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Abstract
Light detection and ranging (LiDAR) scanning in urban environments leads to
accurate and dense three-dimensional point clouds where the different elements
in the scene can be precisely characterized. In this paper, two LiDAR-based
algorithms that complement each other are proposed. The first one is a novel
profiling method robust to noise and obstacles. It accurately characterizes the
curvature, the slope, the height of the sidewalks, obstacles, and defects such as
potholes. It was effective for 48 of 49 detected zebra crossings, even in the pres-
ence of pedestrians or vehicles in the crossing zone. The second one is a detailed
quantitative summary of the state of the zebra crossing. It contains information
about the location, the geometry, and the road marking. Coarse grain statistics
are more prone to obstacle-related errors and are only fully reliable for 18 zebra
crossings free from significant obstacles. However, all the anomalous statistics
can be analyzed by looking at the associated profiles. The results can help in the
maintenance of urban roads. More specifically, they can be used to improve the
quality and safety of pedestrian routes.

1 INTRODUCTION

Walking is one of the most common ways of transport.
Hence, advances in the development ofmethods to analyze
the walkability of pedestrian routes can help to improve
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the quality of life in urban environments (Olszewski,
2007). These advances are even more essential to improve
the quality of life for people with reduced mobility (Lima
& Machado, 2019). They are also crucial in improving
the safety of pedestrians. More concretely, discovering
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and repairing crosswalks’ damage and aging situations is
essential to keep crosswalk pedestrians safe (Chen et al.,
2021). This fact holds especially for children who need to
walk from house to schoolmultiple times during the week.
Therefore, it is helpful to have an accurate and detailed
characterization of some features of the zebra crossing,
including its geometry, road surface condition, painting,
and height of the sidewalks at the extremes.
While this information can be approximated from tradi-

tional mapping techniques typically based on representing
the earth’s surface projected into a plane (Kumar, 2018),
we propose to use light detection and ranging (LiDAR)
technology. It is based on an active remote sensing sensor
that emits pulses of polarized light to measure distances to
the emitting point (McManamon, 2019). The main advan-
tages of LiDAR over conventional imaging cameras are
its great accuracy and the fact that it provides more data
to characterize the studied surfaces in detail. Its primary
disadvantage is that it is usually more expensive.
For the case study in this paper, the data were obtained

using mobile LiDAR scanning (MLS). The scanner was
placed in a vehicle that acquires the data as it moves (Guan
et al., 2016). When using MLS, it is possible to capture
data from close distances, leading to highly accurate three-
dimensional (3D) point clouds. Moreover, it is possible
to georeference the acquired data using a navigation sys-
tem composed of a Global Navigation Satellite System and
an inertial measurement unit (IMU). Therefore, MLS is
an interesting option to accurately characterize transport
infrastructures such as streets, roads, highways, and rail-
roads (Haala et al., 2008). All the data used in this work
were acquired using an Optech Lynx Mobile Mapper. It
comprises two LiDAR sensors, four cameras, and an IMU.
The information from each sensor is linked by a GPS time
stamp, obtaining a point cloud with geometric and radio-
metric information. All the equipment specifications can
be consulted at Optech-Incorporated (2021). Note that the
Lynx Mobile Mapper includes the Lynx Survey software to
handle the inertial/positional processing and the LiDAR
postprocessing. The methods proposed in this work are
meant to be applied to the generated output point cloud
instead of the raw data.
The work in this paper comes from BIG-GEOMOVE, a

project funded by the Spanish General Traffic Authority,
which provided the case study to develop and validate our
approach. In the framework of this project, the aim was
to characterize the zebra crossings on school routes using
MLSdata. These data are publicly available as ground truth
for researchers in the field (Cartolab, 2021). Zebra crossings
are critical in pedestrian routes because they are used by
motor vehicles and pedestrians. Therefore, they represent
crucial points in road safety. The misuse of zebra cross-
ings causes 15% of driver offenses on Spanish streets. These

figures increase up to 40% of the road crashes on urban
roads (Servicio de Estadística. Observatorio Nacional de
Seguridad Vial, 2018). Having a method to identify and
accurately characterize the crosswalks is essential to keep
pedestrian routes in good and safe conditions. That is the
aim of the algorithm introduced in this paper.
Our proposal can be divided into two different parts. The

first one deals with the identification of zebra crossings.
The second part focuses on the profiling and characteriza-
tion of the zebra crossings. There are many works about
segmenting and classifying objects from LiDAR point
clouds. However, there are few about what to do with the
classified objects. This second part represents the main
contribution of this paper. The profiling of the zebra cross-
ing surface is useful for anomaly detection purposes and to
accurately analyze slopes, curvature, height, and size. The
characterization summarizes the state of the zebra crossing
as a set of quantitative parameters.
Finally, the structure of the paper is briefly summarized.

First, different related works are discussed in Section 2.
Second, a description of the method to identify and char-
acterize zebra crossings is detailed in Section 3. Afterward,
the case study results are discussed in Section 4. Finally,
the future work is discussed in Section 5, and a summary
of the main conclusions is presented in Section 6.

2 RELATEDWORK

There is rich literature regarding both segmentation and
characterization of objects of interest from LiDAR data.
For instance, Jung et al. (2019) proposed a RANSAC-based
algorithm to segment road surfaces using a double poly-
nomial fitting. Then, they rasterize to avoid the prohibitive
computational burden and use an algorithmbased onmor-
phological filters to extract lane markings. Alternatively,
Yan et al. (2016) presented a method to extract road mark-
ings working with the scan lines. They outperformed the
previous work from Yu et al. (2015) based on hierarchical
features . Other works, such as Yang et al. (2020), focused
on roadmarking segmentation on noisy point clouds com-
ing from low-cost MLS . The method is divided into three
steps. First, the road surface is segmented; then, road
marks are extracted, combining median filtering of inten-
sity values with edge detection, and, finally, a refinement
stage is applied. There are other general-purpose meth-
ods, like the one proposed by Wang et al. (2019), in which,
using a density-based spatial clustering of applications
with noise-based approach (Ester et al., 1996), they man-
aged to segment vegetation and different types of buildings
from a scene of Baltimore, USA, sensed using an aerial
LiDAR scanner. Some works use terrestrial laser scanning
to scan a steel structure (Park et al., 2007). The acquired
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point cloud is then processed by an algorithm that esti-
mates the local coordinate system of the structure and
computes the displacements in the estimated coordinate
system to reach a final estimation of the deformation with
millimetric precision. Similar approaches were proposed
to deal with the problem of health monitoring of struc-
tures (Park et al., 2015) and walls (Riveiro et al., 2016)
to distinguish masonry from joints in a similar way we
identify crossing marks. Also, more particular segmenta-
tion proposals exist, such as the one of Smith and Sarlo
(2021), where a method for extracting structural layout is
proposed. It is based on aligning point cloud axes with
primary structure axes and then transforming the point
cloud to a stack of images, so convolutions and morpho-
logical operations have a lower computational cost. Then,
centroids from images are brought back to 3D space to
build a sparse point cloud to which a linear region growing
algorithm is applied to extract centroidal axes defining the
structure layout. Also, in Pauly et al. (2002), an analysis and
comparison of several surface simplification methods for
point-sampled geometry are presented. Thesemethods are
incremental and hierarchical clustering, iterative simplifi-
cation, and particle simulation algorithms to approximate
point-based models. However, these methods and those
coming from nonmobile LiDAR scanners are beyond the
scope of this work.
On the other hand, there are works on characterizing

roads from mobile LiDAR data. For instance, Holgado-
Barco et al. (2014) proposed a method to characterize
roads based on longitudinal profiles. They use cross sec-
tions by fitting a plane using principal component analysis
to compute the slope and superelevation from the eigen-
values and eigenvectors contained in the best fitting
plane.
Amethodology for the automated extraction of the topo-

graphical parameters of road axes using datasets obtained
by LiDAR sensor is also proposed by Holgado-Barco et al.
(2015). In particular, the road centerline is extracted and
modeled based on scan angle and intensity segmentations.
The horizontal alignment of the road axis is parameterized
based on azimuth and curvature parameters.
Furthermore,Díaz-Vilariño et al. (2016) introduced a

method based on computing roughness and its absolute
average, mean squared root, skewness, and kurtosis for a
road section. Then, they apply a k-means clustering strat-
egy to characterize roads concerning their material, either
paving or asphalt. Some works integrate point clouds with
building information modeling and geographic informa-
tion systems (GIS), where LiDAR is preferred to optical
methods for road characterization because it can pene-
trate canopies. It is the case for the work of Barazzetti
et al. (2020), which integrated LiDAR data to segment and
characterize roads, trees, and buildings, considering char-

acterization parameters for a road in different situations
such as a tunnel, a bridge, or a standard road.
Other proposals take advantage of the detailed point

clouds obtained throughMLS to analyze surfaces in detail,
as shown in the work of Famili, where pavement rut-
ting is detected by fitting a surface from which features
such as aspect, slope, and plan and profile curvatures
can be computed (Famili, 2020). Cai and Rasdorf (2008)
concluded that LIDAR point clouds could be directly
used in modeling linear objects in a 3D space instead
of being interpolated into traditional elevation data.
Their method was used to predict 3D distances for road
centerlines.
The use of artificial intelligencemethods to characterize

3D point clouds is possible using tools such as PointNet,
which can extract features from the points efficiently and
robustly (Qi et al., 2017). This fact is shown by Ren et al.
(2015),who presented a fully convolutional network that
simultaneously predicts object bounds and objectness
scores at each position, which is part of the problem
we deal with in our paper. Also, in Munoz et al. (2009),
a functional gradient approach is adapted for learning
high-dimensional parameters of random fields to perform
multilabel classification of point clouds. Focusing on road
markings detection, Wen et al. proposed a deep learning-
based approach to detect, classify, and even complete
marks feeding a convolutional neural network (Le Cun
et al., 1989). They use mobile LiDAR data projected onto a
horizontal plane under the assumption that roadmarkings
are a two-dimensional (2D) structure (Wen et al., 2019).
Moreover, Cheng et al. (2017) presented an algorithm
for the segmentation and classification of road markings
based on transforming the 3D MLS point cloud to the
2D space of imagery. Riveiro et al. (2015) developed a
method for detecting zebra crossings from mobile LiDAR
data tested to be applied for road management purposes,
using rasterization techniques and image-processing
algorithms . In L. Li et al. (2016), a stepwise procedure
for recognizing and reconstructing zebra crossings using
mobile laser scanning data was presented. Zebra stripes
are recognized according to the rectangular feature and
fixed size.
While most works on marks are mainly oriented to seg-

mentation and classification tasks, our proposal focuses
on a deep 3D characterization of zebra crossings as a
primary and novel contribution. Thus, road markings
are not understood as fully reducible to a 2D struc-
ture, which differs from state-of-the-art approaches that
focus more on segmentation and classification than on
characterization.
Moreover, our work is also related to the topic of

autonomous driving. While our proposal focuses on road
safety and ease of use from the pedestrian perspective,
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1770 ESMORÍS et al.

F IGURE 1 The entire workflow of the algorithm

the primary concern on safety comes from the poten-
tial interactions between vehicles and pedestrians. Thus,
works like Gouda et al. (2021) proposed a simulation-based
method to assess how adequate a road is for autonomous
driving using octrees for volumetric analysis over point
clouds can be complemented with our methods to
analyze crossing zones and include pedestrian-safety cri-
teria in their assessment. Other works, such as Q. Li et al.
(2022), also use a simulation-based approach to analyze
the behavior of automated vehicles in contexts involving
lane-changing. The method is focused on the autonomous
vehicle perspective. Hence, it could benefit from includ-
ing an analysis similar to ours to assess pedestrian safety
in urban scenarios. One more autonomous driving work
is the one of Verstraete and Tampère (2022) that extends
the route choice component of a dynamic traffic assign-
ment model to analyze traffic propagation . These models
often focus on traffic analysis from the vehicle perspective,
for instance, considering the behavior of vehicle queues
to predict traffic behavior. Crossing zone analysis could
be used to extend these models to work better in urban
environments where pedestrian behavior impacts traffic.

3 ZEBRA CROSSING IDENTIFICATION
AND CHARACTERIZATION

The entire process of zebra crossing identification and
characterization is illustrated in Figure 1. First, the zebra
crossings are identified from the MLS point cloud. Then,
each of these pedestrian crossings is divided into strips
to which a profiling stage is applied. The profiling results
will detect anomalies that might condition the selection

of the zebra crossing for the subsequent quantification, as
this is only performed on well-captured zebra crossings.
The whole process generates qualitative and quantitative
information describing the state of the zebra crossings and
their surroundings.
As the director vectors and the vertices of the zebra

crossing are available, it is possible to load the georefer-
enced output from the quantitative characterization into
GIS software. This type of software helps study pedestri-
ans’ mobility in urban areas. For instance, some methods
propose loading data from a Topographic Database into a
GIS system to assist decision-making tasks related to acces-
sibility and transport in urban contexts (Rossetti et al.,
2020). Similarworks propose usingGIS software to analyze
thewalkability in urban environments from the pedestrian
perspective (Caselli et al., 2021).
The importance of these initiatives is justified by the

necessity of improving walkability and transport in mod-
ern cities. That is what models such as the 15-min city
model aim to do by reducing the amount of lost time
because of traffic conditions (Moreno et al., 2021). There
are also algorithmic proposals that use GIS software to
estimate the travel time of pedestrians through a load of
different layers of information characterizing the different
paths (Rossetti et al., 2015).
Finally, the whole workflow of the algorithm is depicted

in Figure 1.

3.1 Zebra crossing identification

The first stage to identify zebra crossings is a preseg-
mentation of road markings from the LiDAR point cloud.
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This initial segmentation is performed under the premise
that roads are large planar areas, and road markings fea-
ture higher intensity than the surrounding background.
Therefore, the position (𝑥, 𝑦, 𝑧) and the intensity (𝐼) must
be considered for each point. The first step is to per-
form a surface variation filtering to discard all the points
that do not belong to a planar area. The surface varia-
tion metric is a well-known tool to measure the deviation
of the points with respect to the tangent plane (Pauly
et al., 2002). It can be calculated using Equation (1). In
this equation, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 are the ordered eigenval-
ues of the 3 × 3 covariance matrix of the neighborhood.
These neighborhoods are computed using an octree, a
well-known data structure, to speed up spatial queries
(Meagher, 1980).

𝑃𝜆 =
𝜆3

𝜆1 + 𝜆2 + 𝜆3
. (1)

Afterward, a plane-based clustering is carried out in
such a way that points associated with planes with simi-
lar orientations are labeled into the same cluster. To this
end, the normal vector of the best fitting plane associated
with the neighborhood of each point is considered. That
correspondswith the smallest eigenvalue of the covariance
matrix mentioned above (𝜆3). There is a high variability of
the normal vectors coming from the presence of multiple
elements and structures in urban environments, for exam-
ple, trees, sign poles, and curbs, among others. However,
most road points are included in the same cluster, usually
the largest one. The road cluster can also be identified by
considering the scanning angle. Since the LiDAR sensor
is deployed on a vehicle driving on the road, most of the
LiDAR points in the vehicle trajectory should be included
in the road cluster.
The most significant feature of the road marking points

is the intensity, usually higher than the surrounding back-
ground. Therefore, an adaptive intensity filtering is helpful
to identify roadmarking points. Filtering based on a global
threshold is not accurate enough due to the high vari-
ability of road intensity in different areas. Hence, a local
adaptive threshold that analyzes the surrounding area
of each point is proposed. This threshold is calculated
from the average and maximum intensities of road points
around the point under consideration, as shown in Equa-
tion (2). In this equation, 𝐼𝐿𝑚 and 𝐼𝐿𝑚𝑎𝑥 are the average
and the maximum intensities in the surrounding area,
respectively.

𝑇𝐼 =
𝐼𝐿𝑚 + 𝐼𝐿𝑚𝑎𝑥

2
. (2)

The initial processing states described until now
are summarized in the pseudocode of Algorithm 1.

In this pseudocode, 𝜆𝑖 is the set of eigenvalues estimated for
the 𝑖th point, and 𝜆𝑖1, 𝜆𝑖2, 𝜆𝑖3 stand for the first, second, and
third eigenvalues sorted as previously described. Further-
more, 𝑣𝑖 are the eigenvectors associated with the 𝑖th point.
Thus, 𝑣𝑖3 is the eigenvector that estimates the orthonormal
vector of the best fitting plane in the neighborhood of
the 𝑖th point with radius 𝑟 > 0. The adaptive intensity
threshold function details how to compute the local adap-
tive threshold for the intensities of the points in a given
neighborhood. The eigen_analysis function computes the
eigenvalues and eigenvectors of the structure’s space
covariance matrix of the points inside the given neigh-
borhood. The 𝜖 threshold is a decimal error tolerance
value that governs the minimum required likelihood to
be a plane. In the final step, the algorithm returns the 3
point cloud that is the result of applying all the previously
explained filters.
After the previous step, all the identified road marking

points are included in the same group. With the aim of
identifying individual road markings, a connected compo-
nent labeling is carried out (He et al., 2017). As a result, new
groups containing only connected roadmarking points are
created. Some objects, like the upper part of cars, can pass
previous filters and produce clusters with planar and high-
intensity points. However, they are significantly above the
road surface, so a simple local average of the 𝑧 coordinate
is enough to filter them out.
Next, the identification and reconstruction of zebra

crossings from the previous road marking segmentation
are carried out. The identification is approached by mul-
tiple operations labeled as point density and geometric
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1772 ESMORÍS et al.

filtering in Figure 1. The first step discards groupswith only
a few points because they cannot be reliably categorized
as zebra crossing bars at this stage. Then, its minimum
area bounding box is calculated for any cluster of road
marking points. The computational burden of the prob-
lem is low due to the significant reduction of data volume
in the previous road marking segmentation. Thus, a naive
approach based on comparing the areas of the bounding
boxes in a linear search process over the rotation angle
is suitable. However, more sophisticated algorithms could
also be used, such as theminimumarea encasing rectangle
based on theminimal perimeter convex polygon (Freeman
& Shapira, 1975).
Once the minimum area bounding boxes are known,

those with a long edge significantly greater than the short
edge are discarded. The main goal here is to discard solid
lane and edge markings. These road markings are easily
identified because their length is multiple times greater
than their width.
Assuming that zebra crossing bars fit a rectangular

geometry well, most of the points inside a minimum
area bounding box containing them are expected to be
segmented as road marking points. Therefore, all those
clusters with a significant amount of nonroad marking
points are discarded.
Finally, note that consecutive zebra crossing bars are

expected to have a similar orientation. Hence, the short
edge angle of each bounding box is considered to per-
formorientation comparisons. This angle can be efficiently
computed using the line equation to find the slope of the
short edge. Those bars with similar slopes and short edges
fitting the same line are likely to be part of a zebra crossing.
There are multiple solutions to identify zebra crossings.

However, a common issue for anymethod that uses restric-
tive filtering criteria to prevent false positives is that it
will discard some zebra crossing bars in poor conditions or
partially occluded. Also, they might have failed to be prop-
erly segmented either due to limitations of the algorithm
or to measurement errors in the input data. Therefore, a
reconstruction of missing zebra crossing parts is usually
required. The so-called iterative rebuilding process aims to
identify missing bars by using the likelihood of being a
zebra crossing bar for each cluster. In this step, a search
process for each reliable candidate to be a zebra crossing
bar is carried out as illustrated in Figure 2. This search pro-
cess is performed in both backward and forward directions.
It expands the bounding box of the known zebra crossing
bar considering an expansion factor parameter (𝑒𝑝). Then,
the expanded bounding box is shifted along the zebra
crossing direction, considering an expansion step param-
eter (𝑒𝑠). Once the search space has been determined, the
rebuilding process consisting of three consecutive steps
can be applied.

For the first step, it is necessary to calculate an adaptive
intensity threshold defined by a quantile factor (𝑐𝑓). Note
that 𝑐𝑓 = 0.5 implies considering the median. However, a
slightly higher value of 𝑐𝑓 = 0.67, which implies consid-
ering the second tertile instead, has been found to work
better. The quantile factor is used to multiply the number
of points inside the bounding box (𝑛), leading to the quan-
tile index (𝑐𝑖). Assuming an index space where points are
sorted fromminimum to maximum intensity, it is possible
to define the low median point index (𝑚𝑙𝑖) as the index of
themedian point for points between 0 and 𝑐𝑖. Analogously,
the high median point index (𝑚ℎ𝑖) is defined as the index
of the median point for points between 𝑐𝑖 and 𝑛 (Figure 3).
The second step considers a minimum contrast differ-

ence parameter (𝑚𝑐𝑑) that determineswhen the difference
between high- and low-intensity points is relevant. First,
the contrast difference (𝑐𝑑) is calculated as the difference
between the intensity for the point at 𝑚𝑙𝑖 and the point
at 𝑚ℎ𝑖 (𝑐𝑑 = 𝐼𝑚ℎ𝑖 − 𝐼𝑚𝑙𝑖). If 𝑐𝑑 is less than 𝑚𝑐𝑑, then the
rebuild process is aborted.Otherwise, all the points are seg-
mented again by comparing their intensity with the point
at the 𝑐𝑖 index. More formally, any 𝑖th point will be labeled
as a road marking point if 𝐼𝑖 > 𝐼𝑐𝑖 .
Finally, the third step is based on an adaptive con-

trast function to relax 𝑚𝑐𝑑 in subsequent reconstruction,
assuming that the first rebuild must be more exigent to
avoid false positives. On the other hand, the farther from
the LiDAR sensor, the lower the intensities and, in con-
sequence, their differences. A simple yet valid adaptive
contrast function is suggested in Equation (3). This func-
tion is applied once for each reliable zebra crossing bar.
Our experiments show that 𝑙𝑐𝑑 values slightly greater than
1 work properly to gradually relax the rebuild process
criteria at each step.

𝑚𝑐𝑑𝑡+1 =
𝑚𝑐𝑑𝑡
𝑙𝑑𝑐

. (3)

At this stage, any reliable zebra crossing bar that has not
been assigned to any zebra crossing is iteratively projected.
For this purpose, its bounding box is expanded in the direc-
tion of its short edge. The expansion at any iteration (𝑖𝑡𝑒𝑟)
is defined as 𝑝𝑓 ⋅ 𝑖𝑡𝑒𝑟 ⋅ 𝑆𝐸length, where 𝑝𝑓 is the projec-
tion factor parameter. At each expansion, all nonpreviously
considered bounding boxes with a non-null intersection
with respect to the expanded one are analyzed. More con-
cretely, a line equation fit is used to find the orientation and
the intercept for each edge of the bounding box. Afterward,
the line intersection between the edges of both bounding
boxes is checked as shown in Figure 4.
Once all zebra crossing bars are known, it is possi-

ble to proceed with the merging of split zebra crossings.
For this purpose, zebra crossings that are close enough
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ESMORÍS et al. 1773

F IGURE 2 This figure illustrates the search space of the zebra crossing rebuilding stage. The known trust bar represents a bar that fits
an ideal zebra crossing bar well enough. From this bar, we start a search process based on the geometric constraints of an ideal zebra crossing.
The search is carried out in both ways along the short edge of the known well-fitting bar until a region not likely to be a zebra crossing bar is
found

F IGURE 3 Finding𝑚𝑙𝑖 and𝑚ℎ𝑖 from a given 𝑐𝑓

F IGURE 4 This figure illustrates the zebra crossing projection
stage for a given factor. The rectangle labeled 𝑆 represents the
starting bar of the projection. 𝐿𝑖 and 𝑅𝑖 represent the 𝑖th iteration of
the leftward and the rightward projections along the short edge of
the starting bar. The magnitude of the projections is given by the
magnitude of the short edge length 𝑆𝐸length scaled 𝑖th times the
projection factor 𝑝𝑓. The process is repeated until a nonconvergent
iteration is reached

are merged into a single zebra crossing. A maximum dis-
tance threshold of 1.5 m was found to bring satisfactory
results. It is based on the idea of roughly approximating

the ideal short edge as a 0.5-m segment; thus, the sec-
ond bar is expected to start at 1.0 m and end at 1.5 m.
Consequently, it is expected to be big enough to merge
bars even when they are significantly separated. Neverthe-
less, at the same time, it is expected to be small enough
to avoid merging different zebra crossings. Notwithstand-
ing, the max distance criterium is easily adaptable to
the local legislation on zebra crossings. Finally, the mini-
mum area bounding box is calculated for all merged zebra
crossings.
Once the zebra crossings are correctly identified, they

can be characterized. To this end, a profiling of the zebra
crossing (Section 3.2) is performed, and, depending on
the profiling results, a subsequent detailed quantitative
characterization is computed (Section 3.3).

3.2 Profiling

Three user parameters define the profiling. The first one
is the desired number of strips 𝑛, so one profiling per strip
will be performed. The second one is the margin between
strips 𝑚. It forces consecutive strips to be separated in 𝑚
meters. The third is the expansion units 𝑘, such that each
strip will be expanded outside the zebra crossing bounds
in, at most, 𝑘 meters.
For this paper, the profiling was carried out with 𝑛 = 4,

𝑚 = 0.2, and 𝑘 = 1, as shown in Figure 5. In this figure,
the points are a subsample of the zebra crossing. The
fat dashed rectangle is the bounding box containing the
zebra crossing. The upper left point is the starting vertex
of the zebra crossing. The black edges are the projections
of the director vectors of the zebra crossing, and the inner
rectangles are strips whose profile must be calculated.
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1774 ESMORÍS et al.

F IGURE 5 Profiling with 𝑛 = 4,𝑚 = 0.2 and 𝑘 = 1

F IGURE 6 Profiling inside a strip

For the profiling, LiDAR points are mapped to its pro-
jection in the central path (the line in the middle of the
strip), as shown in Figure 6. Consequently, the (𝑥, 𝑦) coor-
dinates of the zebra crossing points are transformed into
a one-dimensional domain leading to the profiles of the 𝑧
coordinate with respect to the 𝑋𝑌 plane.
Four different profiles are generated:

∙ Minimum profile. The minimum value in the neighbor-
hood of a given point.

∙ Maximum profile. The maximum value in the neighbor-
hood of a given point.

∙ Mean profile. Mean of the neighborhood.
∙ Median profile. Median of the neighborhood.

When analyzing the profile for each strip of the same
zebra crossing, the presence of obstacles becomes evident.
Whether a person or a car passes through the zebra cross-
ing, some of its strips will present a significant deviation
between their minimum, maximum, and mean profiles.
If the zebra crossing is free from obstacles, then the min-
imum, maximum, and mean profiles will be close to
each other.
Moreover, the profiling method is useful for an exhaus-

tive road surface analysis that considers all available points

inside the same strip. Thus, sudden slope changes can be
detected, whether they appear because of potholes or a
too-elevated sidewalk. For potholes, the length of the 𝑋𝑌
axis between the start and endpoints of a sudden road
descent gives their approximated diameter. For sidewalks,
the height with respect to the road can be estimated with
the difference in the 𝑧 coordinate between the last smooth
road point and the points after a sudden rise at the end
of the road. Furthermore, some zebra crossings are lower
in the middle but higher at the extremes. That can be
accurately measured with the profiling method simply by
considering the height difference between the strips at the
extremes and those in the middle.
Finally, the profilingmethod can be used to characterize

those zebra crossings with partial occlusions and those for
which there are obstacles on their surface. That is possi-
ble when at least one of the following assumptions holds.
The first one is that most obstacles and partial occlusions
appear in some strips but not all. For this case, it is possible
to consider the characterization from the clean strips. The
second one is that all the anomalies in the strip are placed
either above or below the zebra crossing.
On the one hand, there might be obstacles above the

zebra crossing, yet the minimum profile is smooth and
continuous. But then, the minimum profile can be consid-
ered the best representation of the road profile along the
zebra crossing. On the other hand, there might be anoma-
lies below the zebra crossing, yet the maximum profile is
smooth and continuous. But then, the maximum profile
can be considered the best representation of the road pro-
file along the zebra crossing. It is still possible to analyze
the road surface by considering the proper profile in both
cases. Further details can be found in Section 4.2, where
the profiling results are discussed.

3.3 Quantification

Based on the profiling results, the quantitative characteri-
zation will be performed only on those zebra crossings free
of relevant obstacles. This characterization is mainly sub-
ject to two user parameters. The first one is the distance 𝑑
between grid nodes. The smaller it is, the greater the quan-
tification accuracy and the greater the computational cost.
In this work, the distance between nodes was configured
to 𝑑 = 0.3 m. The second parameter is the radius 𝑟, defin-
ing the spherical neighborhood for each node. If 𝑟 = 𝑑∕2,
then the neighborhoods will have the maximum possible
size under the condition that the intersection between any
pair of neighborhoods must be the empty set. If 𝑟 < 𝑑∕2,
then the neighborhoods will have a nonmaximum size
under the intersection condition mentioned above. If
𝑟 > 𝑑∕2, then for some pairs of neighborhoods, their
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ESMORÍS et al. 1775

TABLE 1 The parameters that quantitatively characterize each zebra crossing

Parameter Description
Transversal vector The vector defining the transversal edge
Longitudinal vector The vector defining the longitudinal edge
Width Total width of the identified zebra crossing
Length Total length of the identified crosswalk
Height 1 Height with respect to the sidewalk
Height 2 Height with respect to the sidewalk on the opposite side
Transversal slope Mean and std deviation for height differences in the transverse direction
Longitudinal slope Mean and std deviation for height differences in the longitudinal direction
Plane slope Mean and std deviation for slope measured as angle between planes
Roughness Mean and std deviation of roughness for each point
Global paint quality Average quality of each crosswalk band based on points intensity
Number of bars Number of strips identified on the zebra crossing
Bar width Width of each identified strip at each zebra crossing
Bar length Length of each identified strip at each zebra crossing
Paint quality Paint quality for each identified strip at each zebra crossing
Paint intensity Mean and std deviation of the intensity for each crosswalk band
Paint LiDAR angle Mean and std deviation of the angle of incidence for each crosswalk band

F IGURE 7 Different mesh configurations for the quantitative
characterization

intersection set will have a non-null cardinality. In other
words, some points belong to more than one neighbor-
hood. The proposed meshing method uses the transversal
and longitudinal vectors as the basis of the plane where
the mesh is placed. A visual representation of the meshing
process is shown in Figure 7. For this paper, the radius
defining the neighborhood of the nodes was configured to
𝑟 = 0.3m.

The features of a zebra crossing that have been con-
sidered are summarized in Table 1. Once the mesh is
built, all the edges parallel to the transversal director vec-
tor are studied to calculate statistics for the transversal
slope. Analogously, all the edges parallel to the longitudi-
nal director vector are studied to calculate statistics for the
longitudinal slope.
The height of the sidewalk with respect to the road is

computed from the vertices at the extremes of the mesh.
The roughness statistics are obtained from the roughness
estimation ℜ at each node’s neighborhood. This estima-
tion is calculated as the distance between the closest point
to the node and the best fitting plane with respect to its
neighborhood, as shown by Equation (4). In this equation,
the point 𝑝 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) represents the closest point to
the node, and the vector 𝑢⃗ = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is the orthonor-
mal vector of the best fitting plane. It is worth mentioning
that some geometric quantifications, such as thewidth and
the length of the zebra crossing, are directly taken from
its minimum area bounding box with no need for mesh
analysis.

ℜ =
⟨
𝑢⃗, 𝑝

⟩
= 𝑢𝑥𝑝𝑥 + 𝑢𝑦𝑝𝑦 + 𝑢𝑧𝑝𝑧. (4)

Moreover, as the bounding box for each bar of the zebra
crossing is known, it is possible to characterize the bars
quantitatively. In this case, the quantitative characteri-
zation includes the number of bars, statistics describing
the separation between bars, and the geometry of each
bar in terms of width and length. The intensity distribu-
tion for each bar is also statistically described. A paint
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1776 ESMORÍS et al.

quality metric based on intensity is proposed to provide
easily understandable information. More concretely, half
of the mean intensity of the bar is calculated as the local
adaptive intensity threshold. Afterward, for the 𝑛 points
in the bar, if the intensity of the point is greater than or
equal to the computed local adaptive intensity threshold,
then 𝑣𝑖 = 1 for the 𝑖th point. Otherwise, 𝑣𝑖 = 0. Finally, the
paint quality for each bar is defined as the average of all
𝑣𝑖 values. Since a zebra crossing is composed of multiple
bars, it is straightforward to define the global paint qual-
ity metric as the average paint quality considering all its
bars.

4 RESULTS

In this section, three different experimental result sets are
discussed. First, the results from the identification of zebra
crossings are discussed in Section 4.1. Then, the results
from the exhaustive profiling of zebra crossings are dis-
cussed in Section 4.2. Finally, the results of the detailed
quantitative characterization of zebra crossings are dis-
cussed in Section 4.3. All the plots in Figure 8 share the
same color code. The yellow—color is used to represent the
ground, the blue-gray color is used to represent the objects,
and a randomly selected different color is used to represent
the bars of the zebra crossing. The figures representing pro-
files like Figure 9a use a similar color pattern applied to
the entire zebra crossing and not only its bars. In addition,
there is a brown dot representing the georeferenced center
of the zebra crossing.

4.1 Identification results

Nowadays,multiple works evidence that the efficient iden-
tification of zebra crossings is not challenging. It is possible
to do it by segmenting and rasterizing the road from the
point cloud and then applying the Hough transform on
the image of intensities, achieving a recall of 0.83 with a
dataset of 30 zebra crossings (Riveiro et al., 2015). There
are also approaches similar to ours. For instance, it is pos-
sible to identify zebra crossings from an MLS point cloud
by combining adaptive thresholds, noise reduction filters,
expected geometry checks, and an area reconstruction
algorithm. That leads to a recall of 0.91 with a total amount
of 11 zebra crossings from three different datasets (L. Li
et al., 2016).
Our zebra crossing identification algorithm detected 48

from a total amount of 49 zebra crossings. That means that
our algorithm has a precision of 1 since there are no false
positives. Moreover, the achieved recall is 0.97. There is

one unique false negative that comes from an especially
complicated case shown in Figure 8c. It is worth mention-
ing that, from the 49 identified zebra crossings, there are
only 37 different cases. The extra 12 zebra crossings appear
because some are located at the intersection of two ormore
streets; thus, they have been scanned twice.
Looking at Figure 8a and 8e, note that our method

identifies those zebra crossings that do not present any
inconvenience. Moreover, the identification method is tol-
erant to scanning anomalies, occlusions, obstacles, paint
problems, and degraded intensities. Observing Figure 8b,
it is clear that half of the zebra crossing presents a sig-
nificantly reduced intensity and a reduced point density.
It has also two obstacles on its surface, one pedestrian
and one car. Despite these problems, it was possible to
identify the zebra crossing. Figure 8d has a big occlu-
sion caused by a moving car. That leads to a significant
portion of missing data in the point cloud, but even so,
the zebra crossing is appropriately identified. For the case
illustrated in Figure 8f, the zebra crossing is identified
despite the parked car at one of its extremes, which is also
causing a small occlusion. Note that the zebra crossing in
Figure 8g has paint problems as well as a pedestrian walk-
ing over it. While our method cannot identify all the bars,
it identifies half of the zebra crossing. The case presented
in Figure 8h has an anomalous occlusion caused by the
presence of a moving car near the scanner. Nevertheless,
the identification method recognizes the zebra crossing.
Although, it cannot assure that the two bars after the occlu-
sion belong to the same zebra crossing because of the big
and strange occlusion.
The zebra crossing that is not identified presents dif-

ferent problems. The first one is that it is placed outside
the scanner’s trajectory. The second one is that the bars
of the zebra crossing are not correctly aligned. The third
one is that the scanner followed a wandering trajectory in
this part of the city. Consequently, the point cloud presents
poor quality in this specific region. This fact is probably the
cause of the fourth issue, which is the generally degener-
ated intensity in this part of the point cloud. The problem
related to the intensity can be seen in the darker color of
Figure 8c, especially when compared to the other cases.
The reasons mentioned above explain why, despite having
a robust identification method, there is one zebra crossing
that our algorithm cannot identify.
Considering the previous points, our method to identify

zebra crossings inMLS point clouds is robust and efficient.
Itmust also be noted that certain zebra crossings are placed
on a bidirectional road. While the classification algorithm
handles themquitewell in the road sectionwhere the scan-
ner travels, it offers less accuracy for roads significantly far
from the vehicle’s trajectory.
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ESMORÍS et al. 1777

F IGURE 8 Identified zebra crossings

4.2 Profiling results

The profiling in Figure 9b corresponds to the zebra cross-
ing shown in Figure 9a. In this case, there is a nearly 1.5
m high car on the road occluding the sidewalk and part of
the zebra crossing. Under these circumstances, the quan-
titative characterization method can lead to weird results.
For example, the sidewalk’s height is calculated consider-
ing the car as the end of the zebra crossing. That leads to
an erroneous value of 1 m height for the sidewalk when

considering the quantitative characterization, as it aver-
ages the points in the neighborhood. However, profiling
can detect this because the first two strips capture the car.
They show a relevant increase in themaximumprofile (red
line) that cannot be attributed to outliers since the median
of the profile (orange line) is also significant.
Recall that in Section 3.2, it was stated that, under cer-

tain assumptions, it is still possible to have the detailed
profile of a zebra crossing even in the presence of obstacles
on its surface. Looking again at the plots of those strips,
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1778 ESMORÍS et al.

F IGURE 9 Profiling of a zebra crossing with obstacles. Only one of the strips contains data from both the road and the sidewalk, but it is
enough to accurately determine its height with respect to the road

which have a car on their surface, the minimum profile
(cyan line) accurately represents the zebra crossing pro-
file. Therefore, it can be used to determine the height at
any point reliably. It was also stated in Section 3.2 that it is
possible to have accurate measurements for a zebra cross-
ing when at least one of the strips is free from anomalies.
It is the case of the profile at the lower bottom corner of
Figure 9b, which corresponds to the upper left corner of
the zebra crossing in Figure 9a, that is the only corner for

which there is data for both the road and the sidewalk.
Thanks to the profiling of this strip, it is feasible to deter-
mine that the height of the sidewalk is around 12.6 cmwith
respect to the road level.
When observing the profiling of the road, it is clear

that it has a monotonic behavior with a slope around the
3% in its transversal direction. The former implies that
the pedestrian will have their feet at different heights.
However, according to the Ministerio de Fomento &
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ESMORÍS et al. 1779

Dirección General de Carreteras, Gobierno de España
(2016), there is no problem with slopes below 4%. Look-
ing at the Ministerio de Fomento & Dirección General
de Arquitectura, Vivienda y Suelo, Gobierno de España
(2010) document on safety and accessibility, we can see
that the special safe conditions for what is technically con-
sidered a ramp are not necessary in this case. Theymust be
applied only to cases where the slope exceeds 4%. Thereby,
the profiling method has enough capability to analyze the
safety and accessibility conditions of the zebra crossing
concerning the national legislation.
In the case that there are no obstacles, as in Figure 10a,

the profiles will be like the ones shown in Figure 10b.
In this case, all the profiles are very similar, and none of
them experiments a sudden significant change. The ones
in the middle correspond to middle strips, and those at
the extremes correspond to outer strips. Amore significant
elevation in outer strips is explained because the sidewalk
is lowered almost to road level in the middle of the zebra
crossing but not at the extremes. That reveals that the zebra
crossing has good walkability because it can be easily tra-
versed even by wheelchairs or baby strollers. The height
difference between the zebra crossing and the sidewalk
could cause different impediments depending on the type
of wheelchair (Mascetti et al., 2020). Besides, the profiles
can be used to detect potholes or any other sudden descent
on the surface, as is the case of the small but abrupt drop
of the road when approaching the right sidewalk from
the point cloud view perspective. Whether it is because
of sidewalk height-related conditions or road structure
problems, the characterization of the different physical
barriers and anomalies can be used to improve the quality
of life for people with reducedmobility (López Pazos et al.,
2017).
Furthermore, looking at the profile plot in the top left

corner of Figure 10b, it can be seen that there is an outlier
measurement in the maximum profile. Nonetheless, our
profiling proposal is quite robust to outliers. Considering
that the minimum,mean, andmedian profiles match each
other when the maximum profile has an atypical peak, it
is easy to see that this peak must be discarded as an out-
lier representing neither the road nor the sidewalk. It is
also relevant to note that the profiling is accurate enough to
capture the road’s curvature, if any. That can offer impor-
tant information because the curvature of the road surface
is essential to understand how safe it is under rainy con-
ditions. The road layout regulations require a minimum
cross slope of roadways to evacuate surface water away.
The Spanish road geometric design guidelines set a min-
imum slope of 2% for the entire roadway or in two inclined
planes from the axis of the road towards the exterior
(Ministerio de Fomento & Dirección General de Car-
reteras, Gobierno de España, 2016).

It was commented before that the profiling method is
well suited for detecting and characterizing potholes in
the surroundings of a zebra crossing. The case of a zebra
crossing with a pothole is illustrated in Figure 11a. Its cor-
responding profiles are shown in Figure 11b. Considering
the profiles in the upper left corner, note a pothole in
the second half of the [2, 4] segment. It has a diameter of
around 30 cm, with a significantly reduced height around
7.0 cm. The evidence confirming the existence of a pothole
is quite straightforward when looking at the point cloud
view, where it is highlighted with a red circle. It is inter-
esting to note that while the minimum profile can be used
to detect the road bump, the mean and maximum profiles
can still be used to analyze the slope of the zebra crossing
in regions free from potholes.
In addition, the profiling method is confirmed again

as capable of accurately describing the height difference
between the road and the sidewalk. Note that in the pro-
files at the bottom right corner, the sidewalk is 11.4 cm
above the road. The profiles from any strip are good
enough to understand its curvature. This zebra crossing
passes through a dual-lane road and connects one street
with the middle of a more extensive cross, for which
there is another zebra crossing on the other side. Thus,
it looks like its curvature is adequate for its half side. It
leads to efficient water draining because the water will be
accumulated at the extreme. More concretely, the water
will gather at the intersection between the road and the
sidewalk.
The information from the profiling of the three com-

mented cases was compared against manual measure-
ments to validate the method. All the manual mea-
surements have been computed with CloudCompare,
a well-known open-access tool for point cloud pro-
cessing (Girardeau-Montaut, 2020). For the profiles in
Figure 9b, the height of the car and the sidewalk at the
opposite extreme were manually measured as 150.4 and
13.5 cm, respectively. The difference between maximum
and minimum profiles is 150.7 cm for the car’s height and
12.6 cm for the height of the sidewalk. Therefore, the dif-
ference between both estimations is 0.3 cm for the car’s
height and 0.9 cm for the sidewalk’s height.
Regarding the profiles in Figure 10b, the manually mea-

sured heights of the sidewalk at both extremes are 9.3
and 13.9 cm, respectively. The differences between the
maximum and minimum profiles are 9.2 and 17.2 cm.
Therefore, the differences between both estimations are
0.1 and 3.3 cm, respectively. Concerning the profiles in
Figure 11b, the manually measured height of the side-
walks at both extremes is 10.2 and 3.1 cm, respectively,
and the height of the pothole is 5.2 cm. The measures
from the profiles are 11.4 and 3 cm for the height of the
sidewalks and 7 cm for the pothole’s height. Hence, the
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1780 ESMORÍS et al.

F IGURE 10 Profiling of a clean zebra crossing. The curvature of the road suggests it should be safe under rainy conditions. There is an
atypical peak in one strip that can be easily identified as an outlier because all the other three profiles do not register it

differences between both estimations are 1.2 and 0.2 cm
for the sidewalk’s height and 1.8 cm for the pothole’s
height.
The maximum and minimum discrepancies between

manual measurements and the profiling method are 3.3
and 0.1 cm, respectively. The mean discrepancy between

the manually measured height and the height estimated
as the difference between maximum and minimum pro-
files is 1.11 cm, and its standard deviation is 1.06 cm.
Consequently, the manual validation of the profiles sug-
gests near-centimetric spatial precision for the proposed
profiling method.
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ESMORÍS et al. 1781

F IGURE 11 Profiling of a zebra crossing with a pothole. The height of the sidewalk is clear for the profiles of the plot in the bottom right
corner. There is a pothole that appears in the profile of the plot in the upper left corner. It corresponds with the area of the point cloud that is
highlighted with a red circle

4.3 Quantitative characterization
results

Once the crosswalk identification has finished, we char-
acterize it by measuring different parameters directly from
the LiDAR point cloud. Table 1 shows some of themost sig-
nificant parameters that have been calculated. Note that
most of these parameters are valid to characterize any
pedestrian crossing location. These parameters define the
quality of that place for adequate pedestrianmobility. Data

such as the width and length of the crossing area, the
longitudinal or transverse slopes of the route, and the pave-
ment’s roughness will be relevant to assessing the ease
offered by that space for walking. The difference in height
between thewalking zone and the ends that connect itwith
other routes (in our case study, mainly between the side-
walks and the roadway shared by vehicles and pedestrians)
will also be of great interest. These height parametersmake
it possible to identify problematic points in the movement
of people with reduced mobility or requiring wheelchairs.
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1782 ESMORÍS et al.

Crosswalks marked with paint are the safer places to cross
a street because they are visible to drivers. When the
marking patterns are zebra crossings, the degree of iden-
tification by drivers increases compared to other marking
patterns such as bar pairs or transverse lines (Fitzpatrick
et al., 2010).
The regulation related to crosswalks changes from one

country to another. Even in Spain,where the zebra crossing
is the most common crosswalk, there are many different
regulations for its dimensions and performance character-
istics. Therefore, measuring parameters that directly affect
the main elements of crosswalks is an additional comple-
ment to the other parameters to characterize the crosswalk.
The number of bars that compose the crosswalk, the length
and the width of each bar, their paint quality, and their
intensity distribution are parameters that we have mea-
sured directly from the LiDAR point cloud to know and
assess the quality of each crosswalk.
Despite all but one of the zebra crossings being identi-

fied, not all are adequate for detailed quantitative charac-
terization. This situation occurs for several reasons, such as
the degradation of the intensities for points too far from the
LiDAR sensor, degenerated shapes, and occlusions. On the
one hand, intensity-related problems affect only a small
subset of the quantification attributes. Thus, intensity-
related issues do not prevent absolute quantification but
only affect those parameters that describe the paint of
the zebra crossing. On the other hand, space-related prob-
lems, such as big occlusions or significant obstacles, may
degenerate the data, so the quantitative characterization
might not provide valid results. For these cases, profiling
is the only reliable characterizationmethod.When strange
results are found in the quantitative summary of a zebra
crossing, it is not necessary to do a field check. When nec-
essary, a visual inspection of the profiles should explain
what is going on without requiring in-place checks.
First, we found a correlation between roughness and

zebra crossings. Looking at Figure 12, it can be seen that
the greater roughness values are often located on the zebra
crossing bars. We think that this is explained because dete-
riorated zebra crossings imply the presence of different
paint fragments. In consequence, there are frequent height
differences in the painted area. We conclude that the cal-
culus of roughness over LiDAR data is accurate enough to
detect these differences.
Next, some different cases are depicted to highlight why,

under certain conditions, it is expected that some of the
results of the quantitative characterization are not repre-
sentative of the zebra crossing state. Figure 8a shows one
zebra crossing for which quantitative characterization is
totally admissible as well as Figure 8e. However, Figure 8c
contains both an inappropriate case and a missing zebra
crossing. The missing zebra crossing is not characterized

F IGURE 1 2 The visualization of the roughness of two zebra
crossings. The intensity view of the point cloud is on the left side.
On the right side, the point-wise roughness overlaid on the zebra
crossing. Lighter colors represent the lesser roughness, while darker
colors represent the greater roughness

because it is not identified. Concerning the inappropriate
case, it cannot be fully quantified because, from those three
bars, it is impossible to obtain the length, the height of the
sidewalk, the paint quality, and the number of bars.
Nonetheless, it is possible to know its width and a close

approximation of its roughness, transversal slope, longi-
tudinal slope, and location. Next, an inappropriate zebra
crossing due to the occlusion generated by a vehicle is
shown in Figure 8b. In this case, it is impossible to obtain
the number of bars, paint quality metrics, length, and
transversal slope because of the pedestrian in the middle
of the zebra crossing. The sidewalk height at the extreme
where the vehicle is placed cannot be appropriately sum-
marized either. Nevertheless, obtaining the width, the
longitudinal slope, the height of one of the sidewalks,
the location, and an approximate roughness estimation is
possible. Another inappropriate zebra crossing due to the
occlusion generated by themovement of a vehicle is shown
in Figure 8d. In this case, the problem causes a lack of
data at one of the extremes. Thus, it is impossible to find
the sidewalk’s height at that extreme. It is neither possi-
ble to know the exact number of bars nor the length of the
zebra crossing. Nevertheless, all the other parameters can
be correctly calculated.
There are more scenarios where the zebra crossings

cannot be properly segmented. Some of these cases may
come from the unexpected presence of vehicles above the
zebra crossing, as illustrated in Figure 8f. In this case,
the characterization of the longitudinal and transverse
vectors, the width, the height, the slope, the roughness,
and an approximated analysis of its bars can be adequately
quantified. Nonetheless, one of its heights has a value of
0.84 m. That is an anomaly caused by the presence of a car
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TABLE 2 Summary of the 18 well-adjusted zebra crossings. For
each repeated zebra crossing in the MLS point clouds, only the best
identified case is considered

Feature AVG. Min. Max. Range
Std.
Dev.

Calculated Area (m2) 32.19 14.92 53.21 38.29 8.65
Length (m) 7.88 4.18 13.15 8.97 1.91
Width (m) 4.07 3.56 4.54 0.98 0.20
Length/width (m) 1.93 1.17 3.25 2.08 0.44
Rougness (mm) 2.32 1.43 6.32 4.89 1.27
Num. bars 8.20 4 13 9 1.90
Painted Area (m2) 18.76 8.90 31.98 23.08 5.12
Length/Num. bars 0.97 0.90 1.08 0.17 0.05
Height 1 (m) 0.14 0.04 1.00 0.96 0.33
Height 2 (m) 0.17 0.02 1.00 0.98 0.39
Global paint quality 0.91 0.81 0.96 0.16 0.04
Global paint intens
mean

2141.1 1309.4 2932.6 1623.2 358.5

Global paint intens
std dev

589.2 423.0 1103.7 680.6 155.9

at the corresponding extreme of the zebra crossing. Never-
theless, a field check is not necessary to find the problem.
It is enough to check the corresponding profile. Doing this
will show that there is a car-like anomaly in the profile. A
similar case is discussed in Section 4.2. In this case, there is
a car at one of the extremes of the zebra crossing. Nonethe-
less, looking at the profiling represented in Figure 9b, it
is easy to see that the presence of an obstacle above the
zebra crossing is causing inaccurate quantification.
Another problem is the one illustrated in Figure 8g. In

this case, the zebra crossing quality is not optimal, and
there is also a pedestrian walking over it. Hence, while
the zebra crossing is identified, there are problems with its
quantitative characterization. On the one hand, the loca-
tion of the zebra crossing, its width, and an approximation
of its roughness, transversal slope, and longitudinal slope
are feasible. On the other hand, the total number of bars,
the length of the zebra crossing, and the paint quality
metric cannot be appropriately calculated or even approx-
imated. One of the most uncommon yet possible problems
is the one illustrated in Figure 8h, which belongs to a zebra
crossing that the algorithm cannot safely unify. The prob-
lem here comes from the ghostly projection of a moving
car which splits the zebra crossing and distorts the LiDAR
data. Despite this might be fixed by adapting the projec-
tion andmerging stages of the algorithm, it is important to
note that the problem is not the presence of an obstacle but
distorted scanning. Therefore the data are not reliable.
The results of the quantitative characterization are sum-

marized in two different tables. Table 2 contains the mean

TABLE 3 Summary of the bars from the 18 well-adjusted zebra
crossings. For each repeated zebra crossing in the MLS point clouds,
only the best identified case is considered

Feature AVG. Min. Max. Range
Std.
Dev.

Bar max length (m) 4.05 3.95 4.51 0.56 0.13
Bar max width (m) 0.65 0.53 0.80 0.27 0.11
Bar min length (m) 3.22 0.68 3.94 3.26 0.73
Bar min width (m) 0.48 0.34 0.53 0.19 0.05
Bar mean length (m) 3.82 3.20 4.40 1.20 0.24
Bar mean width (m) 0.54 0.49 0.64 0.14 0.04
Bar mean quality 0.91 0.79 0.96 0.18 0.05
Bar mean intens 1674.7 580.7 2694.2 2113.4 465.3
Bar max intens 3446.0 2820.7 3837.2 1016.5 285.1
Bar min intens 400.8 49.6 878.9 829.3 223.6
Bar mean dev intens 491.6 169.9 1082.0 912.1 192.9

values obtained for some of the calculated parameters.
The quantification shows that the zebra crossings have
an average width of 4.07 m and an average length of 7.88
m. It also shows that there are very different cases. On
the one hand, the minimum length case has 4.18 m. On
the other hand, the maximum length case has 13.15 m.
The difference in height between the roadway and the
sidewalk shows minimum values of 2 and 4 cm. This dif-
ference indicates the existence of crosswalks with ramps
to facilitate the movement of people with reduced mobil-
ity, using wheelchairs, or carrying a stroller. However, we
also observed excessive height measurements, character-
ized by maximum values of 1 m, indicating the existence
of some obstacles in the crosswalk. If we do not consider
these extreme values, the average values of these heights at
the ends of the zebra crossing are 14 and 17 cm. These val-
ues show that many pedestrian crossings were not adapted
for reduced mobility.
The average number of bars for characterized zebra

crossings is 8, which gives an average width of 97 cm for
each pair composed of a bar and its associated nonpainted
space. Table 3 contains the values of different parameters
measured for all the bars of the characterized zebra cross-
ings. As the average width of each bar is 54 cm, the gaps
between bars have a size of 43 cm for the average case.
However, there are bars with widths ranging from 48 to
65 cm. The measured width is very close to the expected
ideal length of 50 cm given by the ONCE, an official Span-
ish organization that aims to improve the quality of life for
disabled people (Pereda & Móuriz, 2000).
We can calculate the painted area of each zebra crossing

by having the length and width measurements of all the
bars that compose it. Table 3 gives us the mean value of
the painted area of the characterized crosswalks, which is
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18.76m2. Thismean value approximately represents 60% of
the entire zebra crossing surface. We detected cases where
the painted area exceeds 66% of the crosswalk surface. The
paint quality on the characterized zebra crossings is very
high, with a mean value of 0.91 out of 1, a small range, and
a reduced standard deviation.
We argue that LiDAR intensity is a useful feature to char-

acterize the paint of road markings based on the work
of Burghardt et al. (2021) on machine vision and LiDAR
data concerning the visual recognition of road markings.
In this work, different road markings made of different
materials with different colors and retroreflectivities were
studied under different lighting, rain, and fog conditions.
The experiments were performed in a 100 m long climatic
wind tunnel operated by Rail Tec Arsenal Fahrzeugver-
suchsanlage GmbH (Vienna, Austria). They found it is
possible to achieve a correlation between the measured
contrast ratio and the LiDAR intensity above the 80%when
using the proper LiDAR scanner. They also reported high-
quality recognition from typical cameras and LiDARunder
dry conditions.Moreover, in the case of adverse conditions,
their experiments with one LiDAR scanner with a wave-
length of 1550 nm and another with 905 nm showed that
it is possible to have good measurements by selecting the
proper scanner.
With the purpose of validating the results from the quan-

titative characterization of the zebra crossings, the output
generated by the processing of LiDAR data was compared
with the manually digitized geometry of the zebra cross-
ings. The polygon enclosing each crosswalk was manually
digitized using the intensity values to represent the LiDAR
points. That polygon is compared with the one automati-
cally generated by the crosswalk identification algorithm.
The results give average variations of 8.6% and in no case
reach 20%. The cases with the most remarkable differ-
ence are due to some circumstance that makes it difficult
to automatically identify the complete crosswalk, as men-
tioned above. Figure 13 shows two examples corresponding
to the crosswalks identified in Figures 8h and 10a. The
manually digitized polygon is colored in green, while the
polygon generated from the identification algorithm is
colored in orange.
A field check performed by civil engineers was used to

verify the results’ accuracy. The validation was applied to
the 37 different zebra crossings in the surroundings of a
school in the city of A Coruña, as illustrated in Figure 14.
The verification showed that 18 of the 37 cases were fully
and correctly characterized, both in the number of bars
and geometric parameters. The differences are mainly due
to the nonidentification of bars of much shorter length
located at the ends of zebra crossings placed at curved
intersections. According to the different reasons described
above, the other 19 zebra crossings could not be ade-

quately quantified for at least one of the parameters. It is
interesting to note that most of the problems are due to
deficiencies in the paint quality of the zebra crossing bars.
This fact reinforces the importance of the method to iden-
tify and characterize the zebra crossings and detect those
in poor condition.

5 FUTUREWORK

Crosswalks are a fundamental element in the safety of
walking routes as they are spaces where pedestrians and
cars coincide. Therefore, their knowledge and analysis
should be the object of special attention for those responsi-
ble for urban road infrastructures. Our work demonstrates
that it is possible to identify and characterize zebra cross-
ings from LiDAR data. Thus, the full integration of our
method as a plugin for GIS software would significantly
improve our proposal, at least for application purposes.
From the data acquisition perspective, it should be feasi-

ble to use an algorithm to extract best conditioned data for
quantitative statistical characterization. Themost straight-
forward approach would be selecting the best conditioned
data from each scanning for each zebra crossing. How-
ever, inmany cases,moving obstacles on the zebra crossing
surface suggest that a second pass might be clean or
have a moving obstacle in a different position. Our pro-
filing method can determine the regions occupied by the
obstacles. Thus, merging the point clouds and selecting
points from clean regions to fill problematic regions should
be studied.
Furthermore, our profiling method has the potential

to automatize the validation of the quantitative statistical
analysis. Even for the most problematic cases, we often
have at least one profile that approximates well the road
surface and others that do not. Those not fitting well on
the road surface must have a significantly greater devia-
tion with respect to the best fitting line that can be easily
obtained by linear regression. Once the problematic cases
are detected, if they have slope changes greater than a few
centimeters, it is clear that curbs cannot cause them. Thus,
problemsmust be expected regarding some of the values in
the statistical summary.
We should also advance in obtaining parameters that

characterize other features of the crosswalks, such as
the field of visibility, a more thorough characterization
of sidewalk pavements concerning the easiness for blind
people, vertical signs, lighting elements, and many more.
In any case, we believe that our methodology can help
the development of crosswalk inventories that might be
incorporated into databases for analysis in GIS or in appli-
cations that dealwith pedestrian routes for peoplewith any
mobility condition.
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F IGURE 13 The location of the 37 zebra crossings analyzed in the surroundings of the Fogar de Santa Margarida school, in the city of A
Coruña (Spain). Note that some zebra crossings were analyzed twice. This explains why there are 49 zebra crossings in the MLS dataset

F IGURE 14 Manually digitized zebra crossings. The green color represents the manually digitized georeferenced layer. The orange
color represents the zebra crossing from the LiDAR point cloud

There are two straightforward extensions of our work.
The first one is the use of our profiling method to charac-
terize different road and sidewalk regions. These can be,
for instance, different types of crosswalks, road intersec-
tions, and elevation changes. We expect that the profiling
works well for any other case as long as it is a ground
region whose boundaries can be represented by a rectan-
gle in the plane. The second extension is the generation

of different quantification summaries for other crosswalks
different from zebra crossings.
Moreover, from the perspective of crossing zones, it

should be feasible to apply both the profiling and the sta-
tistical summary methods to cases distinct from the ones
in our study case. For instance, the profiling method can
also be applied to trapezoidal or curved crossing zones. It
should also be feasible to compute the profiles of speed
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tables. Since they have similar rectangular geometry to
our study case, computing the profiles over speed tables
should be straightforward. Unfortunately, there are no
speed tables in the regions contained in the project; thus,
we could not explore this in our work.
Finally, another research issue to be addressed is val-

idating LiDAR optical features, such as intensity, con-
cerning the analysis of road marking paint. While there
are some works in this direction, they were conducted
under controlled conditions. However, real applications
often present challenges absent in laboratory-like contexts
or controlled testing environments. Further research ori-
ented to real applications characterizing road markings
is necessary to understand the true potential of LiDAR
regarding the maintenance of urban roads.

6 CONCLUSIONS

LiDAR point clouds are an interesting alternative to
imagery for the detailed characterization of surfaces. There
are multiple methods to identify road markings in point
clouds. It is even possible to project the LiDAR data to
an image to perform the comparison with state-of-the-art
methods, such as convolutional neural networks. How-
ever, a detailed analysis of the segmented surfaces is not
feasible from images. For these purposes, the LiDAR point
clouds are much more adequate. There are two main rea-
sons for that. The first one is the isometric nature of the
scanning, which preserves the distances between points;
unlike images, geometrical analysis of the point cloud
results in spatial magnitudes corresponding to the real
world. The second one is the increased amount of informa-
tion. These facts make the LiDAR datamore robust against
scanning problems. Therefore, it is possible to handle both
scanning anomalies and real obstacles.
Our method to identify zebra crossings can detect 98%

of all the zebra crossings in our dataset. Nonetheless, this
is not a challenge nowadays. Our major contributions are
a method to extract accurate profiles and a method to
generate a quantitative summary of the condition of the
zebra crossings.
The proposed profiling method is robust to outliers,

capable of detecting anomalies, and well-suited for a
detailed characterization of curvature, slope, height differ-
ences, and size. It can accurately describe all the identified
zebra crossings, even in the presence of cars, pedestri-
ans, and potholes. Furthermore, it can also be used to
characterize the potholes and the obstacles themselves.
For those cases with a clean enough profile, our char-

acterization method correctly summarizes the state of
the zebra crossing in a set of quantitative parameters.
For instance, it is possible to know the paint area and

assess the need to repaint some crosswalks. However, the
coarse-grain nature of the statistical summary makes this
method sensible to obstacles. Thus, only half of the zebra
crossings have a perfect statistical summary free from
anomalous measurements.
Nonetheless, the profiling and the quantitative sum-

mary complement each other. If problematic values are
found in the statistical summary, doing a field check or
repeating the data acquisition is unnecessary. Looking at
the associated profile is enough to understand the actual
condition of the zebra crossing. Consequently, anomalous
values in the statistical summary can be directly under-
stood by looking at the output of the profiling method.
Moreover, we found that the profiling method works well
for all detected zebra crossings and that there is always at
least one profiling that accurately represents the surface of
the zebra crossing.
In summary, LiDAR data’s capabilities go far beyond

identifying objects. For this purpose, image processing is
usually cheaper and provides excellent results. Neverthe-
less, LiDAR data outperforms images for the accurate spa-
tial characterization of identified objects. Consequently,
we consider LiDAR a promising data source for analyzing
and maintaining urban infrastructures.
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