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Abstract

Binary combinatorial optimization plays a crucial role in various scientific and engi-

neering fields. While deterministic approaches have traditionally been used to solve

these problems, stochastic methods, particularly metaheuristics, have gained popular-

ity in recent years for efficiently handling large problem instances. Ant Colony Opti-

mization (ACO) is among the most successful metaheuristics and is frequently

employed in non-binary combinatorial problems due to its adaptability. Although for

binary combinatorial problems ACO can suffer from issues such as rapid convergence

to local minima, its eminently parallel structure means that it can be exploited to

solve large and complex problems also in this field. In order to provide a versatile

ACO implementation that achieves competitive results across a wide range of binary

combinatorial optimization problems, we introduce a parallel multicolony strategy

with an improved cooperation scheme to maintain search diversity. We evaluate our

proposal (Binary Parallel Cooperative ACO, BiPCACO) using a comprehensive bench-

mark framework, showcasing its performance and, most importantly, its flexibility as

a successful all-purpose solver for binary combinatorial problems.
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1 | INTRODUCTION

To optimize means to find the best solution among several conflicting demands subject to predefined requirements. The key elements of these

problems are the decision variables, the objective function, and the constraints that must be met. From the whole space solution, those that sat-

isfy the constraints form the set of feasible solutions. If the set of solutions is finite, problems belongs to combinatorial optimization. Specifically,

if the decision variables are boolean, we will refer to them as binary combinatorial problems.

Binary combinatorial optimization problems appear in numerous application areas, such as feature selection (Li et al., 2017), dimensionality

reduction (Carreira-Perpinán, 1997; Pal & Maiti, 2010), unit commitment (Baldick, 1995; Yuan et al., 2009), manufacturing (Papaioannou & Wil-

son, 2010), computational biology (Bakhteh et al., 2018; Banga, 2008; Biggs & Papin, 2017; Jimenez-Guardeño et al., 2022; Lewis et al., 2021;

Morris et al., 2010), and medicine (Potyagaylo et al., 2014; Weber et al., 2006) among many others. The quadratic binary optimization problem

(QUBO) is a versatile subclass with diverse applications in areas from operations research and finance to physics, quantum computing and engi-

neering design (Punnen, 2022).
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Although in general these problems are NP-hard, a number of deterministic approaches have been developed for their resolution (Punnen &

Sotirov, 2022). Among the advantages of these techniques are their theoretical properties and exact nature for small and medium size problems.

However, their disadvantages quickly arise when the dimension of the problems increases, generally requiring excessive execution times and, in

many cases, prohibitive memory requirements. Therefore, other stochastic methods, and especially metaheuristics, have gained popularity

in recent years (Agrawal et al., 2021; Lü et al., 2010; Sörensen & Glover, 2013). Examples of recent papers exploting metaheuristics to solve prob-

lems from the classes listed above include (Mafarja et al., 2018), (Al-Tashi et al., 2019), (Taghian & Nadimi-Shahraki, 2019) and (Arora &

Anand, 2019) for feature selection, (Hussien et al., 2020) for dimensionality reduction, (Reddy et al., 2019) for unit commitment, (Pan et al., 2021)

for manufacturing cell formation, or (González, Prado-Rodriguez, et al., 2022) for cell signaling networks.

There are many different metaheuristics used for general combinatorial optimization problems (Crawford et al., 2017; Dahi et al., 2015;

Hussien et al., 2020; Lozano & García-Martínez, 2010; Reddy et al., 2019; Taghian et al., 2018). One of the most popular is Ant Colony Optimiza-

tion (ACO) (Dorigo & Stützle, 2019). It is inspired by the social behavior of ant colonies, specifically in the deposition of pheromones along the

explored paths during the search for food sources. ACO has been found to be robust and easily tailored to a wide range of optimization problems,

and it has been applied to a number of binary combinatorial instances (Al-Ani, 2005; Jang et al., 2011; Kashef & Nezamabadi-pour, 2015; Kong &

Tian, 2005).

The basic ACO is a general-purpose algorithm, easy to understand and implement. ACO achieves good results in unimodal problems, that is,

those defined by the fact that all solutions are guided towards the same optimal result without local minima. However, when tackling problems in

which local minima abound, its convergence quickly suffers, easily stagnating in one of the local solutions. This fact has driven most recent pro-

posals in the literature to highly adapted solutions to the problem at hand, and therefore, loosing its all-purpose feature.

In this work, we present an extension of a parallel ACO implementation to handle challenging binary combinatorial problems. The main goals

of the work presented in this paper are:

• An extensive analysis of the performance of ACO algorithm for large and difficult instances using a previous cooperative parallel implementa-

tion (González, Osorio, et al., 2022).

• The improvement of the performance of the cooperative parallel ACO by proposing a self-adaptive runtime implementation guided by the

results of the previous analysis.

• The preservation of the general-purpose solver feature of the ACO algorithm, that can be applied as a black-box solver to a large range of

problems.

The structure of the paper is as follows. Section 2 presents the related work. Section 3 describes the ACO algorithm adapted to handle binary

combinatorial problems. In Section 4 the cooperative parallel scheme proposed is explained. In Section 5, we present the experiments carried out

and discuss the results. Finally, in Section 6 we summarize the conclusions of this work.

2 | RELATED WORK

In this section, a bibliographic review of related work is made from two different points of view: state-of-the-art on metaheuristics for combinato-

rial problems and development of parallel implementations.

2.1 | Metaheuristics for combinatorial problems

Metaheuristic methods are among the most advanced global optimization algorithms. Their application to combinatorial optimization problems is

a booming field of research, due to the importance of those problems for both the scientific and industrial worlds.

A significant subset of metaheuristics consists of so-called swarm intelligence algorithms, which are often inspired by nature. Probably the

two best known algorithms within this category are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). ACO (Dorigo & Stü-

tzle, 2019) simulates the behavior of ants in their colonies when foraging for food. PSO (Wang et al., 2018) attempts to emulate the group behav-

ior of some animals, such as flocks of birds, by using information exchange between individuals to move the whole group. Both algorithms are

general-purpose ones, and they have been used successfully for more than 20 years. However, other alternatives develop ad-hoc for specific

problems outperform ACO and PSO. Therefore, during these last two decades, many variants have appeared, as well as many other innovative

proposals. A nice recent review can be found in (Karimi-Mamaghan et al., 2022).

Most recent research works in this field have developed novel proposals focusing on problems with very specific characteristics. One of the

goals of our work is to extend the ACO, as a widely recognized metaheuristic, through a parallel cooperative implementation that includes a self-

adaptive solution, so that the user does not to have to tune the parameters of the new variant and it preserves its general-purpose feature.
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2.2 | Parallel metaheuristics

Current trends in computing, such as the proliferation of multicore system and accelerators, or the convenience of accessing HPC resources in

the Cloud, increase the interest in parallelizing time-consuming methods. Metaheuristics can help to solve large and difficult problems, by means

of parallelization, when the search space cannot be fully explored by a single process. Many different parallel solutions have been proposed in the

literature. A good review can be found in (Alba et al., 2013). In this section, we will focus on reviewing related work on ACO metaheuristics.

The parallelization of the ACO has been studied before in a number of previous works illustrating the use different paradigms, programming

languages and parallel infrastructures (Cecilia et al., 2013; Delisle et al., 2005; Randall & Lewis, 2002; Stützle, 1998; Zhou et al., 2018). In this

paper, we adopt a multicolony model, where several colonies explore the search space in isolation but including cooperation steps where informa-

tion is exchanged among them. Other authors have previously explored this model for the parallelization of the ACO algorithm (Twomey

et al., 2010; Chen et al., 2012; Starzec et al., 2020; González, Osorio, et al., 2022). All of these works confirm that a compromise between explora-

tion within each colony and cooperation through information exchange is required to achieve accurate results and good performance.

We have extensive experience in the parallelization of different metaheuristics using different strategies (González et al., 2018, 2019; Pardo

et al., 2020; Penas et al., 2015, 2015b; Penas et al., 2017; Teijeiro et al., 2016,b). Based on this previous experience, we have proposed in

González et al. (2022), a parallel ACO algorithm adapted to a particular binary combinatorial problem, the signaling of cellular networks. The most

notable features of the proposed algorithm were decentralization, since a coordination process is not needed to organize and control the algo-

rithm, and the use of an asynchronous communication protocol between processes. However, while that proposal initially proved efficient for the

specific problem at hand, it encountered convergence issues when extended to a wider range of problems. Therefore, one of the objectives of

the work presented in this paper is to improve the efficiency of the parallel multi-colony algorithm through a self-tuned smart cooperation

between colonies.

3 | ANT COLONY OPTIMIZATION FOR BINARY COMBINATORIAL PROBLEMS

The ACO algorithm is based on the observation of the behavior of real ants. In nature, ants follow the trail of pheromones left by the others when

looking for food sources. In this algorithm, the artificial ants in a colony build the solutions in each iteration and deposit pheromones in a matrix

that guides them through subsequent iterations (Blum, 2005; Parsons, 2005).

Figure 1 shows a simple scheme of ACO. A basic ACO has three main procedures: ConstructAntsSolutions, UpdatePheromones, and

DaemonActions. ConstructAntsSolutions manages a colony of artificial ants that incrementally build solutions to the optimization problem by means

of stochastic local decisions based on pheromone trails and heuristic information. Then, the UpdatePheromones procedure modifies the phero-

mone trails based both on the evaluation of the new solutions and on a pheromone evaporation mechanism. Finally, a DaemonActions procedure

performs problem specific or centralized actions, which cannot be performed by single ants.

ACO is often used for problems that can be reduced to finding routes in graphs, such as the Traveling Salesman Problem (TSP) (Stützle

et al., 1999). This problem is based on discovering the best route for a traveller who has to visit many cities. In a classical TSP problem, the objec-

tive is to visit all the cities and return to the origin covering the shortest possible distance. When it comes to binary combinatorial problems, this

can be reduced to finding the optimal path that goes from one node to another by choosing between two possible paths: 0 or 1 (see Figure 2).

Pheromones will be deposited on paths 0 or 1 in each of the N steps. Ants in the subsequent iterations will be influenced by the previously depos-

ited pheromones.

F IGURE 1 Basic scheme of the ACO algorithm.
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To decide the new path, each artificial ant applies the following probabilistic transition rule that depends on pheromone values:

pij¼
τij

τi0þ τi1
ð1Þ

where τij represents the desirability of using the path j to cross edge i given by the pheromone trails, that is, whether to follow path 0 (τi0) or

path 1 (τi1).

After the construction of a new solution by each ant, the pheromone trails are updated, increasing their values when ants deposit pheromone

on promising paths to guide other ants in constructing new solutions, or decreasing their values due to pheromone evaporation. An evaporation

process avoid unlimited accumulation of pheromone trails and also to allow bad choices to be forgotten, preventing the algorithm from premature

convergence to suboptimal regions and from getting stuck in a local optimum. The evaporation procedure is implemented by decreasing τ by a

constant rate ρ (the pheromone evaporation rate):

τij 1�ρð Þτij ð2Þ

Then, ants deposit pheromone on the paths they have crossed in their construction:

τij τijþΔ τij
� � ð3Þ

As shown in the transition rule (Equation 1), the possibility for an ant to cross a path increases with the pheromone trail. Therefore, it is in this

step where most of the variants of the ACO algorithm differ. In this work, the MAX�MIN Ant System (MMAS) variant (Stützle & Hoos, 2000) has

been used. This variant strongly exploits the best paths found, since only the iteration-best ant, that is, the ant that constructed the best solution

in the current iteration, or the best-so-far ant, that is, the ant that constructed the best solution so far, deposits pheromones in each iteration:

Δ τij
� �best¼ 1=f Sbest

� �
, if path j for edge i belongs to Sbest

0, otherwise

(
ð4Þ

where f Sbest
� �

is the function score of the solution Sbest found by the iteration-best ant or the best-so-far ant.

In most general implementations of the MMAS algorithm, the use of iteration-best solution and the best-so-far solution alternates. The choice

of the relative frequency with which the two pheromone update rules are applied has an impact in the search: when pheromone updates are

always performed by the best-so-far ant, the search focuses very quickly around the best-so-far solution, whereas when the iteration-best ant

updates pheromones the search is less directed. Experimental results indicate that for small problems it may be better to use only iteration-best

pheromone updates, while for large ones the best performance is obtained by giving an increasingly stronger emphasis to the best-so-far solution.

This can be achieved by gradually increasing the frequency with which the best-so-far ant updates the pheromone trails. For more details on the

particular implementation took as a basis in this work, the reader is referred to (González, Prado-Rodriguez, et al., 2022).

In ACO, when the algorithm gets stagnated, that is, after a certain number of iterations without improving the best solution, a restart is exe-

cuted. In addition to re-initialising the pheromone matrix, the fitness of the best-so-far ant is assigned the worst possible score. This ensures that

in the next step, in all probability, the best-so-far ant is replaced by the best-iteration ant. As the pheromone matrix is reset and all the paths have

the same probability to be chosen, the best-iteration ant is completely random, thus achieving a complete restart. Each time a restart is done, new

paths are explored, avoiding repeating deficient solutions.

As mentioned before, ACO offers good results for solving unimodal problems. However, when it comes to solving difficult problems, espe-

cially those with many local minima, the ACO tends to get stuck easily. To avoid premature convergence to local minima and, thus, the stagnation

of metaheuristics, previous studies indicate the need of increasing the diversity in the search. A good way to achieve this is the use of parallel

strategies. This is especially effective if it is accomplished using a parallel infrastructure, which will speed up the execution time. The following

section describes the solution used in this work and the enhancement introduced in the cooperation strategy to improve its performance.

F IGURE 2 In a binary combinatorial problem, ants choose path 0 or path 1 at each step.
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4 | PARALLEL ACO

The fact that the ConstructAntsSolutions procedure consists of tasks that can be performed independently by each ant, facilitates the implementa-

tion of parallel ACO approaches. These parallel proposals are especially appealing for solving problems with a large computational cost, since they

may lead to shorten the execution time significantly. However, the ACO parallel proposals can not only shorten the execution time by performing

tasks in parallel, but could also modify the systemic properties of the algorithm and enhance its convergence.

Different parallel strategies can be applied to metaheuristics in general (Alba, 2005), and ACO in particular (González, Osorio, et al., 2022).

Most of them can be classified into fine-grained and coarse-grained strategies. A fined-grained parallelization attempts to find parallelism in the

sequential algorithm. In the case of the ACO metaheuristic, finding the parallelism in the sequential algorithm is straightforward, since most of

the time-consuming operations are placed in loops that can be performed in parallel within the ConstructAntsSolutions procedure. However, in

fined-grained approaches the parallel algorithm maintains the sequential behavior in terms of convergence.

A different solution is a coarse-grained approach, which involves looking for a parallel variant of the sequential algorithm. The most popular

coarse-grained solution consists of implementing an island-based model. In these models, different distributed colonies exist where the original

algorithm is executed in isolation and, from time to time, these colonies exchange information that allow them update their results with the infor-

mation received from the rest. This parallel implementation is usually known as multicolony model. A schematic representation can be seen in

Figure 3.

Multicolony approaches aim to take advantage of distributed resources to extend the search for solutions. The most trivial multicolony solu-

tion consists of a parallel search on multiple non-cooperating colonies. Although this solution was found to yield good results, results usually stand

out for approaches that include colony cooperation.

The cooperative approach proposed in this work is based on the model proposed in González, Osorio, et al. (2022), adapted to a binary com-

binatorial problem in González, Prado-Rodriguez, et al. (2022). In order to improve the efficiency of the algorithm in common multimodal prob-

lems, we propose an improvement of the cooperative strategy.

4.1 | Cooperative scheme

When designing a parallel multicolony ACO approach, some key issues must be addressed, such as what information is exchanged between colo-

nies, which of them are involved in the communication process, when and how this process is carried out, and how the information received in

each colony is used. In this work, the multicolony approach proposed in González, Osorio, et al. (2022) have been followed. The exchange of infor-

mation between colonies is driven by the quality of the solutions, that is, when a colony finds a promising solution, it broadcasts it to other colo-

nies. For this, an asynchronous communication protocol is used, thus avoiding some colonies remaining inoperative while waiting for information

F IGURE 3 Scheme of a multiconolony implementation.
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from other colonies. In the cooperative scheme proposed in González, Osorio, et al. (2022), when a promising new solution arrives at a colony and

improves the best-solution-so-far, the latter is always replaced by the former. However, although that scheme performs well for some problems, it

may not be effective in many cases. Foremost, the goal of the parallel cooperative schemes is that promising colonies help those that are stuck in

local minima. But in practice, the opposite outcome often occurs: a colony that receives a better solution is diverted from its own search. All colo-

nies converge to the same local solution, reinforcing the same path, and eventually getting stuck at the same local minimum. In short, a full coop-

eration strategy can often lead to the loss of the diversity that the multicolony parallel strategy claims for.

In this work, an efficient selective cooperative scheme is presented. The proposal maintains the all-purpose property and the key features of

the former, namely: a cooperation driven by the quality of the solutions and a completely asynchronous implementation. When a colony obtains a

promising solution, this solution is spread to the rest and all processes receive the promising solutions. However, to avoid the problem mentioned,

only a few processes introduce these solutions into their colony, modifying the pheromone matrix. To determine if a solution that has just arrived

in a process should be included in the colony, two aspects are taken into account.

First, although all the colonies cooperate by spreading their promising solutions, some colonies keep their execution outside the influence of

the rest, for which they never use the solutions received from outside the colony. This ensures the desired diversity in the ACO progression. The

number of colonies that remain independent depends on an integer parameter called cfreq. It could be set from cfreq¼1 (full cooperation since

1 out 1 colonies – all of them – use the incoming solutions) to cfreq!∞ (no-cooperation between colonies).

Second, to further avoid the danger of premature convergence due to early cooperation, the processes will only use the solutions received

from other colonies once they have been stalled for a certain number of iterations. This number of iterations is defined by the cstall parameter.

This ensures that, even the processes that use the incoming solutions, introduce them in the colony when their execution is stalled.

By introducing these two parameters, the tier of cooperation required can be controlled. This cooperation depends on the size of the prob-

lem, its hardness, and the resources available to address the problem at hand. The pseudocode of the proposal, called Binary Parallel Cooperative

ACO (BiPCACO), is shown in Algorithm 1.

As a general rule, it is very complicated to know the optimal level of cooperation for a problem before dealing with it. To address this situa-

tion, a self-adaptive approach to automatically determine the tier of cooperation is also proposed in this paper. To do this, the size of the problem

and the number of resources to be used are taken as a basis, and the parameters are tuned at runtime. Note that the hardness of the problem,

which also influences the level of cooperation, is impossible to determine beforehand. Let us call cooperation-index to the ratio between the size

of the problem and the number of processes to be used. The higher this index is, the more intensive the cooperation between the colonies should

be. Ranges of this index are established to set an upper limit to the cstall parameter. The minimum cstall is always 0 (full cooperation). Algorithm 2

shows a pseudocode of the proposal. At the start of the execution, cstall takes its maximum value, according to the cooperation-index of the prob-

lem. The cooperation at the beginning of the execution is, then, scarce. Thus, the algorithm pursues for the diversity of multiple colonies. How-

ever, each time the algorithm gets stuck and a restart is triggered, cstall is reduced by 10% of restart-iterations size, so the algorithm increases

their rely on incoming solutions after being reinitialized. If reboots continue to occur, the cstall will continue to drop and, thus, the algorithm

increases the cooperation between colonies. When the minimum cstall is reached (0 iterations), the algorithm returns to the maximum value. In

this way, even in multimodal problems, where the characteristics can change as the execution goes through the different search spaces, different

cooperation degrees are explored in a round-robin fashion.

5 | EXPERIMENTAL RESULTS

In this section, a series of experiments are shown to assess the value of the strategies proposed in this work.

5.1 | Testbed

All the benchmarks used to carry out the experiments reported in this paper are obtained from the W-Model (Weise et al., 2020). The W-Model

is a tunable black-box discrete optimization benchmarking problem (BB-DOB) that uses a bit-string representation of the data. The W-

Model framework creates different benchmarks by means of different input parameters that modulate different features for the problems.

In Weise et al. (2020), a set of 19 diverse benchmarks was selected as a representative pool because they exhibit very different features,

hardness and algorithm performance. In this work, the same set of benchmarks have been used, in order to be able to compare the results with

that outstanding work. These benchmarks are labelled as 1 to 19 in the following.

Six additional challenging benchmarks labelled as 20–25 have been defined as well. The W-model parameters used to define these challeng-

ing problems can be seen in Table 1. The reader can consult the parameters for the original 19 benchmarks in Weise et al. (2020).

Table 2 summarizes the features of this set of benchmarks, classified as:

6 of 19 PRADO-RODRÍGUEZ ET AL.
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ALGORITHM 1 BiPCACO pseudocode.

ALGORITHM 2 Establishing initial maximum cooperation

PRADO-RODRÍGUEZ ET AL. 7 of 19
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• neutrality: when a search operation applied to a solution candidate yields no change in objective value.

• epistasis: when the contribution of some decision variables to the objective value depends on the value of other decision variables.

• ruggedness: when small changes in a solution cause large changes in its fitness.

• deceptiveness: when a move to a gradient descend leads the search away from the global optimum.

All the experiments were performed at the Galicia Supercomputing Center (CESGA) using the FinisTerrae-III supercomputer. Each Fin-

isTerrae-III node is composed of two Intel Xeon Ice Lake 8352Y CPUs running at 2.2 GHz, with 32 cores per processor (64 cores per node), and

256 GB of RAM. The nodes are connected using an Mellanox InfiniBand HDR 100 Gbps interconnect using a fat-tree topology.

TABLE 1 W-model parameters for benchmarks 20–25.

Benchmark Problem size Neutrality Epistasis Ruggedness/Deceptiveness

20 640 4 130 (81%) 10,000 (78%)

21 720 4 150 (83%) 12,000 (75%)

22 1000 4 200 (80%) 25,000 (80%)

23 640 4 130 (81%) 0

24 720 4 150 (83%) 0

25 1000 4 200 (80%) 0

TABLE 2 Features of the W-Model benchmarks used in this section.

Benchmark Problem size Neutrality Epistasis Ruggedness/deceptiveness

1 20 Low Medium Low

2 20 Low Medium Medium

3 16 - Low Medium

4 48 Medium Medium Medium

5 25 - High Medium

6 32 - - High

7 128 High Low -

8 128 High Medium -

9 128 High Low Low

10 50 - High Low

11 100 Low Medium Low

12 150 Medium Low Medium

13 128 Low Medium Low

14 192 Medium Low Very low

15 192 Medium Low Low

16 192 Medium Low Low

17 256 High High Very low

18 75 - High Very low

19 150 Low Medium Very low

20 640 High High High

21 720 High High High

22 1000 High High High

23 640 High High -

24 720 High High -

25 1000 High High -

8 of 19 PRADO-RODRÍGUEZ ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13554 by R

eadcube (Labtiva Inc.), W
iley O

nline Library on [18/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



5.2 | Methodology and reproducibility

To allow the reproducibility of the experiments shown in this paper, authors make public available the code of the BiPCACO algorithm in the

https://gitlab.com/RobertoPradoRodriguez/bipcaco repository.

Different tests have been carried out in this work. Experiments have been performed using as stopping criteria both a maximum effort

(in execution time) or a quality objective (that is, achieving the optimum value in each experiment, which in the case of the W-Model benchmarks

is the value 0).

The user-defined parameters of the proposed BiPCACO algorithm are shown in Table 3, where n is the problem size.

For the generation of random numbers, the MT19937 variant of the Mersenne Twister algorithm (Matsumoto & Nishimura, 1998) is used. A

four-digit number is taken as the initial seed.

Given the stochastic nature of these methods, a total of 100 executions have been carried out for each experiment, and a statistical study

has been carried out on the reported data.

5.3 | Assessment of BiPCACO proposal

To assess the cooperative scheme, the results of seven different configurations have been compared, from no cooperation to intensive

cooperation.

• M1: cfreq!∞, that is, a configuration without cooperation between colonies.

• M2: cfreq!2, that is, only one out of two (50%) of the colonies incorporate foreigner solutions to their search; and cstall¼ n=25, that is, the

foreigner solutions are incorporated only when the number of stagnate iterations is greater than or equal to n=25.

• M3: cfreq!1, that is, all the colonies incorporate foreigner solutions to their search; and cstall¼ n=10, that is, the foreigner solutions are incor-

porated only when the number of stagnate iterations is large (n=10).

• M4: cfreq!1 and cstall¼ n=25, that is, all the colonies incorporate foreigner solutions to their search when the number of stagnate iterations

is greater than or equal to n=25.

• M5: cfreq!1 and cstall¼ n=50, that is, all the colonies incorporate foreigner solutions to their search when the number of stagnate iterations

is small (n=50).

• M6: cfreq!1 and cstall¼0, that is, all the colonies incorporate foreigner solutions every time they received it. This is the most intensive coop-

erative configuration.

• M7: self-adapted, that is, the degree of cooperation is dynamically adjusted in execution time.

Note that M1 configuration corresponds to a non-cooperative parallel solution, while M6 corresponds to the cooperation scheme proposed

in González, Osorio, et al. (2022), that is, a full cooperation between colonies. Then, M7 configuration corresponds to the self-adaptive solution

proposed in this paper.

Figure 4 summarizes the results obtained for experiments using the optimum value as stopping criterium. This figure displays the boxplots of

the execution time in seconds of 100 runs per experiment, and attempts to compare different cooperative configurations using the most challeng-

ing benchmark problems of the testbed. These challenging benchmarks are not only large, but also three of them (20–22) exhibit features that

make them very difficult to solve, as they are multimodal and are defined by having large number of local minima. In those instances, the coopera-

tion between colonies favors the convergence rate of the algorithm. Problems 23, 24 and 25 are unimodal, that is, the search is oriented smoothly

to the global minimum. Since the algorithm does not get stuck, it does not need cooperation and, therefore, there is hardly any difference in prob-

lems 23 and 24 among all methods. In practice, all behave in a non-cooperative fashion. Problem 25, although unimodal, is too large in size and

cooperation becomes necessary.

TABLE 3 BiPCACO parameters used in the experiments of this section.

Parameter Value Description

Population 200 Number of solutions per iteration

Evaporation rate 0.05 Percentage of pheromone reduced per iteration

Restart 50,100 Iterations with no improvement that trigger a restart. 50 for sequential algorithm and 100 for parallel one

cfreq 1,2 Frequency of colonies receiving solutions if stagnated. Here we try 1 of 1 and 1 of 2 colonies

cstall 0–∞ Receive other colonies solutions after cstall iterations of stagnation

PRADO-RODRÍGUEZ ET AL. 9 of 19
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In Figure 4, the dispersion of the results can be observed, and the median is highlighted. In order to clarify, Table 4 shows the results of the

average execution time for each experiment. The cells are colored to show, for the same benchmark and number of colonies, the best results

obtained through different cooperation levels.

Certain conclusions can be drawn from these results. A mid cooperation scheme, for example the M4 configuration, outperforms the other

configurations for 4, 8, 24 and 64 colonies in terms of average time for benchmark 20. In benchmark 21, tougher that benchmark 20, there is a

need for increasing the cooperation, and results obtained for M5 configuration outperform the rest when few processes are involved. This situa-

tion is reaffirmed in problem 22, larger and more difficult than benchmark 21. The degree of cooperation that achieves the best performance is

M6. That is, the larger and more difficult to solve the problem, the larger the need for cooperation between the colonies.

These results also demonstrate that an intensive cooperation (M6 configuration) is effective when using few processes to solve very difficult

problems. In those experiments, the opportunities of finding a good solution are low, so the need to share promising solutions as soon as possible

is high in order to accelarate the progress of the search. However, when the number of processes increases, the chances for one of them to find a

good solution on its own increases, and cooperation can interfere with this search and harm diversity. If a colony frequently accepts external solu-

tions, the process deviates from their own search and ends up converging towards the same local minimum as the rest of the colonies. This behav-

ior is more accentuated the more processes exist.

Based on previous experiments, it can be concluded that there are essentially three features of the problem at hand that will determine the

degree of cooperation that benefits BiPCACO execution:

4 8 12 24 64

20
21

22
23

24
25

30
100
300

1000

30
100
300

1000
3000

30
100
300

1000
3000

30
50

100

30

100

300

30

100

300

1000

Ex
ec

ut
io

n 
tim

e

Method M1 M2 M3 M4 M5 M6 M7

Columns of the grid represent number of processes, rows represent different benchmarks

F IGURE 4 Comparison of different cooperative configurations in BiPCACO. Boxplots of the execution times achieved in 100 runs of
experiments using optimum value as stopping criteria, for the most challenging benchmarks using 4, 8, 12, 24 and 64 processes.
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• Amount of processes: the smaller the number of processes, the higher the cooperation between colonies must be.

• Multimodality: The higher the bias towards the multimodal landscape, the larger the probability that the algorithm will get stuck and the

greater the need for cooperation.

• Problem size: the larger the problem, the greater the need for cooperation.

The problem of the previous conclusions is the difficulty for the user to know the features of the problem in advance, and therefore the diffi-

culty of adjusting the configuration parameters before the execution. It is at this point where the self-tuned approach is especially appealing.

Moreover, results of Table 4 evidence that it is also competitive when compared with the solution obtained with the best configuration in each

problem.

Results in previous figures were obtained from 100 independent runs of each experiment. However, displaying only the average execution

time does not give a clear view of the behavior of the algorithm according to the level of cooperation introduced with the different configurations.

Therefore, an additional statistical study was performed on these experimental data.

To demonstrate the significance of the results, a nonparametric statistical analysis has been applied to the run times of the experiments for

each benchmark (B20–B25) and each configuration (M1–M7). Nonparametric procedures are popular methods to compare the performance of

different metaheuristics (Carrasco et al., 2020; Derrac et al., 2011). In this work we have applied the Kruskal–Wallis test (Kruskal & Wallis, 1952)

followed by Dunn's test (Dunn, 1964). The goal is to explain whether the observed differences among the final execution times of each problem

are due to the different cooperative configuration or to pure chance.

Table 5 shows, for each problem, the p-values of the Kruskal–Wallis test for the comparison of all configurations with different number of

processes. The Kruskal–Wallis test is used to determine whether or not there is a statistically significant difference among three or more indepen-

dent groups. When the p-value is less than 0.05, the Kruskal–Wallis test concludes, with a confidence level of 95%, that the groups are indeed dif-

ferent. It can be seen that, in most the cases, the p-values are so low that we can assume that the differences are due to the cooperation setup

and not for pure random. The only exceptions are benchmarks 20 and 21 using only 4 processors, where the p-values are larger.

TABLE 4 Comparison of different cooperative configurations in BiPCACO.

Note: Average time (in seconds) achieved on experiments reported in Figure 4. Color coding per benchmark and colonies from blue (best time) to red

(worst time).
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The Kruskal–Wallis test does not indicate which groups are different, so a post-hoc test is needed. We have used Dunn's test, which reports

the results between multiple pairwise comparisons after the Kruskal–Wallis test. The p-values obtained with Dunn's test have been converted

into a compact letter representation to facilitate discussion. The compact letter representation allows to display p-values whereby pairwise com-

parisons that share a letter do not reveal statistically significant differences. Table 6 shows, for each problem, the classification of the methods

into groups obtained by Dunn's test for each pairwise comparison after application of the Kruskal–Wallis test.

In these results, it can be seen how by varying the configuration of the cooperation between the processes, the results differ significantly, being

considered into different groups. Note again that the M1 configuration and the M6 configuration are the two extremes between non-cooperation

and full cooperation between processes. In Table 6, it can be seen that, in general, they always belong to different groups, while the other configu-

rations vary depending on the benchmarks and the number of processes. It can also be seen how the M7 configuration, that is, the self-adaptive

one, gives similar results to other configurations depending on the benchmark and the number of processes used. This is precisely what this work

pursues, that the self-adaptive configuration achieves competitive results with the best configuration for the problem and number of processes

at hand.

It can be seen, for example, that in benchmark 20 with 4 processes the differences between the different configurations are not relevant

according to these statistical tests. However, for 64 processes, results of M7 are in the group of M1, that is, when increasing the number of pro-

cesses results for benchmark 20 benefit of avoiding the cooperation between colonies and maintaining the diversity in the search. If we look at

benchmark 22, with 4 processes the best result is achieved by the M6 configuration, that is, the inter-colony cooperation is particularly good, and

the results of M7 belong to this group. However, when increasing to 64 processes, the best results are achieved by the M1 configuration, again

by maintaining the diversity of the colonies through restriction in the cooperation, and it can be seen that M7 configuration has adapted to this

circumstance and again shares group with M1.

To better illustrate the behavior of the proposed M7 self-tuned cooperation method, logarithmic scale plots for benchmarks 20 and 22 are

shown in Figures 5–8. Those figures show the cumulative probability of reaching the optimum related to the execution time, for the 100 runs of

each experiment. We choose benchmarks 20 and 22 to show how, despite being both large and difficult problems, in one case cooperation is

more beneficial than in the other, however, this is somewhat difficult to know beforehand.

As it can be seen, for benchmark 20, a configuration with no cooperation (M1) is better than an intensive cooperation (M6). However, a self-

tuned cooperation (M7) adapts during runtime and offers a competitive result versus the non-cooperation solution.

On the other hand, for benchmark 22, the best solution turns out to be a configuration with an intensive cooperation (M6) compared to lack

of cooperation (M1) for 4 processes. And, on the contrary, the absence of cooperation (M1) is better compared to an intense cooperation

(M6) for 64 processes. Besides, the self-tuned solution (M7) is always competitive when compared with the best solution in each situation.

These previous results show that the self-tuned solution, although it may not improve the superior configuration, allows the user to get rid of

the responsibility of choosing the most appropriate parameters, making the algorithm reconfigure itself, at execution time, depending on the pro-

gress of the search. Results of the self-tuned solution stands out as a competitive alternative.

Finally, Figure 9 shows the beanplots of the previous executions, to graphically illustrate the distribution of the results. Note that the bean of

the self-tuned execution always achieves competitive results versus the best of the other configurations.

5.4 | Comprehensive assessment

To perform comprehensive assessment of the proposed BiPCACO algorithm, a comparison has been carried out with the results presented in

(Weise et al., 2020) for 17 different algorithms, solving the 19 benchmarks described in Section 5.1. To perform a fair comparison, the same metric

as in (Weise et al., 2020) was used, the ERT (Expected Run Time). ERT allows to decouple the runtime results from the infrastructure on which

the experiments are executed. This metric is calculated using the same procedure described in Weise et al. (2020), aggregating the number of

TABLE 5 Kruskal–Wallis test p-values for a confidence level of 95%, comparing the seven different configuracions (M1–M7) for each
benchmark and number of processes (tested using the results reported in Table 4).

Benchmark

#PROC

4 8 12 24 64

20 0.03898 3.56 � 10�6 1.11 � 10�12 <2.2 � 10�16 <2.2 � 10�16

21 0.2883 0.001403 8.46 � 10�5 <2.2 � 10�16 <2.2 � 10�16

22 <2.2 � 10�16 1.13 � 10�11 8.94 � 10�8 5.09 � 10�6 <1.05 � 10�14

23 1.58 � 10�6 <2.2 � 10�16 <2.2 � 10�16 <2.2 � 10�16 <2.2 � 10�16

24 1.75 � 10�12 1.68 � 10�14 <2.2 � 10�16 <2.2 � 10�16 <2.2 � 10�16

25 <2.2 � 10�16 <2.2 � 10�16 <2.2 � 10�16 1.08 � 10�15 <2.2 � 10�16
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F IGURE 5 Cumulative probability of reaching the optimum in benchmark 20 using 4 processes, where M1-7 indicates different cooperation
schemes as explained in Section 5.3.

TABLE 6 Compact letter display of groups after using the Dunn's test as post-hoc of Kruskal–Wallis, comparing the seven different
configurations (M1–M7) for each benchmark and number of processes (tested using the results reported in Table 4).

Benchmark #PROC M1 M2 M3 M4 M5 M6 M7

20 4 a a a a a a a

8 abc ab ab a bc c bc

12 a a a a bc b ac

24 ab a a a b c ab

64 a a a a b c a

21 4 a a a a a a a

8 a a ab a ab b a

12 ab a ab a ab b ab

24 a a a a a b a

64 ab a a a b c ab

22 4 a a a a b b b

8 ab a b a c c ac

12 a a a ab c bc ab

24 a ab a ab c bc a

64 a a a a b b a

23 4 a ab a abc bc c a

8 a a a a b c a

12 a b b b c c b

24 ab ac c abc d d b

64 a a a b c d e

24 4 a a a a b b a

8 a ab bc c ab d ab

12 a bc a bd e de ac

24 a bc ab d e e cd

64 ab a ab b c c a

25 4 a ab a a bc d c

8 ab a c a b d ab

12 a ab c ab b d ac

24 ab a a bc c c ab

64 a ab b ab c c ab

Note: Groups followed by the same letter are not significantly different.
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evaluations of all the runs in a experiment and dividing by the number of those runs that found the optimum. The base 2 logarithm is applied and

rounded off. For each run the number of evaluations included in the ERT calculation is:

• the number of evaluations of the colony that achieves it, when the optimum is reached.

• 220 evaluations, when the optimum is not reached.

Figure 10 shows a table with the ERT of the 17 algorithms that were compared in Weise et al. (2020) together with the results of the sequen-

tial ACO described in Section 3 and BiPCACO proposal. Figure 11 highlights the differences between the ACO, BiPCACO variants and the best

competitor for each benchmark among the remaining algorithms from Figure 10.

In these results it can be seen that the sequential ACO outperforms the rest of the algorithms in 9 of the 19 problems (specifically in the most

difficult and large ones). BiPCACO with the self-tuned configuration outperforms most of them, even using only 4 colonies. The more colonies

F IGURE 6 Cumulative probability of reaching the optimum in benchmark 20 using 64 processes, where M1-7 indicates different cooperation
schemes as explained in Section 5.3.

F IGURE 7 Cumulative probability of reaching the optimum in benchmark 22 using 4 processes, where M1-7 indicates different cooperation
schemes as explained in Section 5.3.

F IGURE 8 Cumulative probability of reaching the optimum in benchmark 22 using 64 processes, where M1-7 indicates different cooperation
schemes as explained in Section 5.3.
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used in the BiPCACO proposal, the better. Note that getting a small improvement on the ERT result means a significant amount of execution time,

given the definition of the metric.

6 | CONCLUSION

This paper presents an improved multicolony ACO for binary combinatorial problems. This novel method aims to overcome the main handicap of

such algorithm, that is, its tendency to get stuck in local minima. We introduce a parallel cooperative ACO strategy in which colonies share prom-

ising solutions with each other, but only incorporate them into their search if certain conditions are met. In other words, they collaborate only

when needed. This approach maintains diversity, while avoiding rapid convergence to the same local minimum of all colonies. Based on tests with

different cooperative configurations, a self-tuned version was developed that adjusts the parameters of the cooperative algorithm at runtime. This

allows finding a good solution for each problem without the need to know a priori the features of the problem at hand.

The design and implementation of this proposal were guided by the goal of preserving the versatility of the original ACO algorithm. We strove

to create an implementation that is easy to understand, configurable, and applicable to a wide range of binary problems, avoiding ad hoc solutions

tailored exclusively to specific problem types.

To evaluate the approach, we used a set of benchmarks from the W-Model framework, which allows us to evaluate algorithms on a wide

range of problem sets.

The new self-adapted cooperative strategy presents the following advantages:

• avoids the user having to know in advance which configuration is the most suitable for the problem in question

• saves the user the time to adjust the parameters of the new algorithm

• always ensures competitive runtime for wide spectrum problems

F IGURE 9 Beanplots with the distribution of the execution time for (a) benchmark 20 using 4 processes, (b) benchmark 20 using
64 processes, (c) benchmark 22 using 4 processes and (d) benchmark 22 using 64 processes, where M1-7 indicates different cooperation schemes
as explained in Section 5.3.
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As the closest future work, we are preparing a hybridization of the ACO with methods that perform as local search. Our main objective is to

maintain a general-purpose solution by incorporating the ideas from this work on cooperation and self-adaptation at runtime.
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F IGURE 10 Comparison of ERT achieved by ACO and BiPCACO with other 17 algorithms reported in Weise et al. (2020), where ACO stands
for sequential ACO and BiPCACO(N) for BiPCACO algorithm with N colonies. Color coding per benchmark from blue (best ERT) to red
(worst ERT).

F IGURE 11 Comparison of ERT achieved by ACO, BiPCACO and best result of 17 algorithms reported in Weise et al. (2020), where ACO
stands for sequential ACO and BiPCACO(N) for BiPCACO algorithm with N colonies. Color coding per benchmark from blue (best ERT) to red
(worst ERT).
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