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1. Introduction

In the context of credit risks or credit scoring one is often interested in modelling and estimating the probability of 
default (PD) measuring the probability of an obligor to run into arrears on his/her credit obligation. A binary classification 
of customers into two categories (default or not default) is then required, which can be done using various statistical 
techniques ranging from purely parametric to fully nonparametric. However, a more refined analysis is possible, in which 
apart from this binary outcome (default or not default) one also takes the timing of default into account. The probability 
that a customer defaults before a given time point is of practical importance, since it can provide the bank with the ability 
to compute the profitability over a customer’s lifetime and perform profit scoring. In this paper we will propose a novel 
method to estimate the probability of default (PD) in a time horizon t + b from a maturity time t using nonparametric 
estimators. To estimate this probability, one commonly faces the problem that the time of default is censored to the right. 
This is because at the end of the study period some (or many) customers will not have defaulted, or some customers might 
be lost to follow up for various reasons in the course of the study period. As a result, appropriate estimators that take 
right censoring into account should be used. This has been recognised by Peláez et al. (2021a,b), who used nonparametric 
estimators of the PD based on Beran’s estimator of the conditional survival function (Beran (1981)) given a set of covariates. 
This estimator is an extension of the Kaplan and Meier (1958) estimator to the regression context, where kernel smoothing 
and an appropriate bandwidth are used for the covariates. See also Naraim (1992), Stepanova and Thomas (2002), Roszbach 
(2003), Glennon and Nigro (2005), Allen and Rose (2006), Baba and Goko (2006), and Dirick et al. (2003), among others, for 
other contributions on the use of survival analysis in the context of credit scoring.
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In this paper we go one step further. In fact, the time to default does not only face a problem of right censoring. There is 
a second issue that should also be taken into account, and which is caused by the fact that some customers never default, 
that is, no matter how long you observe such individuals, they will never experience the event of interest. Hence, the 
survival function of the time to default will have a point mass at infinity. Survival models that take this feature into account 
are called cure models. We refer to Amico and Van Keilegom (2018), for an overview paper on this topic. Instead of working 
with the Beran estimator (Beran (1981)), we will therefore use another nonparametric estimator, that estimates separately 
the probability of no default (so the point mass at infinity), called the incidence, and the survival function for the defaulted 
customers, called the latency. For both quantities a kernel estimator (depending on possibly different bandwidths) will be 
used. This is useful, since different degrees of smoothness for the incidence and latency require different bandwidths in 
order to estimate the PD in an optimal way.

Cure survival models are nowadays well developed in the statistics and biostatistics literature, where the number of 
papers studying various aspects of cure models (on e.g. estimation, testing, prediction, model selection, among others) has 
increased a lot over the last 10 years. However in the area of credit risks cure models have not been used a lot so far, 
despite their natural applications. Notable exceptions are Beran and Djaïdja (2007), Dirick et al. (2019) and Dirick et al. 
(2015). In the latter paper an AIC variable selection procedure is proposed in the context of PD estimation based on cure 
models.

The remainder of this paper is organised as follows. In Section 2, the nonparametric estimator of the PD based on 
mixture cure models is proposed. Asymptotic properties of this PD estimator are presented in Section 3. Section 4 presents 
a bootstrap bandwidth selector for the bandwidths involved in the nonparametric estimator of the PD based on mixture cure 
models. In Section 5, a simulation study shows the behaviour of the nonparametric cure model estimator and a comparison 
with Beran’s estimator and other semiparametric estimators. In Section 6, the PD estimators are applied to a set of modified 
real data. Finally, Section 7 contains some concluding remarks. Appendix A and Appendix B include the assumptions and 
detailed proofs of the theoretical results.

2. Probability of default estimator

Let {(Xi, Zi, δi)}ni=1 be a random sample of (X, Z , δ) where X is the credit scoring, Z = min{T , C} is the observed matu-
rity, T is the time to default, C is the time until the end of the study or the time until the anticipated cancellation on the 
credit and δ = I(T ≤ C) is the uncensoring indicator. Let ν be a binary variable where ν = 0 indicates if the individual be-
longs to the susceptible group (the individual will eventually experience the default if followed for long enough) and ν = 1
indicates if the subject is cured (the individual will never experience the default). Therefore, T = (1 − ν)T0 + ν∞, where T0

denotes the survival time of an individual susceptible to default. According to these variables, the population is classified 
into three groups: those who are susceptible to default and censored (ν = 0, δ = 0), those who are susceptible to default 
and noncensored (ν = 0, δ = 1) and the group of cured individual who are not susceptible to default (ν = 1, δ = 0). The 
situation ν =1 and δ =1 is not feasible. In practice, distinguishing whether or not the censored individual was susceptible 
to experiencing the default (belongs to first or third group) is not possible without additional assumptions. In this context, 
the Law of Total Probability provides a useful decomposition of the conditional survival function as follows

S(t|x) = P (T > t|ν = 1, X = x)P (ν = 1|X = x)

+P (T > t|ν = 0, X = x)P (ν = 0|X = x) = 1− p(x) + S0(t|x)p(x),

where p(x) is the probability of not being cured (susceptible to default) and S0(t|x) the conditional survival function of the 
uncured population. The functions 1 − p(x) and S0(t|x) are called the incidence and the latency, respectively.

Let x ∈ I ⊆ R be a fixed value of the covariate X (typically, the scoring), t covering certain interval IT ⊆ R and b a 
horizon time (typically, b = 12 in months), then the probability of default in a time horizon t + b from a maturity time t is 
defined as follows

PD(t|x) = P (T ≤ t + b|T > t, X = x) = 1− S(t + b|x)
S(t|x) . (1)

Replacing S(t|x) with a conditional survival function estimator, ̂Sh(t|x), in (1), the following estimator for PD(t|x) is obtained:

P̂Dh(t|x) = 1− Ŝh(t + b|x)
Ŝh(t|x)

, (2)

where h = hn is the smoothing parameter for the covariable.
The aim is to find an appropriate survival estimator, Ŝh(t|x), that captures the existence of a group of individuals not 

susceptible to default or cured, resulting in a good estimator of the probability of default, P̂Dh(t|x), in this context. For this 
purpose, a nonparametric survival estimator based on cure models is considered. Beran’s estimator which, a priori, does not 
take into account the proportion of the curative population is also considered in this work to estimate the probability of 
default.
2
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2.1. Beran’s estimator

The estimator of the conditional survival function with censored data formulated in Beran (1981) is given by

ŜBh(t|x) =
n∏

i=1

(
1 − I{Zi≤t, δi=1}wh,i(x)

1−∑n
j=1 I{Z j<Zi}wh, j(x)

)
, (3)

with

wh,i(x) = K
(
(x− Xi)/h

)∑n
j=1 K

(
(x− X j)/h

) , i = 1, . . . ,n,

where K is a kernel function (typically a density function to be picked up by the user) and h > 0 is a smoothing parameter.
Replacing (3) in (2), we obtain Beran’s estimator of the probability of default. It was previously used in Cao et al. (2009), 

Peláez et al. (2021b) and Peláez et al. (2021a).

2.2. Nonparametric cure model estimator

The nonparametric cure model estimator of the conditional survival function proposed by López-Cheda (2018) is given 
by

ŜNPCMh,g (t|x) = 1− p̂h(x) + p̂h(x)̂S0,g(t|x). (4)

The incidence estimator, 1 − p̂h(x), is proposed by Xu and Peng (2014) and deeply studied in López-Cheda et al. (2017b). 
It corresponds to Beran’s estimator evaluated at the highest uncensored lifetime:

1 − p̂h(x) = ŜBh
(
max{Ti : i = 1, ...,n, δi = 1}|x).

The latency estimator, Ŝ0,g(t|x), proposed by López-Cheda et al. (2017a) is as follows:

Ŝ0,g(t|x) = ŜBg(t|x) − (
1− p̂g(x)

)
p̂g(x)

,

where g > 0 is a smoothing parameter.
Replacing (4) in (2), we obtain the nonparametric cure model estimator (NPCM) of the probability of default:

P̂D
NPCM
h,g (t|x) = 1− ŜN PCM

h,g (t + b|x)
ŜN PCM
h,g (t|x) . (5)

Note that the particular case h = g corresponds to Beran’s estimator, which does not take into account a priori the 
existence of a group of cured individuals. In López-Cheda (2018) it was found by simulation that the bandwidths h and g
are substantially different in practice, although they have the same convergence order. Choosing the best bandwidth h for 
incidence and the best bandwidth g for latency has a considerable effect on the estimation of the conditional survival curve 
in cure models and could have a considerable effect on the estimation of PD.

3. Asymptotic properties of the NPCM estimator

In this Section, asymptotic properties of the probability of default estimators are studied. Since Beran’s estimator of the 
probability of default has been deeply studied in Peláez et al. (2021b) and details about its asymptotic properties can be 
found in that work, this section will focus on the NPCM estimator of the PD. The following notation is used.

Let R :R −→ R be any function and define the constants

cR =
∫

R(t)2dt, dR =
∫

t2R(t)dt,

and given any constant a ∈ R,

c̃R(a) =
∫

R(at)R(t)dt. (6)

Given any function f : Rk −→ R, its first derivative with respect to the first variable is denoted by: f ′(x1, ..., xk) =
∂ f (x1, ..., xk)

∂x1
. Correspondingly, the second derivative with respect to the first variable is denoted by f ′′(x1, ..., xk).

The following functions are required to state the results. A number of notations used below are defined in Appendix A.
3
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ξ(Z , δ, t, x) = 1{Z≤t,δ=1}
1− H(Z |x) −

t∫
0

1{u≤Z}dH1(u|x)(
1− H(u|x))2 ,

η(Z , δ, t, x) = − S(t|x)
p(x)

ξ(Z , δ, t, x) −
(
1− p(x)

)(
1− S(t|x))

p2(x)
ξ(Z , δ,∞, x),

�(u, t, x) = E
[
ξ(Z , δ, t, x)|X = u

]
, �2(u, t, x) = E

[
ξ2(Z , δ, t, x)|X = u

]
,

B1(t, x) = dK
(
S0(t|x) − 1

)(
p(x) − 1

)
2m(x)

∂2

∂u2

(
�(u, t, x)m(u)

)|u=x,

B2(t, x) = −dk S(t|x)
2m(x)

∂2

∂u2

(
�(u, t, x)m(u)

)|u=x

−dK
(
1− p(x)

)(
1− S(t|x))

2p(x)m(x)

∂2

∂u2

(
�(u,∞, x)m(u)

)|u=x,

B̃1(t, x) = − 1

S(t|x) B1(t + b, x) + S(t + b|x)
S2(t|x) B1(t, x),

B̃2(t, x) = − 1

S(t|x) B2(t + b, x) + S(t + b|x)
S2(t|x) B2(t, x),

D(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)

∣∣∣X1 = u
]
m(u),

L(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), η(Z1, δ1, t2, x)

∣∣∣X1 = u
]
m(u),

C1(t1, t2, x) = cK S(t1|x)S(t2|x)
p2(x)

D(x, t1, t2, x) + cK S(t1|x)
(
1− S(t2|x)

)
p3(x)

D(x, t1,∞, x)

+ cK
(
1− S(t1|x)

)
S(t2|x)

(
1− p(x)

)
p3(x)

D(x,∞, t2, x)

+ cK
(
1− p(x)

)2(
1− S(t1|x)

)(
1− S(t2|x)

)
p4(x)

�2(x,∞, x)m(x),

V1(t1, t2, x) =
(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2
m(x)

cK�2(x,∞, x),

V2(t1, t2, x) = p2(x)C1(t1, t2, x)

m2(x)
,

V3(t1, t2, x) =
(
S0(t1|x) − 1

)(
p(x) − 1

)
p(x)

m2(x)
L(x,∞, t2, x)

+
(
S0(t2|x) − 1

)(
p(x) − 1

)
p(x)

m2(x)
L(x, t1,∞, x).

The required assumptions are listed in Appendix A. They are standard in the literature and not very restrictive in this 
context. They were previously assumed by Peláez et al. (2021a) to prove the asymptotic properties for Beran’s PD esti-
mator, by López-Cheda et al. (2017a) and López-Cheda et al. (2017b) to prove the asymptotic properties of the incidence 
and latency estimators, and by Iglesias-Pérez and González-Manteiga (1999) and Dabrowska (1989) in the nonparametric 
conditional survival function estimation setup.

Assumptions A.1 and A.2 are about characteristics and independence of the variables involved. Assumptions A.3-A.12 
are needed to bound some population functions. They require existence and continuity of population function derivatives. 
Kernel function requirements are covered in Assumption A.13 and bandwidth assumptions are included in A.14 and A.15. 
Assumption A.16 refers to the differentiability of the functions previously defined in this section.

Lemma 1 (Almost sure representation of the NPCM estimator for the conditional survival function). Under Assumptions A.1-A.16, for 
fixed values (t, x) ∈ [l, u] × I , defined in Appendix A,

ŜNPCMh,g (t|x) − S(t|x) = (
S0(t|x) − 1

)(
p(x) − 1

)∑n
i=1 wA

h,i(x)ξ(Zi, δi,∞, x)

+p(x)
∑n

i=1 wA
g,i(x)η(Zi, δi, t, x) + R1

n(t|x) a.s.,
(7)

where wA
h,i(x) =

1

nh

K
(
(x− Xi)/h

)
m(x)

, and sup(t,x)∈[l,u]×I |R1
n(t|x)| = O p

(
lnn

(
1

nh
+ 1

ng

))3/4

.

Theorem 1 (Almost sure representation of the NPCM estimator for the PD). Under Assumptions A.1-A.16, for fixed values (t, x), (t +
b, x) ∈ [l, u] × I ,

P̂D
NPCM
h,g (t|x) − PD(t|x) =

n∑
�n,i(t, x) + R2

n(t|x) a.s.,

i=1

4
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where

�n,i(t, x) = − 1

S(t|x)ϕn,i(t + b, x) + S(t + b|x)
S2(t|x) ϕn,i(t, x),

ϕn,i(t, x) = (
S0(t|x) − 1

)(
p(x) − 1

)
wA

h,i(x)ξ(Zi, δi,∞, x) + p(x)wA
g,i(x)η(Zi, δi, t, x)

and

sup
(t,x)∈[l,u]×I

|R2
n(t|x)| = O p

(
lnn

(
1

nh
+ 1

ng

))3/4

.

Theorem 2 (Asymptotic bias and variance of the NPCM estimator for the PD). Under Assumptions A.1-A.16, for fixed values (t, x), (t +
b, x) ∈ [l, u] × I , the asymptotic expressions of the bias and the variance of the dominant term in the almost sure representation of 
P̂D

NPCM
h,g (t|x) are the following:

ABias
(
P̂D

NPCM
h,g (t|x))= B̃1(t, x)h2 + B̃2(t, x)g2 + o(h2) + o(g2). (8)

(i) If Ch,g := lim
n→∞

h

g
∈ (0, ∞), then

AVar
(
P̂D

NPCM
h,g (t|x))=

(
Ṽ1(t + b, t, x) + Ch,g Ṽ2(t + b, t, x)

+Ch,g̃ cK (Ch,g)Ṽ3(t + b, t, x)
) 1

nh
+ o

(
1

nh

)
+ O

(
h

n

)
.

(ii) If lim
n→∞

h

g
= 0, then

AVar
(
P̂D

NPCM
h,g (t|x))= Ṽ1(t + b, t, x)

1

nh
+ o

(
1

nh

)
+ O

(
g

n

)
.

(iii) If lim
n→∞

g

h
= 0, then

AVar
(
P̂D

NPCM
h,g (t|x))= Ṽ2(t + b, t, x)

1

ng
+ o

(
1

ng

)
+ O

(
h

n

)
.

The functions ̃Vi(t1, t2, x) are defined as follows

Ṽ i(t1, t2, x) = 1

S2(t2|x) Vi(t1, t1, x) + S2(t1|x)
S2(t2|x) Vi(t2, t2, x) + 2

S(t1|x)
S2(t2|x) Vi(t1, t2, x),

where i = 1, 2, 3 and ̃cK is defined in (6).

Theorem 3 (Asymptotic normality of the NPCM estimator for the PD). Under Assumptions A.1-A.16, for fixed values (t, x), (t + b, x) ∈
[l, u] × I , the limit distribution of ̂PDNPCM

h,g (t|x) is the following:

(i) Assuming Ch := limn→∞ n1/5h ∈ (0, ∞), Cg := limn→∞ n1/5g ∈ (0, ∞), then

√
nh
(
P̂D

NPCM
h,g (t|x) − PD(t|x)) d−→ N(μ, s),

where μ = C5/2
h B̃1(t, x) + C5/2

g B̃2(t, x) and s2 = (
Ṽ1(t + b, t, x) + Ch,g Ṽ2(t + b, t, x) + Ch,g̃ cK (Ch,g)Ṽ3(t + b, t, x)

)
.

(ii) Assuming Cg := limn→∞ n1/5g ∈ (0, ∞) and limn→∞ n1/5h = 0, 
(lnn)3

nh
→ 0 and 

(
lnn

ng

)3/4

(nh)1/2 → 0, then

√
nh
(
P̂D

NPCM
h,g (t|x) − PD(t|x)) d−→ N(μ, s),

where μ = C5/2
g B̃2(t, x) and s2 = Ṽ1(t + b, t, x).
5
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(iii) Assuming Ch := limn→∞ n1/5h ∈ (0, ∞), limn→∞ n1/5g = 0, 
(lnn)3

ng
→ 0 and(

lnn

nh

)3/4

(ng)1/2 → 0, then

√
ng
(
P̂D

NPCM
h,g (t|x) − PD(t|x)) d−→ N(μ, s),

where μ = C5/2
h B̃1(t, x), s2 = Ṽ2(t + b, t, x) and ̃Vi(t1, t2, x), i = 1, 2, 3 are defined in Theorem 2.

Proofs of the results presented here are included in Appendix B.
The particular choice h = g for the NPCM estimator corresponds to Beran’s estimator. Therefore, the case Ch,g = 1 should 

give the same asymptotic bias and variance for Beran’s and the NPCM estimators. Asymptotic expressions for the bias 
and variance of Beran’s estimator are available in Cao et al. (2009) and Peláez et al. (2021b). It is clear that the order of 
these asymptotic expressions is the same for both estimators when lim

n→∞h/g = Ch,g ∈ (0, ∞). If we consider the particular 
case Ch,g = 1, then bandwidths h and g are asymptotically equal and so are the expressions for the bias and variance 
corresponding to Beran’s and NPCM estimators.

4. Bandwidth selection

The choice of the smoothing parameters on which these estimators depend is certainly a point of crucial interest. The 
complexity of the asymptotic results shown in the previous section makes it difficult to obtain plug-in bandwidths, since 
they depend on too many parameters and population functions. For this reason, bootstrap-based bandwidth selectors are 
used.

An automatic selector based on a bootstrap procedure already exists in the literature for Beran’s PD estimator. In Peláez 
et al. (2022), the obvious bootstrap method is combined with a smoothed bootstrap for the automatic selection of the 
bandwidth h of Beran’s estimator, P̂DB

h(t|x), defined in Section 2.1.
There are two classic methods for bootstrap resampling in a censoring context: the obvious bootstrap and the simple 

bootstrap. In Li and Datta (2001), both methods are extended to the case where a covariate is involved, assuming there 
are no ties in the sample values of the covariate. In López-Cheda et al. (2017a) and López-Cheda et al. (2017b), automatic 
selectors were proposed for the bandwidths h and g on which the incidence and latency respectively depend. The proposed 
resampling algorithm is a simple weighted bootstrap, fixing the covariate, equivalent to the one presented in Li and Datta 
(2001). In Peláez et al. (2022) this method is combined with the smoothed bootstrap to approximate the bandwidth involved 
in Beran’s estimator of the probability of default. In this paper, these techniques are extended to the case where there exists 
a cure fraction to approximate the smoothing parameters involved in the NPCM estimator. The algorithm for the bootstrap 
resampling is detailed below. For the sake of brevity, the NPCM estimator, P̂DNPCM

h,g (t|x), given in (5) is simply denoted by 
P̂ Dh,g(t|x) in this section.

Algorithm for bootstrap resampling based on the NPCM estimator (called BR). Let I1, I2 ⊆ R be intervals containing appropriate 
bandwidth values and let (r, s) ∈ I1 × I2 be pilot bandwidths for the bootstrap resampling:

1. Obtain U1, . . . , Un iid with Ui ∼ U (0, 1) for all i = 1, . . . , n.
2. For each i = 1, . . . , n, define

X∗
i = X[nUi ]+1,

where [u] is the integer part of u and generate T ∗
i from the NPCM estimator of the conditional distribution of T

using the sample {(Xi, Zi, δi)}ni=1 and bandwidths (r, s), denoted by F̂r,s(t|X∗
i ), and C∗

i from the NPCM estimator of the 
conditional distribution of C using the sample {(Xi, Zi, 1 − δi)}ni=1 and bandwidths (r, s), denoted by Ĝr,s(t|X∗

i ).
The estimators F̂r,s(t|X∗

i ) and Ĝr,s(t|X∗
i ) are forced to be equal to one from the last observed lifetime (max{Zi : i =

1, . . . , n}) onwards.
3. For each i = 1, . . . , n, obtain

Z∗
i = min{T ∗

i ,C∗
i },

δ∗
i = I

(
T ∗
i ≤ C∗

i

)
.

4. Consider the bootstrap resample 
{
(X∗

i , Z
∗
i , δ

∗
i )
}n
i=1.

For the NPCM estimator, P̂ Dh,g(t|x), and a fixed x, the optimal two-dimensional bandwidth is the pair (h, g) ∈ I1 × I2 ⊂
R2 that minimises the mean integrated squared error given by
6



R. Peláez, I. Van Keilegom, R. Cao et al. Computational Statistics and Data Analysis 189 (2024) 107853
MISEx(h, g) = E

⎛⎜⎝∫
IT

(
P̂Dh,g(t|x) − PD(t|x))2dt

⎞⎟⎠ , (9)

whose bootstrap approximation is

MISE∗
x(h, g) = E

(∫
IT

(
P̂D

∗
h,g(t|x) − P̂Dr,s(t|x)

)2
dt

)
, (10)

where P̂Dr,s(t|x) is the NPCM estimator with pilot bandwidths (r, s) ∈ I1× I2 using the sample 
{
(Xi, Zi, δi)

}n
i=1 and P̂D∗

h,g(t|x)
is the bootstrap NPCM estimator of PD with bandwidths (h, g) using the bootstrap resample 

{
(X∗

i , Z
∗
i , δ

∗
i )
}n
i=1.

The resampling distribution of P̂D∗
h,g(t|x) cannot be computed in a closed form, so the Monte Carlo method is used. 

The distribution of P̂D∗
h,g(t|x) is approximated by the empirical one of P̂D∗,1

h,g(t|x), . . . , ̂PD∗,B
h,g (t|x), obtained from B bootstrap 

resamples using the bootstrap resampling algorithm (BR) explained above. Then, the bootstrap bivariate bandwidth, (h∗, g∗), 
is the minimiser of the Monte Carlo approximation of MISE∗

x(h, g) over a meshgrid of bandwidths (h, g) ∈ I1 × I2 given by

MISE∗
x(h, g) � 1

B

B∑
k=1

(∫
IT

(
P̂D

∗,k
h,g(t|x) − P̂Dr,s(t|x)

)2
dt

)
, (11)

where P̂Dr,s(t|x) is the NPCM estimator with auxiliary bandwidths (r, s) ∈ I1 × I2 using the sample 
{
(Xi, Zi, δi)

}n
i=1

and P̂D
∗,k
h,g(t|x) is the bootstrap NPCM estimator of PD with bandwidths (h, g) using the k-th bootstrap resample {

(X∗,k
i , Z∗,k

i , δ∗,k
i )

}n
i=1. Likewise, the integral is approximated by a Riemann sum.

Concerning the auxiliary bandwidths, preliminary studies not shown here suggest that the pilot bandwidths defined by:

r = 5

6

(
Q X (0.975) − Q X (0.025)

)
n−1/9, (12)

s = 15

4

(
Q Z (0.975) − Q Z (0.025)

)
n−1/9, (13)

where Q X (u) is the u quantile of the sample 
{
Xi
}n
i=1, are suitable choices in this context.

Note that, in López-Cheda et al. (2017a) and López-Cheda et al. (2017b), the authors propose the following pilot band-
width for the incidence and the latency bandwidth selectors:

c
(
X(n) − X(1)

)
n−1/9, (14)

where X(1) and X(n) are the minimum and maximum values of the covariate X , respectively, and c > 0.
Regarding the auxiliary bandwidth r ∈ I1, instead of a naive selector depending on X(1) and X(n) , we use the quan-

tiles Q X (0.025) and Q X (0.975) to avoid outliers. In addition, this bandwidth considers the variability of the covariate, 
Q X (0.975) − Q X (0.025), and the sample size, n. The multiplicative constant 5/6 is derived from several attempts in simu-
lation.

The exponent of this sample size, −1/9, was heuristically determined by López-Cheda et al. (2017a) and López-Cheda 
et al. (2017b). The order n−1/9 for this pilot bandwidth satisfies the conditions of Theorem 1 in Li and Datta (2001) and is 
the one obtained by Cao (1993) for the uncensored case in nonparametric density estimation. It should be noted that the 
bandwidth sequence r = r(n) has to be typically asymptotically larger than h = h(n).

The pilot bandwidth s ∈ I2 given in (13) also follows the ideas of López-Cheda et al. (2017a) and López-Cheda et al. 
(2017b). Simulation studies in López-Cheda (2018) show that a good choice for the auxiliary bandwidth related to the 
latency would be to consider the same naive selector as for the incidence. Once again, the variability of the sample is taken 
into account, but we consider the quantiles Q Z (0.025) and Q Z (0.975) instead of the minimum and maximum to minimise 
the effect of outliers. The multiplicative constant 15/4 is derived from several attempts in simulation.

Note that the proposed algorithm is also valid to obtain a bootstrap approximation of the optimal bandwidth for the 
estimation of P D(t|x) for fixed values of t ∈ IT and x ∈ I by replacing MISE∗

x(h, g) by MSE∗
t,x(h, g), which is the bootstrap 

analogue of the mean squared error given by

MSEt,x(h, g) = E

((
P̂Dh,g(t|x) − PD(t|x))2).
7
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5. Simulation study

A simulation study was conducted in order to compare the performance of the two proposed estimators of the probability 
of default. The study is focused on three different models. All three have a non zero probability of cure and the proportion 
of cured subjects and the survival distribution of uncured subjects are modelled separately. Therefore, they are mixture cure 
models.

In Model 1, the probability of cure 1 − p(x) is a logistic function with the incidence given by

p(x) = exp(β0 + β1x)

1+ exp(β0 + β1x)
,

where β0 = 1 and β1 = −1. A uniform distribution U (0, 1) is considered for the credit scoring variable X . In the uncured 
population, the time to default conditional to the credit scoring, T0|X=x , follows a Weibull distribution with parameters d
and A(x)−1/d , with d = 2 and A(x) = 1 + 5x, T0|X=x ∼ W(d, A(x)−1/d), and the censoring time conditional to the credit 
scoring, C0|X=x , follows a Weibull distribution with parameters d and B(x)−1/d , with B(x) = 10 − 22x + 20x2, C0|X=x ∼
W(d, B(x)−1/d). Therefore, the latency is given by S0(t|x) = e−A(x)td . It is quite close to fulfil a proportional hazards model 
and an accelerated failure time model, since the polynomial A(x) is a linear function which is reasonable close to the 
function exp(γ x) for some γ .

In this scenario, the conditional survival function and the probability of default are the following:

S(t|x) = 1− p(x) + p(x)e−A(x)td ,

PD(t|x) = 1− 1− p(x) + p(x)e−A(x)(t+b)d

1− p(x) + p(x)e−A(x)td
.

In Model 2, the incidence is given by

p(x) = exp(β0 + β1x+ β2x2 + β3x3)

1+ exp(β0 + β1x+ β2x2 + β3x3)
, (15)

where β0 = 15, β1 = −190/3, β2 = 88 and β3 = −128/3. A uniform distribution U (0, 1) is considered for the credit scoring 
variable X . In the uncured population, the time to default conditional to the credit scoring, T0|X=x , follows an exponential 
distribution with parameter Q (x) = 2 +58x −160x2+107x3, and the censoring time conditional to the credit scoring, C0|X=x , 

follows an exponential distribution with parameter R(x) = 10 − 55

2
x + 20x2. Then, the latency is given by S0(t|x) = e−Q (x)t . 

In this scenario, the conditional survival function and the probability of default are the following:

S(t|x) = 1− p(x) + p(x)e−Q (x)t,

PD(t|x) = 1− 1− p(x) + p(x)e−Q (x)(t+b)

1− p(x) + p(x)e−Q (x)t
.

The incidence of this model is not a logistic function and the latency function does not fit a proportional hazards model nor 
an accelerated failure time model, since the polynomial Q (x) is not monotone in x and, therefore, is far from an exponential 
function.

In Model 3, the incidence is given by (15) with β0 = 31, β1 = −398/3, β2 = 184 and β3 = −256/3. A uniform distribution 
U (0, 1) is considered for the credit scoring variable X . In the uncured population, the time to default conditional to the 
credit scoring, T0|X=x , follows a Weibull distribution with parameters k1(x) = 5

1000 + 28x − 16x2 and B1(x) = (log(2))1/k1(x) , 
T0|X=x ∼W

(
k1(x), 1/B1(x)

)
, and the censoring time conditional to the credit scoring, C0|X=x , follows a Weibull distribution 

with parameters k2(x) = 1 + 8x and B2(x) = (log(2))1/k2(x) , C0|X=x ∼ W
(
k2(x), 1/B2(x)

)
. Therefore, the latency is given by 

S0(t|x) = e−(B1(x)t)k1(x)
. In this scenario, the conditional survival function and the probability of default are the following:

S(t|x) = 1− p(x) + p(x)e−(B1(x)t)k1(x)
,

PD(t|x) = 1− 1− p(x) + p(x)e−(B1(x)(t+b))k1(x)

1− p(x) + p(x)e−(B1(x)t)k1(x)
.

The incidence of this model is not a logistic function and the latency function does not fit a proportional hazards model nor 
an accelerated failure time model, since the shape parameter of the Weibull distribution, k1(x), depends on x.

The simulation analysis is conducted for different credit scoring values in each model. The unconditional probability 
of censoring of Models 1, 2 and 3 and the probabilities of censoring conditional on each chosen value of x are shown in 
Table 1.

Fig. 1 shows the theoretical probability of default of Models 1, 2 and 3 when the credit scoring is x = 0.5.
8
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Table 1
Unconditional and conditional probabilities of censoring in 
Models 1, 2 and 3.

Model 1 Model 2 Model 3

P (δ = 0) 0.7715 0.6566 0.7068
P (δ = 0|X = 0.2) 0.8357 0.3993 0.4832
P (δ = 0|X = 0.5) 0.7095 0.6111 0.7454
P (δ = 0|X = 0.8) 0.7305 0.8847 0.8705

Fig. 1. Theoretical probability of default for Model 1 (left), Model 2 (centre) and Model 3 (right) when x = 0.5.

The software for Beran’s estimator was developed in R by the authors themselves. The nonparametric estimators of 
the incidence and latency required to compute the NPCM estimator are implemented in the R-Package npcure (see López-
de Ullibarri et al. (2020)). Two other estimators are considered in this analysis as benchmark methods: the proportional 
hazards cure model estimator (PHCM) and the accelerated failure time cure model estimator (AFTCM).

The PHCM estimator and the AFTCM estimator both assume that the conditional survival function is defined by S(t|x) =
1 − p(x) + p(x)S0(t|x) with 1 − p(x) fitting a logistic model and the latency S0(t|x) fitting a proportional hazards model or an 
accelerated failure time model, respectively. A comprehensive review of these models can be found in Peng and Yu (2021). 
The identifiability of the PHCM and the AFTCM, as well as the existing literature on these two models, can be consulted 
in Parsa and Van Keilegom (2022). The PHCM and AFTCM estimators are based on maximum likelihood techniques for the 
joint estimation of the incidence and latency regression parameters using the nonparametric form of the likelihood and an 
EM algorithm. The reader could check Sy and Taylor (2000) and Sy and Taylor (2001) for more details. Both methods are 
implemented in the R-Package smcure (see Cai et al. (2012)).

Model 1 fits Cox and AFT cure models with logistic cure probability, meanwhile Model 2 and 3 move away from semi-
parametric models. Therefore, the PHCM and AFTCM methods are expected to have a reasonable behaviour in Model 1 but 
worse in Models 2 and 3.

The conditional survival function and the probability of default are estimated in a time grid of size nt , 0 < t1 < · · · < tnt , 
where tnt + b = F−1

0 (0.95|x) with F0 being the distribution function of the time variable in the uncured population and b is 
about 20% of the time grid. The size of the time grid is nt = 100. The sample size is n = 400. The truncated Gaussian kernel 
is used for the covariable smoothing in Beran’s estimator.

The optimal value of the bandwidth h, involved in Beran’s estimator, is chosen as the value that minimises a Monte Carlo 
approximation of the MISE given by

MISEx(h) = E

(∫ (
P̂D

B
h(t|x) − PD(t|x))2dt) , (16)

based on the estimation for N = 100 simulated samples for each value of h in a grid of nh = 50 possible values. Then, 
N = 300 samples are simulated to approximate MISEx(h).

The optimal bivariate bandwidth (h, g) involved in the NPCM estimator is chosen (from a meshgrid of 50 values of h
and 50 values of g) as the pair that minimises a Monte Carlo approximation of the MISE given in (9) based on N = 100
simulated samples. Then, N = 300 simulated samples are used to approximate MISEx(h, g).

Of course, these bandwidths cannot be used in practice, but this choice produces a fair comparison since the two estima-
tors are constructed using their best possible bandwidths. In practice, automatic bandwidth selectors are used, as discussed 
in Section 2 and as it will be done in Section 5. The value of MISE and its square root, RMISE, are used as a measure of the 
estimation error committed by the PD estimators.

Tables 2-4 contain the optimal bandwidths and the square root of MISE (RMISE) for each estimator in Models 1, 2 and 3 
when x = 0.2, x = 0.5 and x = 0.8.
9
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Table 2
Optimal bandwidth and RMISE for the probability of default estimators when x =
0.2, x = 0.5 and x = 0.8 in Model 1.

Beran NPCM PHCM AFTCM

x = 0.2
h/(h, g) 0.5224 (0.9265, 0.8714) — —
RMISE 0.1351 0.1349 0.1391 0.0969

x = 0.5
h/(h, g) 0.5592 (1.0000, 0.7245) — —
RMISE 0.0589 0.0589 0.0548 0.0507

x = 0.8
h/(h, g) 0.4306 (1.0000, 0.6878) — —
RMISE 0.0377 0.0376 0.0457 0.0452

Table 3
Optimal bandwidth and RMISE for the probability of default estimators when x =
0.2, x = 0.5 and x = 0.8 in Model 2.

Beran NPCM PHCM AFTCM

x = 0.2
h/(h, g) 0.1082 (0.1276, 0.3755) — —
RMISE 0.0890 0.0766 0.0939 0.1026

x = 0.5
h/(h, g) 0.1857 (0.4571, 0.3020) — —
RMISE 0.0250 0.0252 0.0299 0.0305

x = 0.8
h/(h, g) 0.1469 (0.2633, 0.6327) — —
RMISE 0.0668 0.0551 0.0519 0.0521

Table 4
Optimal bandwidth and RMISE for the probability of default estimators when x =
0.2, x = 0.5 and x = 0.8 in Model 3.

Beran NPCM PHCM AFTCM

x = 0.2
h/(h, g) 0.0776 (0.1602, 0.1786) — —
RMISE 0.0684 0.0680 0.1016 0.1593

x = 0.5
h/(h, g) 0.3531 (0.9286, 0.5653) — —
RMISE 0.0236 0.0238 0.0293 0.0581

x = 0.8
h/(h, g) 0.1786 (0.6143, 0.8143) — —
RMISE 0.0169 0.0251 0.0283 0.0461

The NPCM estimator is performing very well in all scenarios. In general, it provides smaller errors than the semiparamet-
ric methods in Model 2 and 3. As expected, the behaviour of the AFTCM estimator is better under semiparametric Model 1, 
although the NPCM estimator is still competitive.

Beran’s estimation error is similar to the NPCM estimation error in some cases. This is remarkable given that Beran’s 
estimator does not consider the existence of a cured group in its definition, as the NPCM estimator does. Beran’s estimator 
makes no assumptions about the survival function, but uses only the information provided by the data, being able to detect 
the nonzero tendency of the survival function and reflect it in the PD estimation.

The performance of the NPCM estimator is compared with Beran’s estimator, P̂DB
h(t|x), when both are computed with 

bootstrap bandwidths. The bandwidth selectors presented in Section 4 are used. Models 1 and 2 when x = 0.2 are both 
considered for the study.

A number of N = 300 samples are simulated. For each simulated sample, the corresponding bootstrap bandwidths are 
approximated from B = 500 resamples, obtaining (h∗

j , g
∗
j ) with j = 1, . . . , N . The mean values of the N bootstrap bandwidths 

defined by:

(h∗, g∗) =
(

1

N

N∑
j=1

h∗
j ,

1

N

N∑
j=1

g∗
j

)
,

are included in Table 5.
For each sample, the estimation error of the NPCM estimator with the corresponding bootstrap bandwidth,

MISEx(h
∗
j , g

∗
j ) = E

(∫
IT

(
P̃ Dh∗

j ,g
∗
j
(t|x) − P D(t|x))2dt),

and its square root, RMISEx(h∗
j , g

∗
j ), are approximated via Monte Carlo using 300 simulated samples. The mean of these 

estimation errors given by
10
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Table 5
MISE and average bootstrap bandwidths and estimation er-
rors of Beran’s and the NPCM estimators of P D(t|x) for Mod-
els 1 and 2 when x = 0.2.

Beran NPCM

Model 1

h/(h, g) 0.5224 (0.9265, 0.8714)
RMISEx 0.1351 0.1349
h∗/(h∗, g∗) 0.1282 (0.2036, 0.1944)
RMISEx 0.2065 0.2180

Model 2

h/(h, g) 0.1082 (0.1276, 0.3755)
RMISEx 0.0890 0.0766
h∗/(h∗, g∗) 0.13756 (0.3103, 0.3119)
RMISEx 0.1011 0.1020

Table 6
Computation time (in seconds) for the estimation of PD(t|x) in time grid of size 
100 and x = 0.5 for one sample of size n with Beran’s estimator, the NPCM 
estimator, the PHCM estimator and the AFTCM estimator.

Sample size n = 100 n = 400 n = 800 n = 1600 n = 2400

Beran 0.02 0.03 0.03 0.04 0.04
NPCM 0.02 0.02 0.02 0.02 0.02
PHCM 0.24 0.40 0.43 1.39 2.49
AFTCM 0.42 1.61 6.12 39.57 82.96

Table 7
Computation time (in minutes) for the approximation of the bootstrap band-
widths for N = 1 sample of size n using B = 100 bootstrap resamples to esti-
mate PD(t|x) in time grid of size 100 and x = 0.5 with Beran’s estimator and 
the NPCM estimator.

Sample size n = 100 n = 400 n = 800 n = 1600 n = 2400

Beran 2.28 4.53 20.37 156.48 455.90
NPCM 2.40 4.07 5.06 12.90 28.05

RMISEx(h∗, g∗) = 1

N

N∑
j=1

RMISEx
(
h∗
j , g

∗
j

)
is used as a measure of the estimation error made by the bootstrap two-dimensional bandwidth in the method.

In addition, for each model, the estimation error function of Beran’s estimator given in (16) is approximated via Monte 
Carlo using 300 simulated samples. The bandwidth that minimises MISEx(h) is obtained and denoted by hMISE. The value of 
the mean integrated squared error made by hMISE and denoted by MISEx(hMISE) is computed.

In the simulation study, N = 300 simulated samples are used. For each sample, B = 500 bootstrap resamples are gen-
erated by using the resampling algorithm presented in Peláez et al. (2022) to approximate the bootstrap MISE function, 
MISE∗

x(h) by the expression

MISE∗
x(h) � 1

B

B∑
k=1

(∫
IT

(
P̂D

∗,k
h (t|x) − P̂Dr(t|x)

)2
dt

)

and obtain the bootstrap bandwidth associated to each simulated sample, h∗
j , j = 1, 2, . . . , N . In addition, the estimation 

error of Beran’s estimator with the corresponding bootstrap bandwidth, MISEx(h∗
j ), is computed for each sample. The mean 

of the square root of these estimation errors, RMISEx(h∗) is also considered for the comparison. The results are shown also 
in Table 5.

From the results shown in Table 5 it can be extrapolated that the observed differences between Beran’s and the NPCM 
estimators of the probability of default are attenuated by using bootstrap bandwidths.

Since computational cost is an important aspect to be considered in the comparison of several estimators, a small study 
of the computation time is addressed in this section. Table 6 shows the computation times in seconds needed to estimate 
the PD for a single sample of different sizes with the four studied estimators. Table 7 shows the computation times in 
minutes needed to approximate the bootstrap bandwidths to estimate the PD for one simulated sample of different sizes 
with Beran’s estimator and the NPCM estimator using B = 100 bootstrap resamples. The estimators based on PH cure model 
and AFT cure model do not depend on any smoothing parameter.
11
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Fig. 2. PD(t|x = 0.85) estimated by Beran’s estimator with bootstrap bandwidths (solid line), NPCM estimator with bootstrap bandwidths (dashed line), 
PHCM estimator (dotted line) and AFTCM estimator (dash-dotted line) for the German credit data.

According to Table 6, the NPCM estimator is the fastest of the four studied estimators. The NPCM estimator and Beran’s 
estimator are barely affected by the increase in the sample size. Given the definitions of Beran’s and the NPCM estimators, 
the differences in their computational costs are due to programming efficiency. The implementation of the NPCM estimator 
in the npcure package is based on the use of C++. The semiparametric methods are slower; in particular, the AFTCM es-
timator. It is the use of the EM algorithm to estimate the curve by the semiparametric methods that makes them slower. 
Nonparametric methods do not rely on the EM algorithm. However, the optimal bandwidth approximation is what slows 
down nonparametric methods as opposed to semiparametric methods, which do not depend on bandwidth parameters, as 
can be seen in Table 7. When analysing the times shown in Table 7 it is important to mention that the computation time 
increases linearly as the value of the number of resamples, B , increases.

An important advantage of the NPCM estimator over Beran’s estimator is its computational efficiency. Both the estimator 
and its automatic bandwidth selector are less sensitive to the increase of the sample size than Beran’s estimator, which 
leads to significantly shorter computational times.

6. Application to real data

In this section we apply the above PD estimators to the German Credit data set which is publicly available on the 
webpage http://archive .ics .uci .edu /ml /datasets /Statlog +(German +Credit +Data) and was previously analysed in Strzalkowska-
Kominiak and Cao (2013). This data set includes information of 1000 credits with a censoring ratio of 70.7%. The duration 
of the credits in months (Z ) is available along with the amount of the credit in DM (X1), the amount of money in the 
checking account in thousands of Deutsche Marks (X2), the savings amount in thousands of Deutsche Marks (X3) and 
years of employment (X4). Let the credit scoring be denoted by X = X1 + θ2X2 + θ3X3 + θ4X4. Since some of the original 
covariates are ordinal (interval) variables, they are changed into numerical variables by following the criteria explained 
in Strzalkowska-Kominiak and Cao (2013) and the single-index method proposed there is used to estimate (1, θ2, θ3, θ4), 
obtaining X = X1 + 3.2091X2 + 0.2312X3 + 2.1891X4. A distinction is made between credits for which default is observed 
and those that are censored. Censored credits correspond to cured credits that will never run into arrears, credits cancelled 
in advance or credits susceptible to default if the follow-up of the credit would be longer enough. The probability of default 
conditional on the credit scoring is estimated using the four estimators presented in this paper and the result is shown 
in Fig. 2. The estimations of these curves are obtained at x = 0.85. The default horizon b is 1 year, approximately 20% of 
the time range in the sample. The bandwidths involved in the estimators are chosen by automatic bootstrap selectors. The 
Beran estimation is computed with h∗ = 0.5000 obtained by the selector proposed in Peláez et al. (2022). The bandwidths 
for the NPCM estimator are provided by the selector referred to in Section 2, (h∗, g∗) = (0.3163, 0.0108).

7. Conclusion

A nonparametric estimator of the probability of default is proposed in this paper. This estimator takes into account 
the existence of a group of cured individuals who will never experience the default. It is based on the nonparametric 
survival estimator for mixture cure models proposed by López-Cheda (2018). The asymptotic bias and variance and the 
asymptotic normality of the NPCM probability of default estimator are proved. The simulation study carried out shows 
that the NPCM estimator is a very reasonable choice for estimating the probability of default, since it provides smaller 
estimation errors than classical methods, even in semiparametric models. The good behaviour of Beran’s estimator, which 
was also included in the comparative study as another nonparametric method, is remarkable. Work is currently underway 
to reduce the computation times of the bandwidth selectors for the smoothing parameters involved in the above-mentioned 
12
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estimators. Using cure models when the cure status is partially known is an appealing idea to be considered for future 
work. A nonparametric view along the lines similar to Safari et al. (2020) can be used.
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Appendix A. Assumptions

A.1. X , T , C are absolutely continuous random variables.
A.2. The density function of X , m, has support [0, 1].
A.3. Let H(t) = P (Z ≤ t) be the distribution function of Z and H(t|x) be the conditional distribution function of Z |X = x,

(a) Let I = [x1, x2] be an interval contained in the support of m such that,

0 < γ = inf{m(x) : x ∈ Ic} < sup{m(x) : x ∈ Ic} =  < ∞
for some Ic = [x1 − c, x2 + c] with c > 0 and 0 < c < 1.

(b) For any x ∈ I , the random variables T and C are conditionally independent given X = x.
(c) Denoting lH(·|x) = inf{t : H(t|x) > 0} and uH(·|x) = inf{t : H(t|x) = 1}, for any x ∈ Ic , 0 ≤ lH(·|x) , 0 ≤ uH(·|x) < ∞.
(d) There exist l, u, θ ∈ R with l < u, satisfying inf{1 − H(u|x) : x ∈ Ic} ≥ θ > 0. Therefore 1 − H(t|x) ≥ θ > 0 for every 

(t, x) ∈ [l, u] × Ic .
A.4. Let G(t) = P (C ≤ t) be the distribution function of C and G(t|x) be the conditional distribution function of C |X = x. 

Let τG(x) = sup{t : G(t|x) < 1}, τS0(x) = sup{t : S0(t|x) > 0} and τ0 = sup{τS0 (x) : x ∈ I}, then, τ0 < τG(x), ∀x ∈ I .
A.5. Let H1(t) = P (Z ≤ t, δ = 1) be the subdistribution function of Z when δ = 1. The corresponding subdensity functions 

of H(t) and H1(t) are uniformly bounded away from 0 on [l, u].
A.6. The first and second derivatives of m, m′(x) and m′′(x), respectively, exist and are continuous on Ic .
A.7. Let H1(t|x) be the conditional subdistribution function of Z |X = x when δ = 1. The first derivatives with respect to t

of the functions S0(t|x), G(t|x), H(t|x) and H1(t|x), i.e. S ′
0(t|x), G ′(t|x), H ′(t|x) and H ′

1(t|x) exist and are continuous 
on [l, u] × Ic .

A.8. The first and second derivatives with respect to t of the functions H(t|x) and H1(t|x), i.e. H ′(t|x), H ′
1(t|x), H ′′(t|x) and 

H ′′
1(t|x), exist and are continuous on [l, u] × Ic .

A.9. The second partial derivatives first with respect to x and second with respect to t of the functions H(t|x) and H1(t|x), 
i.e. Ḣ ′(t|x) and Ḣ ′

1(t|x) respectively, exist and are continuous on [l, u] × Ic .
A.10. The functions S0(t|x), H(t|x) and G(t|x) have bounded second-order derivatives with respect to x ∈ Ic given any value 

of t ∈ [l, u].
A.11. The density function of T , f (t) is bounded away from 0 on [l, u].

A.12.

∞∫
0

dH1(t|x)(
1− H(t|x))2 < ∞ ∀x ∈ I .

A.13. The kernel, K , is a symmetric, continuous and differentiable density function with compact support [−1, 1] and the 
total variation of K is less than some λ < ∞.

A.14. The smoothing parameter h = hn satisfies h → 0, 
nh5

lnn
= O (1) and 

(lnn)3

nh
→ 0.

A.15. The smoothing parameter g = gn satisfies g → 0, 
ng5

lnn
= O (1) and 

(lnn)3

ng
→ 0.

A.16. Let (t, x) ∈ [l, u] × Ic . The second derivative of m(u) exists at u = x. The second derivative of �(u, t, x) exists at (x, t, x)
and (x, ∞, x). The second derivative of �2(u, t, x) exists at (x, t, x) and (x, ∞, x). The second derivative of D(u, t1, t2, x)
exists at (x, t, t + b, x), (x, t, ∞, x) and (x, ∞, t, x). The second derivative of L(u, t1, t2, x) exists at (x, t, ∞, x) and 
(x, ∞, t, x).

Appendix B. Proofs

Lemma 2. Denote �(u, t, x) = E
[
ξ(Z , δ, t, x)|X = u

]
with ξ(Z , δ, t, x) defined in Section 3. Under Assumptions A.13 and A.16, then

E

[
K

(
x− X1

)
ξ(Z1, δ1, t, x)

]
= 1

h3
∂2

2

(
�(u, t, x)m(u)

)|u=x + o(h3).

h 2 ∂u

13
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Proof. Using a Taylor expansion for �(u, t, x)m(u) when u = x − hv around u = x and Assumption A.13:

E

[
K

(
x− X1

h

)
ξ(Z1, δ1, t, x)

]
=

+∞∫
−∞

K

(
x− u

h

)
�(u, t, x)m(u)du

= �(x, t, x)m(x)h + dK

2

∂2

∂u2

(
�(u, t, x)m(u)

)∣∣
u=xh

3 + o(h3).

Moreover, �(x, t, x) = 0 ∀(t, x) ∈ [0, ∞) × I , since

�(u, t, x) = E
[
ξ(Z , δ, t, x)|X = u

]=
t∫

0

dH1(z|u)

1− H(z|x) −
t∫

0

1− H(v|u)(
1− H(v|x))2 dH1(v|x). �

Lemma 3. Denote �2(u, t, x) = E
[
ξ2(Z , δ, t, x)|X = u

]
with ξ(Z , δ, t, x) defined in Section 3. Under Assumptions A.13 and A.16, then

V ar

[
K

(
x− X1

h

)
ξ(Z1, δ1, t, x)

]
= h�2(x,∞, x)m(x)cK

+h3
dK 2

2

∂2

∂u2

(
�2(u,∞, x)m(u)

)|u=x + o(h3).

Proof. First,

Var

[
K

(
x− X1

h

)
ξ(Z1, δ1, t, x)

]

= E

[
K 2
(
x− X1

h

)
ξ2(Z1, δ1, t, x)

]
− E

[
K

(
x− X1

h

)
ξ(Z1, δ1, t, x)

]2
.

Using a Taylor expansion for �2(u, t, x)m(u) when u = x − hv around u = x and Assumption A.13:

E

[
K 2
(
x− X1

h

)
ξ2(Z1, δ1, t, x)

]
=

+∞∫
−∞

K 2
(
x− u

h

)
�2(u, t, x)m(u)du

= cK�2(x, t, x)m(x)h + dK 2

2

∂2

∂u2

(
�2(u, t, x)m(u)

)∣∣
u=xh

3 + o(h3).

From Lemma 2, E
[
K

(
x− X1

h

)
ξ(Z1, δ1, t, x)

]2
= O (h6). Then,

Var

[
K

(
x− X1

h

)
ξ(Z1, δ1, t, x)

]

= cK�2(x, t, x)m(x)h + dK 2

2

∂2

∂u2

(
�2(u, t, x)m(u)

)∣∣
u=xh

3 + o(h3). �

Lemma 4. Denote D(u, t1, t2, x) = Cov
[
ξ(Z1, δ1, t1, x), ξ(Z1, δ1, t2, x)|X1 = u

]
and B(u, t1, t2, x) = �(u, t1, x)�(u, t2, x)m(u). 

Under Assumptions A.13 and A.16, then

Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

h

)
ξ(Z1, δ1, t2, x)

]

= cK D(x, t1, t2, x)h + dK 2

2

(
D ′′(x, t1, t2, x) + B ′′(x, t1, t2, x)

)
h3 + o(h3).

Proof. Using the Law of total covariance,
14
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Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

h

)
ξ(Z1, δ1, t2, x)

]

= E

[
Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

h

)
ξ(Z1, δ1, t2, x)

∣∣X1

]]

+E

[
K 2
(
x− X1

h

)
�(X1, t1, x)�(X1, t2, x)

]

−E

[
K

(
x− X1

h

)
�(X1, t1, x)

]
E

[
K

(
x− X1

h

)
�(X1, t2, x)

]
= S1 + S2 − S3.

(B.1)

Using a Taylor expansion for D(u, t1, t2, x)m(u) when u = x − hv around u = x and Assumption A.13:

S1 = cK D(x, t1, t2, x)h + dK 2

2
D ′′(x, t1, t2, x)h3 + o(h3).

Using a Taylor expansion for B(u, t1, t2, x) when u = x − hv around u = x and Assumption A.13 and considering that 
B(x, t1, t2, x) = 0 for all t1, t2 ∈ [0, ∞), since �(x, t, x) = 0 ∀(t, x) ∈ [0, ∞) × I:

S2 = dK 2

2
B ′′(x, t1, t2, x)h3 + o(h3).

Finally, from Lemma 2, E
[
K

(
x− X1

h

)
�(X1, t, x)

]
= O (h3). Then, S3 = O (h6), and replacing S1, S2 and S3 in (B.1), the 

lemma is proved. �
Proof of Lemma 1. Let us denote Ŝh,g(t|x) := ŜNPCMh,g (t|x). According to the definition of the NPCM estimator in (4),

Ŝh,g(t|x) − S(t|x) = 1− p̂h(x) + p̂h(x)̂S0,g(t|x) −
(
1− p(x) + p(x)S0(t|x)

)
= (

S0(t|x) − 1
)(̂
ph(x) − p(x)

)+ p(x)
(̂
S0,g(t|x) − S0(t|x)

)
+(̂ph(x) − p(x)

)(̂
S0,g(t|x) − S0(t|x)

)
.

(B.2)

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 1 in López-Cheda et al. (2017a), the almost sure represen-
tations of the incidence and the latency nonparametric estimators are available:

p̂h(x) − p(x) = (
p(x) − 1

) n∑
i=1

wA
h,i(x)ξ(Zi, δi,∞, x) + Rn(x), (B.3)

Ŝ0,g(t|x) − S0(t|x) =
n∑

i=1

wA
g,i(x)η(Zi, δi, t, x) + Rn(t|x), (B.4)

with

sup
x∈I

|Rn(x)| = O

(
lnn

nh

)3/4

a.s. and sup
(t,x)∈[l,u]×I

|Rn(t|x)| = O

(
lnn

ng

)3/4

a.s.

Replacing (B.3) and (B.4) in (B.2), the almost sure representation of the NPCM survival estimator is as follows:
Ŝh,g(t|x) − S(t|x) =

= (
S0(t|x) − 1

)(
p(x) − 1

) n∑
i=1

wA
h,i(x)ξ(Zi, δi,∞, x) + p(x)

n∑
i=1

wA
g,i(x)η(Zi, δi, t, x)

+(S0(t|x) − 1
)
Rn(x) + p(x)Rn(t|x) + (̂

ph(x) − p(x)
)(̂
S0,g(t|x) − S0(t|x)

)
.

From Theorem 3 in López-Cheda et al. (2017b) and Theorem 3 in López-Cheda et al. (2017a), it follows that

p̂h(x) − p(x) = O p

(
1√
nh

)
, Ŝ0,g(t|x) − S0(t|x) = O p

(
1√
ng

)
.

Then, (̂
ph(x) − p(x)

)(̂
S0,g(t|x) − S0(t|x)

)= O p

(
1

n
√
hg

)

15
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and

Ŝh,g(t|x) − S(t|x) = (
S0(t|x) − 1

)(
p(x) − 1

) n∑
i=1

wA
h,i(x)ξ(Zi, δi,∞, x)

+p(x)
n∑

i=1

wA
g,i(x)η(Zi, δi, t, x) + R1

n(t|x),

where

R1
n(t|x) = (

S0(t|x) − 1
)
Rn(x) + p(x)Rn(t|x) + O p

(
1

n
√
hg

)
= O p

(
lnn

(
1

nh
+ 1

ng

))3/4

. �

Proof of Theorem 1. Let us denote P̂Dh,g(t|x) := P̂D
NPCM
h,g (t|x) and Ŝh,g(t|x) := ŜNPCMh,g (t|x). Consider the function

Wh,g(t, t + b, x) = S(t|x)(̂Sh,g(t + b|x) − S(t + b|x))− S(t + b|x)(̂Sh,g(t|x) − S(t|x))
Ŝh,g(t|x)S(t|x)

.

Since

Ŝh,g(t + b|x)
Ŝh,g(t|x)

− S(t + b|x)
S(t|x) = −(P̂Dh,g(t|x) − PD(t|x))

and
Ŝh,g(t + b|x)
Ŝh,g(t|x)

− S(t + b|x)
S(t|x) =

= S(t|x)(̂Sh,g(t + b|x) − S(t + b|x))− S(t + b|x)(̂Sh,g(t|x) − S(t|x))
Ŝh,g(t|x)S(t|x)

= Wh,g(t, t + b, x)

(
Ŝh,g(t|x)
S(t|x) + 1− Ŝh,g(t|x)

S(t|x)
)

= 1

S(t|x)
(̂
Sh,g(t + b|x) − S(t + b|x))− S(t + b|x)

S2(t|x)
(̂
Sh,g(t|x) − S(t|x))

+Wh,g(t, t + b, x)

(
1− Ŝh,g(t|x)

S(t|x)
)

,

we have

P̂Dh,g(t|x) − PD(t|x) = a1
(̂
Sh,g(t + b|x) − S(t + b|x))+ a2

(̂
Sh,g(t|x) − S(t|x))

+Wh,g(t, t + b, x)

(
Ŝh,g(t|x) − S(t|x)

S(t|x)
)

,
(B.5)

with a1 = − 1

S(t|x) and a2 = S(t + b|x)
S2(t|x) .

Using the almost sure representation of Ŝh,g(t + b|x) from Lemma 1 in (B.5) and considering the functions ϕn,i(t|x)
defined in the statement of Theorem 1, the almost sure representation of P̂Dh,g(t|x) is as follows:

P̂Dh,g(t|x) − PD(t|x) = a1
∑n

i=1 ϕn,i(t + b|x) + a2
∑n

i=1 ϕn,i(t|x) + R2
n(t|x)

=∑n
i=1 �n,i(t, x) + R2

n(t|x),
(B.6)

where �n,i(t, x) = a1ϕn,i(t + b|x) + a2ϕn,i(t|x) are independent and identically distributed for all i = 1, ..., n and

R2
n(t|x) = − 1

S(t|x) R
1
n(t + b|x) + S(t + b|x)

S2(t|x) R1
n(t|x) + Wh,g(t, t + b, x)

(
Ŝh,g(t|x) − S(t|x)

S(t|x)
)

.

From Equation (7) in Lemma 1, we have Ŝh,g(t|x) − S(t|x) = τ1 + τ2 + τ3 where

τ1 = (
S0(t|x) − 1

)(
p(x) − 1

) n∑
wA

h,i(x)ξ(Zi, δi,∞, x),

i=1

16
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τ2 = p(x)
n∑

i=1

wA
g,i(x)η(Zi, δi, t, x),

τ3 = O p

(
lnn

(
1

nh
+ 1

ng

))3/4

.

Lemmas 2 and 3 and straightforward but tedious calculations give τ1 = O p

(
h2 + 1√

nh

)
and τ2 = O p

(
g2 + 1√

ng

)
. Since 

nh

(lnn)3
→ ∞ and 

ng

(lnn)3
→ ∞, τ3 is negligible with respect to τ1 and τ2. Then,

Wh,g(t, t + b, x)

(
Ŝh,g(t|x) − S(t|x)

S(t|x)
)

= O p

(
h4 + g4 + 1

nh
+ 1

ng

)
.

Therefore,

R2
n(t|x) = O p

(
lnn

(
1

nh
+ 1

ng

))3/4

+ O p

(
h4 + g4 + 1

nh
+ 1

ng

)
.

Using Assumptions A.14 and A.15, the second term in R2
n(t|x) is negligible with respect to O p

(
lnn

(
1

nh
+ 1

ng

))3/4

and 

Theorem 1 is proved. �
Proof of Theorem 2. According to the almost sure representation of P̂Dh,g(t|x) := P̂D

NPCM
h,g (t|x), the asymptotic expression of 

the bias is obtained from its dominant term. Then,

E

[ n∑
i=1

�n,i(t, x)

]
=

n∑
i=1

E
[
�n,i(t, x)

]= nE
[
�n,1(t, x)

]
= na1E

[
ϕn,1(t + b, x)

]+ na2E
[
ϕn,1(t, x)

]
,

(B.7)

with a1 = − 1

S(t|x) and a2 = S(t + b|x)
S2(t|x) .

The expression of E
[
ϕn,1(t, x)

]
in (B.7) is then calculated using Lemmas 2 and 3:

E
[
ϕn,1(t, x)

]= (
S0(t|x) − 1

)(
p(x) − 1

)
E
[
wA

h,1(x)ξ(Z1, δ1,∞, x)
]

+p(x)E
[
wA

g,i(x)η(Z1, δ1, t, x)
]

= B1(t, x)
h2

n
+ B2(t, x)

g2

n
+ o

(
h2

n

)
+ o

(
g2

n

)
.

(B.8)

Replacing the expression (B.8) in (B.7), the bias part of the theorem is proved:

E

[ n∑
i=1

�n,i(t, x)

]
= B̃1(t, x)h2 + B̃2(t, x)g2 + o(h2) + o(g2),

where B̃1(t, x) and B̃1(t, x) were defined in Section 3.
The asymptotic expression of the variance of P̂Dh,g(t|x) is obtained from the variance of the dominant term of its almost 

sure representation:

Var

[ n∑
i=1

�n,i(t, x)

]
=

n∑
i=1

Var
[
�n,1(t, x)

]= nV ar
[
�n,1(t, x)

]
= na21Var

[
ϕn,1(t + b, x)

]+ na22Var
[
ϕn,1(t, x)

]
+2na1a2Cov

[
ϕn,1(t + b, x),ϕn,1(t, x)

]
.

(B.9)

To find the asymptotic expression of Cov
[
ϕn,1(t + b, x), ϕn,1(t, x)

]
,

17
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Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
= (

S0(t1|x) − 1
)(
S0(t2|x) − 1

)(
p(x) − 1

)2 1

n2h2m2(x)
A1

+(S0(t1|x) − 1
)(
p(x) − 1

)
p(x)

1

n2hgm2(x)
A2

+(S0(t2|x) − 1
)(
p(x) − 1

)
p(x)

1

n2hgm2(x)
A3 + p2(x)

1

n2g2m2(x)
A4.

(B.10)

First, from Lemma 3,

A1 = Var

[
K

(
x− X1

h

)
ξ(Z1, δ1,∞, x)

]
= h�2(x,∞, x)m(x)cK + O (h3). (B.11)

Second, using Lemmas 3 and 4,

A4 = Cov

[
K

(
x− X1

g

)
η(Z1, δ1, t1, x), K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]
= C1(t1, t2, x)g + O (g3).

(B.12)

In order to obtain asymptotic expressions of A2 and A3, an asymptotic expression for

Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]
is obtained by distinguishing three different cases:

(i) If Ch,g := lim
n→∞

h

g
∈ (0, ∞):

Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]

� Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

h/Ch,g

)
η(Z1, δ1, t2, x)

]
= E

[
Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

h/Ch,g

)
η(Z1, δ1, t2, x)

∣∣∣X1

]]

+E

[
K

(
x− u

h

)
K

(
Ch,g

x− u

h

)
�(X1, t1, x)�η(X1, t2, x)

]

−E

[
K

(
x− X1

h

)
�(X1, t1, x)

]
E

[
K

(
Ch,g

x− u

h

)
�η(X1, t2, x)

]
= S1 + S2 − S3.

Considering the function L(u, t1, t2, x) and its Taylor expansion when u = x − hv around u = x:

S1 =
+∞∫

−∞
K

(
x− u

h

)
K

(
Ch,g

x− u

h

)
L(u, t1, t2, x)du

= h

+∞∫
−∞

K (v)K (Ch,g v)

(
L(x, t1, t2, x) − hvL′(x, t1, t2, x) + O (h2)

)
dv.

Since K is symmetric, K (Ch,g v) = K (−Ch,g v) and the function K (v)K (Ch,g v) is also even. Consequently, 
∫ +∞
−∞ K (v)×

K (Ch,g v)vdv = 0. Then,

S1 = c̃K (Ch,g)L(x, t1, t2, x)h + O (h3). (B.13)

Defining Bη(u, t1, t2, x) = �(u, t1, x)�η(u, t2, x)m(u) and using a Taylor expansion for Bη(u, t1, t2, x) when u = x − hv
around u = x and considering that Bη(x, t1, t2, x) = 0 for all t1, t2 ∈ [0, ∞), x ∈ I , since �(x, t, x) = 0 for all (t, x) ∈
[0, ∞) × I:
18
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S2 =
+∞∫

−∞
K

(
x− u

h

)
K

(
Ch,g

x− u

h

)
�(u, t1, x)�η(u, t2, x)m(u)du

= c̃K (Ch,g)Bη(x, t1, t2, x)h + O (h3) = O (h3).

(B.14)

From Lemma 2, E
[
K

(
x− X1

h

)
�(X1, t, x)

]
= O (h3).

Now, using a Taylor expansion for �η(u, t, x)m(u) when u = x − hv around u = x,

E

[
K

(
Ch,g

x− X1

h

)
�η(X1, t, x)

]
=
( +∞∫

−∞
K
(
Ch,g v

)
dv

)
�η(x, t, x)m(x)h + O (h3).

Considering the definition of the function η(Z , δ, t, x) given in Section 3 and Lemma 2, �η(x, t, x) = 0 for all (t, x) ∈
[0, ∞) × I and E

[
K

(
Ch,g

x− X1

h

)
�η(X1, t, x)

]
= O (h3). Therefore,

S3 = O (h6). (B.15)

Using the expressions of S1 in (B.13), S2 in (B.14) and S3 in (B.15),

Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]
= c̃K (Ch,g)L(x, t1, t2, x)h + O (h3).

Therefore,

A2 = Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1,∞, x), K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]
= c̃K (Ch,g)L(x,∞, t2, x)h + O (h3)

(B.16)

and

A3 = Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

g

)
η(Z1, δ1,∞, x)

]
= c̃K (Ch,g)L(x, t1,∞, x)h + O (h3).

(B.17)

Replacing (B.11), (B.12), (B.16) and (B.17) in (B.10) and assuming lim
n→∞

h

g
= Ch,g , we have

Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
=
(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2
m(x)

cK�2(x,∞, x)
1

n2h

+Ch,g̃ cK (Ch,g)

(
S0(t1|x) − 1

)(
p(x) − 1

)
p(x)

m2(x)
L(x,∞, t2, x)

1

n2h

+Ch,g̃ cK (Ch,g)

(
S0(t2|x) − 1

)(
p(x) − 1

)
p(x)

m2(x)
L(x, t1,∞, x)

1

n2h

+Ch,g
p2(x)C1(t1, t2, x)

m2(x)

1

n2h
+ o

(
1

n2h

)
+ O

(
h

n2

)
.

Considering the functions V1, V2 and V3, defined in Section 3:
Cov

[
ϕn,1(t1, x), ϕn,1(t2, x)

]
=
(
V1(t1, t2, x) + Ch,g V2(t1, t2, x) + Ch,g̃ cK (Ch,g)V3(t1, t2, x)

) 1

n2h

+o

(
1

n2h

)
+ O

(
h

n2

)
.

(B.18)

Using Equation (B.18) with t1 = t2 = t + b and t1 = t2 = t , the expressions of Var
[
ϕn,1(t + b, x)

]
and Var

[
ϕn,1(t, x)

]
are 

also available. Therefore, Case (i) of the Theorem is proved by replacing (B.18) in (B.9):
19
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Var
[∑n

i=1 �n,i(t, x)
]

= (
Ṽ1(t + b, t, x) + Ch,g Ṽ2(t + b, t, x) + Ch,g̃ cK (Ch,g)Ṽ3(t + b, t, x)

) 1

nh

+o

(
1

nh

)
+ O

(
h

n

)
.

(ii) If lim
n→∞

h

g
= 0:

From Lemma 3 and Equation (B.12) when t1 = t2, we have

Var

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x)

]
= hcK�2(x, t1, x)m(x) + O (h3),

Var

[
K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]
= C1(t2, t2, x)g + O (g3).

Then, using the Cauchy–Schwarz inequality:

Cov

[
K

(
x− X1

h

)
ξ(Z1, δ1, t1, x), K

(
x− X1

g

)
η(Z1, δ1, t2, x)

]

≤
√
hgcK�2(x, t1, x)m(x)C1(t2, t2, x) + O (hg3) + O (gh3). (B.19)

Therefore,

A2 = O
(
(hg)1/2

)
, A3 = O

(
(hg)1/2

)
. (B.20)

Plugging (B.11), (B.12) and (B.20) in (B.10), we have
Cov

[
ϕn,1(t1, x), ϕn,1(t2, x)

]

=
(
S0(t1|x) − 1

)(
S0(t2|x) − 1

)(
p(x) − 1

)2
m(x)

cK�2(x,∞, x)
1

n2h

+ p2(x)C1(t1, t2, x)

m2(x)

1

n2g
+ O

(
h

n2

)
+ O

(
g

n2

)
+ O

(√
hg

n2hg

)
.

(B.21)

Assuming lim
n→∞

h

g
= 0 and considering the function V1(t1, t2, x), we have

Cov
[
ϕn,1(t1, x),ϕn,1(t2, x)

]= V1(t1, t2, x) + o

(
1

n2h

)
+ O

(
g

n2

)
. (B.22)

Using the expression of Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
in (B.22) with t1 = t2 = t + b and t1 = t2 = t , the expressions of 

Var
[
ϕn,1(t + b, x)

]
and Var

[
ϕn,1(t, x)

]
are also available. Therefore, Case (ii) of the Theorem is proved by replacing 

(B.22) in (B.9):

Var
[∑n

i=1 �n,i(t, x)
]

= Ṽ1(t + b, t, x)
1

nh
+ o

(
1

nh

)
+ O

(
g

n

)
.

(iii) From Equation (B.21) and assuming that lim
n→∞ g/h = 0, we have

Cov
[
ϕn,1(t1, x),ϕn,1(t2, x)

]= V2(t1, t2, x)
1

n2g
+ o

(
1

n2g

)
+ O

(
h

n2

)
. (B.23)

Considering the expression of Cov
[
ϕn,1(t1, x), ϕn,1(t2, x)

]
in (B.23) with t1 = t2 = t + b and t1 = t2 = t , the expressions 

of V ar
[
ϕn,1(t + b, x)

]
and V ar

[
ϕn,1(t, x)

]
are also available. Therefore, Case (iii) of the Theorem is proved by replacing 

(B.23) in (B.9):

Var
[∑n

i=1 �n,i(t, x)
]

= Ṽ2(t + b, t, x)
1

ng
+ o

(
1

ng

)
+ O

(
h

n

)
. �

Proof of Theorem 3. Denote P̂Dh,g(t|x) := P̂D
NPCM
h,g (t|x).
20



R. Peláez, I. Van Keilegom, R. Cao et al. Computational Statistics and Data Analysis 189 (2024) 107853
(ii) From Equation (B.6) in the proof of Lemma 1 we have
√
nh
(
P̂Dh,g(t|x) − PD(t|x))= √

nh
∑n

i=1 �n,i(t, x) + R̃2
n(t|x), (B.24)

where �n,i(t, x) = a1ϕn,i(t + b|x) + a2ϕn,i(t|x) with a1 = − 1

S(t|x) , a2 = S(t + b|x)
S2(t|x) and R̃2

n(t|x) =
√
nhR2

n(t|x). The vari-
ables �n,i(t, x) are independent and identically distributed for all i = 1, ..., n.
From Theorem 3 in López-Cheda et al. (2017b) and Theorem 1 and Theorem 3 in López-Cheda et al. (2017a) and 

assuming limn→∞
h

g
∈ (0, ∞), it follows that

R̃2
n(t|x) = √

nhR2
n(t|x) = √

nhO P

(
lnn

nh

)3/4

+ √
nhO P

(
lnn

ng

)3/4

+√
nhO P

(
h4 + g4 + 1

nh
+ 1

ng

)
.

Under the assumptions of Theorem 3, 
(lnn)3

nh
→ 0, 

(
lnn

ng

)3/4

(nh)1/2 → 0 and nh → ∞, the remainder term R̃2
n(t|x) is 

negligible with respect to the dominant term of (B.24).
On the other hand, from Case (i) of Theorem 2 and Equation (B.24), the variance of the dominant term is finite, since 
it is given by:
Var

[√
nh
∑n

i=1 �n,i(t, x)
]

= nh
(
Ṽ1(t + b, t, x) + Ch,g Ṽ2(t + b, t, x) + Ch,g̃ cK (Ch,g)Ṽ3(t + b, t, x)

) 1

nh

+nh o

(
1

nh

)
+ nh O

(
h

n

)
= O (1).

Therefore, the asymptotic distribution of 
√
nh
(
P̂Dh,g(t|x) − PD(t|x)) is the same as the asymptotic distribution of √

nh
∑n

i=1 �n,i(t, x). If Lindeberg’s condition for triangular arrays (see Theorem 7.2 in Billingsley (1968)) is satisfied, 
then

n∑
i=1

(√
nh�n,i(t, x) − E

[√
nh�n,i(t, x)

]) d−→ N(0, s), (B.25)

where

s2 = Ṽ1(t + b, t, x) + Ch,g Ṽ2(t + b, t, x) + Ch,g̃ cK (Ch,g)Ṽ3(t + b, t, x).

Lindeberg’s condition is now checked. It is given by

lim
n→∞

1

s2
E

[ n∑
i=1

(√
nh�n,i(t, x) − E

[√
nh�n,i(t, x)

])2
1n,i

]
= 0 (B.26)

for every ε > 0, where 1n,i denotes the indicator function given by

1n,i = 1
(∣∣√nh�n,i(t, x) − E[√nh�n,i(t, x)]

∣∣> εs
)
.

One can define

ζn,i(t, x) = (
S0(t|x) − 1

)(
p(x) − 1

) K ((x− Xi)/h
)

m(x)
ξ(Zi, δi,∞, x)

+p(x)
K
(
(x− Xi)/g

)
m(x)

η(Zi, δi, t, x).

Then,

�n,i(t, x) = 1

nh
χn,i(t, x),

where χn,i(t, x) =
(

− 1
ζn,i(t + b, x) + S(t + b|x)

2 ζn,i(t, x)
)
, which leads to
S(t|x) S (t|x)
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1n,i = 1

(∣∣∣∣ 1√
nh

χn,i(t, x) − E

[
1√
nh

χn,i(t, x)

]∣∣∣∣> εs

)
. (B.27)

Using Assumption A.3d, ξ(Z , δ, t, x) is found out to be bounded:

|ξ(Z , δ, t, x)| ≤ 1

θ
+

t∫
0

dH1(u|x)
θ2

≤ 1

θ
+ H(t|x)

θ2
≤ 1

θ
+ 1

θ2

and, consequently, η is also bounded:

|η(Z , δ, t, x)| ≤ S(t|x)
p(x)

(
1

θ
+ 1

θ2

)
+
(
1− p(x)

)(
1− S(t|x))

p2(x)

(
1

θ
+ 1

θ2

)
.

On the one hand, nh → ∞, then, 1/
√
nh → 0. On the other hand, η was proved to be bounded and K and m have 

compact support, according to Assumptions A.2 and A.13. Therefore, there exists n0 ∈ N such that for all i = 1, ..., n, 
1n,i = 0 for all n ≥ n0 with 1n,i defined in (B.27). Consequently,

lim
n→∞

1

s2
E

[ n∑
i=1

(√
nh�n,i(t, x) − E

[√
nh�n,i(t, x)

])2
1n,i

]
= 0,

which proves Lindeberg’s condition in (B.26).
Finally, assuming h = Chn−1/5 and g = Cgn−1/5 and considering Equation (8), we have

√
nh

n∑
i=1

�n,i(t, x)
d−→ N(μ, s),

where μ = C5/2
h B̃1(t, x) + C5/2

g B̃2(t, x).
(ii) Considering again (B.24), under the assumptions of Case (ii) in Theorem 3 and following the argument of the previous 

case, the remainder term R̃2
n(t|x) is found to be negligible with respect to the dominant term in (B.24). Furthermore, 

the variance of this dominant term is finite, since, from the proof of Theorem 2,

Var
[√

nh
∑n

i=1 �n,i(t, x)
]= nh

(
Ṽ1(t + b, t, x)

1

nh
+ o

(
1

nh

)
+ O

(
h

n

))
= O (1).

Therefore, the asymptotic distribution of 
√
nh
(
P̂Dh,g(t|x) − PD(t|x)) is the same as the asymptotic distribution of √

nh
∑n

i=1 �n,i(t, x). If Lindeberg’s condition given in (B.26) is satisfied, then

n∑
i=1

(√
nh�n,i(t, x) − E

[√
nh�n,i(t, x)

]) d−→ N(0, s), (B.28)

where s2 = Ṽ1(t + b, t, x).
Lindeberg’s condition is proved here following the same argument shown in the first case. Finally, assuming g =
Cgn−1/5 and n1/5h → 0 and considering Equation (8),

√
nh

n∑
i=1

�n,i(t, x)
d−→ N(μ, s),

where μ = C5/2
g B̃2(t, x).

(iii) Assuming Ch := limn→∞ n1/5h ∈ (0, ∞) and limn→∞ n1/5g = 0:
Considering again (B.24), under the assumptions of Case (iii) in Theorem 3 and following the argument of the first case, 
the remainder term R̃2

n(t|x) is found to be negligible with respect to the dominant term in (B.24). Furthermore, the 
variance of this dominant term is finite, since, from the proof of Theorem 2,

Var
[√

ng
∑n

i=1 �n,i(t, x)
]= ng

(
Ṽ2(t + b, t, x)

1

ng
+ o

(
1

ng

)
+ O

(
h

n

))
= O (1).

Therefore, the asymptotic distribution of 
√
ng
(
P̂Dh,g(t|x) − PD(t|x)) is the same as the asymptotic distribution of √

ng
∑n

i=1 �n,i(t, x). If Lindeberg’s condition given in (B.26) is satisfied, then
22
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n∑
i=1

(√
ng�n,i(t, x) − E

[√
ng�n,i(t, x)

]) d−→ N(0, s), (B.29)

where s2 = Ṽ2(t + b, t, x).
Lindeberg’s condition is proved here following the same arguments used in the first case. Finally, assuming h = Chn−1/5

and n1/5g → 0 and considering Equation (8), we have

√
ng

n∑
i=1

�n,i(t, x)
d−→ N(μ, s),

where μ = C5/2
h B̃1(t, x). �
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