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Answer Set Programming (ASP) constitutes nowadays one of the most successful paradigms for 
practical Knowledge Representation and declarative problem solving. The formal analysis of ASP 
programs is essential for a rigorous treatment of specifications, the correct construction of solvers 
and the extension with other representational features. In this paper, we present a syntactic 
transformation, called the unfolding operator, that allows forgetting an atom in a logic program 
(under ASP semantics). The main advantage of unfolding is that, unlike other syntactic operators, 
it is always applicable and guarantees strong persistence, that is, the result preserves the same 
stable models with respect to any context where the forgotten atom does not occur. The price for 
its completeness is that the result is an expression that may contain the fork operator. Yet, we 
illustrate how, in some cases, the application of fork properties may allow us to reduce the fork 
to a logic program.

Answer Set Programming [1,2] (ASP) has become nowadays one of the most popular paradigms for practical Knowledge Repre-
ntation (KR) and declarative problem solving. From the computational viewpoint, ASP tools provide a comparable performance to 
at of modern SAT solvers, whereas from a representational point of view, ASP offers a rich input language that allows combining 
faults and non-monotonic reasoning with useful constructs such as choice rules, aggregates or optimisation specifications. Besides, 
P has been extended to cover other interesting KR features such as temporal reasoning [3] and planning [4], epistemic reason-
g [5], numerical constraints [6], or updates [7], to name a few. Additionally, there exists a wide umbrella of practical application 
mains1 that consolidates ASP among one of the most successful paradigms for symbolic Artificial Intelligence.
A common representational technique in ASP is the use of auxiliary atoms. Their introduction in a program may be due to 
any different reasons, for instance, looking for a simpler reading, providing new constructions (choice rules, aggregates, transitive 
osure, etc.) or reducing the corresponding ground program. When a program (or program fragment) Π for signature  uses 
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xiliary atoms 𝐴 ⊆  , they do not have a relevant meaning outside Π. Accordingly, they are usually removed2 from the final 
ble models, so the latter only use atoms in 𝑉 = ⧵ 𝐴, that is, the relevant or public vocabulary that encodes the solutions to 
r problem in mind. Thus, when seen from outside, Π hides internal atoms from 𝐴 and provides solutions in terms of public atoms 
m 𝑉 . A reasonable question is whether we can reformulate some program Π exclusively in terms of public atoms 𝑉 , forgetting 
e auxiliary ones in 𝐴. A forgetting operator 𝚏(Π, 𝐴) = Π′ transforms a logic program Π into a new program Π′ that does not contain 
oms in 𝐴 but has a similar behaviour on the public atoms 𝑉 . Of course, the key point here is the definition of similarity between Π
d Π′ (relative to 𝑉 ) something that gave rise to different alternative forgetting operators, further classified in families, depending 
 the properties they satisfy – see the recent overview by Gonçalves et al. [9]. From all this wide spectrum, however, when our 
rpose is forgetting auxiliary atoms, similarity can only be understood as preserving the same knowledge for public atoms in 𝑉 , and 
is can be formalised as a very specific property. In particular, both programs Π and Π′ = 𝚏(Π, 𝐴) should not only produce the same 
ble models (projected on 𝑉 ) but also keep doing so even if we add a new piece of program Δ without atoms in 𝐴. This property, 
own as strong persistence, was introduced by Knorr and Alferes in 2014 [10] but, later on, Gonçalves et al. [11] proved that it 
not always possible to forget 𝐴 in an arbitrary program Π under strong persistence. Moreover, Gonçalves et al. also provided 
semantic condition, called Ω, on the models of Π in the logic of Here-and-There (HT) [12] (the monotonic basis of Equilibrium 
gic [13], which generalises ASP to arbitrary formulas) so that atoms 𝐴 are forgettable in Π iff Ω does not hold. When this happens, 
eir approach can be used to construct 𝚏(Π, 𝐴) from the HT models using, for instance, the methods by Cabalar et al. [14,15]. 
ing one step further in this model-based orientation for forgetting, Aguado et al. [16] overcame the limitation of unforgettable 
ts of atoms at the price of introducing a new type of disjunction, called fork and represented as ‘|’. To this aim, they defined an 
-based denotational semantics for forks. Besides, they showed a polynomial reduction from programs with forks into standard 
gic programs in ASP (paving the way for their direct implementation), but it requires the addition of auxiliary atoms, as could be 
pected.

Semantic-based forgetting is useful when we are interested in obtaining a compact representation. For instance, the method by 
balar et al. [15] allows obtaining a minimal logic program from a set of HT-countermodels. However, this is done at a high 
mputational cost (similar to Boolean function minimisation techniques). When combined with the Ω-condition or, similarly, with 
e use of HT-denotations, this method becomes practically unfeasible without the use of a computer. This may become a problem, 
r instance, when we try to prove properties of some new ways of using auxiliary atoms in a given setting, since one would expect a 
man-readable proof rather than resorting to a computer-based exhaustive exploration of models. Furthermore, semantic forgetting 
ay easily produce results that look substantially different from the original program, even when this is not necessary. For example, 
we apply an empty forgetting 𝚏(Π, ∅) strictly under this method, we will usually obtain a different program Π′, strongly equivalent 
 Π, but built up from countermodels of the latter, possibly having a very different syntactic look.
An alternative and in some sense complementary orientation for forgetting is the use of syntactic transformations. The first syntactic 
rgetting operator, 𝚏𝑎𝑠, that satisfied strong persistence was introduced by Knorr and Alferes [10]. This operator forgot a single atom 
= {𝑎} at a time and was applicable, under some conditions, to non-disjunctive logic programs. More recently, Berthold et al. [17]
esented a more general syntactic operator 𝚏𝑠𝑝, also for a single atom 𝐴 = {𝑎}, that can be applied to any arbitrary logic program 
d satisfies strong persistence when the atom can be forgotten (i.e., the Ω condition does not hold). Moreover, they also provided 
ree syntactic sufficient conditions (that they call 𝑎-forgettable) under which Ω does not hold, and so, under which 𝚏𝑠𝑝 is strongly 
rsistent. Perhaps the main difficulty of 𝚏𝑠𝑝 comes from its technically elaborate definition: it involves 10 different types of rule-
atching that further deal with multiple partitions of Π (using a construction called as-dual). As a result, even though it offers full 
nerality when the atom is forgettable, its application by hand does not seem very practical, requiring too many steps and a careful 
ading of the transformations. A second limitation of 𝚏𝑠𝑝 is that even if a set of atoms can be forgotten as a whole, it may not be 
ssible to forget any single atom by itself. This limitation was recently lifted by Berthold [18], introducing a new operator 𝚏∗𝑠𝑝 that 
n be iterated. Yet, the difficulty of an elaborate definition remains in 𝚏∗𝑠𝑝.
In this paper, we provide a general syntactic operator, called unfolding, that is always applicable and allows forgetting an atom in 
rogram, although it produces a result that may combine forks and arbitrary propositional formulas. We also discuss some examples 

 which a fork can be removed in favour of a formula, something that allows one to obtain a standard program (since formulas can 
ways be reduced to that form, as proved by Cabalar et al. [19]). We show examples where sufficient syntactic conditions identified 
 far are not applicable, whereas our method can still safely be applied to obtain a correct result, relying on properties of forks. 
folding relies on another syntactic operator for forgetting a single atom, 𝚏𝑐 , based on the cut rule from sequent calculus and is 
ose to the application of the 𝚏𝑠𝑝 operator by Berthold et al. [17]. This operator produces a propositional formula without forks, but 
only applicable under some sufficient syntactic conditions.
The rest of the paper is organised as follows. The next section contains the background with definitions and results from HT, 
ble models and the semantics of forks. After that, we present the cut transformation that produces a propositional formula. In the 
xt section, we introduce the unfolding, which makes use of the cut and produces a fork in the general case. Finally, we conclude 
e paper.
This paper is an extended version of a previous publication [20] in the conference Logic Programming and Non-Monotonic Reasoning
PNMR 2022). With respect to the conference paper, the main changes are: (1) an extended background section with more details, 
tuitions and properties of the denotational semantics of forks, used in the proofs; (2) new results included in Lemma 1, Proposition 7
d Corollary 2, the last two based on the new Definition 8; and, finally, (3) an appendix with all the proofs.
2

Most ASP solvers allow hiding the extension of some chosen predicates.
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 Background

1. Here-and-there and 𝑇 -supports

We begin by recalling some basic definitions and results related to the logic of HT. Let  be a finite set of atoms called the 
phabet or vocabulary. A (propositional) formula 𝜑 is defined using the grammar:

𝜑 ∶∶= ⊥
||||||||| 𝑝

||||||||| 𝜑 ∧𝜑 ||||||||| 𝜑 ∨𝜑 ||||||||| 𝜑→ 𝜑

here 𝑝 is an atom 𝑝 ∈ . We define the language  as the set of all propositional formulas that can be formed over alphabet 
 . We use Greek letters 𝜑, 𝜓, 𝛾 and their variants to stand for formulas. Implication 𝜑 → 𝜓 will be sometimes reversed as 𝜓 ← 𝜑. 
e also define the derived operators ¬𝜑 ≝ (𝜑→ ⊥), ⊤ ≝ ¬⊥ and 𝜑↔ 𝜓 ≝ (𝜑→ 𝜓) ∧ (𝜑← 𝜓). Given a formula 𝜑, by At(𝜑) ⊆ we 
note the set of atoms occurring in 𝜑. We use letters 𝑝, 𝑞, 𝑎, 𝑏 for representing atoms in  , but normally use 𝑎 for an auxiliary atom 
 be forgotten. A theory Γ is a finite3 set of formulas that can be also understood as their conjunction. When a theory consists of a 
gle formula Γ = {𝜑} we will frequently omit the braces. Given any theory Γ, we write Γ[𝛾∕𝜑] to denote the uniform substitution 

 all occurrences of subformula 𝛾 in Γ by formula 𝜑. An extended disjunctive rule 𝑟 is an implication of the form:

𝑝1 ∧ ⋯ ∧ 𝑝𝑚 ∧ ¬𝑝𝑚+1 ∧ ⋯ ∧ ¬𝑝𝑛 ∧ ¬¬𝑝𝑛+1 ∧ ⋯ ∧ ¬¬𝑝𝑘 → 𝑝𝑘+1 ∨ ⋯ ∨ 𝑝ℎ

here all 𝑝𝑖 above are atoms in  and 0 ≤𝑚 ≤ 𝑛 ≤ 𝑘 ≤ ℎ. The antecedent and consequent of a rule 𝑟 are respectively called the body
d the head. We define the sets of atoms Hd(𝑟) ≝ {𝑝𝑘+1, … , 𝑝ℎ}, Bd+(𝑟) ≝ {𝑝1, … , 𝑝𝑚}, Bd−(𝑟) ≝ {𝑝𝑚+1, … , 𝑝𝑛}, Bd−−(𝑟) ≝ {𝑝𝑛+1, … , 𝑝𝑘}
d Bd(𝑟) ≝ Bd+(𝑟) ∪Bd−(𝑟) ∪Bd−−(𝑟). We say that 𝑟 is an extended normal rule if |Hd(𝑟)| ≤ 1. A rule with Hd(𝑟) = ∅ is called a constraint. 
rule with Bd(𝑟) = ∅ and |Hd(𝑟)| = 1 is called a fact. Given some atom 𝑎, a rule 𝑟 is said to contain an 𝑎-choice if 𝑎 ∈ Bd−−(𝑟) ∩ Hd(𝑟), 
at is, the rule has the form 𝜑 ∧ ¬¬𝑎 → 𝜓 ∨ 𝑎. A program is a finite set of rules, sometimes represented as their conjunction. We say 
at program Π belongs to a syntactic category if all its rules belong to that category. For instance, Π is an extended normal program 
all its rules are extended normal rules. We will usually refer to the most general class, extended disjunctive logic programs, just as 
gic programs for short.
A classical interpretation 𝑇 is a set of atoms 𝑇 ⊆ . We write 𝑇 ⊧ 𝜑 to stand for the usual classical satisfaction of a formula 𝜑. 
 HT-interpretation is a pair ⟨𝐻, 𝑇 ⟩ (respectively called “here” and “there”) of sets of atoms 𝐻 ⊆ 𝑇 ⊆ ; it is said to be total when 
= 𝑇 . Intuitively, this can be seen as a three-valued interpretation where an atom 𝑝 can be false, when 𝑝 ∉ 𝑇 , or true when 𝑝 ∈ 𝑇 , 
t for the latter, we may additionally distinguish between being justified (or founded) when 𝑝 ∈𝐻 or just assumed when 𝑝 ∈ 𝑇 ⧵𝐻 . 
e fact that an interpretation ⟨𝐻, 𝑇 ⟩ satisfies a formula 𝜑, written ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑, is recursively defined as follows:
• ⟨𝐻, 𝑇 ⟩ ̸⊧ ⊥
• ⟨𝐻, 𝑇 ⟩ ⊧ 𝑝 iff 𝑝 ∈𝐻
• ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑 ∧𝜓 iff ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑 and ⟨𝐻, 𝑇 ⟩ ⊧ 𝜓
• ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑 ∨𝜓 iff ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑 or ⟨𝐻, 𝑇 ⟩ ⊧ 𝜓
• ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑 → 𝜓 iff both (i) 𝑇 ⊧ 𝜑 → 𝜓 and (ii) ⟨𝐻, 𝑇 ⟩ ̸⊧ 𝜑 or ⟨𝐻, 𝑇 ⟩ ⊧ 𝜓
 HT-interpretation ⟨𝐻, 𝑇 ⟩ is a model of a theory Γ if ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑 for all 𝜑 ∈ Γ. As usual, a formula 𝜑 is a tautology if it is satisfied by 
ery possible HT-interpretation, inconsistent if it is satisfied by no HT-interpretation, and contingent if it is neither a tautology nor 
consistent.

Two formulas (or theories) 𝜑 and 𝜓 are HT-equivalent, written 𝜑 ≡ 𝜓 , if they have the same HT-models. The logic of HT satisfies 
e law of substitution of logical equivalents so, in particular, if Π is a logic program, it holds that:

Π∧ 𝑎 ≡ Π∧ (𝑎↔ ⊤) ≡ Π[𝑎∕⊤] ∧ 𝑎 (1)

Π∧ ¬𝑎 ≡ Π∧ (𝑎↔ ⊥) ≡ Π[𝑎∕⊥] ∧ ¬𝑎 (2)

Π∧ ¬¬𝑎 ≡ Π∧ (¬𝑎↔ ⊥) ≡ Π[¬𝑎∕⊥] ∧ ¬¬𝑎 (3)

total interpretation ⟨𝑇 , 𝑇 ⟩ is an equilibrium model of a formula 𝜑 iff ⟨𝑇 , 𝑇 ⟩ ⊧ 𝜑 and there is no 𝐻 ⊂ 𝑇 such that ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑. If so, we 
y that 𝑇 is a stable model of 𝜑. We write SM(𝜑) to stand for the set of stable models of 𝜑 and SM𝑉 (𝜑) ≝ { 𝑇 ∩ 𝑉 ∣ 𝑇 ∈ SM(𝜑) } for its 
ojection onto some vocabulary 𝑉 .
Aguado et al. [16] introduced a compact way of dealing with sets of HT-models by proposing the formal concept of 𝑇 -support, 
fined as follows.

finition 1. Given 𝑇 ⊆ , a 𝑇 -support  is a set of subsets of 𝑇 , that is  ⊆ 2𝑇 , satisfying that 𝑇 ∈ if  ≠ ∅.

As we will see, the cut operator support is a conjunction built from a finite set of rules that is sometimes negated. Generalising to infinite theories would require 
3

nitary Boolean connectives.
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The intuition behind a 𝑇 -support is that it will be used to collect those 𝐻 such that ⟨𝐻, 𝑇 ⟩ are models of a given formula 𝜑. 
 increase readability, we write a support as a sequence of interpretations between square braces. For instance, some possible 
pports for 𝑇 = {𝑎, 𝑏} are [{𝑎, 𝑏} {𝑎}], [{𝑎, 𝑏} {𝑏} ∅] or the empty support [ ]. Given a propositional formula 𝜑 and 𝑇 ⊆ , the set of 
-models {𝐻 ⊆ 𝑇 ∣ ⟨𝐻, 𝑇 ⟩ ⊧ 𝜑} forms a 𝑇 -support we denote as �𝜑 �𝑇 .

For any 𝑇 -support  and set of atoms 𝑉 , we write 𝑉 to stand for {𝐻 ∩ 𝑉 ∣𝐻 ∈}.
We say that a 𝑇 -support  is 𝑉 -feasible iff there is no 𝐻 ⊂ 𝑇 in  satisfying that 𝐻 ∩ 𝑉 = 𝑇 ∩ 𝑉 . The name comes from the fact 
at, if this condition does not hold for some  = � 𝜑 �𝑇 with 𝐻 ⊂ 𝑇 , then 𝑇 cannot be stable for any formula 𝜑 ∧ 𝜓 with 𝜓 ∈ 𝑉
cause 𝐻 and 𝑇 are indistinguishable for any formula 𝜓 ∈ 𝑉 .

We can define an ordering relation ⪯ between 𝑇 -supports by saying that, given two 𝑇 -supports,  and ′,  ⪯ ′ iff either 
= [ ] or [ ] ≠ ′ ⊆ . The intuition of  ⪯ ′ is that ′ is “more supported” than  in the sense that, the less elements in a 
on-empty) support, the closer we are to produce 𝑇 as a stable model of some formula. The most supported 𝑇 -support is therefore 
], that constitutes the top element of the ⪯ relation: when � 𝜑 �𝑇 = [𝑇 ], it means that 𝑇 is, indeed, a stable model of 𝜑. The bottom 
ement of ⪯ is the empty support [ ] so that � 𝜑 �𝑇 = [ ] is considered to be the case furthest away from getting 𝑇 as stable model, 
ce 𝑇 is not even a classical model of 𝜑.
Given a 𝑇 -support , we define its complementary support  as:

 ≝

{
[ ] if  = 2𝑇

[ 𝑇 ] ∪ {𝐻 ⊆ 𝑇 ∣𝐻 ∉} otherwise.

2. Overview of forks

Aguado et al. [16,21] extended logic programs to include a new disjunctive construct ‘∣’ that can be combined with other 
nnectives under a limited syntax. A fork 𝐹 is an expression determined by the following grammar:

𝐹 ∶∶= ⊥
||||||||| 𝑝

||||||||| (𝐹 ∣ 𝐹 ) ||||||||| 𝐹 ∧ 𝐹 ||||||||| 𝜑 ∨𝜑 ||||||||| 𝜑→ 𝐹

here 𝜑 is a propositional formula over  and 𝑝 ∈ is an atom. We write  to stand for the language formed by all forks for 
nature  . Note that a fork is not allowed as an argument of a disjunction or as the antecedent of an implication. Given a fork 
∣𝐺), we say that 𝐹 and 𝐺 are its branches, respectively.
To introduce the semantics of forks, consider a fork 𝐹 of the form (𝜑1 ∣⋯ ∣ 𝜑𝑛) (in fact, any fork will be reducible to this form)

here each 𝜑𝑖 is a propositional formula or, if preferred, a logic program. The intuition about the stable models of 𝐹 is to collect the 
ion of the stable models of each 𝜑𝑖. Therefore, for a fixed 𝑇 , the semantics for 𝐹 could just be a set of 𝑇 -supports Δ = {1, … , 𝑛}
rresponding to the respective denotations � 𝜑1 �𝑇 , … , � 𝜑𝑛 �𝑇 . However, if we have some 𝑖 ⪯𝑗 for 𝑖 ≠ 𝑗, then 𝑖 becomes useless 
 the sense that any stable model produced by 𝑖 is also produced by 𝑗 . For this reason, rather than considering a set of supports, 
e will use their ideals so that the relevant information comes from the set of maximal elements in the set. The ideal of  is defined 
 ↓ = {′ ∣′ ⪯} ⧵ { [ ] }. Note that, the empty support [ ] is not included in the ideal, so ↓[ ] = ∅. If Δ is any set of supports:

↓Δ ≝
⋃
∈Δ

↓ =
⋃
∈Δ

{ ′ ⪯
||| ′ ≠ [ ] }.

We formalise the previous ideas with the following definition of 𝑇 -view, the semantic structure we will associate to a fork.

finition 2. A 𝑇 -view Δ is a set of 𝑇 -supports that is ⪯-closed, i.e., ↓Δ =Δ.

We provide next the semantics of forks in terms of 𝑇 -denotations. To illustrate the duality in the definitions of conjunction and 
sjunction, we will use a weaker version of the membership relation, ∈̂, defined as follows. Given a 𝑇 -view Δ, we write ∈̂Δ iff 
∈Δ or both  = [ ] and Δ = ∅.

finition 3 (𝑇 -denotation). Let  be a propositional signature and 𝑇 ⊆  a set of atoms. The 𝑇 -denotation of a fork or a 
opositional formula 𝐹 , written ⟨ ⟨ 𝐹 ⟩ ⟩𝑇 , is a 𝑇 -view recursively defined as follows:

⟨⟨⊥ ⟩⟩𝑇 ≝ ∅

⟨⟨𝑝 ⟩⟩𝑇 ≝ ↓ �𝑝 �𝑇 for any atom 𝑝

⟨⟨𝐹 ∧𝐺 ⟩⟩𝑇 ≝ ↓{  ∩′ |||  ∈ ⟨⟨𝐹 ⟩⟩𝑇 and ′ ∈ ⟨⟨𝐺 ⟩⟩𝑇 }

⟨⟨𝜑 ∨𝜓 ⟩⟩𝑇 ≝ ↓{  ∪′ ||| ∈̂⟨⟨𝜑 ⟩⟩𝑇 and ′∈̂⟨⟨𝜓 ⟩⟩𝑇 }

⟨⟨𝜑→ 𝐹 ⟩⟩𝑇 ≝

{
{2𝑇 } if �𝜑 �𝑇 = [ ]

↓{ �𝜑 �𝑇 ∪
|||  ∈ ⟨⟨𝑒𝐹 ⟩⟩𝑇 } otherwise
4

⟨⟨𝐹 ∣𝐺 ⟩⟩𝑇 ≝ ⟨⟨𝐹 ⟩⟩𝑇 ∪ ⟨⟨𝐺 ⟩⟩𝑇
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here 𝐹 , 𝐺 denote forks or propositional formulas. If 𝐹 is a fork and 𝑇 ⊆ 𝑉 ⊆ , we can define the 𝑇 -view:

⟨⟨𝐹 ⟩⟩𝑇
𝑉
≝ ↓{ 𝑉

|||  ∈ ⟨⟨𝐹 ⟩⟩𝑍 s.t. 𝑍 ∩ 𝑉 = 𝑇 and  is 𝑉 -feasible }.

ven fork 𝐹 for vocabulary  we say that 𝑇 ⊆ is a stable model of 𝐹 when ⟨ ⟨ 𝐹 ⟩ ⟩𝑇 = ↓[ 𝑇 ] or, equivalently, when [ 𝑇 ] ∈ ⟨ ⟨ 𝐹 ⟩ ⟩𝑇 . 
e set SM(𝐹 ) collects all the stable models of 𝐹 whereas SM𝑉 (𝐹 ) denotes the projection of SM(𝐹 ) on the set of atoms 𝑉 , that is 
𝑉 (𝐹 ) ≝ {𝑇 ∩ 𝑉 ∣ 𝑇 ∈ SM(𝐹 )}.

finition 4 (Projective Strong Entailment/Equivalence of forks). Let 𝐹 and 𝐺 be forks and 𝑉 ⊆  a set of atoms. We say that 
strongly 𝑉 -entails 𝐺, in symbols 𝐹 |∼𝑉 𝐺, if for any fork 𝐿 in 𝑉 , SM𝑉 (𝐹 ∧ 𝐿) ⊆ SM𝑉 (𝐺 ∧ 𝐿). We further say that 𝐹 and 𝐺 are 
ongly 𝑉 -equivalent, in symbols 𝐹 ≅𝑉 𝐺 if both 𝐹 |∼𝑉 𝐺 and 𝐺|∼𝑉 𝐹 , that is, SM𝑉 (𝐹 ∧𝐿) = SM𝑉 (𝐺 ∧𝐿), for any fork 𝐿 in 𝑉 . When 
 (𝐹 ) ∪ (𝐺) ⊆ 𝑉 , we write 𝐹 |∼𝐺 (or 𝐹 ≅𝐺) dropping the 𝑉 sub-index and simply saying that 𝐹 strongly entails 𝐺 (or 𝐹 and 𝐺 are 
ongly equivalent).

A forgetting operator is a transformation 𝚏(𝐹 , 𝐴) that takes some expression 𝐹 (a fork or a formula) for alphabet  as an input 
d produces a new expression that only contains atoms in 𝑉 =  ⧵ 𝐴. When 𝐴 = {𝑎} is a singleton, we normally write 𝚏(𝐹 , 𝑎)
stead of 𝚏(𝐹 , {𝑎}). A forgetting operator 𝚏(𝐹 , 𝐴) satisfies strong persistence when 𝜑 ≅𝑉 𝚏(𝜑, 𝐴) where 𝑉 = ⧵𝐴.
The properties listed in the following theorem were proved by Aguado et al. [16].

eorem 1. Let 𝐹 and 𝐺 be arbitrary forks, and 𝜑 and 𝜓 propositional formulas all of them for signature  , and let 𝑉 ⊆ . Then:

i) 𝐹 ≅𝑉 𝐺 iff ⟨ ⟨ 𝐹 ⟩ ⟩𝑇
𝑉
= ⟨ ⟨ 𝐺 ⟩ ⟩𝑇

𝑉
, for every 𝑇 ⊆ 𝑉 .

i) 𝐹 ≅𝐺 iff ⟨ ⟨ 𝐹 ⟩ ⟩𝑇 = ⟨ ⟨ 𝐺 ⟩ ⟩𝑇 , for every 𝑇 ⊆ .

i) ⟨ ⟨ 𝜑 ⟩ ⟩𝑇 = ↓� 𝜑 �𝑇 for every 𝑇 ⊆ .

v) 𝜑 ≅ 𝜓 iff � 𝜑 �𝑇 = � 𝜓 �𝑇 , for every 𝑇 ⊆ , iff 𝜑 ≡ 𝜓 in HT.
v) The set of atoms  ⧵ 𝑉 can be forgotten in 𝐹 as a strongly persistent propositional formula4 iff for each 𝑇 ⊆ 𝑉 , ⟨ ⟨ 𝐹 ⟩ ⟩𝑇

𝑉
has a unique 

maximal support. □

When ⟨ ⟨ 𝐹 ⟩ ⟩𝑇 ⊆ ⟨ ⟨ 𝐺 ⟩ ⟩𝑇 for every 𝑇 ⊆ we say that 𝐹 strongly entails 𝐺, written 𝐹 |∼𝐺. For propositional formulas, we get the 
llowing characterisation of strong entailment.

oposition 1 (From Proposition 3 in [16]). Given propositional formulas 𝜑 and 𝜓 , 𝜑|∼𝜓 iff both: (1) 𝜑 classically entails 𝜓 ; and (2), 
, 𝑇 ⟩ ⊧ 𝜑 for any 𝐻 ⊆ 𝑇 such that ⟨𝐻, 𝑇 ⟩ ⊧ 𝜓 and 𝑇 ⊧ 𝜑.

Relation |∼ can be seen as one of the two sides of strong equivalence: for instance, (¬𝑝 → 𝑞)|∼(𝑝 ∨ 𝑞) holds and it means that any 
ble model of Π ∪ {¬𝑝 → 𝑞} is also a stable model of Π ∪ {𝑝 ∨ 𝑞} for any context program Π. It must be noted that, in general, 
lations 𝜑|∼𝜓 (strong entailment) and 𝜑 ⊧ 𝜓 (HT entailment) do not coincide: in fact (¬𝑝 → 𝑞) ̸⊧ (𝑝 ∨ 𝑞) since ⟨∅, {𝑝}⟩ is an HT-model 
 ¬𝑝 → 𝑞 but not of 𝑝 ∨ 𝑞.
We can semantically characterise propositional formulas as 𝑇 -denotations that have a ⪯-maximum element:

oposition 2 (Proposition 17 in [16]). Given sets 𝑇 ⊆ 𝑉 ⊆ of atoms, then:

i) any formula 𝜑 with  (𝜑) ⊆ 𝑉 satisfies ⟨ ⟨ 𝜑 ⟩ ⟩𝑇
𝑉
= ↓� 𝜑 �𝑇 and, thus, ⟨ ⟨ 𝜑 ⟩ ⟩𝑇

𝑉
has a ⪯-maximum element;

i) for every 𝑇 -view Δ with a ⪯-maximum element, there is a propositional formula 𝜑 with  (𝜑) ⊆ 𝑉 that satisfies ⟨ ⟨ 𝜑 ⟩ ⟩𝑇
𝑉
= Δ and ⟨ ⟨ 𝜑 ⟩ ⟩𝑇 ′

𝑉
= ∅ for every 𝑇 ′ ⊆ 𝑉 with 𝑇 ′ ≠ 𝑇 .

The next propositions contain some equivalences we will use later on.

oposition 3. Let 𝐹 , 𝐹 ′, 𝐺 and 𝐺′ be forks for some signature  and let 𝑉 ⊆ . If 𝐹 ≅𝑉 𝐹 ′ and 𝐺 ≅𝑉 𝐺′, then (𝐹 ∣𝐺) ≅𝑉 (𝐹 ′ ∣𝐺′). □

oposition 4 (Proposition 12 in [16]). Let 𝐹 , 𝐺, 𝐿 be arbitrary forks and 𝜑 be a formula. Then:

(𝐹 ∣𝐺) ∣𝐿 ≅ 𝐹 ∣ (𝐺 ∣𝐿) (4)

𝐹 ∣𝐺 ≅𝐺 ∣ 𝐹 (5)

(𝐹 ∣𝐺) ≅𝐺 if 𝐹 |∼𝐺 (6)

(𝐹 ∣𝐺) ∧𝐿 ≅ (𝐹 ∧𝐿) ∣ (𝐺 ∧𝐿) (7)
5

This is, therefore, equivalent to not satisfying the Ω condition by Gonçalves et al. [11].
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𝜑→ (𝐹 ∣𝐺) ≅ (𝜑→ 𝐹 ) ∣ (𝜑→𝐺) (8)

𝜑→ 𝐹 ∧𝐺 ≅ (𝜑→ 𝐹 ) ∧ (𝜑→𝐺) (9)

𝜑→ (𝜓 → 𝐹 ) ≅ 𝜑 ∧𝜓 → 𝐹 (10)

⊤→ 𝐹 ≅ 𝐹 (11)

¬𝜑 ∣ ¬¬𝜑 ≅ ⊤ (12)

Note how (6) is a subsumption property that guarantees that (𝐹 ∣𝐺) ≅ 𝐺 when 𝐹 strongly entails 𝐺. This is somehow analogous 
 the property of disjunction in classical logic (𝐹 ∨𝐺) ≡𝐺 when 𝐹 ⊧ 𝐺.

oposition 5. For every pair 𝜑, 𝜓 of propositional formulas and fork 𝐹 :

(⊤ ∣ 𝜑) ≅ (¬𝜑 ∣ 𝜑) ≅ ¬¬𝜑→ 𝜑 ≅ 𝜑 ∨ ¬𝜑 (13)

(𝜑 ∧ ¬𝜓 ∣ 𝜑 ∧ ¬¬𝜓) ≅ 𝜑 (14)

(⊥ ∣ 𝐹 ) ≅ 𝐹 (15)

 The cut operator

Given any program Π, let us define the syntactic transformation behead𝑎(Π) as the result of removing all rules with 𝑎 ∈ Hd(𝑟) ∩
+(𝑟) and all head occurrences of 𝑎 from rules where 𝑎 ∈ Hd(𝑟) ∩ Bd−(𝑟). Intuitively, behead𝑎(Π) removes from Π all rules that, 
ving 𝑎 in the head, do not provide a support for 𝑎. In fact, rules with 𝑎 ∈ Hd(𝑟) ∩ Bd+(𝑟) are tautological, whereas rules of the form 
∧ ¬𝑎 → 𝑎 ∨𝜓 are strongly equivalent to 𝜑 ∧ ¬𝑎 → 𝜓 . Since the logic program transformations in behead𝑎(Π) are strongly equivalent, 
e can easily see that:

oposition 6. For any logic program Π: Π ≅ behead𝑎(Π). □

The cut operator is defined in terms of the well-known cut inference rule from the sequent calculus which, when rephrased for 
ogram rules, amounts to:

𝜑 ∧ 𝑎→ 𝜓 𝜑′ → 𝑎 ∨𝜓 ′

𝜑 ∧𝜑′ → 𝜓 ∨𝜓 ′ (CUT)

here 𝜑, 𝜑′ are conjunctions of elements that can be an atom 𝑝, its negation ¬𝑝 or its double negation ¬¬𝑝, and 𝜓 ′ and 𝜓 are 
sjunctions of atoms. If 𝑟 and 𝑟′ stand for 𝜑 ∧𝑎 → 𝜓 and 𝜑′ → 𝑎 ∨𝜓 ′ respectively, then we denote Cut(𝑎, 𝑟, 𝑟′) to stand for the resulting 
plication 𝜑 ∧𝜑′ → 𝜓 ∨𝜓 ′.

ample 1 (Example 9 in [17]). Let Π1 be the program:

𝑎→ 𝑡 (16)

¬𝑎→ 𝑣 (17)

𝑠→ 𝑎 (18)

𝑟→ 𝑎 ∨ 𝑢 (19)

en, Cut(𝑎, (16), (19)) = (𝑟 → 𝑡 ∨ 𝑢) is the result of the cut application:

⊤ ∧ 𝑎→ 𝑡 𝑟→ 𝑎 ∨ 𝑢
⊤ ∧ 𝑟→ 𝑡 ∨ 𝑢

 this program we can also perform a second cut through atom 𝑎 corresponding to Cut(𝑎, (16), (18)) = (𝑠 → 𝑡). □

Given a rule 𝑟 with 𝑎 ∈ Bd+(𝑟), we define the formula:

𝑁𝐸𝑆(Π, 𝑎, 𝑟) ≝
⋀

{ Cut(𝑎, 𝑟, 𝑟′) ∣ 𝑟′ ∈ Π, 𝑎 ∈ Hd(𝑟′) }

at is, 𝑁𝐸𝑆(Π, 𝑎, 𝑟) collects the conjunction of all possible cuts in Π for a given atom 𝑎 and a selected rule 𝑟 with 𝑎 in the positive 
dy. We used the acronym 𝑁𝐸𝑆 standing for “Negative External Support” due to its connection to the so-called external support by 
rraris et al. [22] that we will see later on. But in fact, 𝑁𝐸𝑆 coincides with the transformation described in the General Principle of 
rtial Evaluation already stated by Brass and Dix [23]. In our example program Π1 for rule (16) we get:
6

𝑁𝐸𝑆(Π1, 𝑎, (16)) = (𝑟→ 𝑡 ∨ 𝑢) ∧ (𝑠→ 𝑡). (20)
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hen 𝑟 = ¬𝑎 = (⊤ ∧ 𝑎 → ⊥) we can observe that:

𝑁𝐸𝑆(Π, 𝑎,¬𝑎) =
⋀

{(⊤ ∧𝜑′ → ⊥ ∨𝜓 ′) ∣ (𝜑′ → 𝑎 ∨𝜓 ′) ∈ Π}

=
⋀

{(𝜑′ → 𝜓 ′) ∣ (𝜑′ → 𝑎 ∨𝜓 ′) ∈ Π}.

at is, we just take the rules with 𝑎 in the head, but after removing 𝑎 from that head. As an example, we have

𝑁𝐸𝑆(Π1, 𝑎,¬𝑎) = (𝑠→ ⊥) ∧ (𝑟→ 𝑢) = ¬𝑠 ∧ (𝑟→ 𝑢).

te that, since 𝑎 was the only head atom in (18), after removing it, we obtained an empty head ⊥ leading to (𝑠 → ⊥).
As said before, the negation of 𝑁𝐸𝑆 can be connected with the external support by Ferraris et al. [22]. In particular, we can use 

 Morgan and the HT equivalence ¬(𝜑′ → 𝜓 ′) ≡ ¬¬𝜑′ ∧ ¬𝜓 ′ to conclude:

¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) = ¬¬
⋁

{(𝜑′ ∧ ¬𝜓 ′) ∣ (𝜑′ → 𝑎 ∨𝜓 ′) ∈ Π} = ¬¬𝐸𝑆Π(𝑎),

here 𝐸𝑆Π(𝑎) corresponds to the external support5 𝐸𝑆Π(𝑌 ) by Ferraris et al. [22] for any set of atoms 𝑌 , but applied here to 𝑌 = {𝑎}. 
 the example:

¬𝑁𝐸𝑆(Π1, 𝑎,¬𝑎) = ¬(¬𝑠 ∧ (𝑟→ 𝑢)) ≡ ¬¬𝑠 ∨ (¬¬𝑟 ∧ ¬𝑢). (21)

finition 5 (Cut operator 𝚏𝑐). Let Π be a logic program for alphabet  and let 𝑎 ∈ . Then 𝚏𝑐(Π, 𝑎) is defined as the result of:

i) Remove atom ‘𝑎’ from non-supporting heads obtaining Π′ = behead𝑎(Π);
i) Replace each rule 𝑟 ∈Π′ with 𝑎 ∈ 𝐵+(𝑟) by 𝑁𝐸𝑆(Π′, 𝑎, 𝑟);
i) From the result, remove every rule 𝑟 with Hd(𝑟) = {𝑎};
v) Finally, replace remaining occurrences of ‘𝑎’ by ¬𝑁𝐸𝑆(Π′, 𝑎, ¬𝑎). □

Looking at Definition 5 above, note that rules where 𝑎 does not occur are left untouched, so if 𝑎 does not occur in Π, 𝚏𝑐(Π, 𝑎) =Π. 
 the other hand, note that a precondition for the application of 𝚏𝑐 is that 𝑎 does not occur in 𝑁𝐸𝑆(Π′, 𝑎, ¬𝑎). Otherwise, step (ii) 
ay leave occurrences of atom 𝑎 in the result.

ample 2 (Example 1 continued). Step (i) has no effect, since behead𝑎(Π1) = Π1. For step (ii), the only rule with 𝑎 in the positive 
dy is (16) and so, the latter is replaced by (20). Step (iii) removes rule (18) and, finally, Step (iv) replaces 𝑎 by (21) in rules (17)
d (19). Finally, 𝚏𝑐(Π1, 𝑎) becomes the conjunction of:

(𝑠→ 𝑡) ∧ (𝑟→ 𝑡 ∨ 𝑢) (22)

¬(¬¬𝑠 ∨ (¬¬𝑟 ∧ ¬𝑢))→ 𝑣 (23)

𝑟→ ¬¬𝑠 ∨ (¬¬𝑟 ∧ ¬𝑢) ∨ 𝑢 (24)

w, by simple HT transformations [19], it is easy to see that the antecedent of (23) amounts to ¬𝑠 ∧(¬𝑟 ∨¬¬𝑢), so (23) can be replaced 
 the two rules (25) and (26) below, whereas (24) is equivalent to the conjunction of (27) below that stems from 𝑟 → ¬¬𝑠 ∨ ¬𝑢 ∨ 𝑢, 
us the rule 𝑟 → ¬¬𝑠 ∨ ¬¬𝑟 ∨ 𝑢 that is tautological and can be removed.

¬𝑠 ∧ ¬𝑟→ 𝑣 (25)

¬𝑠 ∧ ¬¬𝑢→ 𝑣 (26)

𝑟 ∧ ¬𝑠 ∧ ¬¬𝑢→ 𝑢 (27)

 sum up, 𝚏𝑐(Π1, 𝑎) is strongly {𝑟, 𝑠, 𝑡, 𝑢, 𝑣}-equivalent to program (22) ∧ (25) ∧ (26) ∧ (27). □

e program we obtained above is the same one obtained with the 𝚏𝑠𝑝 operator by Berthold et al. [17] although the process to 
hieve it is slightly different. This is because, in general, 𝚏𝑐(Π, 𝑎) takes a logic program Π but produces a propositional formula
here 𝑎 has been forgotten, whereas 𝚏𝑠𝑝 produces the logic program in a direct way. Although, at a first sight, this could be seen 
 a limitation of 𝚏𝑐 , the truth is that it is not an important restriction, since there exist well-known syntactic methods [19,25] to 
nsform a propositional formula6 into a (strongly equivalent) logic program under the logic of HT. Moreover, in the case of 𝚏𝑠𝑝 , 
rectly producing a logic program comes with the cost of a more technically elaborate transformation, with ten different cases 

In fact, Aguado et al. [24] presented a more limited forgetting operator 𝚏𝑒𝑠 based on the external support.
In most cases, after unfolding 𝚏𝑐 as a logic program, we usually obtain not only a result strongly equivalent to 𝚏𝑠𝑝 but also the same or a very close syntactic 
7

resentation.
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d the combinatorial construction of a so-called as-dual set of rules generated from multiple partitions of the original program.7
e suggest that well-known logical rules such as de Morgan or distributivity (many of them still valid in intuitionistic logic) are 
r easier to learn and apply than the 𝚏𝑠𝑝 transformation when performing syntactic transformations by hand. On the other hand, 
e may sometimes be interested in keeping the propositional formula representation inside HT (for instance, for studying strong 
uivalence or the relation to other constructions) rather than being forced to unfold the formula into a logic program, possibly 
ading to a combinatorial blow-up due to distributivity.
As happened with 𝚏𝑠𝑝, the main restriction of 𝚏𝑐 is that it does not always guarantee strong persistence. Note that this was 
pected, given the already commented result on the impossibility of arbitrary forgetting by just producing an HT formula. To check 
hether forgetting 𝑎 in Π is possible, we can use semantic conditions like Theorem 1(v) or the Ω-condition, but these imply inspecting 
e models of Π. If we want to keep the method at a purely syntactic level, however, we can at best enumerate sufficient conditions 
r forgettability. For instance, Berthold et al. [17] proved that 𝑎 can be forgotten under strong persistence in any program Π that 
tisfies any of the following syntactic conditions:

finition 6 (Definition 4 in [17]). An extended logic program Π is 𝑎-forget-table if at least one of the following conditions is satisfied:

. Π contains the fact ‘𝑎’ as a rule.

. Π does not contain 𝑎-choices.

. All rules in Π in which 𝑎 occurs are 𝑎-choices.

It is not difficult to see that Condition 2 above is equivalent to requiring that atom 𝑎 does not occur in 𝑁𝐸𝑆(Π, 𝑎, ¬𝑎), since the 
ly possibility for 𝑎 to occur in that formula is that there is a rule in Π of the form ¬¬𝑎 ∧ 𝜑 → 𝑎 ∨ 𝜓 . In fact, as we prove below, 
finition 6 is a quite general, sufficient syntactic condition for the applicability of 𝚏𝑐 .

eorem 2. Let Π be a logic program for signature  , let 𝑉 ⊆ and 𝑎 ∈ ⧵ 𝑉 . If Π is 𝑎-forgettable, then: Π ≅𝑉 𝚏𝑐 (Π, 𝑎). □

In our example, it is easy to see that this condition is satisfied because behead𝑎(Π1) = Π1 and this program does not contain 
choices.

 Forgetting into forks: the unfolding operator

As we have seen, syntactic forgetting is limited to a family of transformation operators whose applicability can be analysed in 
rms of sufficient syntactic conditions. This method is incomplete in the sense that forgetting 𝑎 in Π may be possible, but still the 
ntactic conditions we use for applicability may not be satisfied. Consider the following example.

ample 3. Take the following logic program Π3 :

¬¬𝑎→ 𝑎 (28)

¬𝑎→ 𝑏 (29)

𝑎→ 𝑐 (30)

𝑏→ 𝑐 (31)

𝑐→ 𝑏 (32)

is program does not fit into the 𝑎-forgettable syntactic form, but in fact we can forget 𝑎 under strong persistence to obtain 𝑏 ∧ 𝑐, as 
e will see later. □

If we look for a complete forgetting method, one interesting possibility is allowing the result to contain the fork operator. As 
oved by Aguado et al. [16], forgettability as a fork is always guaranteed: that is, it is always possible to forget any atom if we allow 
e result to be in the general form of a fork. The method they provided to obtain such a fork, however, was based on synthesis from 
e fork denotation, which deals with sets of HT models. We propose next a syntactic method, that is always applicable, to obtain a 
rk as the result of forgetting any atom.
In the context of propositional logic, forgetting an atom 𝑎 in a formula 𝜑 corresponds to the quantified Boolean formula ∃𝑎 𝜑

hich, in turn, is equivalent to the unfolding 𝜑[𝑎∕⊥] ∨ 𝜑[𝑎∕⊤]. In the case of Equilibrium Logic, we will apply a similar unfolding 
t, instead of disjunction, we will use the fork connective, and rather than ⊥ and ⊤ we will have to divide the cases into ¬𝑎 and 
𝑎, since (¬𝑎 ∣ ¬¬𝑎) ≡ ⊤.

In fact, the as-dual set defined by Berthold et al. [17] can be seen as an effect of the (CUT) rule. Moreover, our use of the latter was inspired by this as-dual 
8

nstruction.



F.

of

De

co

al

Th

𝚏𝑐

Co

so

Th

𝑎

of

co

Th

th

As

Ex

Π3

(a

(¬
Th

Ag

m

tio

Le

Si

8

Artificial Intelligence 326 (2024) 104033Aguado, P. Cabalar, J. Fandinno et al.

More precisely, using (14) from Proposition 5 we can say that Π ≅ (Π ∧¬𝑎 ∣ Π ∧¬¬𝑎). Then, by Proposition 3, we separate the task 
 forgetting 𝑎 in Π into forgetting 𝑎 in each one of these two branches, leading to:

finition 7 (Unfolding operator, 𝚏|). For any logic program Π and atom 𝑎 we define: 𝚏|(Π, 𝑎) ≝ (
𝚏𝑐(Π ∧ ¬𝑎, 𝑎) ∣ 𝚏𝑐(Π ∧ ¬¬𝑎, 𝑎)

)
□

As a minor remark, note that when we forget atom 𝑎 on a program Π where 𝑎 does not occur, 𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) becomes the empty 
njunction ⊤ and we trivially obtain ( Π ∧ ¬⊤ ∣ Π ∧ ¬¬⊤) ≅ (⊥ ∣ Π) ≅ Π. The following result guarantees that the unfolding operator 
ways produces a strongly persistent forgetting of atom 𝑎.

eorem 3. Let Π be a logic program for signature  , let 𝑉 ⊆ and 𝑎 ∈ ⧵ 𝑉 . Then, Π ≅𝑉 𝚏|(Π, 𝑎). □

In general, 𝚏|(Π, 𝑎) may contain forks, but when the program is 𝑎-forgettable, we immediately conclude that the cut operator 
(Π, 𝑎) (which produces a formula) yields a strongly equivalent result:

rollary 1. Let Π be a logic program for signature  , let 𝑉 ⊆ and 𝑎 ∈ ⧵ 𝑉 . If Π is 𝑎-forgettable, then 𝚏|(Π, 𝑎) ≅𝑉 𝚏𝑐 (Π, 𝑎), and 
, 𝚏|(Π, 𝑎) ≅ 𝚏𝑐 (Π, 𝑎). □

Using (2) and (3), it is easy to prove:

eorem 4. For any logic program Π and atom 𝑎:

𝚏|(Π, 𝑎) ≅ (
𝚏𝑐 (Π[𝑎∕⊥] ∧ ¬𝑎, 𝑎) ∣ 𝚏𝑐 (Π[¬𝑎∕⊥] ∧ ¬¬𝑎, 𝑎)

)
≅
(
Π[𝑎∕⊥] ∣ 𝚏𝑐(Π[¬𝑎∕⊥] ∧ ¬¬𝑎, 𝑎)

)
.

This theorem provides a simpler application of the unfolding operator: the left branch, for instance, is now the result of replacing 
by ⊥. The right branch applies the cut operator, but introducing a prior step: we add the formula ¬¬𝑎 and replace all occurrences 
 ¬𝑎 by ⊥. It is easy to see that, in this previous step, any occurrence of 𝑎 in the scope of negation is removed in favour of truth 
nstants.8 This means that the result has no 𝑎-choices since 𝑎 will only occur in the scope of negation in the rule ¬¬𝑎 = (¬𝑎 → ⊥). 
erefore, the use of 𝚏𝑐 in 𝚏| is always applicable. Moreover, in many cases, we can use elementary HT transformations to simplify 
e programs Π[𝑎∕⊥] and Π[¬𝑎∕⊥] ∧ ¬¬𝑎, to look for a simpler application of 𝚏𝑐 , or to apply properties about the obtained fork.
 an illustration, consider the following variation of Example 3.

ample 4. Suppose we want to forget atom 𝑎 in the program Π4 ≝ (28) ∧ (29) ∧ (30) where we simply removed (31) and (32) from 
.

Let us use the transformation in Theorem 4. We can observe that Π4[𝑎∕⊥] replaces (28), (29) and (30) respectively by (¬¬⊥ → ⊥)
 tautology), (¬⊥ → 𝑏) ≅ 𝑏 and (⊥ → 𝑐) (again, a tautology). On the other hand, Π4[¬𝑎∕⊥] replaces (28) and (29) respectively by 
⊥ → 𝑎) ≅ 𝑎 and (⊥ → 𝑏) (a tautology), so that Π4[¬𝑎∕⊥] ∧ ¬¬𝑎 amounts to the formula 𝑎 ∧ (𝑎 → 𝑐) ∧ ¬¬𝑎 which is equivalent to 𝑎 ∧ 𝑐. 
erefore, we get 𝚏𝑐(𝑎 ∧ 𝑐, 𝑎) = 𝑐. The final result amounts to 𝚏|(Π4, 𝑎) = (𝑏 ∣ 𝑐) that is, a fork of two atoms, which as discussed by 
uado et al. [16], is (possibly the simplest case of) a fork that cannot be reduced to a formula. Later on, we will provide, in fact, a 
ore general sufficient condition for non-reducibility that includes this case.
Now, think again about the larger program Π3 = Π4 ∪ {(31), (32)} that was not 𝑎-forgettable under the sufficient syntactic condi-
ns for that class of programs. We can indeed reuse the forgetting 𝚏|(Π4, 𝑎) to obtain 𝚏|(Π3, 𝑎) due to the following lemma:

mma 1. Let Π, Π′ be two logic programs for some signature  . Suppose that, for some atom 𝑎 ∈ , 𝑎 ∉ At(Π′). Then:

𝚏|(Π ∪ Π′, 𝑎) = 𝚏|(Π, 𝑎) ∧ Π′.

nce rules (31) and (32) do not contain atom 𝑎, we can apply Lemma 1 so:

𝚏|(Π3, 𝑎) = 𝚏|(Π4, 𝑎) ∧ (𝑏→ 𝑐) ∧ (𝑐→ 𝑏)
≅ (𝑏 ∣ 𝑐) ∧ (𝑏→ 𝑐) ∧ (𝑐→ 𝑏)
≅ 𝑏 ∧ (𝑏→ 𝑐) ∧ (𝑐→ 𝑏) ∣ 𝑐 ∧ (𝑏→ 𝑐) ∧ (𝑐→ 𝑏) by (7)

≅ 𝑏 ∧ 𝑐 ∣ 𝑏 ∧ 𝑐
≅ 𝑏 ∧ 𝑐. by (6)
9

Truth constants can be removed using trivial HT simplifications.
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 this way, we have syntactically proved that 𝑎 was indeed forgettable in Π3 leading to 𝑏 ∧ 𝑐 even though this program was not 
forgettable. We claim that the 𝚏| operator plus the use of properties about forks (like idempotence used above) opens a wider range 
 syntactic conditions under which forks can be reduced to formulas, and so under which an atom can be forgotten in ASP.
An important advantage of the unfolding operator is that, since it is always applicable, it can be used to forget a set of atoms by 
rgetting them one by one. We illustrate this with another example.

ample 5. We have shown before that 𝚏|(Π3, 𝑎) ≡ (𝑏 ∣ 𝑐). We can use Proposition 3 to continue forgetting 𝑏 in each of the two 
anches of (𝑏 ∣ 𝑐).
As none of them contains 𝑏-choices, we can just apply 𝚏𝑐 to obtain the fork ( 𝚏𝑐 (𝑏, 𝑏) ∣ 𝚏𝑐(𝑏, 𝑐) ) = (⊤ ∣ 𝑐) which, by (13), is equivalent 

 the formula (¬¬𝑐→ 𝑐).

We discuss next an example extracted from the paper by Berthold et al. [17].

ample 6. Suppose we want to forget 𝑞 in the following program Π6:

¬¬𝑞→ 𝑞 𝑞→ 𝑢 𝑞→ 𝑠 ¬𝑞→ 𝑡.

Although this program is not 𝑞-forgettable, it was included as Example 7 in Berthold et al.’s paper [17] to illustrate the application 
 operator 𝚏𝑠𝑝. If we use 𝚏|(Π6, 𝑞), it is very easy to see that Π6[𝑞∕⊥] ≅ 𝑡 and Π6[¬𝑞∕⊥] ∧ ¬¬𝑞 ≅ 𝑞 ∧ 𝑢 ∧ 𝑠. Therefore, we get 𝚏|(Π6, 𝑞) =
 ∣ 𝚏𝑐(𝑞 ∧ 𝑢 ∧ 𝑠, 𝑞) ) = ( 𝑡 ∣ 𝑢 ∧ 𝑠 ). As we will see below, this fork cannot be represented as a formula: in some sense, it is similar to (𝑏 ∣ 𝑐)
tained before. As a result, atom 𝑞 cannot be forgotten in Π6 as a formula, and so, 𝚏𝑠𝑝(Π6, 𝑞) in Berthold et al.’s paper [17] does not 
tisfy strong persistence.
We characterise next a family of forks that are not representable as formulas, and include the case ( 𝑡 ∣ 𝑢 ∧ 𝑠 ) in the previous 
ample. We start by defining the following type of propositional formulas.

finition 8 (∅-contingent). A propositional formula is said to be ∅-contingent if both:

i) � 𝜑 �𝑋 ≠ [ ] for some 𝑋 ⊆ At(𝜑);
i) and ∅ ∉ � 𝜑 �𝑋 , for every 𝑋 ⊆ At(𝜑).

It is easy to see that any ∅-contingent formula is also an HT-contingent formula, since it is not a contradiction, due to condition
, whereas it is not a tautology either, due to condition (ii). The converse does not hold: as a counterexample, take 𝜑 = ¬¬𝑝. On 
e one hand, this formula is HT-contingent, since it is not a tautology because ⟨∅, ∅⟩ ̸⊧ ¬¬𝑝, and it is not a contradiction because it 
s two HT-models, ⟨{𝑝}, {𝑝}⟩ and ⟨∅, {𝑝}⟩. On the other hand, it is not ∅-contingent since ⟨∅, {𝑝}⟩ ⊧ ¬¬𝑝, that is, ∅ ∈ � ¬¬𝑝 �{𝑝} and 
, it violates condition (ii). Note that, in order to decide whether 𝜑 is ∅-contingent, it suffices to analyse the denotation of 𝜑 with 
spect to its local signature At(𝜑). For instance, it is easy to see that any non-empty conjunction of atoms, such as 𝑡 or 𝑢 ∧ 𝑠 from the 
evious example, is ∅-contingent because it has models but no 𝐻 -component in those models can be empty.

oposition 7. Given two ∅-contingent formulas 𝜑 and 𝜓 with At(𝜑) ∩ At(𝜓) = ∅, the fork (𝜑 ∣ 𝜓) is not reducible to a formula.

Proposition 7 provides a sufficient condition to guarantee that a fork (𝜑 ∣ 𝜓) cannot be reduced to a formula, but that condition 
semantic: it requires examining the HT-models of 𝜑 and 𝜓 (for their respective local signatures). Yet, some syntactic cases can be 
sily proven to fit into ∅-contingent formulas. For instance, any combination of atoms with non-empty conjunctions and disjunctions 
lls into this category, since no 𝐻 = ∅ can ever form a model for these kinds of formulas.

rollary 2. Let 𝜑 and 𝜓 be formulas exclusively formed with combinations of atoms, ∧ and ∨ (no empty conjunction ⊤ or disjunction ⊥
lowed) and let At(𝜑) ∩ At(𝜓) = ∅. Then, (𝜑 ∣ 𝜓) is not reducible to a formula.

Since the unfold operator is always applicable, our method can be used to forget multiple atoms by simply forgetting one by one 
 any arbitrary ordering. If the final result is reducible to a formula, the ordering in which we forget the atoms is irrelevant. Yet, it 
ay be the case that, depending on that ordering, the intermediate results we obtain may be non-reducible to formulas, and must be 
pt as forks instead. To conclude this section, we illustrate multiple atoms forgetting with one more example.

ample 7. We want to forget both 𝑝 and 𝑞 in the following program Π7:

¬¬𝑝 ∧ ¬¬𝑞 ∧ 𝑎→ 𝑝 ¬𝑝→ 𝑎 ¬𝑝 ∧ ¬𝑞→ ⊥

¬¬𝑞 ∧ 𝑝→ 𝑞 ¬𝑞→ 𝑎 𝑞→ 𝑎. □

As we show below, we cannot forget either 𝑝 nor 𝑞 alone and obtain a propositional formula, but when forgetting the two of them, 
e result can indeed be represented as a formula. Let us start forgetting 𝑝 first and, on the result, forget 𝑞 in a second step. To forget 
10

 we can check that Π7[𝑝∕⊥] is
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¬¬⊥ ∧ ¬¬𝑞 ∧ 𝑎→ ⊥ ¬⊥→ 𝑎 ¬⊥ ∧ ¬𝑞→ ⊥

¬¬𝑞 ∧⊥→ 𝑞 ¬𝑞→ 𝑎 𝑞→ 𝑎

hose conjunction amounts to (¬𝑞→ ⊥) ∧ 𝑎 ∧ (¬𝑞→ 𝑎) ∧ (𝑞→ 𝑎) where the last two conjuncts can be removed, leading to (¬𝑞→ ⊥) ∧ 𝑎
, if preferred, ¬¬𝑞 ∧ 𝑎. On the other hand, Π[¬𝑝∕⊥] becomes

¬⊥ ∧ ¬¬𝑞 ∧ 𝑎→ 𝑝 ⊥→ 𝑎 ⊥ ∧ ¬𝑞→ ⊥

¬¬𝑞 ∧ 𝑝→ 𝑞 ¬𝑞→ 𝑎 𝑞→ 𝑎

here we can remove the two rules with ⊥ in the antecedent to obtain:

¬¬𝑞 ∧ 𝑎→ 𝑝 (33)

¬¬𝑞 ∧ 𝑝→ 𝑞 (34)

¬𝑞→ 𝑎 (35)

𝑞→ 𝑎 (36)

t Π′=(33)-(36). According to Theorem 4, we must now apply 𝚏𝑐(Π′ ∧ ¬¬𝑝, 𝑝). To this aim, note that behead𝑝(Π′) = Π′ because the 
ly rule with 𝑝 in the head is (33), and it is a supporting rule. Next, the only rule with 𝑝 in the positive body is (34) and this must 
 replaced by 𝑁𝐸𝑆(Π′ ∧ ¬¬𝑝, 𝑝, (34)) that, in this case, corresponds to a single application of cut between (34) and (33) producing 
e rule ¬¬𝑞 ∧¬¬𝑞 ∧ 𝑎 → ⊥ ∨ 𝑞 or simply ¬¬𝑞 ∧ 𝑎 → 𝑞. Then rule (33), with 𝑝 in the head, is removed. We also have to replace 𝑝 in ¬¬𝑝
 ¬𝑁𝐸𝑆(Π′ ∧ ¬¬𝑝, 𝑝, ¬𝑝), that is, by formula

¬(¬¬𝑞 ∧ 𝑎→ ⊥) ≡ ¬¬𝑞 ∧ ¬¬𝑎.

 sum up, 𝚏𝑐(Π′ ∧ ¬¬𝑝, 𝑝) amounts to:

¬¬𝑞 ∧ 𝑎→ 𝑞 ¬𝑞→ 𝑎 𝑞→ 𝑎 ¬¬𝑞 ¬¬𝑎

here, as ¬¬𝑞 holds, we can remove it in the antecedent of the first rule, whereas the second rule becomes trivially true, so we can 
rther rewrite the program above as:

𝑎→ 𝑞 𝑞→ 𝑎 ¬¬𝑞 ¬¬𝑎

 just ¬¬𝑎 ∧ (𝑎 ↔ 𝑞) because ¬¬𝑞 follows from the latter. Putting the two branches together, we have

𝚏|(Π7, 𝑝) ≅ (𝑎 ∧ ¬¬𝑞) ∣ (𝑎↔ 𝑞) ∧ ¬¬𝑎.

e can now forget 𝑞 in this fork by forgetting it in both branches.

𝚏|(Π7, 𝑞) ≅ 𝚏|(𝑎 ∧ ¬¬𝑞, 𝑞) ∣ 𝚏|((𝑎↔ 𝑞) ∧ ¬¬𝑎, 𝑞)

≅ 𝚏𝑐(𝑎 ∧ ¬¬𝑞, 𝑞) ∣ 𝚏𝑐((𝑎↔ 𝑞) ∧ ¬¬𝑎, 𝑞). (37)

r the left branch, note that 𝑁𝐸𝑆((𝑎 ∧ ¬¬𝑞), 𝑞, ¬𝑞) = ⊤ as there are no rules with 𝑞 in the head and so we get an empty conjunction 
 After replacing 𝑞 by ¬𝑁𝐸𝑆((𝑎 ∧ ¬¬𝑞), 𝑞, ¬𝑞) = ¬⊤ ≅ ⊥ we obtain formula 𝚏𝑐(𝑎 ∧ ¬¬𝑞, 𝑞) = 𝑎 ∧ ¬¬⊥ ≅ ⊥. But then, by item (15) in 
oposition 5, (⊥ ∣ 𝐹 ) ≅ 𝐹 for any fork 𝐹 and so, we can remove the whole left branch of (37) to obtain

𝚏|(Π7, 𝑞) ≅ 𝚏𝑐((𝑎↔ 𝑞) ∧ ¬¬𝑎, 𝑞)

≅ 𝚏𝑐((𝑎→ 𝑞) ∧ (𝑞→ 𝑎) ∧ ¬¬𝑎, 𝑞)

≅ (𝑎→ 𝑎) ∧ ¬¬𝑎

≅ ¬¬𝑎,

ce, as we can see, the only cut we can perform is between (𝑎 → 𝑞) and (𝑞→ 𝑎) leading to tautology (𝑎 → 𝑎).
To illustrate the effect of forgetting 𝑝 and 𝑞 in a different ordering, suppose now that we first forget 𝑞 and then 𝑝 in Π7. On the 
e hand, we have that Π7[𝑞∕⊥] is:

¬¬𝑝 ∧ ¬¬⊥ ∧ 𝑎→ 𝑝 ¬𝑝→ 𝑎 ¬𝑝 ∧ ¬⊥→ ⊥

¬¬⊥ ∧ 𝑝→ ⊥ ¬⊥→ 𝑎 ⊥→ 𝑎

hich can be simplified to ¬¬𝑝 ∧ (¬𝑝 → 𝑎) ∧ 𝑎 or just ¬¬𝑝 ∧ 𝑎. On the other hand, Π7[¬𝑞∕⊥] is:

¬¬𝑝 ∧ ¬⊥ ∧ 𝑎→ 𝑝 ¬𝑝→ 𝑎 ¬𝑝 ∧⊥→ ⊥

¬⊥ ∧ 𝑝→ 𝑞 ⊥→ 𝑎 𝑞→ 𝑎
11
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¬¬𝑝 ∧ 𝑎→ 𝑝 (38)

¬𝑝→ 𝑎 (39)

𝑝→ 𝑞 (40)

𝑞→ 𝑎 (41)

we name Π′′= (38)-(41), we need to obtain the formula corresponding to 𝚏𝑐 (Π′′ ∧ ¬¬𝑞, 𝑞). The only rule with 𝑞 in the positive 
dy is (41) so it must be replaced by 𝑁𝐸𝑆(Π′′, 𝑞, (41)) which corresponds to 𝑝 → 𝑎. We must also replace 𝑞 in ¬¬𝑞 by formula 
𝐸𝑆(Π′′ ∧ ¬¬𝑞, 𝑞, ¬𝑞) = ¬¬𝑝. To sum up, 𝚏𝑐(Π′′ ∧ ¬¬𝑞, 𝑞) becomes the formula

(𝑝→ 𝑎) ∧ (¬𝑝→ 𝑎) ∧ (𝑎→ 𝑝 ∨ ¬𝑝) ∧ ¬¬𝑝

hich can be simplified to (𝑎 ↔ 𝑝) ∧ ¬¬𝑝. So 𝚏|(Π7, 𝑞) is equivalent to

(𝑎 ∧ ¬¬𝑝 ∣ (𝑎↔ 𝑝) ∧ ¬¬𝑝).

w, if we want to forget 𝑝 in this fork, we proceed as before obtaining

𝚏|(𝚏|(Π7, 𝑞), 𝑝) = 𝚏|(𝚏|(Π7, 𝑝), 𝑞) ≡ ¬¬𝑎.

te how, even if we could not forget 𝑝 nor 𝑞 alone as a propositional formula, we can eventually forget the two atoms to achieve 
e formula ¬¬𝑎, regardless of the ordering in which we perform the forgetting of each individual atom.

 Conclusions

We have presented a syntactic transformation called unfolding that is always applicable on any logic program and allows forget-
g an atom (under strong persistence), producing an expression that may combine the fork operator and propositional formulas. 
folding relies on another syntactic transformation, called the cut operator (close to 𝚏𝑠𝑝 by Berthold et al. [17]), that can be applied 
 any program that does not contain choice rules for the forgotten atom and, unlike unfolding, it returns a propositional formula 
ithout forks. Although in general the forks we obtain by unfolding cannot be reduced to propositional formulas, we have also 
ustrated how the use of general properties of forks makes this possible in some cases, even under circumstances where previous 
ntactic methods were not known to be applicable.
When compared to other syntactic methods [17,18] for multiple atoms, the definition of unfolding and cut is simpler in the sense 
at it performs common manipulations on formulas (the cut inference rule is well-known in sequent calculi) rather than trying to 
oduce directly a logic program. Thus, if the forgetting results in a formula, we are free to leave it in that form or to further reduce 
to a logic program using standard transformations in the logic of Here-and-There [19]. In some situations, abstaining from the 
duction to a logic program, may be convenient. For instance, if we want to check whether some formula 𝜑 obtained after forgetting 
strongly equivalent to another representation 𝜓 , the direct use of formula 𝜑 is enough whereas the transformation into a logic 
ogram is unnecessary since it may produce, in the worst case, a combinatorial blow-up due to the application of distributivity 
les.

Future work will be focused on extending the syntactic conditions under which forks can be reduced to formulas – we claim that 
is is an analogous situation to finding conditions under which second order quantifiers can be removed in second order logic. We 
ill also study extensions of the unfolding operator like using sets of atoms, instead of proceeding one by one, or allowing arbitrary 
rmulas rather than requiring a previous transformation to logic programs. Finally, another interesting topic to explore is the idea 
 succinctness, trying to find out whether there exist theoretical bounds for the variation in representational size when forgetting 
rsus introducing an auxiliary atom.
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pendix A. Proofs of results

In the proofs, we will use the following notation. Given any rule 𝑟 of the form 𝜑 → 𝜓 , we write 𝐵(𝑟) and 𝐻(𝑟) to stand for its body 
and head 𝜓 , respectively. Moreover, given any atom 𝑎 ∈ and any rule 𝑟, we define the formula

𝐻∖𝑎(𝑟) ≝
⋁

{𝑝 ∣ 𝑝 ∈ Hd(𝑟), 𝑝 ≠ 𝑎}

at corresponds to the head of 𝑟 after (possibly) removing atom 𝑎. Similarly, 𝐵∖𝑎(𝑟) collects the conjunction of all body literals of 𝑟
here atom 𝑎 does not occur, that is, formally:

𝐵∖𝑎(𝑟) ≝
⋀

{𝑝 ∣ 𝑝 ∈ Bd+(𝑟), 𝑝 ≠ 𝑎} ∧
⋀

{¬𝑝 ∣ 𝑝 ∈ Bd−(𝑟), 𝑝 ≠ 𝑎}

∧
⋀

{¬¬𝑝 ∣ 𝑝 ∈ Bd−−(𝑟), 𝑝 ≠ 𝑎}

e rule 𝐵∖𝑎(𝑟) →𝐻∖𝑎(𝑟) will be denoted by 𝑟∖𝑎.

oof of Proposition 3. If 𝐹 , 𝐺 are forks and 𝑇 ⊆ 𝑉 ⊆ , we can deduce from the definition of ⟨ ⟨ 𝐹 ⟩ ⟩𝑇
𝑉
that ⟨ ⟨ 𝐹 ∣ 𝐺 ⟩ ⟩𝑇

𝑉
= ⟨ ⟨ 𝐹 ⟩ ⟩𝑇

𝑉
∪⟩ ⟩𝑇

𝑉
. In consequence, when 𝐹 ≅𝑉 𝐹 ′ and 𝐺 ≅𝑉 𝐺′, we can use (i) from Theorem 1 in order to assert:

⟨⟨𝐹 ∣𝐺 ⟩⟩𝑇
𝑉
= ⟨⟨𝐹 ⟩⟩𝑇

𝑉
∪ ⟨⟨𝐺 ⟩⟩𝑇

𝑉
= ⟨⟨𝐹 ′ ⟩⟩𝑇

𝑉
∪ ⟨⟨𝐺′ ⟩⟩𝑇

𝑉
= ⟨⟨𝐹 ′ ∣𝐺′ ⟩⟩𝑇

𝑉
□

oof of Proposition 5. Notice that ⟨ ⟨ ⊥ ⟩ ⟩𝑌 = ∅ and ⟨ ⟨ ⊤ ⟩ ⟩𝑌 = {2𝑌 } for any 𝑌 ⊆ . On the other hand, ⟨ ⟨ ¬𝛼 ⟩ ⟩𝑌 = ∅ and ⟨ ⟨ ¬¬𝛼 ⟩ ⟩𝑌 =
𝑌 } if 𝑌 ⊧ 𝛼 and ⟨ ⟨ ¬¬𝛼 ⟩ ⟩𝑌 = ∅ and ⟨ ⟨ ¬𝛼 ⟩ ⟩𝑌 = {2𝑌 } if 𝑌 ̸⊧ 𝛼.
e also have:

⟨⟨𝛼 ∣ ¬𝛼 ⟩⟩𝑌 = ⟨⟨⟨⟨𝛼 ⟩⟩𝑌 ∪ ⟨⟨¬𝛼 ⟩⟩𝑌 =
{ ⟨⟨𝛼 ⟩⟩𝑌 if 𝑌 ⊧ 𝛼

{2𝑌 } if 𝑌 ̸⊧ 𝛼

d

�𝛼 ∨ ¬𝛼 �𝑌 =
{

�𝛼 �𝑌 if 𝑌 ⊧ 𝛼

2𝑌 if 𝑌 ̸⊧ 𝛼

 general, if 𝐹 , 𝐺 and 𝐻 are forks, then we can apply Proposition 12 from [16]:

𝐹 ∧ (𝐺 ∣𝐻) ≡ (𝐹 ∧𝐺 ∣ 𝐹 ∧𝐻)

nsequently:

𝛼 ≡ 𝛼 ∧⊤ ≡ 𝛼 ∧ (¬𝛽 ∣ ¬¬𝛽) ≡ (𝛼 ∧ ¬𝛽 ∣ 𝛼 ∧ ¬¬𝛽) □

For any 𝑌 ⊆ and 𝑎 ∈ , we denote by 𝑌 (𝑎) = 𝑌 ∪ {𝑎}.

mma 2. Let Π be a logic program for signature  not containing 𝑎-choices for some atom 𝑎 ∈ . For any 𝑌 ⊆ 𝑉 = ⧵ {𝑎}, if 𝑌 ⊧Π
d 𝑌 (𝑎) ⊧Π, then ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧Π.
13

oof. For the proof, we only have to notice that:
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. ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧ 𝑟 for any 𝑟 such that 𝑎 ∈ 𝐵+(𝑟) ∪𝐵−(𝑟) or 𝑎 ∉ (𝑟)

. If 𝑎 ∈ 𝐵−−(𝑟), then:

⟨𝑌 ,𝑌 (𝑎)⟩ ̸⊧ 𝐵(𝑟)⟺ 𝑌 (𝑎) ̸⊧ 𝐵(𝑟), and ⟨𝑌 ,𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟)⟺ 𝑌 (𝑎) ⊧ 𝐻(𝑟)

. If 𝑎 ∈𝐻(𝑟), then:

⟨𝑌 ,𝑌 (𝑎)⟩ ̸⊧ 𝐵(𝑟)⟺ 𝑌 ̸⊧ 𝐵(𝑟), and ⟨𝑌 ,𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟)⟺ 𝑌 ⊧ 𝐻(𝑟) □

For the proof of Theorem 2 we split the result in the next three Lemmata, one for each of the three cases of 𝑎-forgettable programs.

mma 3. Let Π be a logic program for signature  , let 𝑉 ⊆ and 𝑎 ∈ ⧵ 𝑉 . If Π contains the rule ⊤ → 𝑎, then: Π ≅𝑉 𝚏𝑐(Π, 𝑎). □

oof. We must prove that, if 𝑌 ⊆ 𝑉 = ⧵ {𝑎}, then ⟨ ⟨ Π ⟩ ⟩𝑌
𝑉
= ⟨ ⟨ 𝚏𝑐 (Π, 𝑎) ⟩ ⟩𝑌 . In this case, 𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ≅⊥, so after the application 

 the operator 𝚏𝑐 to Π′ = behead𝑎(Π), we will have that 𝚏𝑐 (Π, 𝑎) ≡ {𝑟∖𝑎 ∣ 𝑟 ∈Π} ≡Π[𝑎∕⊤].
tice that, when 𝑟, 𝑟′ ∈ Π satisfy that 𝑎 ∈ 𝐵+(𝑟) and 𝑎 ∈𝐻(𝑟′) but 𝑎 ∉ 𝐵−−(𝑟′), then:

𝐶𝑢𝑡(𝑎, 𝑟, 𝑟′) ∧ {𝑟∖𝑎, 𝑟′ ∖𝑎} ≡ {𝑟∖𝑎, 𝑟′ ∖𝑎}

d

𝐶𝑢𝑡(𝑎, 𝑟,⊤→ 𝑎) = 𝑟∖𝑎.

nally, we can apply (1) to conclude:

Π ≡Π∧ 𝑎 ≡ Π[𝑎∕⊤] ∧ 𝑎 ≡𝑉 Π[𝑎∕⊤]

hich finishes the proof. □

mma 4. Let Π be a logic program for signature  , let 𝑉 ⊆ and 𝑎 ∈ ⧵ 𝑉 . If all rules in Π in which 𝑎 occurs are 𝑎-choices, then: 
≅𝑉 𝚏𝑐 (Π, 𝑎). □

oof. As in the previous lemma, we must prove that, if 𝑌 ⊆ 𝑉 = ⧵ {𝑎}, then ⟨ ⟨ Π ⟩ ⟩𝑌
𝑉
= ⟨ ⟨ 𝚏𝑐 (Π, 𝑎) ⟩ ⟩𝑌 . After applying the operator 

to Π′ = behead𝑎(Π), any 𝑎-choice 𝑟 will be transformed into a tautology since both ¬¬𝑎 in 𝐵(𝑟) and 𝑎 in 𝐻(𝑟) will be substituted by 
𝐸𝑆(Π, 𝑎, ¬𝑎). This means 𝚏𝑐(Π, 𝑎) ≡𝑅′ where 𝑅′ contains all the rules 𝑟 ∈Π such that 𝑎 ∉ (𝑟).
hen 𝑌 ⊆ 𝑉 , then � Π �𝑌 = � 𝑅′ �𝑌 because 𝑌 ̸⊧ 𝐵(𝑟) for any 𝑎-choice rule 𝑟.
oreover: ⟨ ⟨ Π ⟩ ⟩𝑌

𝑉
= ⟨ ⟨ Π ⟩ ⟩𝑌 because � Π �𝑌 (𝑎)

𝑉
= � Π �𝑌 . Notice that, for any 𝑋 ⊆ 𝑌 , we have that ⟨𝑋, 𝑌 ⟩ and ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ satisfy any 

choice (𝑌 ̸⊧ ¬¬𝑎 and ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ⊧ 𝑎). It also holds that, for any 𝑟′ ∈𝑅′, we get:

⟨𝑋,𝑌 ⟩ ⊧ 𝑟′ ⟺ ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ⊧ 𝑟′
e can conclude that � Π �𝑌 (𝑎)

𝑉
= � Π �𝑌 and, in consequence:

⟨⟨Π ⟩⟩𝑌
𝑉
= ⟨⟨Π ⟩⟩𝑌 = ⟨⟨𝑅′ ⟩⟩𝑌

hich implies that Π ≡𝑉 𝑅′ ≡ 𝚏𝑐(Π, 𝑎). □

mma 5. Let Π be a logic program for signature  , let 𝑉 ⊆ and 𝑎 ∈ ⧵𝑉 . If Π does not contain 𝑎-choices, then: Π ≅𝑉 𝚏𝑐(Π, 𝑎). □

oof. As before, we want to prove that 𝑌 ⊆ 𝑉 = ⧵ {𝑎} implies ⟨ ⟨ Π ⟩ ⟩𝑌
𝑉
= ⟨ ⟨ 𝚏𝑐 (Π, 𝑎) ⟩ ⟩𝑌 . Throughout all the proof, we use that, for 

y 𝑋 ⊆ 𝑌 ⊆ 𝑉 , one of the following conditions is satisfied.

• ⟨𝑋, 𝑌 ⟩ ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) iff 𝑌 ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) iff 𝑌 ⊧ 𝑟, for all 𝑟 ∈Π such that 𝑎 ∈𝐻(𝑟).
• ⟨𝑋, 𝑌 ⟩ ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) iff 𝑌 ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) iff 𝑌 ̸⊧ 𝑟, for some 𝑟 ∈Π such that 𝑎 ∈𝐻(𝑟).

We distinguish all possible cases taking into account that, whenever ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧Π, then 𝑌 (𝑎) ⊧Π (by Persistence).

. 𝑌 ̸⊧Π and 𝑌 (𝑎) ̸⊧Π.
In this case, ⟨ ⟨ Π ⟩ ⟩𝑌

𝑉
= ∅. We will show that 𝑌 ̸⊧ 𝚏𝑐(Π, 𝑎). First of all, when 𝑌 ̸⊧Π, then we can have two different situations:

• 𝑌 ⊧ 𝑟, for any 𝑟 ∈ Π such that 𝑎 ∈ 𝐻(𝑟) but there exists 𝑟1 ∈ Π such that 𝑎 ∈ 𝐵−(𝑟1), 𝑌 ⊧ 𝐵(𝑟1) but 𝑌 ̸⊧ 𝐻(𝑟1). In this case, 
𝑌 ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟1) but 𝑌 ̸⊧ 𝐻(𝑟1) and, in consequence 𝑌 ̸⊧ 𝚏𝑐(Π, 𝑎).

• There exists 𝑟4 ∈ Π such that 𝑎 ∈𝐻(𝑟4), 𝑌 ⊧ 𝐵(𝑟4) but 𝑌 ̸⊧ 𝐻(𝑟4) (or 𝑌 ̸⊧ 𝐻∖𝑎(𝑟4) since 𝑎 ∉ 𝑌 ). Since 𝑌 (𝑎) ̸⊧ Π, two different 
14
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– There exists 𝑟0 ∈ Π such that 𝑎 ∈ 𝐵+(𝑟0), 𝑌 (𝑎) ⊧ 𝐵(𝑟0) but 𝑌 (𝑎) ̸⊧ 𝐻(𝑟0). Then 𝑌 ⊧ 𝐵∖𝑎(𝑟0) and 𝑌 ̸⊧ 𝐻(𝑟0) (notice that 𝑎 ∉𝐻(𝑟0)). 
The rule 𝐶𝑢𝑡(𝑎, 𝑟0, 𝑟4):

𝐵∖𝑎(𝑟0) ∧𝐵(𝑟4)→𝐻(𝑟0) ∨𝐻∖𝑎(𝑟4)

is not satisfied by 𝑌 and we have finished.
– There exists 𝑟2 ∈ Π such that 𝑎 ∈ 𝐵−−(𝑟2), 𝑌 (𝑎) ⊧ 𝐵(𝑟2) but 𝑌 (𝑎) ̸⊧ 𝐻(𝑟2) (this is equivalent to say that 𝑌 ⊧ 𝐵∖𝑎(𝑟2) and 
𝑌 ̸⊧ 𝐻(𝑟2)). Then 𝑌 ⊧ 𝐵∖𝑎(𝑟2) and 𝑌 ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) (notice that 𝑌 ̸⊧ 𝑟4). The rule:

¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∧𝐵∖𝑎(𝑟2)→𝐻(𝑟2)

is not satisfied by 𝑌 .
+

. 𝑌 ̸⊧Π and ⟨𝑌 ,𝑌 (𝑎)⟩ ⊧Π (which implies 𝑌 (𝑎) ⊧Π).
From these hypothesis, we conclude ⟨ ⟨ Π ⟩ ⟩𝑌

𝑉
= ∅, since � Π �𝑌 (𝑎) is not 𝑉 -feasible. We should prove that 𝑌 ̸⊧ 𝚏𝑐 (Π, 𝑎).

First of all, notice that 𝑌 ̸⊧ Π but ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧ Π which implies 𝑌 ⊧ 𝑟, for any 𝑟 ∈ Π with 𝑎 ∈𝐻(𝑟) and 𝑌 ̸⊧ 𝑟1, for some 𝑟1 ∈ Π with 
𝑎 ∈ 𝐵−(𝑟1). We can conclude:

𝑌 ̸⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∧𝐵∖𝑎(𝑟1)→𝐻(𝑟1)

because 𝑌 ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟1) and 𝑌 ̸⊧ 𝐻(𝑟1).
. 𝑌 ⊧Π and ⟨𝑌 ,𝑌 (𝑎)⟩ ⊧Π (which implies that 𝑌 (𝑎) ⊧Π).
In this case, it holds 𝑌 ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) and ⟨ ⟨ Π ⟩ ⟩𝑌

𝑉
= ↓� Π �𝑌 . Let’s prove that:

�𝚏𝑐 (Π, 𝑎) �𝑌 = �Π �𝑌

“⊆”

Suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝚏𝑐 (Π, 𝑎). We only have to show that ⟨𝑋, 𝑌 ⟩ ⊧ 𝑟 if 𝑎 ∈ 𝐵−(𝑟) or 𝑎 ∈𝐻(𝑟).
• Take 𝑟 such that 𝑎 ∈ 𝐵−(𝑟) and suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟). Then ⟨𝑋, 𝑌 ⟩ ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟) so ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟).
• Now suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟) for some 𝑟 with 𝑎 ∈𝐻(𝑟). Then ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻∖𝑎(𝑟) because ⟨𝑋, 𝑌 ⟩ satisfies the rule:

𝐵(𝑟)→ ¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∨𝐻∖𝑎(𝑟)

and ⟨𝑋, 𝑌 ⟩ ̸⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎).
“⊇”

Suppose that ⟨𝑋, 𝑌 ⟩ ⊧Π. Since ⟨𝑋, 𝑌 ⟩ ̸⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎), we have that ⟨𝑋, 𝑌 ⟩ satisfies
𝐵∖𝑎(𝑟2) ∧ ¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎)→𝐻∖𝑎(𝑟2)

if 𝑟2 ∈ Π and 𝑎 ∈𝐵−−(𝑟2). For the other rules in 𝚏𝑐 (Π, 𝑎), we have:
• If 𝑟1 ∈ Π, 𝑎 ∈𝐵−(𝑟1) and ⟨𝑋, 𝑌 ⟩ ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟1), then ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟1) (since 𝐵(𝑟1) = ¬𝑎 ∧𝐵∖𝑎(𝑟1)), so ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟1).
• If 𝑟4 ∈ Π and 𝑎 ∈𝐻(𝑟4) and ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟4), then ⟨𝑋, 𝑌 ⟩ satisfies the rule:

𝐵(𝑟4)→ ¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∨𝐻∖𝑎(𝑟4)

because ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟4) which implies ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻∖𝑎(𝑟4).
• Take 𝑟0, 𝑟4 ∈ Π with 𝑎 ∈ 𝐵+(𝑟0) and 𝑎 ∈𝐻(𝑟4). Suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵∖𝑎(𝑟0) ∧ 𝐵(𝑟4). Since ⟨𝑋, 𝑌 ⟩ ⊧ 𝑟4 and 𝑎 ∉𝑋, we conclude ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻∖𝑎(𝑟4) and so ⟨𝑋, 𝑌 ⟩ ⊧ 𝐶𝑢𝑡(𝑎, 𝑟0, 𝑟4).

. 𝑌 ⊧Π, 𝑌 (𝑎) ⊧Π and ⟨𝑌 ,𝑌 (𝑎)⟩ ̸⊧Π.
This case is not possible when Π does not have a-choices as we have seen in Lemma 2.

. 𝑌 ⊧Π and 𝑌 (𝑎) ̸⊧Π.
Now, ⟨ ⟨ Π ⟩ ⟩𝑌

𝑉
= ↓� Π �𝑌 . Let’s prove that:

�𝚏𝑐 (Π, 𝑎) �𝑌 = �Π �𝑌

𝑌 ⊧Π so ⟨𝑋, 𝑌 ⟩ ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) for any 𝑋 ⊆ 𝑌 .
“⊆”

Suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝚏𝑐 (Π, 𝑎). We only have to prove that ⟨𝑋, 𝑌 ⟩ ⊧ 𝑟 when 𝑎 ∈ 𝐵−(𝑟) or 𝑎 ∈𝐻(𝑟).
• First of all, suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟1) with 𝑟1 ∈ Π and 𝑎 ∈ 𝐵−(𝑟1). Then ⟨𝑋, 𝑌 ⟩ ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧ 𝐵∖𝑎(𝑟1) which implies ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟1).
• Now suppose we have 𝑟4 ∈ Π such that 𝑎 ∈𝐻(𝑟4) and ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟4), then ⟨𝑋, 𝑌 ⟩ ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∨𝐻∖𝑎(𝑟4) which implies ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟4) since ⟨𝑋, 𝑌 ⟩ ̸⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎).
“⊇”

Suppose that ⟨𝑋, 𝑌 ⟩ ⊧Π. Since ⟨𝑋, 𝑌 ⟩ ̸⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎), then ⟨𝑋, 𝑌 ⟩ satisfies:
15

¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∧𝐵∖𝑎(𝑟2)→𝐻(𝑟2)
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when 𝑎 ∈𝐵−−(𝑟2) and 𝑟2 ∈ Π. For the other rules:
• Take 𝑟1 ∈ Π with 𝑎 ∈ 𝐵−(𝑟1) and suppose that ⟨𝑋, 𝑌 ⟩ ⊧ ¬¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧ 𝐵∖𝑎(𝑟1), then ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟1) = (¬𝑎 ∧ 𝐵∖𝑎(𝑟1)) which 
implies ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟1).

• Take 𝑟4 ∈ Π with 𝑎 ∈𝐻(𝑟4) and suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝐵(𝑟4), then ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻(𝑟4) which implies ⟨𝑋, 𝑌 ⟩ ⊧ 𝐻∖𝑎(𝑟4). This proves ⟨𝑋, 𝑌 ⟩ ⊧ 𝐶𝑢𝑡(𝑎, 𝑟0, 𝑟4) for any 𝑟0 ∈ Π such that 𝑎 ∈ 𝐵+(𝑟0) and also that ⟨𝑋, 𝑌 ⟩ is a model of:
𝐵(𝑟4)→ ¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∨𝐻∖𝑎(𝑟4).

. 𝑌 ̸⊧Π, 𝑌 (𝑎) ⊧Π and ⟨𝑌 ,𝑌 (𝑎)⟩ ̸⊧Π.
In this case, ⟨ ⟨ Π ⟩ ⟩𝑌

𝑉
= ↓� Π �𝑌 (𝑎)

𝑉
. Let’s prove that:

�𝚏𝑐 (Π, 𝑎) �𝑌 = �Π �𝑌 (𝑎)
𝑉

The fact that ⟨𝑌 , 𝑌 (𝑎)⟩ ̸⊧Π implies ⟨𝑌 , 𝑌 (𝑎)⟩ ̸⊧ 𝑟 for some 𝑟 ∈ Π satisfying 𝑎 ∈ 𝐵−−(𝑟) or 𝑎 ∈𝐻(𝑟). But, if 𝑎 ∈𝐵−−(𝑟) and ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧
𝐵(𝑟), we also have 𝑌 (𝑎) ⊧ 𝐵(𝑟) which implies 𝑌 (𝑎) ⊧ 𝐻(𝑟) or, equivalently, ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟) (notice that 𝑎 ∉𝐻(𝑟)).
So, in this case, there exists 𝑟 ∈Π with 𝑎 ∈𝐻(𝑟) such that ⟨𝑌 , 𝑌 (𝑎)⟩ ̸⊧ 𝑟 which also implies 𝑌 ̸⊧ 𝑟, because, for this rule 𝑟, we have ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟) iff 𝑌 ⊧ 𝐵(𝑟) (𝑎 ∉ 𝐵(𝑟)) and ⟨𝑌 , 𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟) iff 𝑌 ⊧ 𝐻(𝑟).
We can use that ⟨𝑋, 𝑌 ⟩ ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) for any 𝑋 ⊆ 𝑌 .
“⊆”

Suppose that ⟨𝑋, 𝑌 ⟩ ⊧ 𝚏𝑐 (Π, 𝑎). First of all, notice that, for any 𝑟 ∈ Π such that 𝑎 ∉ (𝑟), it holds:

⟨𝑋,𝑌 ⟩ ⊧ 𝑟 iff ⟨𝑋,𝑌 (𝑎)⟩ ⊧ 𝑟 iff ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ⊧ 𝑟
If 𝑋 ∉ � Π �𝑌 (𝑎)

𝑉
, then: ⟨𝑋, 𝑌 (𝑎)⟩ ̸⊧Π and ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ̸⊧Π.

This implies that ⟨𝑋, 𝑌 (𝑎)⟩ ̸⊧ 𝑟 for some rule 𝑟 satisfying 𝑎 ∈ 𝐵−−(𝑟) or 𝑎 ∈𝐻(𝑟) and ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ̸⊧ 𝑟′ for some rule 𝑟′ satisfying 
𝑎 ∈ 𝐵+(𝑟′) or 𝑎 ∈ 𝐵−−(𝑟′).
• First of all, suppose that ⟨𝑋, 𝑌 (𝑎)⟩ ̸⊧ 𝑟 with 𝑎 ∈ 𝐵−−(𝑟) which means ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟) and ⟨𝑋, 𝑌 (𝑎)⟩ ̸⊧ 𝐻(𝑟). But then ⟨𝑋, 𝑌 ⟩ ⊧
¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟) and ⟨𝑋, 𝑌 (𝑎)⟩ ̸⊧ 𝐻(𝑟) or ⟨𝑋, 𝑌 ⟩ ̸⊧ 𝐻(𝑟) which is a contradiction.

• Now suppose that we have 𝑟, 𝑟′ ∈ Π with 𝑎 ∈ 𝐵+(𝑟) ∩𝐻(𝑟′) and such that ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟′), ⟨𝑋, 𝑌 (𝑎)⟩ ̸⊧ 𝐻(𝑟′),⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟) and ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ̸⊧ 𝐻(𝑟). Then⟨𝑋, 𝑌 ⟩ ⊧ 𝐵∖𝑎(𝑟) ∧𝐵(𝑟′) but ⟨𝑋, 𝑌 ⟩ ̸⊧ 𝐻(𝑟) ∨𝐻∖𝑎(𝑟′). This implies ⟨𝑋, 𝑌 ⟩ ̸⊧ 𝐶𝑢𝑡(𝑎, 𝑟, 𝑟′).
• We only have to show that, if ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ̸⊧ 𝑟 with 𝑎 ∈ 𝐵−−(𝑟), then ⟨𝑋, 𝑌 ⟩ ̸⊧ 𝚏𝑐 (Π, 𝑎). Since ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟) and ⟨𝑋(𝑎), 𝑌 (𝑎)⟩ ̸⊧
𝐻(𝑟), then ⟨𝑋, 𝑌 ⟩ ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟) but ⟨𝑋, 𝑌 ⟩ ̸⊧ 𝐻(𝑟) which implies ⟨𝑋, 𝑌 ⟩ ̸⊧ 𝚏𝑐(Π, 𝑎).

“⊇”

Take 𝑋 ⊆ 𝑌 (𝑎) such that ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ Π. We are going to show that ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧ 𝚏𝑐(Π, 𝑎). Firs of all, notice that ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧
¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎). This implies ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ is a model of:

¬¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∧𝐵∖𝑎(𝑟)→𝐻(𝑟)

when 𝑎 ∈𝐵−(𝑟) and also of:

𝐵(𝑟)→ ¬𝑁𝐸𝑆(Π, 𝑎,¬𝑎) ∨𝐻∖𝑎(𝑟)

when 𝑎 ∈𝐻(𝑟).
For the other rules:
• Take 𝑟 ∈ Π with 𝑎 ∈ 𝐵−−(𝑟) and suppose that ⟨𝑋∩𝑉 , 𝑌 ⟩ ⊧ ¬𝑁𝐸𝑆(Π, 𝑎, ¬𝑎) ∧𝐵∖𝑎(𝑟). Then ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ ¬¬𝑎 ∧𝐵∖𝑎(𝑟) since 𝑎 ∉𝐵∖𝑎(𝑟). 
In consequence, ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟) or ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧ 𝐻(𝑟) because 𝑎 ∉𝐻(𝑟).

• We are going to show that ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧ 𝐶𝑢𝑡(𝑎, 𝑟, 𝑟′) if 𝑟, 𝑟′ ∈ Π, 𝑎 ∈ 𝐵+(𝑟) ∩𝐻(𝑟′). Suppose that ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧ 𝐵∖𝑎(𝑟) ∧ 𝐵(𝑟′). We 
can distinguish two cases:
– If 𝑎 ∈𝑋, then ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟) and ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟) or ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧ 𝐻(𝑟).
– If 𝑎 ∉𝑋, then 𝑋 =𝑋 ∩ 𝑉 and⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐵(𝑟′). In consequence ⟨𝑋, 𝑌 (𝑎)⟩ ⊧ 𝐻(𝑟′) or ⟨𝑋 ∩ 𝑉 , 𝑌 ⟩ ⊧ 𝐻∖𝑎(𝑟′). □

oof of Theorem 2. It follows from Lemmata 3, 4 and 5 that respectively cover the three cases in Definition 6 of 𝑎-forgettable 
ogram. □

oof of Theorem 3. Notice that Π ≅ (Π ∧ ¬𝑎 ∣ Π ∧ ¬¬𝑎). Since Π ∧ ¬𝑎 and Π ∧ ¬¬𝑎 are 𝑎-forgettable because they do not have 𝑎-
oices (an 𝑎-choice in Π is a tautology in Π ∧ ¬𝑎 and a rule like 𝐵→ 𝑎 ∨𝐻 with 𝑎 ∉ 𝐵 ∪𝐻 in Π ∧ ¬¬𝑎), we can deduce the result by 
ing Theorem 2 and Proposition 3. □

oof of Lemma 1. Just take into account that Π ≡𝑉 𝚏|(Π, 𝑎), where 𝑉 = ⧵ {𝑎} and the fact that  (Π′) ⊆ 𝑉 . □

oof of Proposition 7. We will prove that there exists some 𝑇 for which ⟨ ⟨ 𝜑 ∣ 𝜓 ⟩ ⟩𝑇 has more than one ⪯-maximal support, which 
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eans that (𝜑 ∣ 𝜓) is not reducible to any formula, according to Proposition 2. Note first that:
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⟨⟨𝜑 ∣ 𝜓 ⟩⟩𝑇 = ⟨⟨𝜑 ⟩⟩𝑇 ∪ ⟨⟨𝜓 ⟩⟩𝑇 = ↓�𝜑 �𝑇 ∪ ↓�𝜓 �𝑇

, it is enough to find some 𝑇 such that � 𝜑 �𝑇  � 𝜓 �𝑇 and � 𝜓 �𝑇  � 𝜑 �𝑇 . Due to condition (i) in Definition 8, there exist 𝑇1 ⊆ At(𝜑)
d 𝑇2 ⊆ At(𝜓) such that 𝑇1 ⊧ 𝜑 and 𝑇2 ⊧ 𝜓 . Take 𝑇 = 𝑇1 ∪ 𝑇2: without loss of generality, we will just prove that � 𝜑 �𝑇  � 𝜓 �𝑇 and 
e other direction � 𝜓 �𝑇  � 𝜑 �𝑇 is analogous. Since � 𝜑 �𝑇 ≠ [ ] and � 𝜓 �𝑇 ≠ [ ], we can show that � 𝜓 �𝑇 ⊈ � 𝜑 �𝑇 . Finally, notice that 
∈ � 𝜓 �𝑇 but 𝑇2 ∉ � 𝜑 �𝑇 , since, otherwise, we would have that ∅ = 𝑇2 ∩ At(𝜑) ∈ � 𝜑 �𝑇1 which is not possible due to condition (ii)
m Definition 8. □

oof of Corollary 1. By using Theorem 2 and Theorem 3, we know that 𝚏𝑐 (Π, 𝑎) ≅𝑉 Π ≅𝑉 𝚏|(Π, 𝑎), and so, 𝚏|(Π, 𝑎) ≅ 𝚏𝑐(Π, 𝑎). □

oof of Theorem 4. The replacement of the right branch 𝚏𝑐(Π ∧¬¬𝑎, 𝑎) by 𝚏𝑐 (Π[¬𝑎∕⊥] ∧¬¬𝑎, 𝑎) follows directly from (3). Similarly, 
e replacement of the left branch 𝚏𝑐(Π ∧ ¬𝑎, 𝑎) by 𝚏𝑐 (Π[𝑎∕⊥] ∧ ¬𝑎, 𝑎) follows from (2). For the second equivalence, note that 𝑎 does 
t occur in Π[𝑎∕⊥] whereas rule ¬𝑎 = (𝑎 → ⊥) does not contain an 𝑎-choice. This means that the 𝚏𝑐 operator is applicable and, in 
is case, it just removes ¬𝑎 leaving Π[𝑎∕⊥]. □
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