
Future Generation Computer Systems 154 (2024) 314–329

A
0
n

U

a
t
t
t
N
m
r
o
i

h
R

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

BigDEC: Amulti-algorithm Big Data tool based on the 𝑘-mer spectrum
method for scalable short-read error correction
Roberto R. Expósito ∗, Jorge González-Domínguez
niversidade da Coruña, CITIC, Computer Architecture Group, Elviña, 15071 A Coruña, Spain

A R T I C L E I N F O

Dataset link: https://www.ncbi.nlm.nih.gov/sr
a

Keywords:
Big Data processing
Next-Generation Sequencing (NGS)
Error correction
Apache Spark
Apache Flink

A B S T R A C T

Despite the significant improvements in both throughput and cost provided by modern Next-Generation
Sequencing (NGS) platforms, sequencing errors in NGS datasets can still degrade the quality of downstream
analysis. Although state-of-the-art correction tools can provide high accuracy to improve such analysis, they are
limited to apply a single correction algorithm while also requiring long runtimes when processing large NGS
datasets. Furthermore, current parallel correctors generally only provide efficient support for shared-memory
systems lacking the ability to scale out across a cluster of multicore nodes, or they require the availability of
specific hardware devices or features. In this paper we present a Big Data Error Correction (BigDEC) tool that
overcomes all those limitations by: (1) implementing three different error correction algorithms based on the
widely extended 𝑘-mer spectrum method; (2) providing scalable performance for large datasets by efficiently
exploiting the capabilities of Big Data technologies on multicore clusters based on commodity hardware; (3)
supporting two different Big Data processing frameworks (Spark and Flink) to provide greater flexibility to
end users; (4) including an efficient, stream-based merge operation to ease downstream processing of the
corrected datasets; and (5) significantly outperforming existing parallel tools, being up to 79% faster on a
16-node multicore cluster when using the same underlying correction algorithm. BigDEC is publicly available
to download at https://github.com/UDC-GAC/BigDEC.
1. Introduction

Currently, Next-Generation Sequencing (NGS) [1,2] is considered
s an extremely useful technology for the prevention, diagnosis and
reatment of a wide spectrum of diseases including genetic condi-
ions, chronic pathologies and infectious diseases, or even to reveal
he progression of SARS-CoV2 [3–5]. The continuous development of
GS over the years has made it possible to generate hundreds of
illions of DNA sequence fragments (the so-called reads) in a single
un, while drastically reducing its financial cost. For example, the price
f sequencing the human genome had been reduced to less than $1,000
n 2018 [6]. Furthermore, it is expected that the sequencing capabilities
will continue to grow in the coming years, with some studies predicting
that between 100 million and up to 2 billion human genomes could be
sequenced by 2025 [7].

Nowadays, the dominant NGS platform in the market are Illumina
sequencers [8], which are characterized by generating short DNA reads
(most often 50–150 base pairs). Due to their cost efficiency and rela-
tively high accuracy, Illumina datasets are frequently used for many
fundamental applications such as de novo genome assembly [9] or
cancer mutation discovery. However, NGS platforms are imperfect and

∗ Corresponding author.
E-mail addresses: roberto.rey.exposito@udc.es (R.R. Expósito), jgonzalezd@udc.es (J. González-Domínguez).

can introduce sequencing errors in generated reads which can affect
the quality of downstream analysis. For instance, it is estimated that
Illumina sequencers introduce approximately one error in every one
thousand nucleotides [10]. Therefore, error correction is an important
pre-processing step in many NGS pipelines. The underlying idea is
that the prior usage of correction tools on raw NGS datasets provides
assemblers with a cleaner input and subsequently leads to improved
results.

Despite the rich abundance of tools aimed at correcting short-read
NGS datasets [11–17], a common drawback is that they are all limited
to apply a single correction algorithm over the input data. According
to multiple studies found in the literature [18–20], the accuracy of
error correction algorithms varies substantially across different types
of datasets, genome coverage, error distribution or even the organism
from which reads have been obtained, with no single tool performing
best on all the scenarios [20]. This fact makes it difficult for bioinfor-
maticians to decide in advance which one to use for a particular NGS
pipeline. Therefore, having a single tool capable of correcting errors
by applying several algorithms separately can provide better accuracy
vailable online 12 January 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.future.2024.01.011
eceived 22 March 2023; Received in revised form 6 October 2023; Accepted 10 J
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

anuary 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://github.com/UDC-GAC/BigDEC
mailto:roberto.rey.exposito@udc.es
mailto:jgonzalezd@udc.es
https://doi.org/10.1016/j.future.2024.01.011
https://doi.org/10.1016/j.future.2024.01.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.01.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

d
5
a
o

2

p
o
r

2

s
r
i
c
s
a
[
I
p
m
a
t
d
r
p
a
h

o
t
i
w
m
b
r
H
c
d

m
F
w
p
o
m
s
i
R
s
i
a
w
f
b

2

s
d
(
d
f
f
u
s

in a greater variety of scenarios. This tool should be easy to use and
computationally efficient for very large NGS datasets.

Furthermore, many of the existing correctors can only take advan-
tage of the computational resources of multicore architectures to reduce
correction times, thus being limited to support shared-memory systems
through multithreading. Some other correctors require the availability
of specific hardware devices (e.g GPUs) or CPU features (e.g. AVX-512),
which reduces the range of potential users who can use them. Although
there are a few tools that can be executed on distributed-memory
systems such as multicore clusters, their performance is suboptimal
when processing very large datasets. This issue is specially relevant in
the NGS context due to the explosion in the amount of genomic data
being generated, which demands the use of more efficient scale-out ap-
proaches both in terms of computing and storage resources, something
that can be tackled through exploiting Big Data technologies [21–24].

In this paper we present BigDEC, a Big Data Error Correction
parallel tool intended for short-read NGS datasets that provides the
following contributions over the state of the art:

• Up to our knowledge, this is the first corrector that integrates
three different approaches within the same tool. The algorithms
included in BigDEC are based on the 𝑘-mer spectrum method,
which is the most extended technique for short-read error correc-
tion due to its simplicity and good accuracy. More specifically,
the supported algorithms are based on those proposed by Mus-
ket [11], BLESS2 [12] and RECKONER [14]. These algorithms
can be performed individually over the input dataset in a single
execution of the tool, thus enabling potential optimizations in
terms of performance due to the sharing of certain computation
phases.

• Up to our knowledge, BigDEC is also the first parallel corrector
that can be executed using different data processing engines, cur-
rently supporting two popular open-source and widely extended
Big Data processing frameworks: Apache Spark [25] and Apache
Flink [26]. Along with the support for the Hadoop Distributed File
System (HDFS) [27] to store large NGS datasets, BigDEC extends
the execution of multiple correction algorithms to distributed-
memory systems while providing more flexibility to scientists
than previous tools.

• The parallel approach included in BigDEC, based on the combi-
nation of the aforementioned Big Data technologies, ensures high
scalability when correcting large datasets by efficiently exploit-
ing the performance of multicore clusters based on commodity
nodes without requiring any specific hardware device or feature.
Furthermore, BigDEC implements an efficient stream-based merge
operation that combines all the corrected output files generated
on the cluster nodes into a single output file. This feature is useful
in those scenarios where downstream analyses are performed
with tools that do not support distributed processing over HDFS,
and its efficiency is key to minimize disk and network overheads.

• BigDEC has been implemented in ‘‘pure’’ Java code (i.e. 100%
Java) to maximize cross-platform portability across different sys-
tems, supporting both single- and paired-end datasets stored in
FASTQ [28], a sequence format widely spread among state-of-
the-art correctors. Our tool is publicly available to the scientific
community as free open-source software released under the GNU
GPLv3 license.

The rest of this paper is organized as follows. Section 2 introduces
the background of the paper. Section 3 discusses the related work. The
esign and implementation of our tool is described in Section 4. Section
presents the experimental results carried out on a 16-node cluster to
ssess the performance and scalability of BigDEC comparatively with
315

ther state-of-the-art tools. Finally, Section 6 concludes the paper. u
. Background

This section introduces the main concepts needed to understand our
roposal, namely background about Big Data technologies, the basics
f the 𝑘-mer spectrum-based error correction method and some details
egarding the FASTQ format.

.1. Big data technologies

Scientists and researchers are currently facing new challenges when
toring and analyzing large datasets. The characteristics of Big Data
equire powerful and novel parallel approaches to extract meaningful
nformation from such massive datasets in a scalable manner by effi-
iently exploiting the computational resources of distributed-memory
ystems. The Google MapReduce programming paradigm [29] and its
ssociated open-source implementation, the Apache Hadoop project
30], were the cornerstone of Big Data processing over the last decade.
n fact, the exploitation of such technologies has transformed multi-
le disciplines including weather forecasting [31], healthcare [32,33],
edical imaging simulation [34], deep learning [35] and genome
nalysis [21,36,37], among others. The key for their success is that
he MapReduce model provides a quite convenient way to implement
istributed applications, allowing programmers to focus on the task
ather than on other low-level parallelization issues such as inter-
rocess communications. This is opposed to other previous models such
s MPI, which requires much more effort from programmers to obtain
igh performance.
Furthermore, Hadoop also provides a distributed storage layer in

rder to efficiently support the MapReduce model: the Hadoop Dis-
ributed File System (HDFS) [27]. HDFS is a block-oriented file system
mplemented in Java that is specifically designed to provide high band-
idth by distributing and replicating data across a cluster of commodity
achines. This file system has built-in fault tolerance by using a data
lock replication scheme, and the number of times that each block is
eplicated over the cluster is known as the replication factor. Relying on
DFS, Hadoop MapReduce attempts to schedule processing tasks on the
luster machines where the input data blocks reside, thus minimizing
ata movements across the network.
Nowadays, Hadoop MapReduce has been largely superseded by
ore advanced frameworks such as Apache Spark [25] and Apache
link [26], which also take advantage of HDFS features. These frame-
orks overcome the disadvantages of MapReduce by providing a richer
rogramming API to allow for more flexible data-parallel operations
ver distributed datasets, by reducing disk-based processing through in-
emory computations to improve overall performance, by supporting
treaming and interactive data processing, and by offering interfaces to
mplement applications in multiple languages (e.g. Java, Scala, Python,
) in order to ease software development. At the highest level of ab-
traction, both Spark and Flink provide programmers with appropriate
nterfaces and data structures that allow to process a large dataset as
collection of data elements distributed over a cluster of machines,
hich can be efficiently operated in parallel. More details about these
rameworks are provided next, mostly focused on their support for
atch processing as this is the relevant context for this work.

.1.1. Spark and Flink overview
Spark is an open-source, general-purpose Big Data framework that

upports both batch and streaming processing models. The fundamental
ata structure in Spark is based on the Resilient Distributed Dataset
RDD) [38], which provides an immutable, distributed collection of
ata elements partitioned across the cluster that can be created in dif-
erent ways, for instance by loading an external dataset from supported
ile systems such as HDFS. Once created, an RDD can be manipulated
sing a rich set of data-parallel operations (e.g. map, filter). For in-
tance, the map transformation processes each RDD element through a

ser-defined function and returns a new RDD representing the results,

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

w
o

o
l
h
d
c
t
s
t
g
p

Fig. 1. Standalone cluster deployment for Spark and Flink for batch processing on HDFS.
t
p
o
o
C
b
o
n
t
t
c

hile filter returns a new RDD formed by selecting only those elements
f the source RDD on which a user-defined function returns true.
Although RDD was the primary user-facing API since the inception

f Spark, new higher-level APIs have been introduced later to make
arge-scale processing even easier: Dataframes/Datasets. On the one
and, Dataframes are, like RDDs, immutable distributed collections of
ata but, differently to RDDs, such data are organized into named
olumns like a table in a relational database. They allow developers
o impose a structure onto a distributed dataset, providing a domain
pecific language to manipulate it. Dataframe API is built on top of
he Spark SQL engine [39], which takes advantage of Catalyst to
enerate an optimized logical and physical query plan to improve
erformance [40]. On the other hand, Dataset API is just an extension
of Dataframes which provides the functionality of type-safe, object-
oriented interface of the RDD API together with the performance
benefits of the Catalyst optimizer.

While Spark is mainly a batch processing engine that also supports
streaming computations, Flink is a native, record-by-record stream en-
gine that supports batch processing by simply considering batches to be
bounded data streams. The basic building blocks of Flink applications
are composed of streaming dataflows that can be transformed by user-
defined operators. These dataflows form directed graphs that start with
one or more data sources and finish in one or more data sinks. For
batch processing, the Flink Dataset API allows programmers to perform
transformations (e.g. map, filter) on distributed data collections in a
similar way to Spark. These Datasets are initially created from certain
data sources (e.g. by reading files, or from local collections), and results
are returned via data sinks which may, for example, write the data to
distributed files.

From now on, we will use the term ‘‘Dataset’’ regardless of the
316

framework/API to refer to a distributed collection of data elements, c
whereas ‘‘dataset’’ will be used for genomic data (i.e. FASTQ reads in
our context). The term for a specific data structure or API (e.g. Spark
RDD) will be used to explain or clarify something specifically related
to it.

2.1.2. Cluster deployment
Both frameworks are designed to be deployed on a cluster of com-

modity machines without requiring any specific hardware on them,
by following a master/worker architecture as depicted in Fig. 1. It
is important to remark that these frameworks are implemented in
programming languages that run on top of the Java Virtual Machine
(JVM): Spark in Scala and Flink in Java, just like HDFS (also in Java).
So, their runtime systems are composed of software components in
the form of JVM processes deployed across the cluster machines. More
specifically, these systems consist of two types of JVMs: one that runs
on the master node, and one (or more) executed on the worker nodes.
For Spark, such JVMs are called Master/Executor, respectively, and
JobManager/TaskManager in the case of Flink.

As can be seen Fig. 1, users launch their applications through
he master node. Spark/Flink applications run as independent sets of
rocesses across the cluster that are coordinated by the main function
f the program, which is executed within a JVM that usually also runs
n the master node. This main program, called Spark Driver or Flink
lient, defines the Datasets and declares the parallel transformations to
e carried out over them, submitting such requests to the Spark Master
r Flink JobManager to be processed across the cluster. The worker
odes are the places where all the processing tasks are scheduled among
he Executors/TaskManagers. Their computational resources determine
he maximum parallelism for the applications, and they are generally
onfigured to allow the execution of as many processing tasks as CPU

ores available on each worker node. Their resources are allocated

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

t
f

S
[
i
l
S
e
B
d
O
e
O
e
c

l
t
4
e
a
a
m
o
s
d
T
a
a
c
g
i
a
F
s
s
r

Fig. 2. Example of two DNA reads in FASTQ format (75 bases).

o Spark/Flink applications through a cluster manager. Although both
rameworks support external cluster managers such as YARN [41],
they can also run in standalone mode by providing a built-in resource
manager and scheduler. For simplicity, we will focus on this standalone
mode in this work.

Regarding distributed storage, HDFS also relies on a master/worker
architecture, where the deployment consists of running a JVM pro-
cess on the master node (NameNode) and one JVM per worker node
(DataNode). On the one hand, the NameNode is in charge of storing
the metadata, so it knows for any given file in HDFS the list of data
blocks, their location on the workers and the number of replicas, among
other information. On the other hand, the DataNodes are responsible for
storing the actual data blocks using local disks physically attached to
worker nodes. They perform the low-level read and write requests from
the HDFS clients, which are the Spark/Flink applications in our context.

2.2. 𝑘-mer spectrum-based error correction

Multiple methods have been proposed to correct sequencing errors
in NGS datasets [18,19,42,43]. Among them, the most popular one
for correcting short reads is the 𝑘-mer spectrum-based (or 𝑘-spectrum-
based) approach, mainly due to its simplicity, competitive accuracy
and good performance compared to alignment-based approaches. The
general idea of the 𝑘-spectrum-based method consists in generating
the set of distinct overlapping substrings of a fixed length 𝑘 (so-called
𝑘-mers) from the input reads. The corresponding frequency for each
𝑘-mer (i.e. its multiplicity) is determined during the 𝑘-mer counting
step. Because multiple reads are generated from a similar genomic
location, it is highly probable that these reads contain the same 𝑘-mer.
So, if the multiplicity of a 𝑘-mer is very low we can assume that it
contains erroneous bases. Those 𝑘-mers with a multiplicity equal to
or higher than a certain threshold are considered as solid (trusted) 𝑘-
mers, whereas the remaining ones are considered weak (or untrusted).
Solid 𝑘-mers are highly likely to occur in the genome, being unlikely
to have been altered by sequencing errors. Therefore, input reads that
only contain solid 𝑘-mers are assumed to be error-free, whereas those
reads that contain weak 𝑘-mers are corrected by repeatedly trying to
replace them by similar solid 𝑘-mers. The 𝑘-mer multiplicity threshold
that separates solid 𝑘-mers from weak ones can be often specified by the
user, but most correctors can automatically determine an appropriate
value from the 𝑘-mer multiplicity histogram. Overall, many 𝑘-spectrum-
based tools mainly differ in the specific strategy used for implementing
the error correction step, which ultimately determines its accuracy and
computational efficiency.

2.3. FASTQ sequence format

The FASTQ format [28] is a human-readable, text-based file format
intended for storing both a biological sequence (usually nucleotide
sequence) and its corresponding quality scores. Each of the nucleotides
and quality scores are encoded using a single ASCII character in order
to minimize the file size. This format is currently considered de facto
standard for storing the output of high-throughput NGS platforms such
as Illumina sequencers, among many others.

FASTQ represents each DNA sequence using four lines, as can be
317

seen in Fig. 2 which shows an extract from a FASTQ file containing a
two DNA reads. The first line begins with a ‘@’ character that marks
the beginning of the sequence. Everything from the leading ‘@’ to
the first whitespace character is considered the sequence identifier
(e.g. ERR580958.25). After the first space, an optional sequence de-
scription can appear in this first line, which usually contains specific
information from the NGS sequencer. The second line contains the raw
nucleotide bases: adenine (‘A’), cytosine (‘C’), guanine (‘G’) or thymine
(‘T’). An ‘N’ base in this line means that the NGS sequencer was not
able to make a basecall for this base. The third line begins with a
‘+’ character that marks the end of the nucleotides and is optionally
followed by the same sequence identifier and description (if any) from
the first line. The last line encodes the quality values for the nucleotide
sequence in line 2, containing the same number of characters as bases.
These scores represent the likelihood of the base being called wrong
by the NGS sequencer, also encoded using ASCII characters to represent
the numerical quality scores. These scores can be taken into account by
the correction algorithms in order to make decisions about correcting
sequencing errors within the bases.

3. Related work

We can find in the literature previous works that take advantage
of parallel architectures to increase the performance of 𝑘-spectrum-
based error correctors: Musket [11], BLESS2 [12], RECKONER [14],
Lighter [15], SPECTR [16], Quake [44], CUDA-EC [45], DecGPU [46],
GA-EC [47], RACER [48], Blue [49], BFC [50], QuorUM [51], FADE
52], ZEC [53] and SMusket [54]. Most of them only provide a parallel
mplementation through multithreading, so that their scalability is
imited to exploit the computational resources of a single machine.
ome of them (SPECTR, CUDA-EC and DecGPU) are designed to be
xecuted on specific hardware (e.g. NVIDIA GPUs, AVX-512), whereas
LESS2, ZEC and SMusket are the only ones that can be executed on
istributed-memory systems and without requiring specific hardware.
n the one hand, both BLESS2 and ZEC combine MPI to work on differ-
nt machines with a multithreading approach based on OpenMP [55].
n the other hand, SMusket is our previous work based on Spark that
xtends the Musket correction algorithm to be executed on clusters of
ommodity machines.
A common drawback for all the previous tools is that they are

imited to implement a single error correction algorithm. According
o previous benchmarking studies on error correction methods [18–20,
2,56], there is no one-fits-all corrector. For instance, authors in [20]
valuate the ability of several error correction algorithms to fix errors
cross different types of datasets with various levels of heterogeneity
nd using various coverage settings. According to their results, the best
ethod varies substantially across different types of datasets depending
n several factors (e.g. genome coverage). In [18], authors compare
ix k-spectrum-based correction algorithms using multiple paired-end
atasets varying their coverage depth, read length and genome size.
heir experimental results suggest that good performance of a certain
lgorithm for a specific dataset does not guarantee its ability to perform
s well for another type of dataset. Therefore, the availability of a
orrector that integrates multiple algorithms into a single tool can be of
reat interest for bioinformaticians, especially if the procedure of apply-
ng all of them over the input dataset is simple, fast and scalable over
cluster of commodity machines to correct large datasets efficiently.
urthermore, existing correctors are restricted to be executed with a
pecific computing library of processing framework (e.g. MPI, Spark),
o providing more flexibility in this regards can expand the potential
ange of users of the tool. These are all the challenges we intend to

ddress with the proposal of the BigDEC tool in this paper.

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

4

s
c
c
t
M
h
g
i
o
o
t
t
t
c
w
M
e
s
a
F
a
n
F

Fig. 3. Streamlined UML diagram of the overall BigDEC design with the main classes.
. Implementation

BigDEC is a novel Big Data tool to speed up the correction of
hort-read NGS datasets by taking advantage of the computational
apabilities provided by distributed-memory systems such as multi-
ore clusters. Unlike previous correctors, our tool provides support for
hree different algorithms that are based on the 𝑘-spectrum method:
usket [11], BLESS2 [12] and RECKONER [14]. These algorithms
ave been selected due to their popularity, good accuracy [9,20] and
reat similarities in their overall workflow, which not only eases the
mplementation of our tool but also allows to introduce performance
ptimizations. It is important to remark that BigDEC provides the same
utput (i.e. error correction accuracy) as its counterpart standalone
ools but in a more scalable way thanks to relying on several Big Data
echnologies, namely Spark, Flink and HDFS. Similar to the standalone
ools, BigDEC requires as arguments the path to the input FASTQ file for
orrecting single-end datasets (two paths for paired-end correction), as
ell as the 𝑘-mer length to be used, among other optional arguments.
oreover, it accepts the path to a configuration file where other param-
ters can be set, such as the algorithms to be used during the execution,
ome other options related with Spark, Flink and HDFS, and other more
dvanced, algorithm-specific settings that are intended for expert users.
urthermore, our tool is designed following a modular, object-oriented
pproach to enhance code reusability and ease its future extension with
ew algorithms or frameworks through class inheritance, as depicted in
ig. 3.
Unlike the standalone tools, which are all implemented in C++,

BigDEC has been implemented in Java since Spark and Flink frame-
works do not provide C++-based APIs to transform RDD/Datasets.
Although these frameworks do allow to execute C++ code, wrapping
the standalone tools is not feasible without source code modifications.
Moreover, these tools must also be modified to take advantage of HDFS
features (e.g. data locality). Even though the use of Java may penalize
the overall performance of BigDEC as the computational efficiency
of the JVM is lower than that of languages compiled to native code
(e.g. C/C++), it enhances cross-platform portability across different
systems (BigDEC is 100% Java code).

4.1. Overall workflow

At the highest level of abstraction, the overall workflow of BigDEC
can be simplified into four main phases: (1) 𝑘-mer generation and
counting from the input DNA reads; (2) creation of the 𝑘-mer histogram
to determine the multiplicity thresholds (one per correction algorithm);
(3) filtering out weak 𝑘-mers to obtain solid ones; and (4) execution
318
of the specific correction routine for each algorithm over the input
reads using solid 𝑘-mers and writing of the corrected reads to the
corresponding output files.

Algorithm 1 shows the pseudocode to correct a single-end dataset
that illustrates the previously described workflow. Note that this pseu-
docode does not take into account those specific aspects related with
parallelization or with Big Data technologies for simplicity purposes,
which are later explained in following sections. The execution starts by
reading the input file in order to generate all the 𝑘-mers from each read
(lines 5–10). In this code block, (𝐿 - 𝐾 + 1) 𝑘-mers are generated in a
read of length 𝐿 (i.e. 𝐿 bases or nucleotides), being 𝐾 the 𝑘-mer length
specified as input argument. The number of 𝑘-mer occurrences (i.e. its
multiplicity) is also computed so that unique 𝑘-mers can be filtered
out in the next phase since they are considered to be largely untrusted
(see line 11). Next, the 𝑘-mer histogram is created from non-unique 𝑘-
mers and multiplicity thresholds are determined from such histogram
for each correction algorithm (lines 12–14). Next phase is in charge of
filtering out weak 𝑘-mers according to the minimum threshold value to
remove as few 𝑘-mers as possible. To do so, firstly the algorithms are
sorted in ascending order according to their corresponding thresholds
and then 𝑘-mer filtering is performed (lines 15–16). The correction
algorithms are then applied over the input reads in that same threshold
order so that they use exclusively the set of solid 𝑘-mers that correspond
to them during the correction phase (lines 18–24). In this way, we
ensure that their accuracy is not affected since the code routines to
correct the reads in BigDEC are exactly the same as that of their
counterpart standalone tools, but implemented in Java, and they use
the same solid 𝑘-mers during correction. Note also that the set of solid
𝑘-mers for each algorithm is filtered out according to its corresponding
threshold only when strictly necessary (see lines 17 and 19–21). Finally,
each algorithm writes the corrected reads in the corresponding output
file (line 24).

Although Algorithm 1 is intended for single-end datasets, paired-end
correction requires minor changes. In this case, the two ends of paired
reads are distributed into two separate input files, with one of them
containing the forward reads and the other one containing the corre-
sponding reverse reads. Therefore, BigDEC must generate the 𝑘-mers
for both forward and reverse reads during the 𝑘-mer counting phase.
During the error correction phase, both ends of paired reads must
be processed through the correction routine and the corrected reads
written to separate output files (i.e. two output files per algorithm).

The workflow described in this section illustrates some of the poten-
tial benefits of our proposal, not only in terms of usability by allowing
to apply multiple correction algorithms built within the same tool, but
also in terms of performance since the three first phases are common

to all of them.

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

4

c
c
(
s
o
w
t
a
c
i
f
o
c
e
o
H
t
a
c
j

4

t
i
n
l
W
d
l
w
t
t
c

Fig. 4. High-level overview of BigDEC on Spark/Flink clusters.
w
e
t
c
r
t
m
t
E
t
t

m
a
a
d
f
s
c
g
t
n
1

.2. BigDEC deployment overview

Fig. 4 depicts the high-level overview of the tool on Spark and Flink
lusters. First of all, the user must submit the Java application to the
luster through the master node using the packaged JAR file of BigDEC
see 1 in the figure). The main function of the application, which repre-
ents the Spark Driver or Flink Client, will connect to the Spark Master
r Flink JobManager (see 2) to obtain computational resources from the
orker nodes to process the input FASTQ file stored in HDFS (see 3,
wo files in case of paired-end correction). Next, distributed computing
mong the workers begins (see 4), each one in charge of processing a
ertain chunk of the input file/s to perform the 𝑘-mer counting phase. It
s important to remark that each Executor/TaskManager will require the
ull set of solid 𝑘-mers during the error correction phase, as the solidity
f all the 𝑘-mers for each input read assigned to them must be tested by
omparing their multiplicity with the corresponding threshold. How-
ver, solid 𝑘-mers are actually distributed across multiple workers in
ur cluster environment. To solve this issue, solid 𝑘-mers are written to
DFS in CSV format to make them available to all workers (see 5). In
his way, Executors/TaskManagers can load those 𝑘-mers from HDFS in
local Java Map collection before performing error correction. Finally,
orrected reads are written back to HDFS (see 6). The BigDEC overview
ust briefly outlined here is detailed in the following sections.

.3. Spark/Flink parallelization

The parallel approach used to obtain the set of solid 𝑘-mers from
he input dataset stored in HDFS is illustrated in Fig. 5. As explained
n Section 2.1.2, HDFS files are actually distributed across the worker
odes and stored in small data chunks or blocks of a fixed length (see
eft part of the figure), which are managed by the DataNodes processes.
hen processing a file from HDFS, logical splits are created from HDFS
ata blocks (one split per block by default). Remark that a split is just a
ogical reference to data, whereas an HDFS block is a physical location
here actual data are stored. Generally, splits are preferably scheduled
o be processed by Big Data frameworks to a worker node that hosts
he data referred by the split for performance reasons. BigDEC allows
onfiguring the number of logical splits that are created from each
319
HDFS block through a command-line option (two splits per block are
used in the figure as an example).

The total number of splits (𝑁𝑆 from now on) directly affects the
ay Spark partitions an RDD/Dataset: it creates a single partition for
ach input split. In the example shown in Fig. 5, 𝑁𝑆 is equal to 4 and
hus 𝑁 = 4, 𝑁 being the number of partitions of the RDD/Dataset
reated from the input file. When processing an RDD/Dataset, Spark
uns a single concurrent task for each partition up to 𝑃 tasks, 𝑃 being
he total number of CPU cores available on worker nodes (i.e. 𝑃 is the
aximum parallelism). Therefore, 𝑁𝑆 should be equal to (or higher
han) 𝑃 to ensure that all the available cores are used by the Spark
xecutors for processing tasks. Generally, it is beneficial to create more
han one split/partition per CPU core (e.g. 𝑁𝑆 = 2 × 𝑃 = 𝑁) so that
he workload is more evenly distributed among the Executors. However,
Flink relies on a different approach compared to Spark by running a
fixed number of data source tasks that depends on the configured par-
allelism of those Flink operators and not on the 𝑁𝑆 value. These data
source tasks request splits from the Flink JobManager for processing
them on the TaskManagers, and the split assignment tries to exploit
locality preference (splits are fetched from the JobManager one after the
other, local ones first and remote ones later). As the default parallelism
for Flink operators is usually configured to 𝑃 to exploit all the available
resources (i.e. 𝑃 data source tasks are executed), the maximum number
of partitions for any Flink Dataset is also 𝑃 regardless of the number
of splits (i.e. 𝑁 <= 𝑃). In terms of efficiency, BigDEC ensures that
𝑁𝑆 >= 𝑃 in order to feed all the data source tasks with input data.

Once the Dataset that contains the input reads has been created, 𝑘-
ers can be generated within each partition to perform their counting
nd then proceed to filter out unique ones. Details for these steps
re not shown in Fig. 5 for simplicity purposes, but the next section
escribes them together with the specific operations that are required
or Spark and Flink (all the steps prior to the red asterisk that can be
een in Fig. 5 will be detailed). The result of these steps is a new Dataset
ontaining only non-unique 𝑘-mers, from which the histogram can be
enerated and thresholds computed for each algorithm. Algorithms are
hen sorted according to their thresholds and the Dataset containing
on-unique 𝑘-mers is filtered using the minimum value (see also lines
5–16 in Algorithm 1). This step creates a new Dataset that represents

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

F

1

1

1

1

1

1

1

Fig. 5. Simplified parallel approach in BigDEC to obtain solid 𝑘-mers from input reads on HDFS.
d
t
s
O
r
l
t
t
i
f
t
D
s

S
t
A
m
f
F
w
t
a
a
i
t
S
(
i
m
c
a

Algorithm 1: Pseudocode of BigDEC to correct a single-end
ASTQ dataset

1 INPUT: Path to sequence file (𝑖𝑓 𝑖𝑙𝑒) with 𝑁 reads; 𝐾 as 𝑘-mer length;
List 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠 with 𝐶 algorithms to apply

2 OUTPUT: Sequence files (𝑜𝑓𝑖𝑙𝑒𝑖) with 𝑁 corrected reads each, with
0 < 𝑖 < 𝐶

/* Reading of input reads and 𝑘-mer counting */
3 Initialize empty list 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
4 Initialize empty map 𝑘𝑚𝑒𝑟𝑠 // Map-like data structure to

store <𝑘-mer,multiplicity> pairs
5 for 0 < 𝑖 < 𝑁 do
6 Read sequence 𝑆𝑖 from input file 𝑖𝑓 𝑖𝑙𝑒
7 Add 𝑆𝑖 to 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
8 𝐿 = Length(𝑆𝑖)
9 𝑠𝑒𝑞𝐾𝑚𝑒𝑟𝑠 = CreateKmers(𝑆𝑖, 𝐿, 𝐾) // Generate (𝐿 −𝐾 + 1)

𝑘-mers with multiplicity 1
10 Put 𝑠𝑒𝑞𝐾𝑚𝑒𝑟𝑠 into 𝑘𝑚𝑒𝑟𝑠 map updating their multiplicities
end

/* Filtering out unique 𝑘-mers and determining
thresholds from the 𝑘-mer histogram */

1 𝑘𝑚𝑒𝑟𝑠 = RemoveKmers(𝑘𝑚𝑒𝑟𝑠, 1) // Filter out 𝑘-mers with
multiplicity 1

2 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 = CreateKmerHistogram(𝑘𝑚𝑒𝑟𝑠)
3 for 0 < 𝑖 < 𝐶 do

/* 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖] represents 𝑘-mer threshold for
𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠(𝑖) */

14 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖] = DetermineKmerThreshold(ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠(𝑖))
end

/* Filtering out weak 𝑘-mers using the minimum
threshold value */

5 Sort(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠) // Sort list in ascending order
according to their thresholds

6 𝑠𝑜𝑙𝑖𝑑𝐾𝑚𝑒𝑟𝑠 = RemoveKmers(𝑘𝑚𝑒𝑟𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[0])

/* Performing error correction for each algorithm and
writing the output files */

7 𝑝𝑟𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = INT_MAX // Integer maximum value
8 for 0 < 𝑖 < 𝐶 do
19 if 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖] > 𝑝𝑟𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
20 𝑠𝑜𝑙𝑖𝑑𝐾𝑚𝑒𝑟𝑠 = RemoveKmers(𝑠𝑜𝑙𝑖𝑑𝐾𝑚𝑒𝑟𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖])

end
21 𝑝𝑟𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠[𝑖]
22 for 0 < 𝑗 < 𝑁 do
23 𝑂𝑗 = CorrectErrors(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝑗), 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠(𝑖), 𝑠𝑜𝑙𝑖𝑑𝐾𝑚𝑒𝑟𝑠, 𝐾)
24 Write corrected sequence 𝑂𝑗 into output file 𝑜𝑓𝑖𝑙𝑒𝑖

end
end

the set of solid 𝑘-mers for the first correction algorithm. As previously
explained in Section 4.2, solid 𝑘-mers are written to HDFS in CSV
format to make them available to all worker nodes during the error
correction phase. It is important to remark that when writing a Dataset
to HDFS, multiple output files are usually created. On the one hand,
Flink writes as many files as the parallelism configured for data sink
tasks, which are in charge of writing the Dataset to HDFS. Similar
320

f

to data sources, these Flink operators are configured with maximum
parallelism, so 𝑃 data sinks are running (i.e. 𝐿 = 𝑃 in Fig. 5, 𝐿 being
the number of output CSV files). On the other hand, Spark writes as
many files as the number of RDD/Dataset partitions (𝑀 in the figure).
Our tool ensures that the RDD/Dataset of solid 𝑘-mers is created with
at least 𝑃 partitions (i.e. 𝑀 >= 𝑃), but the user can modify this
setting through the BigDEC configuration file. Therefore, Spark writes
𝑀 output CSV files to HDFS (i.e. 𝐿 = 𝑀 in the figure). After writing
the Dataset to HDFS, BigDEC merges all output files into a single one
to ease the reading of solid 𝑘-mers on Executors/TaskManagers before
starting the error correction phase. The overhead of this copy-merge
operation is negligible, as the resulting CSV file is typically of the order
of a few megabytes in size.

4.3.1. Input reading and 𝑘-mer counting
To create the initial Dataset from the input file, BigDEC does not

rely on general-purpose methods provided by Spark and Flink for read-
ing text-based files. These built-in methods cannot handle the FASTQ
format straightforwardly since they process text files on a line-by-line
basis by default (i.e. one record per line). However, FASTQ is a text-
based sequence format that involves multiple lines per DNA read, as
previously explained in Section 2.3. Even though the default record
elimiter in those reading methods can be replaced by the character
hat separates FASTQ reads (‘@’) within the file, this would not work
ince such character can also appear in the quality string (see Fig. 2).
ne simple solution is to preprocess the input file to convert FASTQ
eads into an appropriate line-by-line format (i.e. one DNA read per
ine). This approach, which is used by some previous Hadoop/Spark
ools [57–59], incurs significant overhead. Instead, BigDEC relies on
he Hadoop Sequence Parser (HSP) [60] to avoid any preprocess-
ng. HSP is a Java library that allows reading unaligned sequence
ormats (FASTQ/FASTA) directly from any Hadoop-compatible file sys-
em (e.g. local file system, HDFS). Using HSP, Spark RDDs and Flink
atasets can be created in an efficient and simple way, supporting both
ingle- and paired-end reads.

park implementation. Fig. 6(a) shows the BigDEC implementation of
he input reading and 𝑘-mer counting steps using Spark RDDs/Datasets.
n initial RDD is created from the input file using the newAPIHadoopFile
ethod provided by Spark together with the FastQInputFormat class
rom HSP, which extends the Hadoop FileInputFormat class to support
ASTQ files. HSP generates <key,value> pairs of type <Long, Text>,
here the key is the byte offset in the input file for each read and
he value is the text-based content of the read itself: identifier, bases
nd qualities. Offsets are not needed so that keys are discarded by
pplying a values transformation on the initial RDD. The text contained
n the values is parsed accordingly by chaining a map transformation
hat converts each RDD element (i.e. each Text object) into an custom
equence object. As a result, a new RDD of type Sequence is obtained
named readsRDD in Fig. 6(a)). When using Spark Datasets, this RDD
s converted into a Dataset of type Sequence using the createDataset
ethod (named readsDS in the figure). From this RDD/Dataset that
ontains the input reads, 𝑘-mers are then generated by applying the
ppropriate transformation depending on the API: flatMapToPair and

latMap for RDDs and Datasets, respectively. The function executed

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

b
m
e
t
d
c
b
f
o
c

F
u
m
t
c
o
(
c
t
𝑖
p
S
c
t
F
d
o
a
w
F
t
b
o
p
t
a
T
D
a
b
t
F
t

4

p
p
t

Fig. 6. Reading of input sequences, 𝑘-mer counting and filtering out unique 𝑘-mers using Spark and Flink.
e
d
S
b
a
a
t
T
w
b
a
t
d
t
r
D

c
r
p
d
w
g
p
E

B
t
b
w
a
D
t
t
N
o
e
n

c
t
c
a
o
o
f

y these transformations outputs each 𝑘-mer as key together with a
ultiplicity of one as value. To perform 𝑘-mer counting, the values for
ach key are aggregated by just adding all the values (i.e. multiplicities)
ogether for each key (i.e. 𝑘-mer). When using RDDs, this can be
one with just a reduceByKey transformation, whereas Datasets require
haining groupByKey and count. Next, unique 𝑘-mers are filtered out
y applying a filter transformation that returns a new RDD/Dataset
ormed by selecting those 𝑘-mers whose multiplicity is higher than
ne. The resulting RDD/Dataset contains non-unique 𝑘-mers and their
orresponding multiplicities.

link implementation. Fig. 6(b) shows the same steps implemented
sing Flink. The initial Dataset is created using HSP and the createInput
ethod provided by Flink. This Dataset contains <key,value> tuples of
ype <Long, Text> with the same meaning as in Spark. The text-based
ontent of each read is parsed by applying a map transformation to
btain a Dataset of type <Long, Sequence>. Unlike Spark, the offsets
i.e. first tuple field) are not discarded as they are needed to keep
orrected reads in the output file in the same input order. In Spark,
he partitions of the initial RDD are created from the splits so that the
𝑡ℎ partition contains the data from the 𝑖𝑡ℎ split. Therefore, the RDD
artition order reflects the order of the reads within the input file.
ince all the transformations applied by BigDEC on this RDD do not
hange such partitioning, the order when writing the corrected reads
o HDFS is ensured. However, the split assignment performed by the
link JobManager does not ensure any particular order, so a certain
ata source task can process, for example, splits 15, 102, 3 𝑦 24 (in that
rder). To solve this issue, the Flink Dataset is partitioned by key using
custom range partitioner so that all keys falling in the same range
ill land in the same partition (see partitionCustom transformation in
ig. 6(b)). As the keys represent the byte offset for each read within
he input file, the partition number can be calculated as the division
etween the byte offset and the partition size. Partition size is simply
btained by dividing the input file size by the number of Dataset
artitions, which is equal to the maximum parallelism 𝑃 . To ensure
he order within each partition, a sortPartition transformation is applied
fter partitioning to sort reads in ascending order based on their offset.
o perform 𝑘-mer counting, the procedure is very similar to Spark
atasets. Using flatMap, 𝑘-mers are generated for each read and then
ggregated by applying a groupBy transformation to group the Dataset
y key (i.e. the first tuple field). Multiplicities are then computed
hrough an aggregate transformation on the second tuple field (sum(1)).
inally, unique 𝑘-mers are removed with a filter transformation as in
he case of Spark.

.3.2. Error correction
As a result of all the previous steps, solid 𝑘-mers and their multi-

licities can be loaded from HDFS on each Executor/TaskManager to
erform error correction (see Fig. 7). In this last phase, each read in
he input Dataset must be processed to correct potential sequencing
321
rrors using the algorithms specified by the user. Their execution order
epends on their corresponding multiplicity thresholds, as explained in
ection 4.1. Basically, the Dataset containing the input reads is operated
y applying a map transformation that processes each element through
function that implements the specific correction routine for a certain
lgorithm. These routines haven been reimplemented in Java from
heir original counterparts to keep their quality of error correction.
he corrected Dataset is finally written to HDFS, and this correction–
riting loop is repeated until all algorithms selected by the user have
een applied. Note that, if required, the set of solid 𝑘-mers is filtered
ccordingly for each algorithm before applying the map transformation
o correct the input reads. In case of paired-end correction, the only
ifference would be that there are two input Datasets to be operated
hrough the map transformation, with one of them containing forward
eads and the other one containing the reverse reads. The two corrected
atasets are written to HDFS on separate directories.
Once the correction phase has finished, 𝑄 output files have been

reated on HDFS for each algorithm (2 × 𝑄 in case of paired-end cor-
ection). The number of files depends on the number of RDD/Dataset
artitions for Spark (i.e. 𝑄 = 𝑁) and the configured parallelism for
ata sinks in the case of Flink (i.e. 𝑄 = 𝑃), as previously explained
hen writing solid 𝑘-mers to HDFS (see Section 4.3). For Spark, it is
enerally beneficial to create the input Dataset with multiple partitions
er CPU core so that the workload gets distributed more evenly among
xecutors (e.g. 𝑁 = 4 × 𝑃).
Optionally, the output files for each algorithm can be merged by

igDEC into a single FASTQ file and copied it to the local file system of
he master node for further downstream analyses (e.g. mapping, assem-
ly). The most simple approach is to perform this copy-merge operation
ithin the Spark/Flink Driver/Client process on the master node just
fter error correction has finished. Due to specific organization of the
ataset partitions for both frameworks (see Section 4.3.1), combining
he output files by their numbering order is enough to guarantee that
he order of the corrected reads is the same as in the input file.
evertheless, this feature of the merge operation can be disabled when
utput ordering is not needed, which may slightly improve performance
specially in the case of Flink since the Dataset partitions would not
eed to be sorted (see Fig. 6(b)).
Finally, it is important to remark that the copy-merge operation

an be avoided when downstream analyses are performed using tools
hat support distributed processing on HDFS [61,62]. Otherwise, it
an be enabled by the user through a command-line option that also
llows specifying the destination path on the master node where final
utput files are copied. Although this operation incurs disk and network
verhead, next section describes a more efficient approach by merging
iles on a stream basis as they are written to HDFS.

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

o

Fig. 7. Overview of the error correction phase and copy-merge operation.
Fig. 8. Error correction using a helper thread to merge output files on a stream basis.
a
p

4.4. Stream-based merge operation

To ease downstream analyses of the corrected reads, the copy-merge
operation would be needed when HDFS is not supported by the next
steps of the bioinformatics pipeline. To improve the performance of this
operation, BigDEC includes a stream-based, multithreaded approach
that can be enabled to merge and copy output files to the master node
as they are written to HDFS. As can be seen in Fig. 8, the basic idea
is to launch a new merger thread within the Spark/Flink Driver/Client
process each time the input Dataset is operated using one of the
correction algorithms. Each thread will be in charge of monitoring the
HDFS directory where output files are written for a certain algorithm
in order to detect new content and copy it to the final output file
stored in the master node. However, the merger thread must operate
differently depending on the framework being used, since the writing
of the corrected Dataset to HDFS creates a different number of output
files (𝑄 in the figure) for Spark and Flink, as previously explained.

On the one hand, Spark writes as many output files as the number
f RDD/Dataset partitions (𝑄 = 𝑁), which in turns 𝑁 depends on
the number of input splits (𝑁𝑆) as explained before in Section 4.3
(𝑄 = 𝑁 = 𝑁𝑆). For performance reasons, it is usually beneficial
for Spark to create the input RDD/Dataset with much more partitions
than available CPU cores (i.e. 𝑁 > 𝑃). In this scenario, the merger
thread monitors HDFS to detect new files written by the Executors. Such
files represent already corrected partitions and can be copied by the
merger thread to the final output file on the master node while the
Executors are correcting the remaining partitions. To ensure the order
of the corrected reads within the final merged file, new detected files
must be copied according to their numbering (i.e. 𝑖th output file must
be copied before 𝑗th output file, with 𝑖 < 𝑗). This approach allows
effectively overlapping computation (error correction) and I/O (copy-
merge operation). Increasing 𝑁𝑆 potentially enhances the chances for
322
overlapping: more but smaller partitions are created, which can be
corrected and written to HDFS faster. It is worth noting that the benefits
of this approach also apply between the execution of different algo-
rithms thanks to multithreading. When a certain algorithm has finished,
its merger thread will continue to copy-merge the remaining output
files while the next algorithm and its corresponding merger thread are
already being executed. The same reasoning can also be applied for
paired-end correction, where the two input Datasets to be corrected
use separate merger threads to copy-merge their corresponding output
files.

On the other hand, Flink writes as many output files as the config-
ured parallelism for the data sink operators regardless of the number of
splits, as explained in Section 4.3. BigDEC configures such parallelism
to the maximum level for performance reasons, so that 𝑃 output files
re created per each algorithm (𝑄 = 𝑃 = 𝑁). The custom range
artitioner used by BigDEC (see Section 4.3.1) ensures that the 𝑖th
data sink writes the corrected reads from the 𝑖th Dataset partition,
with 1 < 𝑖 <= 𝑃 . To ensure the order of the corrected reads within
the final merged file, output files must be also copied according to
their numbering. Another consequence of the custom partitioner is that
almost equal-sized partitions are created, so the number of reads within
each one is roughly the same, which favors a more balanced workload.
In this scenario, the merger thread monitors HDFS to detect new
content written in the first output file and copy it to the final output
file on the master node. Only once the first file has been fully copied,
it can proceed with the next one to ensure the order of the corrected
reads within the merged file. Due to having a balanced workload,
all the data sinks will finish writing at about the same time, so the
benefits for overlapping in single-algorithm executions are limited to
just copy the first file. Nevertheless, this approach still remains useful
when executing multiple algorithms and/or in paired-end correction,

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

c
f

5

(
B
e
w
3
o
o
n
G
C
O
r
S
(
J
B
o
p

b
N
(
t
w
b
t
a
w
s
a
i

5

s
i
t
a
a
a
r

f
(
r
r

S
n
e
a
t
t
S
S
o
w
p

i
t
o
i
m
E
S
t
b
s
r
a
e
t
1
t
m

s
m
h
t

5

w
b
r
p
i
s
t
a
S
e
a
t

v
b
t
o
e
I
o
f
p
D
p
i
t
S

Table 1
FASTQ datasets used in the experimental evaluation of BigDEC.
Dataset Tag Organism #Reads Length

SRR8655541 SRR86 Mus musculus 2 × 150.2 M 75 bp
SRR567455 SRR56 Homo sapiens 2 × 251.9 M 75 bp
ERR580958 ERR58 Labrus bergylta 2 × 148.7 M 100 bp
SRR8908980 SRR89 Homo sapiens 2 × 199.1 M 100 bp

as the chances for overlapping computation and I/O increase, as will
be shown in the performance evaluation.

To experimentally evaluate the benefits of the stream-based merge
operation, Section 5.1 will assess its impact on BigDEC performance
ompared to performing the copy-merge just after error correction has
inished.

. Performance evaluation

The experimental evaluation has been focused on performance
i.e. execution time) since the quality of error correction provided by
igDEC remains the same as that of the counterpart standalone tools, as
xplained in Section 4.1. To perform such evaluation, the experiments
ere carried out on a 16-worker commodity cluster running Spark
.1.2, Flink 1.14.0 and Hadoop HDFS 3.3.1. Each worker node consists
f two Intel Xeon E5-2660 octa-core processors, 64 GiB of memory and
ne 1 TiB local disk intended for HDFS data storage (i.e. 16 cores per
ode and 𝑃 = 256 cores in total). Nodes are interconnected through
igabit Ethernet and InfiniBand FDR. The cluster runs GNU/Linux
entOS 7.9.2009 with kernel 3.10.0–1160 and the JVM version is
racle JDK 11.0.11. Regarding HDFS settings, the block size and the
eplication factor were set to 64 MiB and 3, respectively. To deploy
park, Flink and HDFS on the cluster nodes, the Big Data Evaluator
BDEv) tool [63] has been used running one Executor/TaskManager
VM process per node configured with 16 cores and 54 GiB of memory.
oth the Spark Driver and Flink Client are executed on the master node
f the cluster together with the Spark Master and the Flink JobManager
rocesses (see Fig. 1).
Four publicly available datasets with different characteristics have

een evaluated, named after their accession numbers in the European
ucleotide Archive [64] and tagged accordingly for the sake of clarity
see second column in Table 1). The fifth column in this table refers
o the total number of input FASTQ reads for paired-end correction,
hereas the read length (last column) is expressed in terms of the num-
er of base pairs (bp). All the results shown in this section correspond to
he median value for a set of five executions for each experiment using
fixed 𝑘-mer length of 25, although the observed variance in runtimes
as not significant. Finally, eight splits per CPU core have been used,
o the total number of splits for a certain experiment can be calculated
s 𝑁𝑆 = 8×16×#𝑛𝑜𝑑𝑒𝑠, being #𝑛𝑜𝑑𝑒𝑠 the number of worker nodes used
n the experiment.

.1. Impact of the stream-based merge

This first set of experiments analyzes the benefits provided by the
tream-based copy-merge operation described in Section 4.4. To do so,
ts performance is compared with that of the naive approach where
he copy-merge is performed after error correction (see Section 4.3.2)
nd with that obtained when the copy-merge is disabled. The results
re shown for paired-end correction, which is the most computation-
lly intensive scenario under evaluation, using ERR58 and SRR89 as
epresentative datasets (the results for other datasets are very similar).
Fig. 9 shows the runtimes of BigDEC with Spark (labeled SP in the

igure) and Flink (FL) for single-algorithm performance using Musket
M), varying the number of nodes from 4 to 16. In the case of Spark,
esults using the Dataset API are shown (labeled SP-DS-M), although
esults for the RDD API are very similar. As can be seen in Fig. 9(a),
323

o

park takes full advantage of the stream-based merge as runtimes are
early identical to those obtained when the merge is not performed,
specially for 8 and 16 nodes. For instance, runtime is reduced by 21%
nd 23% on 16 nodes when using the stream-based merge compared to
he naive approach for ERR58 and SRR89, respectively. As expected,
he performance benefits for Flink (see Fig. 9(b)) are lower than for
park due to less chances for overlapping, as previously explained in
ection 4.4. However, runtimes reductions of about 6% and 10% are
btained when using 16 nodes for ERR58 and SRR89, respectively,
hich shows that our approach is also useful for single-algorithm
erformance.
Fig. 10 shows the runtimes for multi-algorithm performance execut-

ng the three correction algorithms currently supported by BigDEC. In
his scenario, the performance of this operation is key as the amount of
utput data to copy-merge is increased by a factor of 3x. The overhead
ncurred using the naive approach compared to not performing the
erge is very significant. For example, the merge operation for the
RR58 dataset represents from 30% to 45% of the total runtime for
park when using the naive approach (see Fig. 10(a)), and from 28%
o 60% in the case of Flink (Fig. 10(b)). Nevertheless, the stream-
ased merge clearly shows its full effectiveness by reducing runtimes
ignificantly, especially for Spark where merge overheads are virtually
emoved when using 8 and 16 nodes. Although the benefits for Flink are
gain lower than for Spark, these results confirm that multi-algorithm
xecution takes more advantage of the stream-based merge, with run-
imes reductions of 10%, 36% and 51% for ERR58 when using 4, 8 and
6 nodes, respectively, and 15%, 41% and 55% for SRR89. Therefore,
he larger the dataset, the higher the benefit provided our stream-based
erge (SRR89 contains 33% more reads than ERR58, see Table 1).
These results also allow to state that BigDEC provides very good

calability overall, as performance improves proportionally when using
ore hardware resources. All the experimental results shown hereafter
ave been obtained using the stream-based copy-merge operation due
o its better performance.

.2. Spark vs Flink

The second set of experiments compares the performance of BigDEC
hen using Spark RDDs, Spark Datasets and Flink Datasets, considering
oth single- and paired-end correction so that one and two input files,
espectively, are processed for each experiment. For comparison pur-
oses, results for SMusket are also provided in this section, as this tool
s the most similar 𝑘-spectrum-based parallel corrector to BigDEC in the
tate of the art. As mentioned in Section 3, SMusket is implemented on
op of the Spark RDD API but only limited to implement the Musket
lgorithm [11]. Another limitation is that the copy-merge operation in
Musket can only be performed after error correction has finished. To
ase the comparison, BigDEC is configured to apply only the Musket
lgorithm as SMusket does, so that the computations performed during
he error correction phase remain exactly the same for both tools.
Fig. 11 shows the runtimes obtained for SRR56, ERR58 and SRR89,

arying the number of nodes from 4 to 16. Several analyses can be done
ased on these results. When comparing SMusket with BigDEC using
he same Big Data processing framework (Spark), we can conclude that
ur tool is significantly faster in all the scenarios under evaluation,
ven when comparing them using the same Spark API (i.e. RDD).
n fact, BigDEC using RDDs (labeled SP-RDD-M in the figure) clearly
utperforms SMusket, providing speedups of up to 1.5x, 1.3x and 1.4x
or SRR56, ERR58 and SRR89, respectively, when using 16 nodes. The
erformance improvements increase even more when using the Spark
ataset API (labeled SP-DS-M), which allows stating that this API can
rovide an extra performance boost over RDDs in our scenario. For
nstance, BigDEC using Spark Datasets is up to 1.7 and 1.8 times faster
han SMusket on 16 nodes for single- and paired-end correction of
RR56, respectively, while also providing an average runtime reduction

f around 11% over BigDEC using RDDs.

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

(

Fig. 9. Runtimes of BigDEC using Spark and Flink Datasets running the Musket algorithm.
Fig. 10. Runtimes of BigDEC using Spark and Flink Datasets running BLESS2, Musket and RECKONER algorithms.
When comparing BigDEC using Spark Datasets with Flink Datasets
labeled FL-DS-M), we can conclude that the former outperforms the
324
latter in all the experiments, being up to 1.9 and 1.7 times faster on
16 nodes for single- and paired-end correction of SRR56, respectively.

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez
Fig. 11. Runtimes of SMusket and BigDEC tools using the Musket algorithm for single- and paired-end correction.
Nevertheless, Flink performance remains very competitive when com-
pared to both Spark-based implementations using RDDs, especially for
paired-end correction. Roughly speaking, Flink provides very similar
overall performance to SMusket, even outperforming it in most of the
paired-end experiments.

5.3. Benefits of multi-algorithm execution

These experiments analyze the benefits of providing specific sup-
port for multi-algorithm executions in BigDEC due to sharing some of
the workflow phases (e.g. input reading, 𝑘-mer counting). To do so,
this section compares the total runtime of BigDEC running the three
algorithms in separate executions with that of running all of them in
a single one (i.e. using the multi-algorithm feature). For comparison
purposes, the individual runtime for each algorithm is also included,
which represents the single-algorithm performance. The results are
shown using Spark and Flink Datasets for paired-end correction of
ERR58 and SRR89, but the overall conclusions obtained would be
325
mostly the same if results for the other datasets or single-end correction
were included.

Fig. 12 shows the runtimes for ERR58 and SRR89, varying the
number of nodes from 4 to 16. The total runtime of BigDEC running the
three algorithms in separate executions is labeled as ‘‘(B+M+R)’’ in the
figure, which is calculated as the sum of the runtime for each algorithm
separately, whereas ‘‘(ALL)’’ represents the runtime when running all
of them in a single BigDEC execution. Generally speaking, both Spark
and Flink take clear advantage of the multi-algorithm feature, obtaining
important performance benefits in all the scenarios and number of
nodes for both datasets. The average runtime reductions for Spark when
using the multi-algorithm mode are 46%, 49% and 42% when using 4, 8
and 16 nodes, respectively, as can be seen in Fig. 12(a). For Flink, those
runtimes reductions are on average 38%, 37% and 42%, respectively
(see Fig. 12(b)), so slightly lower values than Spark for 4 and 8 nodes,
but still very significant.

These results also allows comparing the performance at the single-
algorithm level, although this is not the focus of this work. We can
conclude that BLESS2 and RECKONER perform very similar overall,

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

b
t
A
s
S
t
o
(
o
t
o

Fig. 12. Runtimes of BigDEC using Spark and Flink Datasets for single- and multi-algorithm performance.
a
d
t
f
t
m
O
p
o

whereas Musket is clearly the most computationally intensive algo-
rithm, probably due to its multi-stage correction routine which corrects
each read based on three different techniques that are conducted
iteratively [11].

5.4. Performance comparison with standalone tools

The last set of experiments are focused on measuring the maxi-
mum performance benefits provided by BigDEC when distributing the
workload across the whole cluster, so using all the hardware resources
(16 nodes in our testbed). The performance of BigDEC using Spark
and Flink Datasets is compared with their counterpart standalone tools
when support for distributed-memory systems is available. This is
possible for Musket using its Spark-based implementation (SMusket) as
in Section 5.2, and also for BLESS2 that provides an MPI implementa-
tion. We also include the results for their corresponding multithreaded
versions to be used as reference, but limited to take advantage of a
whole single node (16 cores). Furthermore, this section presents results
for all the datasets shown in Table 1.

Table 2 provides the runtimes for paired-end correction obtained
y BigDEC using the Musket algorithm with Spark and Flink Datasets,
ogether with the results for SMusket and its multithreaded version.
s can be observed, BigDEC using Spark Datasets achieves significant
peedups of up to 1.7x and 1.8x over the Flink-based version and
Musket, respectively (1.5x and 1.7x on average). These results confirm
wo facts: (1) our Spark-based implementation is clearly the fastest
ption, providing a runtime reduction of up to 45% over SMusket; and
2) our Flink-based version is still able to outperform the performance
f SMusket for paired-end correction, as previously mentioned in Sec-
ion 5.2, even when using a Big Data framework that has shown a lower
verall performance than Spark according to our evaluation. Compared
326

i

to the multitheaded version, BigDEC provides an average runtime
reduction of around 95% and 93% for Spark and Flink, respectively,
with a maximum speedup of 26x for the Spark version, which allows
significantly reducing runtimes from more than 5 h to less than 15 min
when correcting the SRR89 dataset.

Table 3 shows the same results for BigDEC but using the BLESS2
algorithm, and compares them to the MPI version of BLESS2 on 16
nodes and its multithreaded counterpart on one node. On the one
hand, the performance benefits of the Spark version over the Flink
one practically remain the same as before, with an average speedup of
around 1.5x. On the other hand, BigDEC using Spark and Flink provides
significant runtime reductions over BLESS2 using MPI: up to 79% and
70% when correcting the SRR56 dataset, respectively, on the same
hardware resources. Overall, both Spark and Flink clearly outperform
the MPI-based implementation, achieving runtime reductions of around
73% and 60% on average. The performance of the multithreaded
version is rather good at least compared to Musket, since the maximum
speedup for the Spark version is reduced to 12.8x for SRR86, with
average runtime reductions of around 91% and 86% for Spark and
Flink, respectively.

Table 4 provides the runtimes for BigDEC using the RECKONER
lgorithm. In this case, there is no counterpart standalone tool for
istributed-memory systems, so the results can only be compared to
he multithreaded version. Nevertheless, these results are still use-
ul to confirm that BigDEC is the suitable replacement of standalone
ools to correct large datasets on a cluster, whereas highly optimized
ultithreaded implementations such as the one provided by RECK-
NER would be the preferred choice otherwise. Basically, Big Data
rocessing frameworks are specifically designed to provide scalability
n distributed-memory systems, and not to replace parallel paradigms
ntended for shared-memory systems. In fact, RECKONER is the fastest

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez
Table 2
Runtimes (in seconds) for paired-end correction obtained by BigDEC using the Musket algorithm with Spark Datasets (SP-DS-M)
and Flink Datasets (FL-DS-M) on 16 nodes. Results are compared to those obtained by SMusket using Spark on 16 nodes and
its multithreaded counterpart (Musket) on one whole node. The percentage values shown in brackets are calculated using
BigDEC runtimes as a reference for Spark/Flink, respectively, in this order.
Dataset 16 nodes (256 cores) 1 node (16 cores)

BigDEC (SP-DS-M) BigDEC (FL-DS-M) SMusket (Spark) Musket (threads)

SRR86 369 607 674 (−45%/−10%) 6589 (−94%/−91%)
SRR56 560 945 1011 (−45%/−7%) 14642 (−96%/−94%)
ERR58 915 1292 1371 (−33%/−6%) 16195 (−94%/−92%)
SRR89 898 1228 1319 (−32%/−7%) 19285 (−95%/−94%)

Average −38.8%/−7.5% −94.8%/−92.8%
Table 3
Runtimes (in seconds) for paired-end correction obtained by BigDEC using the BLESS2 algorithm with Spark Datasets (SP-DS-B)
and Flink Datasets (FL-DS-B) on 16 nodes. Results are compared to those obtained by BLESS2 using MPI on 16 nodes and its
multithreaded support on one whole node. The percentage values shown in brackets are calculated using BigDEC runtimes as
a reference for Spark/Flink, respectively, in this order.
Dataset 16 nodes (256 cores) 1 node (16 cores)

BigDEC (SP-DS-B) BigDEC (FL-DS-B) BLESS2 (MPI) BLESS2 (threads)

SRR86 340 535 1232 (−72%/−57%) 4343 (−92%/−88%)
SRR56 538 780 2601 (−79%/−70%) 5908 (−91%/−87%)
ERR58 648 956 1798 (−64%/−47%) 4798 (−87%/−80%)
SRR89 623 918 2513 (−75%/−64%) 7569 (−92%/−88%)

Average −72.5%/−59.5% −90.5%/−85.8%
Table 4
Runtimes (in seconds) for paired-end correction obtained by BigDEC using the RECK-
ONER algorithm with Spark Datasets (SP-DS-R) and Flink Datasets (FL-DS-R) on 16
nodes. Results are compared to those obtained by RECKONER using its multithreaded
support on one whole node. The percentage values shown in brackets are calculated
using BigDEC runtimes as a reference for Spark/Flink, respectively, in this order.
Dataset 16 nodes (256 cores) 1 node (16 cores)

BigDEC (SP-DS-B) BigDEC (FL-DS-B) RECKONER (threads)

SRR86 315 514 2079 (−85%/−75%)
SRR56 906 1163 8849 (−90%/−87%)
ERR58 658 1001 4474 (−85%/−78%)
SRR89 581 936 3489 (−83%/−73%)

Average −85.8%/−78.3%

multithreaded tool in our experiments, and probably the preferred
option in terms of performance when hardware resources are limited.
However, the performance benefits of BigDEC when distributing the
workload across the cluster are still good. The maximum speedups
are around 9.8x and 7.6x for Spark and Flink, respectively, providing
runtime reductions of around 86% and 78% on average. The maximum
speedups are obtained when correcting the largest dataset in terms of
the total number of reads (i.e. SRR56, see Table 1), showing the ability
of our tool to handle large datasets.
327
Finally, Table 5 provides the runtimes obtained by BigDEC for
both single- and paired-end correction modes when using the multi-
algorithm feature, so running the three supported algorithms. The
results using Spark (SP-DS-A) and Flink Datasets (FL-DS-A) are com-
pared to those obtained by SMusket (Spark) and BLESS2 (MPI), which
are limited to a single algorithm, using the same hardware resources
(16 nodes). On the one hand, BigDEC using Spark is able to match or
even improve the performance of SMusket for three of the four datasets
regardless of using single- or paired-end correction, being up to 13%
faster for SRR89. On the other hand, the runtimes for the Flink-based
version compared to SMusket are slightly worse, but still competitive
taking into account the lower raw performance of Flink compared to
Spark and that the correction is performed running three algorithms
instead of just only one. When comparing BigDEC to BLESS2, the results
are noticeable better. As can be seen, the average runtime reductions
using Spark are around 43% for single- and paired-correction, being
up to two times faster for SRR86 and SRR89. In this case, even the
Flink-based version clearly outperforms BLESS2, except for the paired-
end correction of the ERR58 dataset. For instance, BigDEC using Flink
is approximately more than 30% faster than BLESS2 for SRR86 and
SRR56, respectively, using paired-end correction. Overall, these results
validate our approach as they prove that BigDEC using the multi-
algorithm mode can be even faster than previous single-algorithm tools
for distributed-memory systems.
Table 5
Runtimes (in seconds) obtained by BigDEC using the three supported correction algorithms with Spark Datasets (SP-DS-A) and Flink Datasets
(FL-DS-A) on 16 nodes. Results are compared to those obtained by SMusket and BLESS2 using Spark and MPI, respectively, on the same
hardware resources. The percentage values shown in brackets are calculated using BigDEC runtimes as a reference for Spark/Flink, respectively,
in this order.

Dataset BigDEC (SP-DS-A) BigDEC (FL-DS-A) SMusket (Spark) BLESS2 (MPI)

Single-end

SRR86 321 512 295 (+9%/+74%) 574 (−44%/−11%)
SRR56 757 1068 505 (+50%/+111%) 1405 (−46%/−24%)
ERR58 510 711 511 (0%/+39%) 843 (−40%/−16%)
SRR89 610 914 700 (−13%/+31%) 1071 (−43%/−15%)

Average +11.4%/+63.8% −43.3%/−16.5%

Paired-end

SRR86 625 833 674 (−7%/+23%) 1232 (−49%/−32%)
SRR56 1536 1798 1011 (+52%/+78%) 2601 (−41%/−31%)
ERR58 1264 1877 1371 (−8%/+37%) 1798 (−30%/+4%)
SRR89 1262 1789 1319 (−4%/+36%) 2513 (−50%/−29%)

Average +8.2%/+43.5% −42.5%/−21.9%

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez

s

p
f
1
p
s
u
w
a
a
t
i
u

6. Conclusions

The need for speed is increasing as fast as the NGS datasets swell,
which demands bioinformatics tools providing the ability to scale out
across a cluster of multicore nodes to reduce runtimes when processing
such large datasets. In this paper we have presented BigDEC, a parallel
tool implemented in Java intended for correcting large NGS datasets
across a cluster of commodity machines that is able to perform error
correction using two different Big Data processing frameworks (Spark
and Flink) and three different 𝑘-spectrum-based algorithms from the
tate of the art (Musket, BLESS2 and RECKONER).
The comprehensive experimental evaluation of BigDEC using four

ublicly available FASTQ datasets has shown that Spark clearly outper-
orms Flink for single- and multi-algorithm performance, being around
.4 times faster on average. When comparing BigDEC to previous
arallel correctors for distributed-memory systems, our tool provides
ignificant performance benefits for single-algorithm execution, being
p to 45% and 79% faster than SMusket and BLESS2, respectively,
hen using a 16-node cluster. Moreover, BigDEC is able to correct
dataset with 199 million 100-bp reads using the three supported
lgorithms up to two times faster than BLESS2, a single-algorithm
ool based on a hybrid parallel approach (MPI+OpenMP). Our BigDEC
mplementation is distributed as free open-source software released
nder the GNU GPLv3 license and is available to download at https:
//github.com/UDC-GAC/BigDEC.

As future work, we will explore the possibility of porting BigDEC
to an unified programming model using Apache Beam in order to add
support for other distributed data processing backends.

CRediT authorship contribution statement

Roberto R. Expósito: Conceptualization, Methodology, Software,
Investigation, Validation, Writing – original draft. Jorge González-
Domínguez: Conceptualization, Investigation, Validation, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The real datasets analyzed during this study are publicly available
at the NCBI SRA repository (https://www.ncbi.nlm.nih.gov/sra) using
the accession numbers listed in the paper.

Acknowledgments

This work was supported by grants PID2019-104184RB-I00 and
PID2022-136435NB-I00, funded by the Ministry of Science and Inno-
vation of Spain, MCIN/AEI/10.13039/501100011033 (PID2022 also
funded by ‘‘ERDF A way of making Europe’’, EU). It was also funded
by Xunta de Galicia [Consolidation Program of Competitive Reference
Groups, grant ED431C 2021/30]. Funding for open access charge:
328

Universidade da Coruña/CISUG.
References

[1] S. Goodwin, J.D. McPherson, W.R. McCombie, Coming of age: Ten years
of next-generation sequencing technologies, Nat. Rev. Genet. 17 (6) (2016)
333–351.

[2] K.A. Phillips, Assessing the value of next-generation sequencing technologies: An
introduction, Value Health 21 (9) (2018) 1031–1032.

[3] C. Di Resta, S. Galbiati, P. Carrera, M. Ferrari, Next-generation sequencing
approach for the diagnosis of human diseases: Open challenges and new
opportunities, EJIFCC 29 (1) (2018) 4–14.

[4] F. Faita, C. Vecoli, I. Foffa, M.G. Andreassi, Next generation sequencing in
cardiovascular diseases, World. J. Cardiol. 4 (10) (2012) 288–295.

[5] X. Chen, et al., Next-generation sequencing reveals the progression of COVID-19,
Front. Cell Infect. Microbiol. 11 (2021) 632490.

[6] K. Wetterstrand, DNA sequencing costs: data from the NHGRI genome sequencing
program, https://www.genome.gov/sequencingcostsdata. [Visited March 2023].

[7] Z.D. Stephens, et al., Big data: Astronomical or genomical? PLoS Biol. 13 (7)
(2015) e1002195.

[8] S.A. Jeon, et al., Comparison between MGI and Illumina sequencing platforms
for whole genome sequencing, Genes. Genom. 43 (7) (2021) 713–724.

[9] M. Heydari, G. Miclotte, P. Demeester, Y. Van de Peer, J. Fostier, Evaluation of
the impact of Illumina error correction tools on de novo genome assembly, BMC
Bioinformatics 18 (1) (2017) 1–13.

[10] A. Ratan, et al., Comparison of sequencing platforms for single nucleotide variant
calls in a human sample, PLoS One 8 (2) (2013) e55089.

[11] Y. Liu, J. Schröder, B. Schmidt, Musket: A multistage k-mer spectrum-based error
corrector for Illumina sequence data, Bioinformatics 29 (3) (2013) 308–315.

[12] Y. Heo, A. Ramachandran, W.-M. Hwu, J. Ma, D. Chen, BLESS 2: Accurate,
memory-efficient and fast error correction method, Bioinformatics 32 (15) (2016)
2369–2371.

[13] A. Allam, P. Kalnis, V. Solovyev, Karect: Accurate correction of substitution,
insertion and deletion errors for next-generation sequencing data, Bioinformatics
31 (21) (2015) 3421–3428.

[14] M. Długosz, S. Deorowicz, RECKONER: Read error corrector based on KMC,
Bioinformatics 33 (7) (2017) 1086–1089.

[15] L. Song, L. Florea, B. Langmead, Lighter: Fast and memory-efficient sequencing
error correction without counting, Genome Biol. 15 (11) (2014) 509.

[16] K. Xu, et al., SPECTR: Scalable parallel short read error correction on multi-
core and many-core architectures, in: Proceedings of the 47th International
Conference on Parallel Processing, ICPP 2018, Eugene, OR, USA, 2018, pp.
39:1–39:10.

[17] F. Kallenborn, A. Hildebrandt, B. Schmidt, CARE: Context-aware sequencing read
error correction, Bioinformatics 37 (7) (2021) 889–895.

[18] I. Akogwu, N. Wang, C. Zhang, P. Gong, A comparative study of k-spectrum-
based error correction methods for next-generation sequencing data analysis,
Hum. Genom. 10 (2) (2016) 20.

[19] A.S. Alic, D. Ruzafa, J. Dopazo, I. Blanquer, Objective review of de novo stand-
alone error correction methods for NGS data, WIREs Comput. Mol. Sci. 6 (2)
(2016) 111–146.

[20] K. Mitchell, et al., Benchmarking of computational error-correction methods for
next-generation sequencing data, Genome Biol. 21 (1) (2020) 71.

[21] A. O’Driscoll, J. Daugelaite, R.D. Sleator, ‘Big data’, Hadoop and cloud computing
in genomics, J. Biomed. Inform. 46 (5) (2013) 774–781.

[22] J. Luo, M. Wu, D. Gopukumar, Y. Zhao, Big data application in biomedical
research and health care: A literature review, Biomed. Inform. Insights 8 (2016)
1–10.

[23] J.M. Abuín, J.C. Pichel, T.F. Pena, J. Amigo, SparkBWA: Speeding up the
alignment of high-throughput DNA sequencing data, PLoS One 11 (5) (2016)
e0155461.

[24] R.R. Expósito, J. González-Domínguez, J. Touriño, HSRA: Hadoop-based spliced
read aligner for RNA sequencing data, PLoS One 13 (7) (2018) e0201483.

[25] M. Zaharia, et al., Apache spark: A unified engine for big data processing,
Commun. ACM 59 (11) (2016) 56–65.

[26] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, Apache
Flink: Stream and batch processing in a single engine, IEEE Data Eng. Bull. 38
(4) (2015) 28–38.

[27] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file system,
in: Proceedings of the IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST’2010, Incline Village, NV, USA, 2010, pp. 1–10.

[28] P.J. Cock, C.J. Fields, N. Goto, M.L. Heuer, P.M. Rice, The Sanger FASTQ
file format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants, Nucleic Acids Res. 38 (6) (2010) 1767–1771.

[29] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clus-
ters, in: Proceedings of the 6th Symposium on Operating System Design and
Implementation, OSDI’04, San Francisco, CA, USA, 2004, pp. 137–150.

[30] The Apache Software Foundation, Apache Hadoop, https://hadoop.apache.org.
[Visited March 2023].

[31] V. Chang, Towards data analysis for weather cloud computing, Knowl. Based.
Syst. 127 (2017) 29–45.

https://github.com/UDC-GAC/BigDEC
https://github.com/UDC-GAC/BigDEC
https://github.com/UDC-GAC/BigDEC
https://www.ncbi.nlm.nih.gov/sra
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb1
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb1
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb1
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb1
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb1
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb2
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb2
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb2
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb3
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb4
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb5
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb5
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb5
https://www.genome.gov/sequencingcostsdata
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb7
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb8
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb9
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb9
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb9
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb9
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb9
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb10
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb10
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb10
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb11
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb12
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb13
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb13
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb13
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb13
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb13
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb14
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb14
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb14
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb15
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb15
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb15
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb16
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb17
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb17
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb17
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb18
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb19
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb19
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb19
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb19
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb19
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb20
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb20
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb20
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb21
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb21
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb21
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb22
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb23
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb24
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb24
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb24
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb25
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb26
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb26
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb26
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb26
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb26
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb27
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb28
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb28
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb28
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb28
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb28
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb29
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb29
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb29
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb29
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb29
https://hadoop.apache.org
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb31
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb31
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb31

Future Generation Computer Systems 154 (2024) 314–329R.R. Expósito and J. González-Domínguez
[32] Y. Wang, L. Kung, T.A. Byrd, Big Data analytics: Understanding its capabilities
and potential benefits for healthcare organizations, Technol. Forecast Soc.
Change 126 (2018) 3–13.

[33] J. Luo, M. Wu, D. Gopukumar, Y. Zhao, Big Data application in biomedical
research and health care: A literature review, Biomed. Inform. Insights 8 (2016)
BII.S31559.

[34] V. Chang, Computational intelligence for medical imaging simulations, J. Med.
Syst. 42 (1) (2018) 10.

[35] S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics, Brief. Bioinform. 18
(5) (2016) 851–869.

[36] V. Chang, Data analytics and visualization for inspecting cancers and genes,
Multimed. Tools Appl. 77 (14) (2018) 17693–17707.

[37] S.K. Shandilya, S. Sountharrajan, S. Shandilya, E. Suganya, Big Data analytics
framework for real-time genome analysis: A comprehensive approach, J. Comput.
Theor. Nanosci. 16 (8) (2019) 3419–3427.

[38] M. Zaharia, et al., Resilient Distributed Datasets: A fault-tolerant abstraction for
in-memory cluster computing, in: Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI’12, San Jose, CA, USA,
2012, pp. 15–28.

[39] M. Armbrust, et al., Spark SQL: relational data processing in Spark, in: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD’15, Melbourne, Australia, 2015, pp. 1383–1394.

[40] Z. Ren, et al., How good is query optimizer in Spark? in: Proceedings of the 14th
International Conference on Collaborative Computing: Networking, Applications
and Worksharing, CollaborateCom 2018, Shanghai, China, 2018, pp. 595–609.

[41] V.K. Vavilapalli, et al., Apache Hadoop YARN: Yet another resource negotiator,
in: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC’13,
Santa Clara, CA, USA, 2013, pp. 5:1–5:16.

[42] M. Molnar, L. Ilie, Correcting Illumina data, Brief. Bioinform. 16 (4) (2014)
588–599.

[43] D. Laehnemann, A. Borkhardt, A.C. McHardy, Denoising DNA deep sequencing
data–high-throughput sequencing errors and their correction, Brief. Bioinform.
17 (1) (2016) 154–179.

[44] D.R. Kelley, M.C. Schatz, S.L. Salzberg, Quake: Quality-aware detection and
correction of sequencing errors, Genome Biol. 11 (11) (2010) R116.

[45] H. Shi, B. Schmidt, W. Liu, W. Müller-Wittig, A parallel algorithm for error cor-
rection in high-throughput short-read data on CUDA-enabled graphics hardware,
J. Comput. Biol. 17 (4) (2010) 603–615.

[46] Y. Liu, B. Schmidt, D.L. Maskell, DecGPU: Distributed error correction on
massively parallel graphics processing units using CUDA and MPI, BMC
Bioinformatics 12 (1) (2011) 85.

[47] J.T. Simpson, R. Durbin, Efficient de novo assembly of large genomes using
compressed data structures, Genome Res. 22 (3) (2012) 549–556.

[48] L. Ilie, M. Molnar, RACER: Rapid and accurate correction of errors in reads,
Bioinformatics 29 (19) (2013) 2490–2493.

[49] P. Greenfield, K. Duesing, A. Papanicolaou, D.C. Bauer, Blue: Correcting se-
quencing errors using consensus and context, Bioinformatics 30 (19) (2014)
2723–2732.

[50] H. Li, BFC: Correcting Illumina sequencing errors, Bioinformatics 31 (17) (2015)
2885–2887.

[51] G. Marçais, J.A. Yorke, A. Zimin, QuorUM: An error corrector for Illumina reads,
PLoS One 10 (6) (2015) e0130821.

[52] A. Ramachandran, Y. Heo, W.-M. Hwu, J. Ma, D. Chen, FPGA accelerated
DNA error correction, in: Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, DATE’15, Grenoble, France, 2015, pp.
1371–1376.

[53] L. Zhao, et al., Mining statistically-solid k-mers for accurate NGS error correction,
BMC Genom. 19 (10) (2018) 912.
329
[54] R.R. Expósito, J. González-Domínguez, J. Touriño, SMusket: Spark-based DNA
error correction on distributed-memory systems, Future Gener. Comput. Syst.
111 (2020) 698–713.

[55] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.

[56] X. Yang, S. Chockalingam, S. Aluru, A survey of error-correction methods for
next-generation sequencing, Brief. Bioinform. 14 (1) (2013) 56–66.

[57] J.M. Abuín, J.C. Pichel, T.F. Pena, J. Amigo, BigBWA: Approaching the Burrows-
Wheeler aligner to Big Data technologies, Bioinformatics 31 (24) (2015)
4003–4005.

[58] R.V. Pandey, C. Schlötterer, DistMap: A toolkit for distributed short read mapping
on a Hadoop cluster, PLoS One 8 (8) (2013) e72614.

[59] W.-C. Chung, J.-M. Ho, C.-Y. Lin, D.T. Lee, CloudEC: A MapReduce-based
algorithm for correcting errors in next-generation sequencing Big Data, in:
Proceedings of the IEEE International Conference on Big Data, IEEE BigData
2017, Boston, MA, USA, 2017, pp. 2836–2842.

[60] R.R. Expósito, J. González-Domínguez, J. Touriño, Hadoop Sequence Parser
(HSP) library for FASTQ/FASTA datasets, https://github.com/rreye/hsp. [Visited
March 2023].

[61] X. Li, G. Tan, C. Zhang, X. Li, Z. Zhang, N. Sun, Accelerating large-scale genomic
analysis with Spark, in: Proceedings of the 2016 IEEE International Conference
on Bioinformatics and Biomedicine, IEEE BIBM 2016, Shenzhen, China, 2016,
pp. 747–751.

[62] F.A. Nothaft, et al., Rethinking data-intensive science using scalable analytics
systems, in: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD’15, Melbourne, Australia, 2015, pp. 631–646.

[63] J. Veiga, J. Enes, R.R. Expósito, J. Touriño, BDEv 3.0: Energy efficiency and
microarchitectural characterization of Big Data processing frameworks, Future
Gener. Comput. Syst. 86 (2018) 565–581.

[64] R. Leinonen, et al., The European nucleotide archive, Nucleic Acids Res. 39
(suppl_1) (2010) D28–D31.

Roberto R. Expósito received the B.S. (2010), M.S. (2011)
and Ph.D. (2014) degrees in computer science from the
Universidade da Coruña (UDC), Spain, where he is currently
an Associate Professor in the Department of Computer
Engineering (UDC). His main research interests are in the
areas of HPC and Big Data computing, focused on the per-
formance optimization of distributed processing models in
cluster and cloud infrastructures, and the parallelization of
bioinformatics and data mining applications. His homepage
is https://gac.udc.es/~rober.

Jorge González-Domíngue received the B.S. (2008), M.S.
(2009) and Ph.D. (2013) degrees in computer science from
the Universidade da Coruña (UDC), Spain, where he is cur-
rently an Associate Professor in the Department of Computer
Engineering (UDC). His main research interests include the
development of parallel applications on multiple fields,
such as bioinformatics, data mining and machine learning,
focused on different architectures (multicore systems, GPUs,
clusters, etc.). His homepage is https://gac.udc.es/~jorgeg.

http://refhub.elsevier.com/S0167-739X(24)00011-6/sb32
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb32
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb32
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb32
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb32
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb33
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb33
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb33
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb33
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb33
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb34
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb34
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb34
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb35
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb36
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb37
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb38
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb39
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb40
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb41
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb41
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb41
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb41
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb41
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb42
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb43
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb43
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb43
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb43
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb43
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb44
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb45
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb46
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb46
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb46
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb46
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb46
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb47
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb48
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb49
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb50
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb51
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb51
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb51
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb52
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb53
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb53
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb53
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb54
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb55
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb55
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb55
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb56
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb56
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb56
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb57
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb57
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb57
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb57
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb57
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb58
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb58
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb58
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb59
https://github.com/rreye/hsp
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb61
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb62
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb62
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb62
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb62
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb62
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb63
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb63
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb63
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb63
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb63
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb64
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb64
http://refhub.elsevier.com/S0167-739X(24)00011-6/sb64
https://gac.udc.es/~rober
https://gac.udc.es/~jorgeg

	BigDEC: A multi-algorithm Big Data tool based on the k-mer spectrum method for scalable short-read error correction
	Introduction
	Background
	Big Data technologies
	Spark and Flink overview
	Cluster deployment

	k-mer spectrum-based error correction
	FASTQ sequence format

	Related work
	Implementation
	Overall workflow
	BigDEC deployment overview
	Spark/Flink parallelization
	Input reading and k-mer counting
	Error correction

	Stream-based merge operation

	Performance evaluation
	Impact of the stream-based merge
	Spark vs Flink
	Benefits of multi-algorithm execution
	Performance comparison with standalone tools

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

