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Abstract
Loop-efficient automatic parallelization has become increasingly relevant due to the 
growing number of cores in current processors and the programming effort needed 
to parallelize codes in these systems efficiently. However, automatic tools fail to 
extract all the available parallelism in irregular loops with indirections, race condi-
tions or potential data dependency violations, among many other possible causes. 
One of the successful ways to automatically parallelize these loops is the use of 
speculative parallelization techniques. This paper presents a new model and the cor-
responding C++ library that supports the speculative automatic parallelization of 
loops in shared memory systems, seeking competitive performance and scalability 
while keeping user effort to a minimum. The primary speculative strategy consists of 
redundantly executing chunks of loop iterations in a duplicate fashion. Namely, each 
chunk is executed speculatively in parallel to obtain results as soon as possible and 
sequentially in a different thread to validate the speculative results. The implementa-
tion uses C++11 threads and it makes intensive use of templates and advanced mul-
tithreading techniques. An evaluation based on various benchmarks confirms that 
our proposal provides a competitive level of performance and scalability.
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1  Introduction

Multicore processors have become widely available nowadays. Although single-core 
performance continues to improve, this progress has slowed down, and due to phys-
ical and technological limitations, it is increasingly difficult to increase the clock 
speed of processors significantly. Computer architects decided to package multiple 
computing cores together on a single chip, and this has intensified over the years, 
with processors with a larger number of processing cores becoming more common.

These new multicore architectures make it possible, and even necessary, to 
exploit parallelism in several ways. To speed up a single process, it must be specifi-
cally programmed to take advantage of the parallel resources offered by the system. 
Compilers are often unable to extract parallelism hidden in sequential code, so it is 
not always possible to automatically take advantage of the parallel computing power 
of new systems, and developers must perform this process manually.

In recent decades, numerous languages, tools and libraries have been devel-
oped to alleviate this inconvenience, making it easier for programmers to take 
advantage of parallel capabilities. OpenMP in shared memory and MPI for dis-
tributed memory systems stand out. However, writing parallel programs is still a 
complex and error-prone task, requiring a deep knowledge of the code, the pro-
gramming model to be used and the system’s architecture. This makes very attrac-
tive the idea of being able to parallelize code automatically. In this way, once 
a potentially parallelizable section has been identified, usually a loop, a tool or 
library with automatic parallelization capabilities can either apply a general par-
allelization technique to the code or analytically extract its intrinsic parallelism.

In this context, speculative parallelization includes techniques that optimis-
tically execute parallel loops that cannot be parallelized at runtime because of 
dependencies. It incorporates checking mechanisms to ensure the validity of the 
results and recovery mechanisms to recover and resume the execution in case 
of failed speculation. These techniques can be implemented at the hardware or 
software levels and at different layers. One of the most interesting software-level 
options is thread-level speculation (TLS), where the execution will be performed 
in several threads simultaneously, and these will implement different strategies. 
One of the main drawbacks of TLS techniques is the high computational cost 
required by the checking and tracking. Note that both must be carried out to 
detect when dependency violations have occurred on the speculative data shared 
by threads so that corrective actions can be taken. Our new proposed model pre-
sented in this paper follows an alternative speculative strategy: at the same time 
that a section of the sequential program is executed in a processor core, the spec-
ulative execution of an automatically parallelized version of it is also launched 
in the free cores. If, at the end of the execution, the speculation was correct, the 
results were be obtained in less time. In the case of a failed speculation, the valid 
results are obtained from the sequential version, and the results of the failed spec-
ulative parallelization are discarded. This model allows nested speculations of 
several sections, in such a way that speculative results from a previous section 
can be used as a starting point for another speculative process in the next section.
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Speculative parallelization has several advantages, among which it stands out that 
it can be applied to practically any loop even if it is not initially parallelizable, either 
because it is not analysable at compile time or because there are potential depend-
encies, race conditions or indirections that prevent a traditional conservative par-
allelization. The main limitation of speculative parallelization is that the potential 
parallel performance that can be obtained is less since you either need to introduce 
performance-intensive code to detect and handle the dependencies or run the code in 
duplicate, as in the case explained above.

This paper also presents a new high-performance library developed in C++ 
called SpecLib, which allows automatic speculative parallelization of code based 
on C++11 threads implementing our new proposed model. The library aims to be 
easy to use for users, who only have to identify each potentially parallelizable sec-
tion of the code and encapsulate it in a function that will be passed in the call to the 
library, requiring very few modifications to the original code. The C++ language 
has great advantages thanks to its templates, offering great flexibility and allowing 
the use of the library with a wide variety of code types and with a different num-
ber of parameters and configurations while maintaining optimal performance since 
templates are applied at compile time. In addition, the C++ threads are available 
on almost all platforms, and the library only uses elements of the standard library 
that are also available on all platforms that support C++14. The implementation and 
some examples will be made publicly available upon acceptance of this manuscript 
at https://​github.​com/​UDC-​GAC/​specl​ib.

The rest of this manuscript is organized as follows: Sect.  2 reviews the related 
work and Sect. 3 details the new proposed TLS model, while Sect. 4 presents the 
new SpecLib library, its syntax and implementation. The performance evaluation 
is found in Sect. 5. This is followed by our conclusions and future work in Sect. 6.

2 � Related work

While there is a large variety of approaches for thread-level speculation [19], these 
techniques are almost always only applied to loops, as they are the natural source of 
work distributable among threads. Another common point is the usually significant 
overhead of these techniques because of the cost associated with detecting depend-
ency violations, maintaining current and past state data, the related recovery and 
correction mechanisms after a failed speculation, the synchronization and commu-
nication between threads and the potential load imbalance and poor cache usage due 
to data sharing [8]. Our proposal reduces many of these overheads by simplifying 
some of these mechanisms, but in exchange, it requires executing the code twice, 
both sequentially and in parallel. As shown in Sect.  5, the performance obtained 
with this approach is, for some instances, considerably better than continually using 
complicated and expensive dependency violation analysis and correction techniques.

The ATLaS project [1] adds speculative parallelization support for the C lan-
guage through either a library or a compiler plugin that extends OpenMP to use 
this library through a directive. Their approach is totally different from ours. 
Namely, SpecLib executes the code not only in parallel to get speculative values 

https://github.com/UDC-GAC/speclib
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prematurely but also sequentially to validate these results. However, ATLaS 
bases its validation on dependency violation detection techniques. It keeps track 
of the data to know when it is written or read, so that it can detect if the specula-
tive optimistic version of these data must be invalidated. We consider that ATLaS 
is one of the most modern and performant libraries that apply thread-level specu-
lative parallelization in loops. For this reason, it will be the reference to validate 
our proposal in Sect. 5.

Going back in history, one of the first software solutions for thread-level specula-
tion in loops is [14], which speculatively transforms and launches the loop while a 
test is applied to verify that no dependency violation occurs. If the test fails, the loop 
is executed again sequentially. An evolution of this solution  [4] extends this tech-
nique to loops that are known to have certain dependencies. Later, [22] introduces 
the idea of using a master/slave model. The program will be divided into different 
tasks executed by the slaves. The master thread will try to predict the final result of 
each task and will continue its execution speculatively without waiting for its results. 
This approximation must be checked as soon as possible to verify whether the spec-
ulative prediction succeeded. In case of failure, the execution will be restarted from 
the last checkpoint.

A different approach is developed in [3], where an aggressive sliding window is 
used to avoid as much as possible having to synchronize the threads while checking 
in all the store operations that a dependency violation does not occur. DSWP  [11] 
attempts to take advantage of the fine-grained pipeline parallelism of some appli-
cations to automatically extract long-running concurrently executing threads, 
while  [20] combines profile-driven parallelism detection with machine learning to 
identify and maximize the number of loops that can be safely parallelized and to 
make better mapping decisions for different target architectures, although it requires 
user support for final approval.
Fast Track  [5] divides the code into two versions: the fast insecure track 

and the normal track. The fast one is speculatively executed using unsafe optimi-
zations of the sequential code, while the normal track allows checking the results. 
In [17, 18], the state of speculative parallel threads is maintained separately from the 
non-speculative computation state. The speculative execution is performed in three 
sections: prologue, speculative, and epilogue. The prologue contains the instruc-
tions that could not be speculatively executed. The speculative section includes the 
parts that are not expected to suffer a dependency violation. Finally, the epilogue is 
intended to manage output data.

The compiler framework for thread-level speculation in  [2] relies on compile-
time directives that allow parallelizing all the code instructions, not just those in 
loops. The user first needs to analyse and profile the code to produce a control flow 
graph in order to execute speculative parallel code on multiple threads. The Mito-
sis compiler framework  [12] tries to predict the thread’s input values based on 
pre-computation slices, which are built and added at the beginning of the specula-
tive thread. These pre-computed slices must compute thread input values accurately, 
but they do not need to guarantee correctness since the underlying architecture can 
detect and recover from misspeculations. This allows the compiler to use aggressive 
and unsafe optimizations.
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The Galois model [6, 7] provides programming abstractions that allow exploit-
ing the parallelism of sequential programs by a runtime system that uses specific 
hints to speculatively execute code in parallel, using locks to ensure data consist-
ency. Inverse operations are used to recover in a failed speculation following an 
undo log defined for each iteration.

The Speculative Memory (SM) TLS system [10] proposes a scheme 
based on shelving code blocks to keep a correct order of dependent executions while 
allowing concurrent non-dependent executions. This removes some types of inter-
iteration dependencies and avoids using synchronization points.

In  [9], a new architectural framework and speculative algorithm is presented, 
especially designed for intelligent systems and to take advantage of the Hardware 
Transactional Memory (HTM) instructions available in some processors. The frame-
work describes three phases. The first one converts the code to an LLVM intermedi-
ate code. The second one analyses hotspots through profiling to evaluate the best 
sections to optimize. Finally, a memory and dependency analysis determines how 
the multithreaded speculative code is transformed and generated.

Another proposal that takes advantage of HTM support is  [15], where a new 
clause for OpenMP called tls is presented. This is applied to the already existing 
taskloop clause to allow speculative parallelization in loops with dependencies. 
In [16] preprint, its functionality is extended and evaluated in more detail.
Speculative Lock Elision  [13] automatically replaces parallel code 

locks with optimistic hardware transactions, expecting no errors. If transactions fail, 
the original locks must be used. Some solutions, such as those in [21] combine sev-
eral already known solutions, such as helper threads and run-ahead techniques with 
thread-level speculation to achieve a suitable combination that improves the final 
performance.

Finally, it is worth mentioning that there are also purely hardware-based 
approaches, although they are out of the scope of our work.

3 � A new model for thread‑level speculative parallelization of loops

The first step of the model consists in dividing the total set of iterations of the loop 
to parallelize into several chunks of iterations or blocks. These chunks will be 
defined either by their size or by the total number of blocks, whose value is usually 
established by the user.

One of the main challenges of the different TLS algorithms is to keep track of 
the speculative data shared between threads to detect when a dependency violation 
occurs on them and to be able to take the appropriate actions. This is usually very 
expensive in terms of performance. The new speculative parallelization model that 
we present aims to avoid having to keep track of the state of speculative variables. 
To achieve this, the code will be executed in duplicate. A speculative parallel ver-
sion will initially optimistically assume that it was executed correctly, and a sequen-
tial version ensures correct results and allows the validations of the speculative ones.

The planning and execution of the blocks of iterations will be established in an 
orderly manner since to start the execution of a block, the execution of the previous 
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block must have finished. When the execution of a block is scheduled, the number 
of threads available by the system is checked, as it can vary. In one of the available 
threads, a sequential execution of the block will be launched. Simultaneously, in the 
rest of the available threads, the execution of the same block will be launched in 
parallel, distributing the iterations of that block among the different threads avail-
able. Therefore, there are two simultaneously running versions of the same block, 
a sequential execution in one thread and a parallel execution spread across multiple 
threads. The sequential execution will always get correct results if it initially starts 
from correct values. The parallel execution may result in correct or incorrect values, 
but this will not be known until they can be compared against the values obtained in 
the sequential version. However, as soon as the parallel version finishes, the model 
will use its computed result values to start the execution of the next block, and it will 
be done even though, at this point, it is not yet known if these calculated values are 
correct or incorrect. When the sequential version finishes, a validation will be per-
formed to check whether the values obtained earlier in the parallel version are valid. 
If they are not, all subsequent block executions that started from these values must 
be cancelled since they started from incorrect values and, therefore, their calcula-
tions are also incorrect. Note that the execution is resumed from the last checked 
good values. In this case, no time has been gained, but neither has it been lost in 
relation to a sequential execution. However, if the validation was correct, that means 
that the calculations that were started early from these speculative values, now veri-
fied as correct, are valid. This early time is the time gain obtained in the speculation.

Figure 1 shows a simple example of the execution of the first three blocks of 
a loop using four threads. All four threads are available for the first block b1. In 
this case, one of the threads, T1, is in charge of executing the sequential version 
b1s. The three remaining available threads will execute the parallel version b1p, 
dividing the work among them. When this parallel version ends, the model opti-
mistically assumes that the speculative execution was correct, and therefore pro-
ceeds to execute the second block b2 based on the results obtained speculatively 
in the parallel version of the first block. Since there are three threads available at 
this point, this second block is launched sequentially as b2s in T2, while in the 

Fig. 1   Speculative execution of the first three blocks of a loop using four threads
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remaining two threads, the parallel version b2p is executed. This parallel version 
of the second block ends even before the sequential version of the first block has 
finished. In this moment only the third block remains to be executed, and just 
two threads are available. In one of them, the sequential version b3s is executed 
as always, while for the parallel version b3p only one thread is available. The 
minimum number of threads on which the parallel version can be planned is two 
threads for this example, although this minimum could be adjusted to any desired 
value. Therefore, the parallel version of the third block is planned for two threads, 
so that in the current available thread, the first section is executed, while the other 
section will be executed as soon as a new thread is available.

In this example, the checks are carried out in c1 for the first block as soon 
as its sequential version b1s ends in T1, and in c2 for the second block when 
its sequential version b2s ends in T2. In this case, both checks are correct. The 
speculation of the blocks is multilevel and dependent on the previous blocks 
since a block can start from speculative values calculated in the previous block 
and so on. Therefore, it can be planning and executing a new block of iterations, 
although the result values of previous blocks have not yet been validated. In this 
example, note that even if the second and third blocks validate successfully, if the 
first block had a failed validation, their work would have been discarded since 
they all depend on the speculative values calculated in advance in the parallel 
version of the first block.

The consequences of a failure in the speculation of one of the blocks are 
depicted in Fig. 2, where the failed validation is marked as f3. It shows a situation 
in which at the end of the sequential execution of block number three b3, it is 
verified that the calculated parallel value is invalid, so all subsequent executions 
are cancelled and their results invalidated, recovering and resuming execution 
with the block following the one just checked, the fourth block b4.

Figure  3 shows the worst case, in which all blocks fail the check once their 
sequential version ends. The total execution time is almost the same as the 
one resulting from a sequential execution, regardless of overheads, which may 
become relevant, especially for recovery stages such as those needed after the 
failed validations in f1 and f2.

Fig. 2   The first eight blocks of a speculative execution with seven threads where speculation fails in the 
third block
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Although it is not appreciated in the figures due to the small number of blocks 
used, as long as continuous successful validations occur, our model tends to a bal-
anced state where sequential and parallel blocks are interleaved in such a way that 
approximately half of the threads are in charge of parallel versions and the other half 
of sequential versions. As soon as a failed validation occurs, the recovery process 
resets the state to a configuration similar to the initial one. With this scheme, the 
situation where there are almost no threads available to schedule the parallel execu-
tion of a block is unlikely, and it generally only happens when a very low number of 
threads is used. In this situation, the model will schedule the parallel version of the 
block for a number of threads greater than the currently available, and the associated 
sub-blocks will wait to be executed as soon as threads becomes available.

According to the process described, the highest possible speedup that can be 
obtained is p/2, where p is the number total of threads, since the program must 
be executed in duplicate, the sequential and the parallel version. Other TLS mod-
els have the potential to achieve higher theoretical speedups, although in practice, 
they are greatly limited by the high computational cost necessary to detect and man-
age data dependencies. This degrades the performance significantly, being in many 
cases lower than that obtained with the code duplication method, as we will discuss 
in Sect. 5. In any case, the limit above is an ideal theoretical maximum that does not 
take into account some factors, as several intrinsic design waitings have to be taken 
into account:

•	 When the execution of the sequential version of a block ends, that thread is free, 
available and waiting for new work. However, it will not be until the planning 
of the next chunk that it will be possible to give work to this thread. This sched-
uling of the next chunk will occur when the execution of the current specula-
tive parallel block ends. Therefore, this waiting time does not result in useful 
work. These waits depend on the program’s flow and vary depending on the code 
being parallelized. However, they will be less relevant when the number of total 
threads grows since the execution time of the parallel versions for each block is 

Fig. 3   The first three blocks of a speculative execution with four threads where all speculative executions 
fail
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significantly reduced. Therefore, the wait between the time a thread is freed and 
the time it starts the execution of the next block is shorter.

•	 The model bases its performance on the anticipated advancement of work. Note 
that in the execution of the last blocks, no more work can be anticipated, and it 
will be necessary to wait for the completion of the sequential version of these 
last blocks to obtain the final correct results. As the number of blocks in the 
model increases, this effect is reduced, since only the last blocks are affected, 
and these will be smaller.

•	 In Figs. 1, 2 and 3 shown above, the time required to validate the results has not 
been represented, since usually the time used by these checks is negligible. How-
ever, for large or complex data structures, the checks can take significant time 
that should be considered.

•	 Finally, the time lost in failed parallel speculations and in the execution of blocks 
that start from incorrect speculative values has to be considered. After a failed 
verification, all executions of subsequent blocks must be cancelled and the 
execution must be restarted with the next block with correct verified values. A 
failed speculative parallelization of a block means that all the time advanced by 
this parallelization is lost, in addition to any work done by the following blocks, 
since they started from non-valid speculative values and their own validation was 
dependent on the validation of the previous blocks. The impact on the final per-
formance is greatly affected by these failures, as it results in much of the work 
done being invalidated and repeated.

In general, we can conclude that, at the design level, the model presents fewer idle 
times and it approaches the maximum theoretical speedup of p/2 as the number of 
threads and iteration blocks increases, resulting in smaller blocks. The performance 
will be closer to optimum with a greater number of correct speculations. Usually, 
the number of successes in the speculation increases the smaller the block size is, 
since a data or calculation conflict is less likely to occur. However, this does not 
always happen and it also depends on the parallelized code.

Choosing a small block size improves the distribution of work among threads for 
the parallel execution version. However, there are also other factors of the model 
design that significantly affect performance. The main one is the overhead present 
in the implementation used, which includes, but is not limited to, synchronizing 
threads, scheduling the launch of each block of iterations, and making copies of the 
data so that there are two versions of the data for each block, one for the sequen-
tial run and the other for the parallel run. This overhead becomes more significant 
the smaller the grain of each block is in relation to the internal overheads of the 
implementation.

It is also interesting to analyse the additional memory usage required by the pro-
posed model, since it is based on duplicate code execution and nesting of specula-
tions, both techniques requiring multiple versions of the same data. A copy of the 
speculative variables is needed for each version of each block. These data must be 
kept in memory until the block is validated. To validate a block, all the previous 
ones must also be validated. Therefore, at a given time, the number of copies needed 
is related to the nesting level of the blocks, being this the number of blocks that have 
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been executed but not validated. This value should be multiplied by two to obtain 
the total number of copies, since two versions of the data exist for each block, one 
for its sequential version and another for its parallel version.

Note that usually the speculative nesting depends only on the number of total 
threads used. As mentioned previously, over time and as long as failed validations 
do not occur, the system tends to a balanced state where half of the threads execute 
sequential blocks and the other half parallel blocks, resulting in a nesting value close 
to p/2. At the beginning of the execution or after a failure is when the highest levels 
of nesting are reached, with an initial theoretical recurrence limit of p − 1 , although 
in practice, this limit is not reached in most cases unless a low number of threads is 
being used. As two copies per block are needed, the average memory footprint usage 
in each case is twice the indicated nesting value.

In summary, the memory footprint of the model is directly related to the num-
ber of threads used, reaching a maximum of 2(p − 1) copies of the speculative data 
shortly after the beginning of execution and after each failed validation, although in 
reality this maximum is somewhat lower when more than few threads are used. If no 
failures occur in the speculation, the nesting level is reduced over time until reaching 
an average memory usage of roughly p.

4 � SpecLib: an automatic speculative parallelization library

In this section, the new proposed library, called SpecLib, will be detailed. It imple-
ments the model described in Sect. 3. We will begin with its syntax and semantics 
and continue with the implementation and optimization details.

4.1 � Syntax and semantics

The main objective of the library is to parallelize for loops speculatively. For this, 
users must call the library’s specRun function, providing the necessary informa-
tion shown in Listing 1. The required parameters are described below.

Three of the input data needed are those that define a conventional for loop, i.e., 
the begin value of the loop, its step, and the end value, which when reached by the 
index of the loop indicates its completion. The library supports positive and negative 
values and different integer data types for all of them. Following the model speci-
fications, the library internally divides the total number of iterations into different 
chunks or blocks of iterations.
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The user specifies the number of iterations of these chunks as the parameter 
iters_chunk. This is an essential parameter for library performance, and a bal-
ance must be struck between being small enough to reduce certain waits and 
increasing the number of successful speculations, while being large enough so 
that library overhead does not impact performance too much. The helper function 
getChunkSize(totalIterations, numChunks) can be used to compute 
the chunk size when the user prefers to provide a desired number of chunks. This 
optimal value will significantly vary depending on the type of parallelized code, the 
execution environment and many other factors. For this reason, the library allows 
the user to set this parameter.

The Configuration object of the library allows to set various configuration 
parameters for the parallel execution. The first is the number of threads to use, three 
being the minimum required. Typically, this value is set to the number of cores 
available for execution. The higher the number of threads used, the more threads 
the speculative version can run in parallel, usually meaning higher performance. 
Scalability also depends on other factors, including the code to be parallelized, thus 
sometimes increasing the number of threads may not improve performance. The 
second parameter of this configuration object, MinParalThreads, is optional. 
The speculative parallel version of a block will be distributed among the maximum 
between the number of available threads during its scheduling and this parameter 
value. Its default value is 2, which is the minimum supported. The default value is 
almost always the best option, but in some niche cases, especially for a low number 
of threads where the situation of there being very few threads available is more fre-
quent, increasing this value can slightly improve performance, so users can config-
ure it for fine-tuning, although it is usually unnecessary.

Finally, the library specRun function receives as a parameter the function f that 
contains the body of the loop to be speculatively parallelized, and a variable list of 
parameters args that are the speculative variables. This function can be statically 
defined as a regular C++ function, a function pointer, or a C++ lambda function. In 
this function, the speculative variables are those whose result could be affected by 
parallelization. A chunk’s sequential and parallel versions receive different instances 
of these variables, which will be compared when both executions finish. If the val-
ues of the two versions match, the speculative execution will be regarded as valid, 
while its results will be discarded otherwise.

The function f must receive the current iteration of the loop as its first param-
eter, and the speculative variables as its following parameters. This function will 
be called by the library in each iteration, so that its body corresponds to the body 
of the loop. SpecLib supports an alternative version of specRun that allows to 
define the function in a more customized way, so that instead of being called in each 
iteration, it is only called once per chunk. Of course, this implies receiving addi-
tional information, such as the limits of the chunk and its step, as well as perform-
ing the iterations of the chunk within the function. While this alternative requires 
more effort from the users, it can reduce the overhead associated with the invocation 
of the user-defined function, and it provides more control over the execution of the 
loop as well as access to some useful information about the current execution state. 
In addition, we observed that some compilers sometimes find optimizing the loops 
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defined in this function easier than those used in the basic form, especially if the 
compiler fails to inline this function for some reason or limitation.

Listing 2 illustrates the usage of the library in a code that searches for the larg-
est value in an array. The call to the specRun library function requests the use of 
8 threads for a loop of 10000 iterations, starting at 0 and ending at 10000 with step 
1. The user employs the helper getChunkSize function to compute the number 
of iterations per chunk to use a total of 40 chunks. The last two parameters are the 
lambda function func in which the main work is done and a single speculative vari-
able res where the result will be obtained.

The library supports the definition of different compilation flags to expand its 
functionality or modify its behaviour. We highlight the possibility of extracting sta-
tistics on the number of successful and failed speculations, which is useful when 
analysing the library performance. It is also possible to extract detailed information 
about the execution times to know how much time is spent in each part of the paral-
lelization. Another compilation flag allows the simulation of a certain percentage 
of correct speculations. The results obtained when the library is used in simulation 
mode will be incorrect. Still, its utility lies in figuring out the performance that can 
be obtained from the parallelized code for a given success rate. Finally, one last 
option can be used to avoid the check that the library performs in each iteration 
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of the loop to cancel the execution of the current chunk if it is discovered that it is 
being run on variables obtained from failed speculations. This check is convenient 
in most cases, as it allows to prematurely terminate the execution of chunks whose 
work will not be useful. However, although it is not common, sometimes this check 
can penalize performance since it can prevent the compiler from applying some 
optimizations.

4.1.1 � Helper wrapper classes

The default behaviour of the library with speculative variables may not always be 
adequate or optimal in all circumstances. That is why the library provides a set 
of easy-to-use and highly efficient helper wrapper classes for the most common 
problems.

Operations on floating-point numbers are present in many applications nowadays, 
and they are characterized by the presence of rounding and precision errors in their 
operations, which accumulate after successive computations. Therefore, certain 
operations that mathematically satisfy the associative property and should not affect 
the result by changing the order in which they are executed can provide different 
results when performed on floating-point numbers due to these issues. The C++ 
comparison operation is used by the library in the validation process of a speculative 
variable, and for floating-point types identical values are required to satisfy equality. 
This may be the desired behaviour sometimes, but since the parallelization of opera-
tions often changes their order of execution, what is often desirable in this situation 
is to allow a certain range of tolerance for the comparison.

For this reason, our library provides several wrapper classes for floating-point 
types that allow setting a tolerance level for comparisons. This is not a universal 
solution that can be applied to any problem. Floating-point precision errors have 
numerous repercussions, so how they affect the program and the possible worka-
rounds must be studied in each case. The implications could be profound, and a 
complete rethinking of the algorithm may be necessary. Even so, one of the solu-
tions typically used is to simply accept the existence of a certain margin of error in 
the results due to these imprecisions. In these cases, the floating-point helper classes 
are also helpful, although their primary purpose focuses on the precision errors 
caused by the associativity of operations. These classes overload all the operations 
supported by the native types, so that they can be used directly in the same way and 
thus their use requires very little code modification. It is in the overloaded compari-
son operators where the margin of error is taken into account.

Different types of tolerance comparisons are supported. The simplest comparison 
type is an absolute numerical comparison where if the absolute value of the differ-
ence between the two numbers to be compared is less than the tolerance value, these 
numbers will be considered equal. A second type is to use a relative tolerance com-
parison. The idea of a relative comparison is to find the difference between the two 
numbers and to consider how large it is compared to their magnitudes. The space 
between two numbers representable in the floating-point form is known as the unit 
of least precision or ULP. It is commonly used to measure the precision of the type 
used, and the difference in ULPs between two floating-point numbers can also be 
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used in comparisons. One issue of the relative and ULP comparisons happens when 
comparing numbers close to zero. In these cases, two near-zero numbers that are 
close to each other can be considered different. In this circumstance, a hybrid abso-
lute and relative or hybrid absolute and ULP comparison will be the best approach, 
where the absolute tolerance value is used first to check whether the numbers are 
really very close, being in that case already considered equal. If not, then the relative 
or ULP comparison will determine their equality. All these options allow for very 
custom and defined use of tolerant comparisons for floating-point types as needed.

Arrays, vectors, lists, and other standard C++ containers are commonly used and 
allow the user to implement data structures containing sets of values easily. These 
types can be used directly in the library in a speculative way, but the user must be 
aware of the implications of their use, especially if the data containers are huge, as 
they could affect performance. In the context of speculative container variables, the 
equality check means checking that the number of elements in them is the same 
and that all their elements are equal, as only in this case the two containers are con-
sidered equal. The library internally needs to continuously copy the value of the 
speculative variables since for each new chunk, the value of the speculative vari-
ables computed by the previous chunk must be copied, and then these must be cop-
ied again so that a different copy is available for sequential execution and another for 
parallel execution. This is the expected behaviour, but in many situations, all these 
copies are unnecessary and can be optimized.

A specific case of optimization would be when the user knows that in a given iter-
ation i the collection col element is always accessed with the same offset col[i], 
something that is quite common. For this case, the library includes a helper wrapper 
class, with which the user can directly encapsulate a set of consecutive values in 
memory, be it an array, a vector, or even a pointer, and access its elements in the 
usual way. When the library prepares a new chunk, and this class is used, instead of 
making a complete copy of the array, only the elements that are going to be accessed 
in those iterations of the loop will be copied, thus avoiding copying large amounts 
of data. At the time of performing the speculation check, only these values will be 
checked. This reduces memory usage and the amount of data on which to perform 
checks, which improves performance, especially if these checks involve classes 
with complex comparisons and not native types. However, in most cases, the great 
performance improvement comes from reducing the number of copy operations in 
memory. Unfortunately, in many codes, modifications on arrays happen with pat-
terns that cannot be easily described, for example, because they use indirections or 
complex indexing functions. For this case, the library provides another similar wrap-
per class with the same purpose, but which supports total flexibility in the indexing 
of the array it represents. This is achieved at the cost of much higher storage and 
management overheads and a more challenging use of the class.

The library has a helper class that facilitates the parallelization of reduction 
operations defined by the user. The reduction operations imply reducing a diverse 
number of elements to a final result by applying the same operation continuously. 
They are associative and are usually easily parallelizable, but not directly, so the 
helper class follows a specific process that takes into account the independence of 
the individual operations instead of the temporally partially computed values. With 
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a direct use of the library without this class the reduction would produce an enor-
mously speculation failure rates for the reduction variables if direct parallelization is 
attempted. The use of this helper class allows the reduction to succeed in almost all 
cases if it meets the appropriate properties, but requires a certain effort from the user 
to implement it.

In parallel algorithms, atomic variables are sometimes used to allow several 
threads to access the same variable atomically, guaranteeing that the read and/or 
write operation done on this variable is performed completely by one thread before 
another can perform any other operation on it. This type of operations are imple-
mented and supported at the hardware level in most current processors for the basic 
integer types. Since C++11, the std::atomic<T> type has been introduced 
into the language, making it easy to define and use atomic variables and operations. 
However, this class presents specific characteristics and limitations that make it 
initially incompatible with the library if intended to be used as a speculative vari-
able. With the helper wrapper class that the library provides, the atomic types can be 
used as result speculative variables since it internally implements an atomic variable 
std::atomic but in a way that is compatible with the library and expanding the 
type with more functionalities.

4.2 � Implementation and optimizations

Our proposal is implemented as a header-only C++ library designed and developed 
to allow a high performance level and flexible ease of use. To achieve this, it inter-
nally makes intensive use of templates and multithreading techniques. Some appli-
cations may need to perform multiple calls to the library, so it is also relevant to 
achieve good performance in the library call itself, and not just in the internal execu-
tion. Although it largely depends on the operating system, creating and destroying 
threads is usually relatively slow. The library uses and manages a thread pool to 
avoid creating and destroying threads with each call, so new threads will be created 
when necessary. Still, after their usage, they will be kept inactive and ready to be 
reused in possible future calls to the library instead of being destroyed.

The library internally implements a lock-free strategy using several variables 
and atomic operations for synchronization. This allows to keep threads as active as 
possible and obtain a very good performance and scalability by avoiding expensive 
blocking operations. A single thread is responsible for scheduling the execution of 
each next block of iterations. The rest of the threads simply alternate between exe-
cuting work or waiting for this thread to release new work. The validation of a block 
will be performed when all the three following points are reached for its execution: 
the execution of the sequential version ends, the execution of the parallel version 
ends, and the previous block is validated. Therefore, the last point to be reached is 
the one that triggers the validation. In the case of the first block and, in general, any 
block that starts from non-speculative verified values, it is not necessary to wait for a 
previous block to be validated, and the verification is carried out as soon as both the 
parallel and the sequential versions of the block finish. This flexibility in the valida-
tion process avoids unnecessary synchronizations and provides the necessary agility 



	 M. A. Martínez et al.

1 3

to the process so that in the case of an erroneous validation, it can start recovery as 
soon as possible.

After a successful validation, the program does not need to perform any special 
action and can continue its normal execution. However, if a validation is unsuccess-
ful, all currently running blocks must be stopped since they all started from wrong 
values. To stop the execution, the library modifies the value of a flag variable that its 
runtime usually checks in every iteration to detect this situation and terminate these 
blocks as soon as possible. Users can also control when to perform this check.

Finally, the optimization level that the compiler can apply is also very impor-
tant. The heavily template-based library code is designed so that the compiler can 
optimize all its operations as much as possible. In particular, it must be capable of 
detecting and integrating the code provided by the user within the main loops of the 
library so that it applies the optimizations that compilers usually perform on loops. 
Although compilers are very advanced nowadays, with exceptional optimization 
capabilities, they tend to be considerably conservative sometimes. As a result, they 
do not always extract the necessary information from code or correctly apply some 
optimization techniques when the encapsulated code is provided in a user-defined 
function that is passed as an argument to functions and classes. Also, on other occa-
sions, certain optimization parameter limitations prevent some techniques from 
being applied, although, in this case, these parameters are usually configurable and 
can be modified. In our tests with the most widely used modern compilers today, we 
have found that they almost always achieve a good level of optimization, although 
there are some exceptions.

5 � Evaluation

In this section, the performance obtained by the SpecLib library is evaluated, and 
the results obtained are compared with one of the main alternatives, the ATLaS pro-
ject [1], which is described in Sect. 2.

The benchmarks used and their sequential runtimes, which are taken as refer-
ence for the computation of the speedups of the speculative parallel versions, are 
described in Table 1. These times were obtained by running an optimized sequen-
tial version of each benchmark on a single core of the target system used in all 
the experiments, described in Table  2. All the parallel and sequential codes were 

Table 1   Benchmarks used Name Problem Size (total 
iterations)

Seq. Time

B-synthetic 30,000 22.714 s
R-test_reduction 8,000,000,000 11.463 s
D-2D-Disc-Hull 9,999,997 0.611 s
E-2D-Square-Hull 9,999,997 0.719 s
F-2D-Kuzmin-Hull 9,999,997 0.553 s
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compiled using the same software environment, an optimization level O3, and every 
time measurement is the average of ten runs.

B-synthetic is a synthetic benchmark designed to produce many correct specula-
tions, as only two iterations out of 30,000 are strongly likely to cause dependency 
violations. Even so, these two iterations have a great impact on the calculations 
made in the iterations after them since they modify the values of a small array that 
is used intensively to make calculations on a couple of reduction operations. As a 
result, their impact can be very large if the speculative process does not maintain 
good isolation of all speculative variables and does not implement a correct recov-
ery system after speculative failures.

The synthetic benchmark R-test_reduction implements a simple addition reduc-
tion operation for a double-precision floating-point variable. This benchmark allows 
testing the performance of some wrapper classes explained in Sect. 4.1.1, namely 
the one designed to deal with variables involved in reductions and the one that 
allows establishing a tolerance for the validations of floating-point speculative vari-
ables. An alternative implementation using the wrapper class for atomic variables 
and a user-defined function that executes a chunk of iterations instead of a single one 
will also be tested, also using the floating-point helper class in this case.

The 2D-Hull problem solves the computation of the convex hull (smallest 
enclosing polygon) of a set of points in the plane. The probability of a depend-
ency violation and the execution flow in the 2D-Hull algorithm depends on the 
shape of the input set and the size of the inner loops, which varies and can cause 
a certain imbalance. Internally the code speculates on an array, which also dif-
fers in size depending on the input data, where access through indirections is fre-
quent, making the input even more decisive in the program’s behaviour. There-
fore, three different input sets with tens of millions of points each are used, and 
each one will be considered as an independent benchmark since as already men-
tioned, their behaviour, results and performance are very different. The Kuzmin 
input set F-Kuzmin-2D-Hull follows a Gauss-Kuzmin distribution, with a higher 
density of points around the center of the distribution space, leading to very few 
dependency violations, as points far from the center are very rare. The other two 
input sets, the Disc D-Disc-2D-Hull and the Square E-Square-2D-Hull, lead 
to more dependency violations than Kuzmin because their points are evenly 

Table 2   System configuration Feature Value

CPUs per Node 2 × Intel Xeon Platinum 8352Y
CPU Family Ice Lake
CPU Frequency 2.20 GHz (Turbo: 3.40GHz)
Num Cores/CPU 32
Total Cores per Node 2 × 32 = 64
Memory per Node 256GB DDR4
Operating System Rocky Linux 8.4
Compiler g++ 10.1.0
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distributed within a Disc and a Square, respectively. The Square input set results 
in an enclosing polygon with fewer edges than the Disc input set, thus producing 
fewer dependency violations.

Figure 4 illustrates the impact of the chunk size in the final performance of the 
SpecLib benchmarks, using 48 threads in this example, i.e. one per core. Due 
to the different nature of the benchmarks, it is more convenient for this compari-
son to show the performance relationship concerning the total number of chunks 
instead of the size of each chunk. Note that the performance with respect to the 
chunk size is usually a concave downward curve because of the problems men-
tioned in Sect. 4.1 when the chunks are too large or too small. Interestingly, while 
some benchmarks present a limited number of chunk sizes that provide good per-
formance, others can reach reasonable performance results for a large range of 
values.

In the experiments with the SpecLib versions, executions were performed 
varying the size of the block of iterations in order to choose the one that offers 
the best results. In the ATLaS versions, in addition to the size of the block of 
iterations, two additional parameters also affect performance that had to be con-
sidered. As a result, for these versions, multiple executions were also performed 
with different combinations of the three parameters to select the one that offers 
the best performance. It was also always checked that the outcome was correct for 
every test. The final performance results, which use between 3 and 64 threads, are 
shown in Fig. 5.

B-synthetic has three speculative variables, two variables on which a simple 
reduction operation is performed and a small array accessed via indirections. 
SpecLib effectively handles reduction operations with the reduction helper 
class, and the array can be treated directly. In this way, SpecLib maintains an 
optimal speculative success rate, where only two of the iteration chunks result in 

Fig. 4   Performance of the benchmarks in a 48-core system using the SpecLib library varying the total 
number of chunks used
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erroneous speculations in most cases. It, therefore, achieves optimal performance 
and efficiency even for a large number of cores, with an efficiency of 99.5% 
when using 4 threads and dropping only to 88% for a large number of 64 threads. 
ATLaS also performs very well on this test, albeit slightly worse.

In the R-test_reduction benchmark, the SpecLib library uses the reduction 
helper class to optimize its reduction operation. It also makes use of the helper 
wrapper class that allows setting a tolerance margin of error in the comparisons 
used in the validations, with a small but sufficient value to ensure that validations 
are both correct and successful most of the times. Because the value of the specu-
lative variable reaches different orders of magnitude during execution, a relative 

Fig. 5   Speedups of the speculative parallel implementations of SpecLib and ATLaS (the dashed black 
line indicates the maximum theoretical speedup of the model on which SpecLib is based)
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tolerance value is used. Since it is a reduction operation, speculative failures will 
only come from precision errors in floating-point operations. It is therefore inter-
esting to note how the successful speculation rate and, thus, the performance are 
affected as the tolerance margin of error of the double-precision floating-point 
comparisons is altered, as we do in Fig. 6 for the 48-cores case. In this example, 
the success speculative rate is about 11% if a very low or no tolerance is used, 
resulting in a 1.1x speedup. As an increasingly higher tolerance value is estab-
lished, the number of valid speculations rises, reaching a 100% rate and a speedup 
of 22.1x with a relative tolerance value of 2.70E-15 or higher. This experiment 
also illustrates that the speculative success rate significantly affects the final per-
formance nonlinearly. While the success rate grows very quickly as the margin of 
error used increases, performance grows more slowly and progressively.

For the SpecLib-ReductionVar case, with the use of the reduction helper 
wrapper, it can be ensured that the performance and scalability of this benchmark 
is close to the optimum, with high efficiency levels between 86% and 95%. While 
this is the most efficient implementation with SpecLib, comparing it with other 
alternative library implementations is interesting, as shown in Fig. 5b. The Spe-
cLib-SpecAtomic version uses instead the atomic wrapper class introduced 
in Sect. 4.1.1 to allow the use of atomic operations on this floating-point variable. 
As atomic operations are expensive, their continued use would produce poor per-
formance. For this reason, this benchmark variation uses a custom loop in which 
a standard local variable is used within the loop instead of the atomic speculative 
one, thus performing only a single speculative atomic operation at the end of this 
custom loop, considerably improving the performance. The SpecLib-NoAux-
Class variant does not use any of these auxiliary classes. Instead, it directly 
parallelizes the original loop, obtaining very poor performance, proving that 
these auxiliary classes are necessary for these types of operations. These bench-
marks show that the reduction helper class performs its function in a very optimal 
way. Let us notice that the atomic wrapper class allows the use of atomic oper-
ations within the speculative loop, which can be useful for certain specialized 
uses. ATLaS also implements specialized methods for dealing with reduction 

Fig. 6   Speedup and rate of successful speculative block validations for the SpecLib R-test_reduction 
benchmark using 48 cores and varying the tolerance of the double-precision floating-point comparisons
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operations, thanks to which it achieves a decent performance. However, it is sig-
nificantly lower than the one obtained by SpecLib.

The problems inherent to the algorithm of the 2D-Hull benchmarks affect the 
scalability and the maximum performance obtained. It should also be noted that the 
sequential time of these benchmarks is very low, less than one second, as shown in 
Table 1. Parallelizing benchmarks with such a low sequential execution time consid-
erably penalizes scalability, as it is more difficult to obtain an adequate block size 
with low overhead and a success speculative rate for a high number of threads, and 
the time impact of these speculative failures is more significant. Despite all these 
issues, the results achieved for these benchmarks are decent, given their particular 
circumstances. The F-Kuzmin-2D-Hull benchmark achieves a maximum speedup of 
20.1× with 64 threads, although it hardly shows any improvement from 56 threads 
due to these scalability issues, for which a 19.8× speedup is obtained. This also hap-
pens for the E-Square-2D-Hull benchmark, where performance is even penalized 
when using 64 threads, achieving a maximum speedup of 14.7× with 56 threads. 
The D-Disc-2D-Hull benchmark has many dependency violations. This benchmark 
begins to suffer in its scalability from 18 threads, for which a speedup of 2.9× is 
obtained. The maximum speedup achieved is 3.3× for 56 threads, although this is 
a very minor improvement compared to the 3.2× and 3.1× speedup achieved for 32 
threads and 28 threads, respectively. ATLaS shows considerably lower performance 
in these benchmarks, presenting more pronounced scalability problems.

6 � Conclusions

Many loops present characteristics that preclude their automatic parallelization and 
even a traditional manual parallelization using standard tools such as OpenMP. This 
is the case of loops in which we are unsure about dependencies among different 
iterations. In these situations, only a speculative approach, where the results of the 
parallelization are verified against a correct execution to make sure that the results 
are valid and take corrective actions otherwise, enables the exploitation of parallel-
ism in these codes.

In this paper, we present a new thread-level speculative parallelization model 
and its implementation in a high-performance library named SpecLib, designed 
to automatically and efficiently parallelize loops that are not amenable to other 
approaches, for example because of indirections, race conditions, or data dependen-
cies in the original code. Our library makes transparent to users the great internal 
complexity of distributing, synchronizing, verifying, correcting and restarting itera-
tions when necessary using efficient shared memory mechanisms.

Particular emphasis has been placed on keeping the library as efficient as possi-
ble to achieve competitive performance. For this, certain flexibility has been granted 
to the library’s configuration, which allows users to adjust the size of the block of 
iterations, the most crucial parameter whose optimal value varies according to the 
parallelized loop. At the same time, the library presents other advanced options 
for experienced users that enable finer custom tuning and the use of more complex 
techniques. The set of helper wrapper classes included with the library must also be 
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highlighted, as it dramatically expands its possibilities and improves performance. It 
is especially useful for handling reductions, floating-point numbers, and containers 
such as arrays, among others.

The library achieved competitive performance in the different benchmarks used 
in the evaluation. While the scalability is very good for benchmarks where the num-
ber of correct speculations is high, it is somewhat limited for the difficult cases 
with many failed speculations. This reveals the great cost of discarding the work 
advanced by the multiple nested speculations.

As future work, we propose the creation of new helper classes to cover a greater 
diversity of cases and improve performance, especially those aimed to optimize 
access to arrays or other commonly used data structures in ways not considered in 
this paper. Also, it would be interesting to transfer the ideas presented in this paper 
to a distributed memory environment to increase scalability if we found instances 
where this could be useful. However, the challenges are immense and the overhead 
and communications costs associated with this task are huge, so for each proposal it 
would also be necessary to explore its feasibility. Finally, we also consider it inter-
esting for future work to estimate the energy consumption of our proposal and pre-
sent modifications that minimize it if possible.
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