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Abstract

Respiratory diseases have a significant global impact, and assessing these conditions is crucial for improving patient outcomes.
Chest X-ray is widely used for diagnosis, but expert evaluation can be challenging. Automatic computer-aided diagnosis
methods can provide support for clinicians in these tasks. Deep learning has emerged as a set of algorithms with exceptional
potential in such tasks. However, these algorithms require a vast amount of data, often scarce in medical imaging domains. In
this work, a new data augmentation methodology based on adapted generative latent diffusion models is proposed to improve
the performance of an automatic pathological screening in two high-impact scenarios: tuberculosis and lung nodules. The
methodology is evaluated using three publicly available datasets, representative of real-world settings. An ablation study
obtained the highest-performing image generation model configuration regarding the number of training steps. The results
demonstrate that the novel set of generated images can improve the performance of the screening of these two highly relevant
pathologies, obtaining an accuracy of 97.09%, 92.14% in each dataset of tuberculosis screening, respectively, and 82.19% in
lung nodules. The proposal notably improves on previous image generation methods for data augmentation, highlighting the

importance of the contribution in these critical public health challenges.

Keywords Deep learning - Stable diffusion - Chest X-ray - Tuberculosis - Lung nodules

1 Introduction

Respiratory diseases present a great global impact, causing
about 1 million deaths annually in Europe [1]. Some of these
diseases are acute, but there are also chronic conditions that
can severely affect the life quality of their sufferers. Given the
increase in life expectancy and the aging of the population,
the mentioned diseases are even more prevalent and their
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impact will continue raising in the next decades. Lung tis-
sue can be affected by many diseases and chronic conditions
as asthma [2], cystic fibrosis [3], common flu [4], chronic
obstructive pulmonary disease (COPD) [5], lung cancer [6],
pneumonia [7], tuberculosis [8] or, more recently, COVID-
19 [9]. Some of the most remarkable diseases among this
group are lung cancer that represent a form of malignant
lung nodules (the first cause of death by a respiratory con-
dition with more than 2.2 million cases and more than 1.79
million deaths in 2020 [10]) and tuberculosis. In the case
of lung nodules, it is worth to mention that many of them
are benign but, given that they could be a sign of lung can-
cer, it is important to identify the actual underlying origin of
the nodule and also to monitor its evolution [11]. Tuberculo-
sis, which caused more than 1.6 million deaths worldwide in
2021 [12], stands out for its acute nature and ease of trans-
mission, meaning that symptoms can improve or worsen very
rapidly in short frames of time and lead to a rapid collapse
of the healthcare services. In this context, clinicians require
tools to quickly evaluate the state of each patient at a certain
moment, to understand the extent of the pathology and to
study its evolution.
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The assessment of the pathological affectation on each
patient can be performed using different techniques. In par-
ticular, the visualization of the affected area can be done with
imaging modalities such as computerized tomography (CT)
[13] or magnetic resonance imaging (MRI) [14]. However,
despite these modalities present a great quality and level of
detail, chest X-ray [15] is often used as the first imaging study
given that the captures are cheaper and easier to perform.
In a context of health emergency, CT or MRI are therefore
an option to discard, as they would suppose a bottleneck to
diagnose a reasonable amount of patients in a small amount
of time. Instead, chest X-ray is a more appropriate image
modality, given that it fits better to an emergency clinical
scenario.

To support the tasks of the health workers, Computer-
Aided Diagnosis (CAD) methods are extremely useful [16].
In the last years, these methods have been benefited from
deep learning algorithms, which usually offer a better perfor-
mance in comparison with classical methods [17]. However,
the main issue that exists with this kind of strategy is the
necessity of training with great amounts of labeled data,
which is usually scarce in medical imaging domains. This
is caused by the fact that manual labeling is a tedious, error-
prone and time-consuming task that must be performed by
professionals with a great experience in the field. To over-
come this problem, many data augmentation strategies have
been proposed in the state-of-the-art. The classical strategies
of data augmentation include the modification of images with
random trivial transformations such as rotations, translations
or pixel intensity changes, among others [18]. However, the
potential of these strategies is very limited, due to the lack of
flexibility in their transformations. In particular, this limita-
tion is caused by the lack of ability to learn image features by
applying fixed transformations independently of the domain.
In the case of medical imaging, this means that the data aug-
mentation is unable to learn the specific characteristics of
a given domain (for example, to understand those that are
representative of a particular pathological scenario). There-
fore, the differences that are present on the novel transformed
images are usually irrelevant under a clinical point of view.

To solve the aforementioned issues, many efforts have
been done in the last years to propose data augmentation
alternatives, based on image generation [19]. The image gen-
eration models overcome the problem by learning the most
relevant characteristics of a particular domain. In this way,
the models are then able to randomly generate novel images
that belong to the domain, reusing the previous knowledge.
One of the most popular strategies is the use of Generative
Adversarial Networks (GAN) [20]. A GAN is a deep network
architecture composed of 2 different modules: the generator
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and the discriminator. The objective of the generator is to gen-
erate synthetic images with a realistic appearance, under the
point of view of the discriminator. The most classical GAN
approach consists on the generation of realistic images repre-
sentative of a domain obtained from random noise. However,
it has also been found that conditioning the generation model
with an input image is useful to guide the generation process.
In this scope, we can find the image translation models [21].
These proposals are able to convert input images from a cer-
tain domain to another different domain (for instance, in the
field of medical imaging, it can convert the image of a nor-
mal patient to its hypothetical pathological version and vice
versa). The potential of GAN architectures and image trans-
lation models was demonstrated in some medical imaging
domains, such is the case of CT [22], brain MRI [23], or
Optical Coherence Tomography (OCT) in the field of oph-
thalmology [24, 25].

However, despite the advantages of these data augmen-
tation strategies, they still have some important points of
improvement. In particular, these models show some issues
like mode collapse (i.e., a situation where all the images gen-
erated by the model are very similar or identical) and training
instability that is produced by the competition between the
generator and the discriminator [26]. On their hand, the
latent diffusion models present some improvements that can
overcome those issues. Firstly, these models overcome the
problem of mode collapse by including in their architec-
tures several modules that allow better modeling of complex
image distributions. Moreover, they can be trained without a
discriminator, reducing the complexity of the loss functions
that must be defined and tackling the problem of training
instability, thanks to the removal of the competition between
modules. These models also present other great advantages,
like an inherent integration of Natural Language Process-
ing (NLP) to the pipeline in the form of text prompts that
helps to guide the training process, making the methodol-
ogy more powerful. In the context of medical imaging, these
text prompts can be obtained from the clinical history of the
patients. This brings a great potential to the model, given that
the imaging studies are usually accompanied by their corre-
sponding clinical description in text, contributing with more
useful information. In the last years, the research community
has been benefited by new proposals of generative models
with the aim to overcome the mentioned issues. In particular,
diffusion models like Stable Diffusion [27] or DALL-E [28]
have exceeded the performance of previous state-of-the-art
approaches with GAN architectures in generic domains.

Nevertheless, despite all these advantages in generic
domains, the quality of generated images can be rapidly iden-
tified as fake for many prompts, specially when those prompts
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are extremely complex and specific. This is understandable,
given that the proposed latent diffusion models are originally
conceived to accept any kind of prompt combination, while
they can only be trained in a limited amount of prompts.
Nonetheless, the generation process can be more manage-
able in a restricted domain, where only certain prompts will
be inputted. This is the case of a specific biomedical imaging
modality, which always represents the same reality, then hav-
ing a more restricted data distribution, easier to derive, and
a more manageable set of possible prompts, specially in a
particular pathological scenario. Although recent progress in
image generation approaches is both promising and intrigu-
ing, the current existing studies have yet to tackle the pressing
challenges specific to tuberculosis and lung nodule screen-
ing. These highly relevant and prevalent pathologies demand
tailored solutions, given their unique complexities and sig-
nificant implications for public health. Furthermore, data
scarcity is a crucial issue in these scenarios, as deep learn-
ing algorithms require large amounts of data to perform
optimally, which is often unavailable in medical imaging
domains.

In this work, we address a critical gap in the litera-
ture by proposing a novel chest X-ray data augmentation
strategy based on image generation provided by latent dif-
fusion models, in particular, the popular Stable Diffusion
model. Our approach specifically targets two highly relevant
and challenging pulmonary pathological scenarios: tuber-
culosis and lung nodules. By focusing on these scenarios,
we aim to enhance the performance of automatic screen-
ing methods using chest X-ray images, ultimately benefiting
patients, healthcare professionals, and public health systems.
To achieve this, we fine-tune a generative latent diffusion
model in both normal and pathological scenarios, generat-
ing useful synthetic chest X-ray images representative of
the domain. We then integrate this novel set of synthetic
images into the original dataset to bolster the performance
of a fully automatic pathological screening method, imple-
mented using a cutting-edge convolutional neural network
architecture. We validate our proposal using three differ-
ent representative public datasets affected by data scarcity,
including two state-of-the-art public datasets for tuberculo-
sis screening (Montgomery County and Shenzhen) and one
additional dataset for lung nodule screening (JSRT). Our rig-
orous experimental design features an ablation study for each
dataset, analyzing the data augmentation impact concerning
the number of training steps for the latent diffusion model.
Furthermore, we provide an incremental comparison of our
methodology with the results of the baseline (i.e., using only
classical data augmentation), CUT data augmentation, and
latent diffusion data augmentation itself. The experimenta-

tion demonstrates the substantial potential of our proposed
methodology, surpassing the performance of the baseline
and classical image generation with CUT across all scenar-
ios. This opens up the possibility of adding complementary
information sources, like the image study reports, to continue
improving that performance. This success indicates that our
approach is suitable for extrapolation to other biomedical
image modalities and domains, effectively addressing the
gap in the literature while offering a valuable solution for
data scarcity challenges in medical imaging.

The rest of the manuscript is structured as follows. In
Section 2, we provide an insight of the works previously
available in the state-of-the-art, closely related with the topic
discussed in this manuscript. Then, in Section 3, we describe
the 3 used public datasets, as well as the software and
hardware resources that are necessary to reproduce the exper-
imental procedure. After that, in Section 4, the proposed
methodology is deeply explained, describing each of the fol-
lowed steps: the first step of image generation in Section 4.1
and the second step of pathological screening in Section 4.2.
In this section, we also explain the experimental details
(Section 4.3) and the used evaluation metrics (Section 4.4).
After that, the results of the experimental validation and their
discussion are explained in Section 5. Finally, the main con-
clusions and possible lines of future work are explained in
Section 6.

2 Related works

The potential of image generation with GAN architectures
has been proven in chest X-ray imaging. As reference, the
work of Malygina etal. [29] proposes a method of image gen-
eration using an image translation model based on a GAN
architecture, CycleGAN [30], to improve the performance
of pneumonia classification in chest X-ray images. Particu-
larly, in the mentioned work, CycleGAN is used to convert
normal images to their hypothetical representation if they
were pathological and vice versa. Moreover, Moris et al.
[31] proposed a methodology of data augmentation using the
same image translation architecture, CycleGAN, in portable
chest X-ray images. In this case, the authors used a dataset
with 3 different classes: normal, pathological and COVID-
19. Therefore, they followed 6 different pathways of image
translation: normal to pathological, normal to COVID-19,
pathological to normal, pathological to COVID-19, COVID-
19 to normal and COVID-19 to pathological. Later, the same
authors demonstrated the adequacy of this data augmenta-
tion strategy in a real COVID-19 screening scenario [32]. In
the case of Motamed et al. [33], the authors use chest X-ray
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images generated by a GAN architecture to improve the per-
formance of COVID-19 and pneumonia screening. Another
remarkable contribution in the state-of-the-art is the work of
Moris et al. [34], which uses a Contrastive Unpaired Transla-
tion (CUT) [35] architecture for image-to-image translation
in the context of tuberculosis. Particularly, authors train the
CUT model with a reasonable amount of images from a
tuberculosis dataset to convert in 2 pathways: normal to tuber-
culosis and tuberculosis to normal. Then, this pre-trained
model is used to generate with 2 much smaller datasets. The
final objective is to use this set of novel images to improve
the performance of a tuberculosis screening method.

In the context of using latent diffusion models in medical
imaging, some works have addressed this problem in biomed-
ical domains like brain MRI [36]. Moreover, given the great
availability of public chest X-ray datasets, some contribu-
tions can already be found in this field. In the case of Ali
et al. [37], the authors propose a study of image generation
using Stable Diffusion and DALL-E to obtain novel synthetic
chest X-ray and CT images. Then, this set is shown to expert
clinicians to identify those that have a realistic or fake appear-
ance. The contribution of Packhéuser et al. [38] propose a
method to generate anonymous synthetic chest X-ray images,
excluding those synthetic images with patient-specific bio-
metrics that have been reproduced from their corresponding
real images, given that this could make it possible to iden-
tify the original patient (therefore, breaking the anonymity).
The ultimate aim of this study is to evaluate the feasibility
of using these generated images as exclusive training data
for thoracic abnormality classification in a multipathologi-
cal scenario, obtaining a competitive performance compared
with a classifier trained with only real images. To this end,
they compare 2 different approaches of image generation:
a Generative Adversarial Network architecture and a Latent
Diffusion Model. Furthermore, the approach of Chambon
et al. [39] (named as RoentGen) refines a latent diffusion
model in alarge public chest X-ray imaging dataset with mul-
tiple pathologies using written medical reports as the input
text prompt, aiming to generate realistic synthetic samples.
The authors assess the quality of the generated images by
qualitative visual inspection and also with quantitative met-
rics. Finally, the potential of RoentGen is also proven in a
data augmentation scenario. Apart from RoentGen, Weber
et al. [40] also explores the use of massive datasets to train
latent diffusion models with chest X-ray images. In par-
ticular, the authors fuse other available public datasets to
create the MaCheX dataset. Then, they propose a cascaded
latent diffusion pipeline, called Cheff, that generates images
in high-resolution leveraging a super-resolution module to
refine the quality of the low-resolution scans. Lee et al. [41]
propose UnixGen, a deep neural network based on a Trans-
former for the simultaneous generation of chest X-ray images
and radiology reports.
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3 Materials

In this section, we present the materials used during the devel-
opment of the work. In particular, Section 3.1 describes the
3 used datasets, while Section 3.2 defines the software and
hardware considered for the methodological implementation.

3.1 Datasets

For the aims of this work, 3 different public datasets have
been used, representative of 2 different pathological sce-
narios of reference. Firstly, in the case of the tuberculosis
screening, the Montgomery County (MC) dataset [42] and
the Shenzhen dataset [42] were chosen given that they are
representative of a small-sized and a medium-sized dataset,
respectively. Secondly, in the case of lung nodule screen-
ing, the JSRT dataset was chosen [43]. The reason to use
these datasets is that they are representative of each patholog-
ical scenario and suffer from data scarcity. This is a suitable
scenario to evaluate the capabilities of the image generation
models to perform data augmentation. Some examples of
these datasets can be seen in Fig. 1. The description of each
dataset is detailed below:

o Montgomery County (MC) dataset (available at [44]):
this public dataset was retrieved by the Department of
Health and Human Services of Montgomery County
(Maryland, USA) and is composed of 80 normal cases
and 58 pathological cases (i.e., with evidences of tuber-
culosis affectation), making a total of 138 images. These
images correspond with posterior-anterior captures with
variable resolutions of 4020 x 4892 or 4892 x 4020
pixels.

e Shenzhen dataset (available at [45]): this dataset was
obtained by the staff of the Shenzhen Hospital (China), as
part of routine care. It is composed of 326 normal cases
and 336 cases with evidences of tuberculosis affectation,
making a total of 662 captures. The images present vari-
able resolutions that range from 948 x 1130 to 3001 x
3001 pixels.

e JSRT dataset (available at [46]): this dataset is com-
posed of conventional chest X-ray captures that were
digitized with a resolution of 2048 x 2048 pixels. In
total, it includes 247 images, having 154 cases with lung
nodules and 93 without lung nodules. Particularly, from
the 154 pathological cases, 100 are malignant and 54 are
benign.

3.2 Software and hardware resources

In this section, we detail the software and hardware resources
considered for the implementation of the methodology. The
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Fig. 1 Representative examples of the used datasets of this work. The
first column represents a normal case, while the second column repre-
sents a pathological case (tuberculosis or lung nodules, depending on

used software libraries can be seen in Table 1. In this
regard, the implementation of the first step of the method-
ology (image generation) has been mainly based on several
Hugging Face libraries that support the process of Stable Dif-
fusion models deployment, fine-tuning and inference. In the
case of the screening, the implementation was mainly sup-
ported by the library Tensorflow. Furthermore, the details of
the used hardware can be seen in Table 2. To speed up the
processes of training and inference, the experimentation was

the dataset). First row: examples of the Montgomery dataset (tubercu-
losis). Second row: examples of the Shenzhen dataset (tuberculosis).
Third row: examples of the JSRT dataset (lung nodules)

performed using an NVIDIA Tesla A100 with 2 GPUs of 80
GB each, although only one at a time was needed to carry
out the experiments. Moreover, the used driver version is the
460.160.00.

4 Methodology
In this section, we present our proposed methodology, which

consists of two distinct steps illustrated in Fig. 2. In the first
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Table 1 Required software libraries necessary for the reproducibility of the methodology presented in this work

Name Version Description

Accelerate 0.16.0 This library enables to work with PyTorch training loops easily
Diffusers 0.13.1 Provides pre-trained vision and audio diffusion models

Matplotlib 3.6.1 This library enables the graphical visualization of data

Numpy 1.23.4 Widely used Python library to work with arrays

Pillow 9.2.0 Pillow provides useful functionalities to work with images in Python
Torch 1.12.1+cull6 Popular library to work with deep learning algorithms

Torchvision 0.13.14cull6 Torchvision adds useful functionalities to torch

Transformers 4.26.1 Allows to work with state-of-the-art transformer architectures easily
Scikit-image 0.19.3 This library provides a set of useful function to work with images
Scikit-learn 1.1.2 Scikit-learn is a library to implement machine learning methods
Tensorflow 2.11.0 This library represents a deep learning framework

step, the models for image generation were separately trained
for each dataset and pathological scenario, following 2 differ-
ent strategies: Contrastive Unpaired Translation (CUT) and
Stable Diffusion (SD) Then, these trained models are used
to generate the novel sets of synthetic images. Finally, in
the second step, the generated set is added to the original
dataset. This augmented version of the original dataset is
fed into the screening model to distinguish between normal
and the corresponding pathological scenario (tuberculosis or
lung nodules). To ensure a fair comparison with previous
approaches, we clarify that the screening model is trained
using the augmented version of the dataset, while only the
original images are employed in the test set. This distinction
is crucial to maintain the integrity of our experimental design
and provide an accurate evaluation of our methodology’s per-
formance in comparison to the existing methods.

4.1 1°! step: image generation

In this part of the methodology, we present the 2 image gen-
eration strategies that were followed. Firstly, the CUT is
presented, representing a classical approach of image gen-
eration that is based on a Generative Adversarial Network
framework. Secondly, the Stable Diffusion model is deeply

Table2 Hardware required for the development of this methodology

Name Description

0s Ubuntu 20.04.5 LTS (Focal Fossa)
Kernel 5.4.0-131-generic

Architecture x86-64

CPU AMD EPYC 7763 64-Core Processor
RAM 503.9 GiB

Hard disk 1007 GB
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explained, which represents the latent diffusion approach for
image generation.

Strategy 1: Contrastive Unpaired Translation (CUT).
This architecture, which is depicted in Fig. 3, has an encoder-
decoder generator G based on a ResNet of 6 blocks and a
discriminator D, based on a 70 x 70 PatchGAN. G receives
an image a from domain A as input and returns an image
b which is the transformation of the input that presumably
should belong to class B. To train the CUT model, it is nec-
essary to define the loss function, which is expressed as the
combination of different components. The first component
is the adversarial loss Lgan, which is computed from the
discriminator output using the expression of Mean Squared
Error (MSE) loss, whose definition can be seen in Eq. 1. The
objective of the discriminator is to classify the generated
images as fake (label 1) and the original images as real (label
0).

Lcan(G. D, A, By=Ep~p(D(5))*+Ea~4(D(G(a))—1)*
(1)

Secondly, it is necessary to define PatchNCE loss (denoted
as Lparehnck) the loss component that is based on the idea
of contrastive learning. In this kind of learning, given the
original image and its translation, the idea is to maximize the
association between 1 patch of the translated image (known
as query) and the corresponding patch of the original image
(known as positive sample). At the same time, the model
must also minimize the association between the query and
anumber N of negative samples (i.e., other random patches
different from the positive sample). The comparison between
patches is performed using the weights of some layers from
the generator encoder, which are used as representative fea-
tures of each patch. The layers chosen from the encoder are
then connected to H, a multilayer perceptron (MLP) of 2
layers, resulting in a K-dimensional vector that represents



Medical & Biological Engineering & Computing

|Step 1: Image generation I

| Original dataset 7 |
i
! I o g
V4
generation (_,_\ -
5

' Generated dataset )

|
~ v Augmented dataset’

:Igtep 2:_Patholo_gipa_l screening|

. Normal ||
: _|Screening module
Pathological | |

Fig.2 Detail of the methodology proposed in this work with 2 different steps (image generation and Pathological screening)

each patch. In this way, the comparison between patches is
performed calculating the cosine similarity between the K-
dimensional vector of the query and the positive sample as
well as between the vectors of the query and the N negative
samples. This difference is scaled with a temperature value
of r = 0.07, in the same line as proposed in Park et al. [35].
Then, these values are concatenated and a softmax function
is applied. Denoting the query as v, its corresponding posi-
tive sample as v™ and the set of negative samples as v, the
expression of the contrastive loss can be defined as seen in

Eq.2.

vt
I(”'“+sv_)=—log|: exp(v-vh)/z ]

exp(v-vt/T) + Ef:l exp(v - vy /1)
(2

As a result from this step, we obtain a stack of features
{z1}1 = {H;(G{"“(a))}L- In this expression, [ denotes a spe-

cificlayer (where each layer has a particular number of spatial
locations §;) and L the whole amount of layers. In this way,
the PatchNCE loss can be defined as shown in Eq. 3.

L s
. s
Lparchnce(G, H, A) =Eqn Z Zl(zf, 7], )
I=1 s=1

The adversarial loss and the PatchNCE loss are then com-
bined to form a joint expression. Other important element
that is added to the CUT training is the identity loss, which
is computed as the PatchNCE loss of the images in the
class B (denoted as LpacnncE(G, H, B)). The inclusion of
an identity loss prevents the model to generate unexpected
changes on images. The contribution of Lpuchnce(G, H,
A) and Lpaennce(G, H, B) can be weighted with A4 and
A, respectively. In this work, it was decided to give an equal
balance to both components. Therefore, both A 4 and A g will
be set to 1.0. Once all these expressions are defined, they
are joined as can be seen in Eq. 4. It must be mentioned that

_ | Multilayer, Patchwise | _
Contrastive Loss

e [

| Discriminator (D) |

. Generator
Domain A Domain B
/

V1' Vz' V+ -

Positive
sample

v [Query]

Fig.3 Structure of the contrastive unpaired translation model, showing the patches that are compared to compute the loss
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this is the loss function used to train the generator while the
discriminator is only trained with the adversarial loss.

L=Lcan(G,D, A, B) + AaLpatchnce(G, H, A)
+ ABLpatchncE(G, H, B) 4)

Strategy 2: stable diffusion The adaption of this sec-
ond strategy is proposed as an alternative from the classical
image generation architectures based on GANs. For that rea-
son, we consider the use of a popular latent diffusion model
known as Stable Diffusion [47]. In particular, in this work,
the chosen version is the 1.4, given that it was the most estab-
lished version at the moment that the experimentation was
performed. This architecture of image generation consists of

3 different components that can be seen in Fig.4: a Varia-
tional Autoencoder (VAE) [48], a conditioned U-Net [49]
and a text encoder CLIP ViT-L/14 [50] as the conditioning
mechanism. There are several ways to fine-tune the model,
depending on the components that are kept frozen (i.e., that
are kept as in their pre-trained state, without refinement)
and unfrozen. Particularly, in this work, we considered the
framework DreamBooth [51], which freezes the VAE and
the text encoder, putting the focus on the U-Net model. The
training process of the Stable Diffusion model represents a
great advantage in the context of image generation models
in comparison with similar approaches like DALL-E, which
work on pixel space with the whole image as input, mak-
ing the algorithm very expensive in terms of memory and

Input during training

Random Generated Noise

Input during inference

Fig.4 Architecture of the adapted Stable Diffusion model following the DreamBooth training framework (keeping the U-Net unfrozen but the text
encoder and the VAE frozen). It must be noted that the U-Net input vector is different in training and testing
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time requirements. To avoid this problem, the Stable Diffu-
sion model compresses the dimensionality of the input image
into a set of embeddings in the latent space. This consider-
ably reduces the amount of required memory, speeding up the
training process as well. The contribution of each module of
the architecture is explained below.

e Text encoder (CLIP ViT-L/14): This module converts
the input text to a latent representation, making possible
to implement a conditioning mechanism for the U-Net
architecture and guide the training process to obtain the
expected generated image.

e Conditioned U-Net: The target of the U-Net module is
to iteratively denoise an initial vector that belongs to the
latent space. In the original concept of Stable Diffusion,
whose aim is to perform text-to-image generation, the
input of this module is a vector randomly generated from
a gaussian distribution. It is important to mention that
this denoising process occurs entirely in the latent space.
With regard to the conditioning part of this module, it
is necessary to add the information of the text prompt
to influence the input of the U-Net. This information is
provided by the latent representation of the text prompt
provided by the text encoder.

e Variational Autoencoder (VAE): The encoder of the VAE
has the ability to compress an image from its high-
dimensional representation to a latent representation of
lower dimensionality. Then, the decoder of this compo-
nent is able to recover the high-dimensionality from the
latent representation of the image. The main difference
between a VAE and a conventional autoencoder is that
the VAE represents the latent space as a Gaussian distri-
bution of the data instead of being represented as a single
point. This is extremely helpful in the context of image
generation, because it enables the model to retrieve a new
sample close to the distribution of the original data.

To train the Stable Diffusion model, it is necessary to fol-
low several steps. Firstly, both the images from the original
dataset that must be learned, and the input text prompt must
be encoded. Nevertheless, it is also necessary to feed the
generation model with noise. This noise will be randomly
generated from a gaussian distribution in the latent space
with standard parameters of @ = 0 and o = 1. Denoting N
as the random noise, \" as an arbitrary normal distribution,
0 as a zero matrix, [ as the identity matrix and (h, w) as the
dimensions of the latent space, the random noise latent vector
can be represented as in Eq. 5:

N NN(O(h,w), I(,:,,w)E) (3)

Once this expression is defined, the input of the condi-
tioned U-Net can be defined as follows. As mentioned before,

the text prompt (denoted as X;pu¢ ) and the image of the input
dataset (denoted as ytqrger) must be encoded. In the case of
the text prompt, this is performed with the text encoder (a
process that is defined as Enc;ex; (Xjnpy)) While, in the case
of the image, it is performed with the VAE encoder (a process
that is defined as V AE (Y1arget))- Furthermore, on each dif-
fusion step £, a new random noise vector N will be obtained
and combined with the image encoding, using the operator
@;. With all of these points defined, the noise N predicted
by the U-Net (denoted as Unet in this occasion) on each step
t is defined as in Eq. 6:

N = Unet(Encrext Xinput), VAE (Viarget) ®: N, 1) (6)

To optimize the weights of the modules, it is necessary to
define the loss function. The main objective of Stable Diffu-
sion is to predict the noise found on an image. Therefore, the
loss function will be calculated as the difference between the
output of the U-Net and the actual noise of the step f. In the
same line as in the original work, we decided to use the MSE
function as the loss, which computes the difference between
N and N. The full loss expression of this objective, denoted
as L, can be seen in Eq.7.

h

1 N
ﬁzkwaZ(Ni,j— i.)? )

i=0 j=0

It is important to note that the methodology herein
proposed makes a slight change over the original Stable Dif-
fusion text-to-image paradigm with regard to inference. In
particular, it is desirable to guide the process not only with
text prompts, but also with real samples of the original dataset
(a pipeline that could be defined as image generation con-
ditioned by image and text). Therefore, random generated
gaussian noise must be replaced with the latent representa-
tion of the input image obtained by an image encoder.

4.2 2" step: Pathological screening

The deep network architecture to perform the screening task
is depicted in Fig. 5. In particular, we adapt the same archi-
tecture used in Pasa et al. [52] for tuberculosis screening.
Globally, this architecture is structured in 5 general convolu-
tional blocks, which are composed of several convolutional
layers, ending with a pooling layer. These pooling layers are
necessary to reduce the dimensionality, although this effect
is also achieved for the first convolutional block using a
stride bigger than one in the convolutional layers. In partic-
ular, the convolutional blocks have been designed to reduce
the dimensionality by 2, except in the first block, where the
magnitude of reduction is 8 times. Furthermore, each con-
volutional block has 2 different parallel pathways, one that
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Fig.5 Detailed description of the classification deep network architecture used for the screening task. The intermediate output sizes are shown at

the top of each layer

applies 2 sequential convolutional layers with kernel size of
3 x 3 and an additional residual connection that applies a
single convolution with a kernel size of 1 x 1, where all the
convolutional layers make use of batch normalization and
are zero-padded to avoid losing additional dimensionality.
Before the pooling layer is applied, the outputs obtained from
both pathways are summed. The number of feature maps on
each convolution block is an incremental multiple of 16, hav-
ing 16 for the first block, 32 for the second, 48 for the third,
64 for the fourth and 80 for the fifth one. Immediately after
all the convolutional blocks, the architecture applies a global
average pooling (denoted as GAP), followed by a fully con-
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volutional layer of 2 outputs. Finally, the model applies a
softmax function to obtain the class probabilities.

4.3 Experimental details

With regard to the training of the image generation models, it
is important to clarify some aspects. Firstly, the CUT model
is only trained for the JSRT dataset, given that there were
no previous reference values with this data augmentation
approach. Moreover, another detail that must be remarked
is that, in that previous work of the state-of-the-art, the CUT
model was trained on a large-scale chest X-ray dataset of
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tuberculosis, the TBX11K [53]. In the particular case of the
JSRT dataset, the training and inference of the CUT model
was made with that dataset itself. Following the same train-
ing details of the previous state-of-the-art approach, the CUT
model was trained during 200 epochs with the Adam algo-
rithm [54], a mini-batch size of 1 and a constant learning rate
of @ = 0.0002.

On the other hand, in the case of Stable Diffusion, the
parameters for DreamBooth are set to a constant learning rate
of 5 x 10—, a mini-batch size of 1 and a variable number of
training steps that will depend on each experiment. In partic-
ular, 2 different models were trained: a model that represents
the normal class and another model that represents the patho-
logical class (i.e., tuberculosis or lung nodules, depending on
the used dataset). In this case, the considered text prompts
were the class of the samples. Therefore, for normal cases,
the model was trained with the prompt < normal chest X-ray
> while for pathological cases the model was trained with
the prompt < patho chest X-ray >.

In the case of the screening model, it is important to note
that, to perform a fair comparison with the baseline method
(i.e., without the proposed data augmentation), the model
is trained with both original and synthetic images, but the
validation set will only be composed of original images.
Regarding the training details of the screening model, the val-
idation process was performed with a random 5-fold cross
validation. For each fold, the model is trained during 500
epochs, optimizing the weights with the Adam algorithm. In
particular, the learning rate was set to a constant value of
8x 1072, B1 wassetto 0.9, f2t00.999and e to 1 x 10~%. To
have a global summary of the model performance, the mean
and the standard deviation among the 5 folds is calculated
for each metric.

4.4 Evaluation metrics

To evaluate the screening models, we considered some of
the most typical metrics used in the state-of-the-art for clas-
sification problems: accuracy (abbreviated as ACC), recall
(abbreviated as RECA), specificity (abbreviated as SPEC),
precision (abbreviated as PREC), F1-Score (abbreviated as
F1-SC) and AUC-ROC (abbreviated as AUC). Defining TP
as True Positives, TN as True Negatives, FP as False Positives
and FN as False Negatives, the expression of the mentioned
evaluation metrics can be seen in Egs.8§, 9, 10, 11, and 12,
respectively:

TP+TN
ACC = (8)
TP+FP+TN+FN
TP
RECA = ———— 9
TP+FN ©)

TN
SPEC = ———— (10)
TN+ FP
PREC = TP 11)
TP+ FP (
Fl SC_2*PREC*RECA 1
~ PREC+RECA (12)

In the case of AUC-ROC, this metric is calculated as the
area under the ROC curve [55]. In particular, ROC curve is
an exhaustive metric given that it evaluates the global perfor-
mance of the model considering different operation points.
The expression of this metric can be seen in Eq. 13.

1
AUC:[ TPR-d(FPR) (13)
0

5 Results and discussion

In this section, we present the results obtained from our
proposed methodology and discuss their implications. Our
experimentation focuses on the impact of incorporating novel
sets of synthetic images as a data augmentation strategy
to enhance the automatic screening of two highly relevant
pathological scenarios: tuberculosis and lung nodules. To
achieve this, we utilize three public representative datasets
facing data scarcity issues: Montgomery County and Shen-
zhen for tuberculosis screening, and JSRT dataset for lung
nodule screening. In all cases, the training process incor-
porates both the original and synthetic images, while the
testing is conducted exclusively with the original images.
This approach ensures a fair comparison with previous data
augmentation methods and allows us to accurately evaluate
the performance and efficacy of our methodology.
Particularly, we performed an exhaustive experimentation
using 3 public representative datasets. This experimentation
includes an ablation study for all the scenarios, to choose
the most appropriate configuration of the Stable Diffusion
model regarding the number of training steps and an addi-
tional study that analyzes the quality of the generated images
under a qualitative point of view. The ablation studies are nec-
essary because it is well-known that selecting the appropriate
amount of training steps for an image generation model is
challenging and no straightforward. For this reason, we have
selected several fixed numbers of training steps, to study the
performance evolution. This performance will be evaluated
as an incremental approach, comparing the performance of
the Stable Diffusion augmentation with a baseline (with only
classical data augmentation) and the CUT augmentation.
Regarding the ablation study, we chose 4 configurations with
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Stable Diffusion, after training during 2500, 5000, 7500 and
10,000 steps. Furthermore, in the particular case of the JISRT
dataset, it was necessary to include an additional configura-
tion, training during 12,500 steps, to ensure a convergence
of the global performance.

This section is structured as follows. Firstly, Section 5.1
shows the results obtained for the Montgomery dataset and
their discussion, Section 5.2 for the Shenzhen dataset and
Section 5.3 for the JSRT dataset. Moreover, in Section 5.4,
we also provide a qualitative analysis of the generated images
that were obtained and, finally, in Section 5.5 we discuss
the results of the proposed methodology with similar works
found in the state-of-the-art.

5.1 1! experiment: Montgomery dataset (automatic
tuberculosis screening)

The evolution of the results that were obtained for the tuber-
culosis screening using the Montgomery dataset can be seen
in Fig.6. This evolution shows a very similar performance
regarding the mean value of F1-Score between the con-
figuration with 2500 and 5000 training steps, but with an
improvement in terms of the standard deviation. For 7500
steps, the improvement is notable, regarding the mean F1-
Score and its standard deviation. However, after this amount
of steps, the performance converges and the F1-Score notably
drops with 10,000 training steps. This leaves 7500 training
steps as the highest-performing configuration.

Moreover, Table 3 shows the comparison between the
results obtained in the work of Morfs et al. [34] (for both
the baseline and the CUT) with the highest-performing Sta-
ble Diffusion configuration (with 7500 training steps, as
previously stated). This comparison obtains a remarkable
improvement of the performance regarding all the metrics.
Globally, the mean value of accuracy raises from 88.35%
(Baseline) and 88.41% (CUT) to a 97.09%. This is also seen
in terms of F1-Score, with an improvement from 82.89%
(Baseline) and 86.32% (CUT) to 96.54%. A similar con-
clusion can be extracted from AUC-ROC, which goes from
0.8652 (Baseline) and 0.8713 (CUT) to 0.9703. Regarding
the individual metrics recall, precision and specificity, the
performance improvement is also noticeable. In particular,
recall and precision go from less than 90% to 96.57% and
96.80%, respectively. In the case of the specificity, which was
lower for the CUT (89.38%) in comparison with the baseline
(91.53%), there is a raise to 97.49% for the Stable Diffusion
model.

The improvements in terms of standard deviation are also
quite notable. By the means of global metrics, the stan-
dard deviation of the accuracy lowers from 6.28% (baseline)
and 5.27% (CUT) to a 1.46%, the standard deviation of
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F1-Score from 9.64% and 6.37% to 1.81% and the same
value for AUC goes from 0.0784 (baseline) and 0.0707
(CUT) to 0.0164. Recall and specificity also demonstrate
a great improvement in robustness. In the case of the recall,
there is an improvement from 12.04% (baseline) and 9.88%
(CUT) to 4.29%. Regarding precision, the standard deviation
goes from 13.77% (baseline) and 12.04% (CUT) to 3.93%.
Finally, regarding specificity, the standard deviation that was
even higher with the CUT (going from 6.95% to 9.07% in
comparison with the baseline) improves in the case of Sta-
ble Diffusion, achieving a 3.08%. From these results, several
conclusions can be obtained. Firstly, it is demonstrated that
the Stable Diffusion models generate useful images that can
improve the performance of the tuberculosis screening in this
particular scenario. Secondly, the results obtained by Stable
Diffusion prove to be higher than those obtained by the Con-
trastive Unpaired Translation. Finally, it is worth to mention
the high robustness demonstrated by the Stable Diffusion
augmentation, notably improving the standard deviation for
all metrics.

5.2 2nd experiment: Shenzhen dataset (automatic
tuberculosis screening)

In the case of the automatic tuberculosis screening using the
Shenzhen dataset, the evolution of the F1-Score after the gen-
erated images are added can be seen in Fig. 7. This evolution
depicts an improvement of the F1-Score between 2500 and
5000 training steps. Then, this performance rapidly starts to
drop for 7500 and 10,000 steps. Moreover, the comparison
between this approach, using the highest-performing Stable
Diffusion configuration (5000 training steps), and the pro-
posals of Morfs et al. [34] (the baseline and the CUT) can
be seen in Table 4. Those results depict an improvement of
all the metrics. In particular, the mean accuracy goes from
89.42% (baseline) and 90.33% (CUT) to 92.14%. In the case
of the recall, the improvement that was slight in the case of
the CUT (going from 88.11% to 88.40%) raises to 89.23% for
our approach. The specificity and precision have a very simi-
lar improvement, as they go from about 90% for the baseline
and a 92% for the CUT to a 94.71% and a 94.57%, respec-
tively. Regarding the value of AUC, this improvement goes
from 0.8846 in the baseline and 0.9088 with the CUT to a
0.9197 in the case of Stable Diffusion. In the same line as in
the previous experiment, it can be concluded that the Stable
Diffusion is able to generate relevant images to improve the
performance of an automatic tuberculosis screening model.
In the same way, the data augmentation provided by Stable
Diffusion proves to be more powerful than the one provided
by the CUT model.
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Table3 Comparison of the results obtained for the automatic tubercu- tion against the highest-performing approach of data augmentation with

losis screening using the Montgomery dataset with the different chosen Stable Diffusion (our proposal)
approaches: the baseline and the approach with CUT data augmenta-

Method ACC

RECA

SPEC PREC F1-SC AUC

Baseline [34]  88.35% + 6.28%
CUT [34] 88.41% £+ 5.27%
Ours 97.09% + 1.46%

81.80% + 12.04%  91.53% + 6.95% 86.35% + 13.77%  82.89% + 9.64% 0.8652 £+ 0.0784
88.59% + 9.88% 89.38% + 9.07% 86.24% + 12.04%  86.32% + 6.37% 0.8713 £ 0.0707
96.57% + 4.29% 97.49% + 3.08%  96.80% + 3.93% 96.54% + 1.81%  0.9703 = 0.0164

The highest results for each metric (i.e., those with the highest mean value) are highlighted in bold

Table 4 Comparison of the results obtained with the different augmentation using the Stable Diffusion (our proposal) model with the

approaches for the automatic tuberculosis screening using the Shen- highest-performing configuration
zhen dataset: the baseline, the data augmentation with CUT and the data
Method ACC RECA SPEC PREC F1-SC AUC

Baseline [34]  89.42% + 2.30%
CUT [34] 90.33 + 1.41%
Ours 92.14% + 2.22%

88.11% + 3.42% 90.60% + 4.44% 90.90% =+ 3.23% 89.41% + 2.16% 0.8846 £+ 0.0379
88.40% + 2.51% 92.21% + 2.18% 92.28% + 1.22% 90.27% + 1.17% 0.9088 + 0.0229
89.23% = 5.66%  94.71% +=0.92%  94.57% = 0.90%  91.74% +3.21%  0.9197 £+ 0.0254

The highest results for each metric (i.e., those with the highest mean value) are highlighted in bold
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Performance evolution of the Shenzhen dataset
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Fig.7 Evolution of the automatic tuberculosis screening performance in terms of the F1-Score when adding the generated images to the Shenzhen
dataset with the different chosen configurations of Stable Diffusion (with 2500, 5000, 7500 and 10,000 training steps)

5.3 3" experiment: JSRT dataset (automatic lung
nodule screening)

Regarding the screening of lung nodules using the JSRT
dataset, the evolution of the F1-Score when adding the
images generated by the Stable Diffusion with the differ-
ent configurations can be seen in Fig. 8. The evolution shows
a raise of the F1-Score until 10,000 training steps that, nev-
ertheless, starts to drop once reached the number of 12,500
training steps, leaving the configuration of 10,000 training
steps as the highest-performing scenario. The comparison of
the results obtained by this highest-performing Stable Diffu-
sion configuration with the Baseline and the CUT can be seen
in Table 5. It is important to note that, given that the previous
approach of Morfs et al. [34] only performs image genera-
tion using the Montgomery and the Shenzhen datasets, both
the results of the baseline and the CUT were obtained for
the purposes of this work. Particularly, the results depict an
improvement of the performance when adding the generated
images, which is reflected in a higher mean accuracy (that
goes from 79.33% and 80.19% in the case of the Baseline
and the CUT, respectively, to an 82.19% in the case of the
Stable Diffusion approach), specificity (going from around
65% in both baseline and CUT to a 72.47% with the Stable
Diffusion approach), precision (raising from around 82% in
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both the baseline and the CUT approach to an 84.50% with
the Stable Diffusion approach) and F1-Score, as seen in the
performance evolution previously discussed. A notable per-
formance improvement can also be seen in terms of AUC,
having a mean value of 0.7646 in the case of the baseline,
0.7683 in the case of CUT but raising to 0.7982 for the Stable
Diffusion approach. Finally, in the case of the recall, there
is a slight performance drop (from 87.76% with the CUT to
87.17% with Stable Diffusion) that, however, improves the
baseline (85.02%). At the same time, it is important to note
that the mean performance is very similar and the standard
deviation improves (from 13.45% with the CUT to 10.72%
with Stable Diffusion).

5.4 Qualitative analysis of the generated images

Finally, we discuss the quality of the generated images for
each of the datasets and scenarios. For each dataset, we com-
pare an original image with some of their corresponding most
representative generated images (particularly, trained during
5000, 7500 and 10,000 steps). Moreover, the image quality
must also be evaluated in the 2 different generation scenarios:
the scenario where normal images are converted to pathologi-
cal and the scenario where pathological images are converted
to normal. The first scenario is evaluated with the images that
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Fig. 8 Evolution of the
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are provided in Fig.9. There, it can be seen that the Stable
Diffusion model generates images with a realistic appearance
in comparison with an original chest X-ray. In addition, the
model’s ability to transform various parts of the image in a
coherent manner is remarkable, specially in the lung zones,
the region of interest in this problem. Another remarkable
aspect of the image generation is that the model not only
changes the textures of the image but also the shape of the
lungs and the diaphragms. Added to this, the model is also
able to remove or introduce some structures like those that
can be seen below the left lung. This aspect can be associated
with the Variational Autoencoder module that composes the
Stable Diffusion. This module makes the model able to derive
some important features from the whole set of images (such
as the previously-mentioned shape of the lungs). Therefore,
when the model generates a new image, it randomly selects a
coherent value within the normal distribution of the learned
features.

The results of the second scenario can be seen in Fig. 10.
In this case, similar discussions can be made. Firstly, the
Stable Diffusion model is able to generate images with a
realistic appearance, very similar to an original chest X-ray
sample. Moreover, the shapes of the lungs have a remarkable
variability, an aspect that is once again representative of the
normal distribution that has been learned by the Stable Dif-
fusion model regarding several relevant features. Another
interesting aspect that can be extracted from the generated
images is the capability of the model to remove lung lesions,
as expected.

Other interesting aspect that can be extracted from the
experimentation is that the Stable Diffusion model can
assume the global aspect of a chest X-ray with a small amount
of images and training steps. Nevertheless, in these situations,
the appearance of the generated chest X-ray images exhibits
artistic characteristics, as this was the main intention of the
original Stable Diffusion proposal. Furthermore, it is also

Table 5 Comparison of the results obtained for the automatic lung nodule screening using the JSRT dataset among approaches: the baseline, the
data augmentation with the CUT and the data augmentation with the highest-performing configuration of Stable Diffusion (our proposal)

Method ACC RECA SPEC PREC F1-SC AUC

Baseline  79.33% 4 4.05% 85.02% + 1.77% 65.42% + 11.70% 82.56% + 4.91% 83.70% + 2.90% 0.7646 £+ 0.0917
CUT 80.19% + 4.94% 87.76% + 13.45% 65.91% + 17.93% 82.75% + 7.74% 84.01% + 5.84% 0.7683 £ 0.0493
Ours 82.19% =+ 5.96% 87.17% + 10.72% 72.47% + 10.96% 84.50% + 4.10% 85.43% + 5.86% 0.7982 + 0.0490

The highest values of each metric (i.c., those with the highest mean among approaches) are highlighted in bold
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Fig.9 Representative examples of pathological images generated from
normal cases by the Stable Diffusion (SD) model. Each column presents
the examples of the Montgomery County dataset, Shenzhen and JSRT,
respectively. First row: original normal image. Second row: pathologi-
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cal image generated by SD trained 5000 steps. Third row: pathological
image generated by SD trained 7500 steps. Fourth row: pathological
image generated by SD trained 10,000 steps
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Fig. 10 Representative examples of normal images generated from
pathological cases by the Stable Diffusion (SD) model. Each column
shows the examples of the Montgomery County, Shenzhen and JSRT
datasets, respectively. First row: original pathological image. Second

row: normal image generated by SD trained 5000 steps. Third row:
normal image generated by SD trained 7500 steps. Fourth row: normal

image generated by SD trained 10,000 steps

@ Springer



Medical & Biological Engineering & Computing

remarkable that too much training steps leads to an impor-
tant degradation of the image quality, adding a considerable
amount of noise and artifacts. This demonstrates the need for
the presented ablation study to determine the most appropri-
ate number of training steps. Some examples of images that
present these issues can be seen in Fig. 11. It is relevant to
mention the fact that this number of training steps depends
on the used dataset, as demonstrated in the proposed experi-
mentation. Lack of anatomical coherence is another problem
that can be found in some images. This usually affects the
shape or the number of some body parts, like the clavicles or
the ribs. Despite the associated problematic, this should not
affect the performance of the screening models, given that
the relevant clinical findings of both analyzed affectations
are exclusively found on lung regions. Another issue that
can be found on generated images, regardless of the training
steps, is the generation of text within the images given that,
in many cases, those pieces of text are unreadable. This is
a well-known problem with Stable Diffusion but that, how-
ever, can be ignored for this particular problem, given that
the text labels seen in the chest X-ray images are irrelevant
for the automatic screening.

5.5 Discussion of the state-of-the art results

Our proposed methodology showcases its robustness and
adaptability by leveraging a well-established state-of-the-
art architecture for pathological screening, enabling a close
comparison with previous reference approaches for data aug-
mentation in the context of chest X-ray imaging. Although
our data augmentation methodology based on adapted gen-
erative latent diffusion models could be applied to other
architectures, it is essential to note that this is beyond the
scope of this work. Numerous efforts have been made to
develop automatic methodologies for pathological screening
using chest X-ray images, employing various pipelines and
training configurations, which makes direct comparisons dif-
ficult. Furthermore, some works do not include the standard
deviation, and/or it is unclear whether they report the mean or
the best value of several repetitions. Nevertheless, we provide
a thorough comparison of our methodology with previous
state-of-the-art strategies for the two pathological scenarios
examined in this work, to demonstrate the improvement in
terms of performance and the great potential of latent diffu-
sionimage generation over other data augmentation methods.

In particular, the proposed adapted generative latent dif-
fusion data augmentation strategy is able to enhance the
performance of previous state-of-the-art automatic screen-
ing approaches and alternative data augmentation methods.
Regarding the case of automatic tuberculosis screening, an
interesting discussion can be provided. The comparison of
the results is specified in Table 6. There, it can be seen that
our approach presents a high performance in comparison with
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the rest of the contributions of the state-of-the-art. Given that
both Montgomery County and Shenzhen datasets provide
lung segmentation ground truth, many of the works propose
methodologies for such task. Nevertheless, other contribu-
tions are also in line with the automatic screening that is being
tackled in this work. As reference, the work from Shu et al.
[56], which propose an ensemble of features obtained from
different deep models and only use the Shenzhen dataset,
achieves an accuracy of 84.00% in contrast with the 92.14%
obtained in our particular case. Ali et al. [57] propose the
use of Incremental Modular Network Synthesis for several
medical imaging problems, being tuberculosis screening one
of them, using only the Shenzhen dataset. In the comparison,
this work obtains 88.60% of accuracy against the 92.14%
obtained by our methodology. The work of Sirshar et al. [58]
leverages the approach of incremental learning to recognize
multiple pulmonary pathologies, being Montgomery County
and Shenzhen among the used datasets. In particular, this
work obtains a 76.08% of accuracy against the 97.09% of
our methodology for the Montgomery County dataset and a
76.73% of accuracy for the Shenzhen dataset compared to
our 92.14%.

Hwang et al. [59] propose the use of a deep convolutional
neural network for automatic tuberculosis screening, exploit-
ing the transfer learning pipeline, which goes from 67.40%
of accuracy to 97.09% for Montgomery County and that goes
from 83.70% to 92.14% for Shenzhen. When comparing the
performance of our approach with Zeyu et al. [60], a work
that contributes proposing a knowledge distillation method-
ology based on Grad-CAM and enhancing the performance
with a prior stage of lung region segmentation, something
similar can be obtained, with a performance improvement
from 85.70% to 97.09% in the case of Montgomery County
and from 91.20% to 92.14% in the case of Shenzhen.
Lopes et al. [61] propose several alternatives to leverage
features extracted from convolutional neural networks for
tuberculosis detection in chest X-ray images. Comparing
performances, this contribution obtains 82.60% for Mont-
gomery County (significantly lower than our 97.09%) and
84.70% for Shenzhen (lower than our 92.14%). In the sce-
nario of comparing Pasa et al. [52], which offers the original
performance results when using the same screening archi-
tecture that we are using in this work, the accuracy raises
from 79.00% to 97.09% for the Montgomery County dataset
and from 84.40% to 92.14% in the case of Shenzhen. In the
case of Jaeger et al. [62], their authors propose the use of
classical machine learning approaches to perform an auto-
matic tuberculosis screening extracting texture and shape
features from chest X-ray images. In particular, the accuracy
is 78.30% for Montgomery County (much lower than our
97.09%) and 84.10% for Shenzhen (notably lower than our
92.14%). Another work we should compare with is Alfadhli
et al. [63], where the authors propose the use of Speed-
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Fig. 11 Examples of low quality images generated by Stable Diffu-
sion. (a) Image generated by a Stable Diffusion model that was trained
a small amount of training steps. (b) Image generated by a Stable Diffu-

up Robust Features (SURF) descriptors to train a Support
Vector Machine. In the same line with the previous works,
our proposal obtains a considerably better results in terms
of accuracy. In particular, the performance achieved for the
Montgomery County dataset (the only dataset that is both
used in the mentioned study and in ours as well) is only
79.10% against our 97.09%.

Moreover, Rajaraman et al. [64] propose a methodology
of bone suppression on chest X-ray images with the aim
to improve the performance of the automatic tuberculosis
screening. The accuracy comparison shows an improvement
of our proposal, with a raise from 92.30% 4- 3.12% t0 97.09%
=+ 1.46% for Montgomery County and from 88.79% +2.47%
to 92.14% 4 2.22% in the case of Shenzhen. Finally, the
proposed data augmentation strategy also improves the per-
formance achieved in [34] with the support of the CUT
architecture for image generation, as showcased in the pre-

(b)

()

sion model that was trained during a too high number of training steps.
(c) Generated image with lack of anatomical coherence, which displays
4 clavicles

vious sections. When evaluating the methodology with the
Montgomery County dataset, this improvement implies a
raise from 88.41% =+ 5.27% to 97.09% =+ 1.46% in terms
of accuracy. Moreover, when evaluating with the Shenzhen
dataset, the improvement can also be seen in terms of the
same global metrics. Specifically, the accuracy goes from
90.33% 4 1.41% t092.14% + 2.22%. Globally, the provided
comparisons point out the robustness of our methodology
and the competitive performance of the data augmentation
strategy. Added to this, our pipeline is flexible and easily
adaptable to other medical imaging domains, while some
presented contributions are strictly limited to the problem
they are leading with.

In the case of the lung nodule screening, the analysis
obtains that the performance of the model is in line with the
results reported by the state-of-the-art in similar tasks. Firstly,
it is necessary to remark that the JSRT dataset is generally

Table6 Comparison in terms of
accuracy between our proposal

and previous works find in the
state-of-the-art for automatic
tuberculosis screening

Method Montgomery County Shenzhen

Shu et al. [56] - 84.00%

Ali et al. [57] - 88.60%

Sirshar et al. [58] 76.08% 76.73%

Hwang et al. [59] 67.40% 83.70%

Zeyu et al. [60] 85.70% 91.20%

Lopes et al. [61] 82.60% 84.70%

Pasa et al. [52] 79.00% 84.40%

Jaeger et al. [62] 78.30% 84.10%

Alfadhli et al. [63] 79.10% -

Rajaraman et al. [64] 92.30% + 3.12% 88.79% + 2.47%
Moris et al. [34] 88.41% £+ 5.27% 90.33% + 1.41%
Ours 97.09% =+ 1.46% 92.14% + 2.22%

@ Springer



Medical & Biological Engineering & Computing

used for lung segmentation, nodule segmentation or nod-
ule detection rather than screening. Secondly, the works of
the state-of-the-art usually slightly modify the original JSRT
dataset, while we decided to use it directly in our proposal,
without performing additional modifications to its structure.
Both aspects make it difficult to find relevant works, but we
have made an effort to provide the fairest comparisons pos-
sible. As reference, Ausawalaithong et al. [65] propose a
methodology for lung nodule detection training a DenseNet-
121 model that was pre-trained in ImageNet. Apart from
using the JSRT dataset, they also consider a larger dataset
known as ChestX-ray14 [66]. The methodology includes 3
different scenarios. In the first scenario, the model is trained
and tested with the ChestX-ray14 dataset while, in the sec-
ond scenario, the process is done training and testing with
the JSRT dataset. Finally, in the third scenario, the model
is sequentially trained on ChestX-ray14, then on JSRT and
finally it is tested with the JSRT dataset. While comparing
this approach with our proposal, we only consider the second
scenario, as it fits with our particular case (training and test-
ing only with JSRT dataset). In particular, the accuracy goes
from 65.51% to 82.19%. Nonetheless, it is important to point
out that the aim of this state-of-the-art contribution is to rec-
ognize lung cancer while our reported results are obtained
from distinguishing between control cases and cases with
lung nodules, which can be either malignant or benign.

On the other hand, the work of Li et al. [67], which uses 2
slightly modified versions of the JSRT dataset and a complex
pipeline of image enhancement and preprocessing, obtains a
recall of 90% for the first version of the dataset (named as
JSRT A) and of 93% for the second one (named as JSRT B).
In this context, our proposed methodology obtains a compet-
itive recall of 87.17%. We can also include the work of Li
et al. [68], which uses the same 2 modified versions of the
JSRT dataset (JSRT A and JSRT B). The authors demon-
strate a high performance, with an AUC of 0.982 and 0.987,
respectively. Nevertheless, this performance is achieved with
a complex and ad hoc pipeline with lung field segmenta-
tion and rib suppression with active shape models, image
enhancement, nodule detection with postprocessing and
multi-resolution patch extraction. Finally, these extracted
patches are fed to an appropriate convolutional network
architecture. This tailored pipeline has a restricted flexibil-
ity, making it difficult to extrapolate the methodology to other
problems, specially due to the specific image preprocessing
steps carried out. In contrast, our work presents a flexible
methodology that can be easily adapted to other medical
imaging domains. This adaptability allows for the integra-
tion of data augmentation strategies into any pipeline and
proposal, ultimately providing a more versatile and efficient
solution for a wider range of applications.

@ Springer

6 Conclusions

In this work, we have proposed a data augmentation strategy
based on a latent diffusion model, the popular Stable Diffu-
sion, for chest X-ray image generation, aiming to improve
automatic screening for two different respiratory disease
pathological scenarios with global impact (tuberculosis and
lung nodules). We utilized three datasets representative of
data scarcity scenarios, two public datasets for tuberculosis
screening (Montgomery County and Shenzhen), and one for
lung nodule screening (JSRT). We conducted three exhaus-
tive experiments, one for each dataset, with four different
configurations for the generation model (trained after 2,500,
5,000, 7,500, and 10,000 steps, respectively) and an addi-
tional configuration of 12,500 steps for the JSRT dataset to
ensure the convergence of global performance. The results
were compared using an incremental approach, studying
the performance of the baseline (i.e., with classical data
augmentation), CUT augmentation, and the latent diffusion-
based augmentation. Our results demonstrate that the latent
diffusion-based approach can generate useful images repre-
sentative of the scenarios to be modeled (both normal and
pathological) while applying coherent transformations on
relevant image regions, such as the lungs. The model’s ability
to learn relevant features like the lung shape and reflect them
in the novel set of generated images is also shown. Overall,
the use of the latent diffusion-based data augmentation strat-
egy resulted in improved accuracy across all three datasets.

As future work, the image generation process could be
performed by training a single model with different plain
prompts or even prompts provided by specific medical
reports, following state-of-the-art trends that exploit natural
language in image analysis scenarios. This approach would
leverage the text encoder module and the advantages offered
by image generation architectures incorporating natural lan-
guage processing. Another alternative could be to replace the
original text encoder with a more domain-specific one (e.g.,
trained on biomedical text datasets), guiding the training
and inference processes more precisely. Furthermore, explor-
ing other training frameworks different from DreamBooth
could be valuable, such as unfreezing the Variational Autoen-
coder to allow learning specific characteristics of chest X-ray
images. The refinement of this component could be helpful
to improve the quality of the generated images globally, and
specifically to address the issue of anatomical incoherence
that can be seen in some images. Another line of interest in
future work could be to investigate the performance impact
of this image generation strategy with other network archi-
tectures for automatic screening. Lastly, it is worth noting
that the results obtained in this work could be extrapolated
to other medical imaging modalities and domains.
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