, 249, 182, 105, 0, [...], "key material[(end − 30) − end]:",
[...], 149, 189, 196, 234, 197, 154, 69, 235)

+0.000000000s −1 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, "m_Mcurrent:", 51000, "buffer final
material:", [...], 149, 189, 196, 234, 197, 154, 69, 235)

+0.000000000s −1 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, " Adding new Key Material: ", 51000, "
bytes")

+0.000000000s −1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, "m_Mcurrent:", 0, "size:", 51000, "key
material[0−30]:", 82, 228, 78, 97, 249, 182, 105, 0, [...], "key material[(end − 30) − end]:",
[...], 149, 189, 196, 234, 197, 154, 69, 235)

+0.000000000s −1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, "m_Mcurrent:", 51000, "buffer final
material:", [...], 149, 189, 196, 234, 197, 154, 69, 235)

+0.000000000s −1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, " Adding new Key Material: ", 51000, "
bytes")

+0.000000000s −1 QKDBuffer:InitTotalGraph(0x558a0f5a8460)
+0.000000000s −1 QKDBuffer:InitTotalGraph(0x558a0f5a8770)

[...]

QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "∗∗∗∗∗ ENCRYPTION MODE ∗∗∗∗∗", 1)
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "SrcBuffer")
+20.256000000s 0 QKDBuffer:ReserveKeyMaterial(0x558a0f5a8460, " Reserved Key with ID ", 19, "of size

", 720)
+20.256000000s 0 QKDBuffer:FetchKeyByID(0x558a0f5a8460, "Fetching Key with ID: ", 19, " Value: ", "

D08733E9CBFD7BF6[...]")
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "DstBuffer")
+20.256000000s 0 QKDBuffer:ReserveKeyMaterial(0x558a0f5a8770, " Reserved Key with ID ", 19, "of size

", 720)
+20.256000000s 0 QKDBuffer:FetchKeyByID(0x558a0f5a8770, "Fetching Key with ID: ", 19, " Value: ", "

D08733E9CBFD7BF6[...]")
+20.256000000s 0 QKDBuffer:DeleteKeyID(0x558a0f5a8460, "KeyID is deleted from ’m_keys’", 19)

QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "Encryption completed!")
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "∗∗∗∗∗ AUTHENTICATION MODE ∗∗∗∗∗", 3)
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "SrcBuffer")
+20.256000000s 0 QKDBuffer:ReserveKeyMaterial(0x558a0f5a8460, " Reserved Key with ID ", 20, "of size

", 32)
+20.256000000s 0 QKDBuffer:FetchKeyByID(0x558a0f5a8460, "Fetching Key with ID: ", 20, " Value: ", "71

B864E55B1D5327[...]")
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "DstBuffer")
+20.256000000s 0 QKDBuffer:ReserveKeyMaterial(0x558a0f5a8770, " Reserved Key with ID ", 20, "of size

", 32)
+20.256000000s 0 QKDBuffer:FetchKeyByID(0x558a0f5a8770, "Fetching Key with ID: ", 20, " Value: ", "71

B864E55B1D5327[...]")
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "Adding AUTHTAG to the packet!", "3

BA342F6CF95D4C6C16A5CF9930C15F9", 32)
+20.256000000s 0 QKDBuffer:DeleteKeyID(0x558a0f5a8460, "KeyID is deleted from ’m_keys’", 20)
QKDCrypto:ProcessOutgoingPacket(0x558a0f5a4d60, "Final outgoing packet from QCrypto:", "PacketID:",

340, "of size", 792, "MessageID:", 339, "QKDHeaderLength:", 792, "Encryption KeyID:", 19, "Auth
KeyID: ", 20)

0x558a0f5a4d60 QKDBuffer: 0 TOSband: 1 KeySize: 0

QKDCrypto:ProcessIncomingPacket(0x558a0f5a4d60, "PacketID:", 340, "PacketSize:", 792, 0x558a0f5a8770, "
ChannelID:", 0)

+20.259270400s 1 QKDBuffer:FetchKeyByID(0x558a0f5a8770, "Fetching Key with ID: ", 20, " Value: ", "71
B864E55B1D5327[...]")

+20.259270400s 1 QKDBuffer:DeleteKeyID(0x558a0f5a8770, "KeyID is deleted from ’m_keys’", 20)
+20.259270400s 1 QKDBuffer:FetchKeyByID(0x558a0f5a8770, "Fetching Key with ID: ", 19, " Value: ", "

D08733E9CBFD7BF6[...]")
+20.259270400s 1 QKDBuffer:DeleteKeyID(0x558a0f5a8770, "KeyID is deleted from ’m_keys’", 19)
QKDCrypto:ProcessIncomingPacket(0x558a0f5a4d60, "Decrytion completed!", 0x558a0f6b10a0)

[...]

+20.236610455s 0 QKDChargingApplication:PrepareOutput(0x5573d19b9820, +20236610455.0ns,
ADDKEY3072000)

+20.236610455s 0 QKDRandomGenerator:generateStream(0x5573d19b9c80, "Requesting ", 500, " bytes: ")
+20.236610455s 0 QKDRandomGenerator:generateStream(0x5573d19b9c80, "Single call")
+20.236610455s 0 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, "m_Mcurrent:", 50960, "size:", 500, "key

material:", 220, 156, 42, 31, 103, 123, 152, 13, [...], 17, 171, 245, 227, 25, 254, 225, 103)
+20.236610455s 0 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, "m_Mcurrent:", 51460, "key_material size:",

51460)
+20.236610455s 0 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, "m_Mcurrent:", 51460, "buffer final

material:", 142, 213, 170, 198, 227, 249, 56, 222, 197, 143, 58, 32, 102, 92, 195, 213, 75,
112, 124, 118, 216, 231, 17, 171, 245, 227, 25, 254, 225, 103)

+20.236610455s 0 QKDBuffer:AddKeyMaterial(0x558a0f5a8460, " Adding new Key Material: ", 51460, "
bytes")

QKDChargingApplication:PrepareOutput(0x5573d19b9820, "The realKey was added to the SrcBuffer", 0)
QKDChargingApplication:DataSend(0x5573d19b9820)

QKDChargingApplication:HandleRead(0x55c03da58990, 0x55c03da66e80, "PACKETID: ", 325, " of size: ",
511)

QKDChargingApplication:HandleRead(0x55c03da58990, "At time ", 20.246, "s packet sink received ", 511,
" bytes from ", 10.1.1.1, " port ", 49153, " total Rx ", 2555, " bytes")

QKDChargingApplication:ProcessIncomingPacket(0x55c03da58990, "Adding new key to DstBuffer")
+20.246034086s 1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, "m_Mcurrent:", 50960, "size:", 500, "key

material:", 220, 156, 42, 31, 103, 123, 152, 13, [...], 17, 171, 245, 227, 25, 254, 225, 103)
+20.246034086s 1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, "m_Mcurrent:", 51460, "key_material size:",

51460)
+20.246034086s 1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, "m_Mcurrent:", 51460, "buffer final

material:", 142, 213, 170, 198, 227, 249, 56, 222, 197, 143, 58, 32, 102, 92, 195, 213, 75,
112, 124, 118, 216, 231, 17, 171, 245, 227, 25, 254, 225, 103)

+20.246034086s 1 QKDBuffer:AddKeyMaterial(0x558a0f5a8770, " Adding new Key Material: ", 51460, "
bytes")

Listing 1: Output of text execution.

In the first section, the QKDBuffer instances are initialised and some
key material is added to both, whose size is 5100 bytes in this example.
In order to generate the key material, the QKDRandomGenerator is
created. The trace shows the first and last bytes that are inserted into
both buffers.

The second section shows the processing of a packet. The sender first
notifies both buffers that they must reserve two different keys for en-
cryption and authentication, whose KeyIDs are 19 and 20, respectively.
The encryption algorithm is One-Time-Pad and the authentication al-
gorithm is VMAC, so the key sizes are chosen accordingly. The process
of reserving key material consists of removing the requested amount
5
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Table 1
Comparison between other QKD network simulators and our implementation.
Ref. Name Network simulation QKD headers & packets Key management Classical encryption

[12] QuNetSim Ad-hoc No No No
[13] NetSquid Discrete-event No No No
[6] QKDNetSim Discrete-event Yes Yes (limited) Non-functional
This work – Discrete-event Yes Yes Yes

of bytes from the Key Buffer and assigning them a KeyID. Once the
Key Buffers are notified, the sender encrypts and authenticates the
message (including IPv4 and TCP headers) and adds a QKDHeader
which includes the KeyIDs of the employed keys. The receiver then pro-
cesses this packet, labelled with PacketID 340, and obtains the required
keys from its Key Buffer using the KeyIDs to complete the decryption
process. The encrypted message that appears in this execution trace is
also shown in Fig. 5, where all QKDHeader values are identified.

The last section shows an exchange between the Charging Applica-
tions to add new key material to both nodes’ Key Buffers. The sender’s
Charging Application generates a random string of 500 bytes through
the QKDRandomGenerator and adds it to its buffer. The key material is
then encapsulated in an ADDKEY message and sent to the receiver’s
Charging Application, which processes the message and inserts the
same random string in its Key Buffer. The trace shows the trailing bytes
of both Key Buffers, which correspond to the key material that was
inserted.

4. Impact

Our implementation of an enhanced QKDNetSim provides a faithful
representation of QKD networks, which allows users to better under-
stand the operations involved in them, specially those related to key
management at the application layer.

Table 1 highlights the difference between existing QKD network
imulators, including QKDNetSim in its original state, and our im-
lementation. As shown, QKD network simulators usually place its
ocus on representing a quantum channel in order to simulate QKD
lgorithms or entanglement of qubit states. While they are undoubt-
dly very useful simulators, they leave out significant components of
KD networks like key management. In contrast, in our simulator the
hared key material generated through QKD protocols is put to use:
e allow for different Applications to employ this cryptographic keys
ithout needing to interact with the physical layer of QKD. This also
equires the use of different structures like Key Buffers to decouple the
rocesses of obtaining the key material and using it, and to perform
ynchronisation with buffers of adjacent nodes.
Our enhancements over the original QKDNetSim provide a more re-

listic simulation of QKD networks. We maintain QKDNetSim’s overall
rchitecture while improving each component separately. In our en-
anced version of QKDNetSim, the simulator uses randomly-generated
ey material (with the option of employing a real QRNG) instead of
ummy packets filled with zeros. The inclusion of real key material
lso implies that the Simulated Quantum Channel must be able to
rocess incoming QKD packets and that Key Buffers need to be actively
ynchronised.

. Conclusions

In this work, we have analysed NS-3’s quantum network simulation
odule QKDNetSim, describing its main components and identifying
ts shortcomings and their impact in the quality of the simulation of a
KD network. The shortcomings that we analyse in this document are
elated to key management and encryption which, as we have identi-
ied, are the elements that mainly differentiate QKDNetSim from other
uantum network simulators. Our implementation of an enhanced
KDNetSim maintains the module’s overall structure while overcoming
he limitations of the Key Buffer, Cryptography Handler and Simulated
uantum Channel. We also provide the option of employing a real
RNG as a source of randomness for the Simulated Quantum Channel.
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