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A B S T R A C T   

This study focuses on dimensionality reduction by variable selection in business failure prediction models. A new 
method of dimensionality reduction by variable selection using Genetic Programming is proposed, which takes 
into account the relative frequency of occurrence of the explanatory variables in the evolved solutions, as well as 
the statistical relevance of that frequency. For a better evaluation of the proposed method and its comparison 
with other well-tested and widely used variable selection methods, the prediction of business failure in three 
temporal horizons (1, 5 and 9 years prior to failure) is considered. Additionally, a comparison of the sets of 
variables selected with different feature selection methods is performed, also considering different classifiers in 
the comparison, among which Genetic Programming is included as a classifier. The results indicate that the 
proposed method (using Genetic Programming as a variable selection method) is superior to the most tested and 
widely used methods analyzed, and this superiority increases if Genetic Programming is also used as a classi
fication method.   

1. Introduction 

In addition to the selection of the classification method, in business 
failure prediction (Bankruptcy Prediction - BP) one of the basic chal
lenges is the selection of the explanatory variables [1]. Studies have 
shown that BP models can be more effective if procedures of data pre
processing are performed (among which the selection of explanatory 
variables occupies a relevant place) [2]. However, there is no consensus 
when it comes to focusing on this variable selection. Financial ratios 
have traditionally been the most commonly used type of explanatory 
variable in BP work. As Barnes [3] points out, financial ratios have 
typically been selected on the basis of their popularity, in addition to the 
fact that each researcher can add a new one (ratio) in his or her 
particular work. Laitinen [4] also comments that “They are (the finan
cial ratios) usually selected from data simply statistically without any 
rigorous hypotheses on the behavior of the firm before failure” and, in 
the aforementioned study, Laitinen [4] proposes as an objective “to 
select the financial ratios on the basis of a theoretical model”. 

This choice is still the usual one, as indicated by du Jardin [5] when 
he summarizes the criteria used in the selection of explanatory variables 

to be included in BP models. As the author points out, 40% of the 
analyzed works use “Popularity in the literature or predictive ability 
assessed in previous studies” as a criterion [5]. Thus, there are currently 
a multitude of studies that use as explanatory variables those 
pre-selected in previous studies [6,7], while other authors apply 
different techniques for the selection of variables [1,8,9]. In this line, 
Alaka et al. [10] provide a general analysis of the different methods used 
in variable selection, considering 49 BP studies in the period between 
2010 and 2015, which highlights the aforementioned lack of consensus. 

There has been an exponential increase in the information available 
from companies (restricted and/or public use), at the same time that 
classification methods have increased their potential to deal with a 
larger number of variables and also with different types of variables. 
However, these available data are often overloaded with a multitude of 
features (i.e. input variables or independent variables) which, in addi
tion to the increase in cost and time to obtain solutions, may result in 
overfitting of the BP model. More data does not necessarily mean better 
results, as concluded by Chandrashekar and Sahin [11]. 

Consequently, two different ways can be summarized when selecting 
the most relevant variables in BP: 
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• Use variables pre-selected in previous studies. This generally in
volves using reduced sets of variables.  

• Selecting variables for BP through a process of dimensionality 
reduction of initial sets with a large number of available variables. 

In this study, the second alternative was considered by choosing a 
large initial sample of commonly used variables (mostly financial ra
tios), additionally extended with other variables that may be useful in 
insolvency prediction. Then, dimensionality reduction with automatic 
variable selection is addressed, as this initial set is then subjected to 
different Feature Selection (FS) methods. That is, instead of a selection 
process based on the presence of variables in previous studies, the var
iable selection process can automatically detect the most relevant vari
ables from a large initial set, with the possibility of improving the 
performance of the prediction models. 

Within the BP framework, there are some works that analyze 
different combinations of selection techniques of the explanatory vari
ables and classification methods [12] or the impact of variable selection 
methods on the results obtained with different classification methods 
[13]. In our study, tree-based Genetic Programming (GP) [14] is pro
posed as a dimensionality reduction method to detect the most relevant 
explanatory variables for BP models. This will be based on the hypoth
esis that relevant explanatory variables remain in the population of so
lutions and throughout the evolutionary process, while irrelevant 
variables disappear over generations and due to selection pressure. Our 
novel approach will consider the statistical relevance of the appearance 
of variables in the evolutionary process, in order to ensure a correct 
choice of the significant variables. 

The set of variables obtained with GP is evaluated – together with 
those obtained with other dimensionality reduction methods – by means 
of different classification methods in the field of Machine Learning (ML) 
(including GP, which is used in this work as a method to reduce 
dimensionality and as a classification method). The interest of GP in the 
BP field is because GP-based insolvency prediction models have the 
important property of direct interpretability. Solutions based on GP 
trees are usually more interpretable (obviously, depending on the 
complexity of the tree) than other solutions (classifiers used for BP) that 
can be considered black boxes. In Brabazon et al. [15] words, GP can 
provide solutions that are human-readable. And our study, in addition, 
takes advantage of and analyzes GP as a variable selection technique in 
the field of BP. 

Therefore, the main objective of our study is to analyze our proposed 
use of GP as a dimensionality reduction method. Our proposal will 
consider the frequency of selection of input variables in the GP evolu
tionary process and this selection will start from a wide set of variables 
in the BP field. This selection will be performed in the context of pre
dicting failure at three different temporal horizons: at 1, 5 and 9 years 
prior to failure, thus taking into account prediction scenarios that can be 
considered in the short, medium and long term. These horizons also 
provide several different scenarios in which to perform a detailed 
evaluation and comparison with other FS approaches, also taking into 
account different classification methods in the comparison. 

The rest of the paper is structured as follows: Section 2 presents the 
general approach to the dimensionality reduction problem and synthe
sizes the approach to this problem in the BP field. Section 3 explains the 
proposed feature selection approach with GP. Section 4 explains the 
methods used in the study, detailing the aspects involved in the design of 
the BP models: data used, the input variables and how the training and 
test sets are defined, as well as the dimensionality reduction methods 
and classifiers used in the comparisons. Section 5 first details the setup 
of all the methods considered and then details and analyzes the results 
obtained, highlighting those of our study proposal. Section 6 provides a 
general discussion of the comparisons performed and the results ob
tained. Finally, Section 7 includes the main conclusions that can be 
obtained from the study, as well as some possible avenues for future 
research. 

2. Dimensionality reduction 

Dimensionality reduction is the process of obtaining a set of main (or 
explanatory) variables of a classification/prediction model from an 
initial set of input variables. The most common applications of dimen
sionality reduction are found in classification, clustering and regression 
tasks [16]. 

Following Tang et al. [17], the expected advantages of reducing the 
dimensionality of the set of input variables could be summarized as 
follows: reduced computational complexity, reduced storage re
quirements, improved ML model performance, as well as models that 
generalize better. 

Generally speaking, there are two ways to approach dimensionality 
reduction:  

• Feature selection 
It consists of eliminating some variables if it is considered that they 
are not providing relevant information about the dataset. It is easy to 
implement, but – as a disadvantage – information about the elimi
nated variables could be lost.  

• Variable extraction 
This is the formation of new variables from old ones. Two categories 
can be considered, depending on whether a linear or a nonlinear 
dimensionality reduction transformation is applied. 

In this work, we will address dimensionality reduction through 
feature selection. The reason is to use and identify the most relevant 
variables from a large initial set of explanatory variables that correspond 
to traditional features used in insolvency prediction models (such as 
financial ratios). This improves the interpretability (and even accep
tance) of the prediction models by an end user of the model and 
compared to the use of explanatory variables that would correspond to 
linear/non-linear dimensionality reduction methods in the second op
tion of variable extraction. 

There are multiple ways to classify different feature selection 
methods [16,18]. The most common is the classification that is made 
according to the relationship with the learning method. According to 
this criterion, feature selection methods are classified into: filter 
methods, wrapper methods and embedded methods. 

The basic characteristics of each of them are, very succinctly, as 
follows [16,18]:  

• Filter methods: These are independent of any learning method. They 
select features based on a performance measure independent of the 
learning method. The idea is to filter or detect those features that best 
discriminate the examples of different classes, taking into account 
their intra-class and inter-class variation. Once the best feature 
subset has been found, the learning method is applied. They are not 
computationally expensive and tend to generalize well.  

• Wrapper methods: These evaluate the subsets of features by means of 
their performance in a modeling algorithm, which acts as a “black 
box” evaluator. These are more computationally expensive than 
filtering methods and tend to obtain subsets with better modeling 
results.  

• Embedded methods: these perform feature selection as the learning 
method is applied, as they are embedded in the learning method 
(either as a normal functionality or as an extended functionality). 

In the case of BP, the relevance of the issue of explanatory variable 
selection and the inadequacy of the method of selection by pre-selected 
variables in other studies, make the reduction of the dimensionality of 
the initial set of input variables currently an unresolved challenge [19]. 
Some reviews [10,20] provide an overview of the most commonly used 
methods. 

The following section details our proposal, which uses GP as a 
feature selection method, reasoning its embedded nature. This use of GP 

Á. Beade et al.                                                                                                                                                                                                                                   



Knowledge-Based Systems 289 (2024) 111529

3

for variable selection is novel in the field of BP. 

3. Proposed feature selection method with genetic programming 

3.1. Brief comments on genetic programming 

In Evolutionary Computation (EC) methods, the main feature of 
Genetic Programming (GP) [14,21] is that it evolves “programs”, which 
are typically represented as decision trees. The evolutionary process 
evolves and optimizes these genetic population programs over genera
tions. The standard genetic operators in GP for dealing with decision 
trees can be found in Poli et al. [21]. Being able to obtain programs or 
decision trees in an automatic way, without knowing a priori the 
structure of the optimal solution, is what gives GP great versatility with 
respect to other evolutionary methods [22]. 

In BP the objective is to obtain models with high predictive power 
and, in this goal, GP has several advantages: i) No prior assumptions are 
made by GP regarding the explanatory variables to be used in a pre
diction model. ii) As previously mentioned, GP provides a direct inter
pretability of the evolved program/tree. iii) The possibility to adjust the 
complexity of the optimized program/tree, for example by adjusting the 
number of tree nodes, the depth of the tree or the functions that can be 
used on the tree nodes to find an optimal solution. 

Specifying GP use in BP, on one hand, there has been a limited 
amount of previous work on the use of GP as a classification method in 
the field of BP [23–30]. These works focused almost exclusively on 
comparing the results obtained by GP versus those obtained by other 
techniques and making mostly short-term predictions (1 year prior to 
failure). Moreover, as Brabazon et al. [15] point out, knowledge of GP 
among finance professionals, or even among finance academics, is rather 
scarce, despite the fact that BP is an area where GP can give good results 
[21]. 

On the other hand, and as already indicated, it is proposed to use GP 
as a method for dimensionality reduction by means of feature selection. 
In this context, the surveys by Dokeroglu et al. [31] and Xue et al. [32] 
analyze different possibilities of using EC algorithms for feature selec
tion. Using EC for FS has the advantage of the global search of the 
evolutionary algorithms, in this case in the feature space (contrary to 
many FS methods based on local search procedures, such as some of 
those selected below in Section 4.2 for the comparison of results). 
Several FS methods with EC have been proposed [30–34] and, in most of 
these EC-based methods, a fixed-length encoding is used to represent 
subsets of selected features. The works [33,34] propose a 
length-adaptive genetic algorithm to overcome this problem, especially 
in high-dimensional feature spaces. It should be noted that, in the case of 
GP as FS, since the FS process is inherent to the GP evolutionary process, 
compared to other EC-based solutions for FS, it does not require explicit 
genotypic coding for FS. 

Those surveys on EC-based methods for FS ([31][32]) also discuss 
different possibilities of using GP in feature selection, including the GP 
possibility of construction of new (high-level) features that can increase 
the performance of the classifier. In this case, GP as a dimensionality 
reduction method has been practically not considered in the BP envi
ronment, although there is a small number of works in other areas that 
corroborate the effectiveness of GP as a feature selection method [30, 
35–39]. In what follows, our proposal for GP as a feature selection is 
detailed, which is then applied to BP. 

3.2. Proposed approach 

3.2.1. Basis of the proposed approach 
An interesting feature in the case of GP is that it intrinsically selects 

explanatory variables that are relevant for classification using decision 
trees. This is due to the selective pressure in the evolutionary process, 
which leads the decision trees, generation after generation, to use the 
most relevant variables (individually or in conjunction with other 

variables) for classification, while progressively discarding those with 
less classification capacity. This intrinsic selection is an important 
feature of GP compared to other methods in EC. From this point of view, 
dimensionality reduction by feature selection would not be necessary in 
GP as it is inherent to it (contrary to other automatic feature selection 
methods in ML). 

Also taking into account the stochastic process that governs GP, we 
propose an approach based on the hypothesis that variables that are 
relevant remain in the population of solutions and across the GP gen
erations, as opposed to irrelevant variables that will gradually disappear 
due to selection pressure across the GP evolutionary process. In our 
proposal, the relative frequencies of appearance of each input variable in 
the nodes of all the trees of the genetic population (and in all generations 
of each GP run) are considered. With aggregation, the relative fre
quencies of the input variables are calculated over a set of runs of the 
stochastic GP process (or a subset of GP runs). This measure (relative 
frequency) may not be strictly precise, but the relevant input variables 
are expected to remain progressively in the evolved solutions. 

In the stochastic process that governs GP, branches of the tree (parts 
of the solution or program) that do not alter (or worsen) the perfor
mance of the model may arise spontaneously. This growth of the pro
gram without (significant) improvement of the fitness of the program is 
called “bloat”. However, it should be noted that the use of independent 
GP runs to consider the relevance of variables decreases the potential 
problem of bloat that may appear in particular GP runs. An irrelevant 
variable (due to the bloat problem) may appear in a particular GP run, 
but the same variable is unlikely to appear repeatedly in different in
dependent GP runs. This is why several GP runs must be used to consider 
(statistically) the relevance of variables, as detailed below. 

Note that our approach can be considered an embedded approach, 
taking into account the classification given above in Section 2, since the 
selection process is embedded and occurs across the GP evolutionary 
process, as also indicated in Xue et al. [32] when the authors state that 
“Among current EC techniques, only genetic programming (GP) and 
learning classifier systems are able to perform embedded feature selec
tion”. Our approach is in line with that used by Neshatian and Zhang 
[37], although these authors only considered the frequency of appear
ance of variables in the best GP individuals to select the top-ranked 
features. On the contrary, in our case we will take into account the 
statistical relevance of the occurrence of variables in the evolutionary 
process (as detailed in the following subsection), thus ensuring a more 
correct choice of the significant variables according to their presence in 
the evolved trees. 

The objective of applying the proposed feature selection is to eval
uate whether, by using only a limited number of variables (selected in 
the aforementioned way), there is an improvement in the performance 
of the prediction models with respect to the results obtained with the 
total number of variables. The use of GP for the selection of features in 
the aforementioned way provides a ranking of variables as the final 
product. In addition, this GP-based feature selection method is context- 
sensitive. In contrast, most of the different feature selection methods 
that provide variable rankings are context-insensitive. In a problem, a 
feature may show no relevance in the absence of other relevant features. 
However, such a feature may be relevant in the presence of other fea
tures [5,37]. Therefore, the context must be taken into account, which 
GP achieves, as a variable is selected in a tree either because of its in
dividual classification ability or in the presence of other selected vari
ables in the tree. Consequently, the variable selection by GP is 
considered context-sensitive [37], which is also a differential charac
teristic with respect to other ranking methods (such as the case of uni
variate filters). 

3.2.2. Steps of the proposed feature selection method 
We refer to our proposed method as GPFS (GP Feature Selection). For 

the selection of features with GP (as a function of their relative fre
quency), for a given model (prediction X years prior to failure), the 
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following steps will be followed: 

Step 1. Taking into account all the input variables, a large experi
ment (1000 independent runs of GP) is performed. That is, GP 
evolves trees that can use all these input variables, trees that perform 
the prediction/classification of companies. Performing an experi
ment with many runs reduces the uncertainty in the results. 
Step 2. A subset of GP runs is chosen that generate what are 
considered to be the best solutions, meaning those with the highest 
Area Under the ROC (Receiver Operating Characteristic) Curve 
(AUC) in their classification. In the experiments, the subset corre
sponds to 5% of the total 1000 independent GP runs. 
Step 3. For each input variable, its relative frequency in the runs of 
GP that provide these best solutions is calculated. If the selection of 
variables were done randomly (without the GP algorithm intrinsi
cally selecting variables), the relative frequency distribution of a 
given variable could be approximated by a normal distribution and 
its values typified by a standard normal - N(0,1) – according to the 
Moivre-Laplace theorem –. Testing the fit between the actual relative 
frequency distribution of a variable (obtained with the subset of GP 
runs that provide the best solutions) and the expected distribution N 
(0,1) allows to reject – or not – the hypothesis of randomness in the 
algorithm (Kolmogorov-Smirnov test). The aggregation of the solu
tions of the independent GP runs, selected for the calculation of the 
frequencies of occurrence of the variables, ensures that a correct 
frequency distribution of the variables is obtained to check their 
relevance by means of the statistical test. Consequently, a ranking of 
the variables will be available, based on their p-value. Fig. 1 shows 
the flowchart of the GPFS method, which summarizes its feature 
selection process. Finally, it is decided which subset of input vari
ables to select. For example, variables with a p-value<0.05 can be 
chosen to select variables with statistically relevant results, rather 
than due to chance. 

It should be noted that the disadvantage of the proposed GP-based 
approach is the high computational cost with respect to other FS 
methods (such as those used later in the comparison in Section 5), since 

different GP runs are necessary to (statistically) guarantee the correct 
detection of the relevant variables. 

4. Methods 

4.1. Design of the prediction models 

4.1.1. Sample of companies 
This paper focuses on BP models for medium-sized Spanish firms. A 

set of 11,158 firms (1067 classified as failures and 10,091 as non- 
failures) is available, which is a larger dataset than those used in most 
BP work. The concept of failure used is the declaration of insolvency 
(which implies the suspension of payments by the debtor), since this is 
the most common state for failure definition in the BP field. 

Several sectors that use specific valuation or accounting criteria, 
which could alter the financial ratio interpretation and consequently 
distort the results, have been excluded, sectors such as building con
struction, financial services (e.g., pension funds and insurance), general 
government activities and compulsory social security. Furthermore, 
only limited liability companies, public limited companies and co- 
operatives are considered in the study. 

In order to assess, in detail, the proposals of the study, the prediction 
horizons of the business failure prediction models carried out are: 1 year, 
5 years and 9 years prior to failure (named: Model 1, Model 5 and Model 
9, respectively). The observations (data of failed or non-failed com
panies in a financial year) from 2005 to 2007 (both included) are used to 
obtain the different temporal BP models. 

The sources of information used are the following:  

• Accounting information of the companies: SABI database (www.inf 
orma.es/en/business-risk/sabi) - Iberian Balance sheet Analysis 
System.  

• Legal information on the state of failure: register of public insolvency 
(www.publicidadconcursal.es). 

4.1.2. Initial set of input variables 
The explanatory variables considered in the BP models are mostly 

Fig. 1. Steps of the GPFS process.  
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financial ratios, defined from the companies’ annual accounts. Financial 
ratios have become the most widely used type of explanatory variable 
for predicting business failure. Du Jardin [5] indicates that 93% of the 
190 studies analyzed in his work use financial ratios as explanatory 
variables (53% of the studies use financial ratios exclusively). 

The choice of the explanatory variables to be used was made taking 
into account: i) their relevance in the literature and also their presence 
in the BP models considered in previous work and ii) the inclusion in the 
set of explanatory variables of other variables that refer to aspects that 
are not widely used (for example, magnitude variations or ratio varia
tions) or that are very infrequent or novel in BP models (for example, 
those related to fraud and productivity and those related to the 
decomposition degree of the balance sheet). These additional variables 
are also obtained exclusively from the companies’ annual accounts. 

In the process of selecting the explanatory variables mentioned 
above, different relevant previous works have been considered: Altman 
and Sabato [40], Altman et al. [41], Bellovary et al. [42], Beneish [43], 
du Jardin [44], Tian and Yu [45] and Yardeni et al. [46]. The initial and 
total set of explanatory variables corresponds to the following 
categories:  

Changes in ratios 2 ratios 
Contribution 2 ratios 
Degree of decomposition 3 variables 
Efficiency 11 ratios 
Financial structure 14 ratios 
Fraud 11 variables 
Growth 1 ratio 
Interest expenses 5 ratios 
Liquidity and solvency 18 ratios 
Productivity 4 ratios 
Profitability 12 ratios 
Size 4 variables 
Turnover 7 ratios 
Variations in magnitudes 3 ratios  

It can be seen that the range of explanatory variables expands 
considerably beyond the traditional financial ratios. This approach seeks 
to include variables that reflect changes over time and to cover a broad 
spectrum of aspects considered relevant in the prediction of business 
failure. Thus, in this context, a total of 97 input variables are used, as 
described above. 

However, before using these input variables, several steps are carried 
out to ensure the integrity and quality of the data. Firstly, comprehen
sive checks are made on the total figures and the balance sheet and in
come statement breakdowns for each of the companies in each of the 
years. This makes it possible to eliminate observations that do not allow 
the precise calculation of the explanatory variables. In addition, a lim
itation of extreme values is made. Those variables that have values 
below the 2.5% percentile or above the 97.5% percentile in a specific 
accounting period are replaced by the value corresponding to the 
reference percentile. This is done in order to eliminate very extreme 
values and to avoid learning difficulties. 

Finally, standardization of the data is carried out. In this last step, 
with the bounded values of the input variables, they are transformed 
according to the logistic distribution. This transformation is performed 
using the mean and standard deviation of each variable in the total data 
period. The purpose of this step is to homogenize the ranges of variation 
of the previously bounded variables. In summary, the process of trans
forming the input data involves ensuring the integrity of the data, 
limiting outliers and standardizing the variables. In this way, the aim is 
to use a robust and homogeneous set of explanatory variables to analyze 
and understand business failure. 

4.1.3. Training and test sets 
When setting up the training set, it should be noted that in the 

problem of business failure prediction the populations are totally 
imbalanced. There is a majority class (observations of non-failed 

companies) that far outweighs the minority class (observations of failed 
companies). In this situation, it is feasible to consider a training set with 
imbalanced classes. However, the largest challenge faced by the lack of 
representation of the minority class instances is that their data could be 
overlooked due to their low number. Therefore, even if the overall 
classification model achieves high accuracy, the results for the minority 
class may be poor. When the minority class is particularly relevant (as in 
the case of BP), this risk is not acceptable and attention needs to be paid 
to the minority class. This is why, according to Alaka et al. [10], it is 
concluded that 80% of studies on business failure use training sets with 
majority class/minority class percentages between 50%− 50% and 
60%− 40%. In this case, the 50%− 50% ratio has been chosen, so the 
training set will have the same number of observations corresponding to 
failed companies as to non-failed companies. This use of a balanced 
training set allows to obtain a trained classifier that does not focus its 
learning on a particular class (the majority class), as could happen with a 
very imbalanced training. 

It is common, in BP studies, to select observations of failed and non- 
failed companies for the training sets on the basis of size, age, sector, etc. 
In any case, Palepu [47] points out that, not selecting a sample randomly 
presents at least two important drawbacks: i) overestimating the pre
dictive capacity of the model and ii) making generalization to the rest of 
the population difficult. On the other hand, More [48] warns that the 
responses with other subsampling techniques, when defining the asso
ciation between the observations of both classes in the training set, are 
highly dependent on the classification problem. Based on the above, we 
have chosen to select the totality of these observations randomly (both 
those corresponding to failed companies and those corresponding to 
non-failed companies). 

The number of observations corresponding to failed and non-failed 
companies used in the training and test sets of the prediction models 
(period 2005–2007) was as follows:  

• Model 1: 82 failures and 22,330 non-failures.  
○ Model 1 - training: 82 observations (41 failures + 41 non-failures).  
○ Model 1 - test: 22,330 observations (41 failures + 22,289 non- 

failures).  
• Model 5: 282 failures and 22,330 non-failures.  

○ Model 5 - training: 282 observations (141 failures + 141 non- 
failures).  

○ Model 5 - test: 22,330 observations (141 failures + 22,189 non- 
failures).  

• Model 9: 122 failures and 22,330 non-failures.  
○ Model 9 - training: 122 observations (61 failures + 61 non- 

failures).  
○ Model 9 - test: 22,330 observations (61 failures + 22,269 non- 

failures). 

The evaluation and comparison of the different methods used is 
performed on the results obtained in the test set. 

4.2. Dimensionality reduction methods 

Starting from the detailed initial set of input variables, one of the 
following dimensionality reduction alternatives is applied:  

• Different methods of dimensionality reduction by feature selection.  
• The proposed method of dimensionality reduction based on GP. 

The feature selection methods chosen are some of the most popular 
ones, looking for a representative variety of them. In all cases, the 
starting point for obtaining the selected subset of explanatory variables 
is the initial set of financial variables of the company (applying the lo
gistic transformation). Comparison between algorithms of feature se
lection can only be done using a single data set, as each underlying 
algorithm will behave differently for different data [11]. Therefore, all 
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methods are compared with the same training/test data at the three 
prediction temporal horizons. 

The feature selection methods used are as follows (including some 
basic comments):  

• Filter  
○ Information Gain (InfoGain) [49]:  

■ Univariate (evaluates each characteristic one by one).  
■ A ranking is made by evaluating each attribute by means of the 

information gain with respect to the class.  
○ RelieF [50,51]:  

■ Univariate.  
■ It is a method based on the distance of features. It performs a 

ranking of the evaluations of each feature, obtained by 
repeatedly sampling an instance and considering a score value 
of the given feature taking into account the nearest instance of 
the same class and the nearest instance of a different class. The 
score of any feature decreases when it differs from the same 
feature in close instances of the same class more than in close 
instances of the other class. In the opposite case, the score 
increases.  

○ Chi-squared  
■ Univariate.  
■ Performs a ranking of the evaluations of the behavior of each 

feature, obtained by means of the Chi-square statistic with 
respect to the class.  

○ Correlation  
■ Univariate.  
■ Performs a ranking of the evaluations of each feature, obtained 

by measuring the Pearson correlation coefficient between the 
feature and the class.  

○ Support Vector Machine (SVM) [52]  
■ Univariate.  
■ It can be categorized as a filter method since each feature is 

evaluated using a classification method – SVM – as the filtering 
method. Features are ordered by the square of the weight 
assigned by the SVM in the decision function. These weights are 
a function of only a small subset of the training examples, the 
“support vectors”.  

○ Correlation-based Feature Selection (CFS) [53]:  
■ Multivariate (evaluates a subset of features).  
■ Subsets of features uncorrelated with each other, but highly 

correlated with the class are searched for.  
■ Search strategy: LinearForwardSelection, which is an extension 

of BestFirst. BestFirst is an attribute subset search algorithm that 
uses a heuristic search by greedy hill climbing and adding 
backtracking capability. LinearForwardSelection takes into ac
count a restricted number of k features (selected by an initial 
sorting as the most important ones).  

○ Consistency-based [54,55]:  
■ Multivariate.  
■ The value of a subset of features is evaluated by the level of 

consistency in the class values when training instances are 
projected onto the aforementioned subset of features. In the 
words of Dash and Liu [54], the consistency measure does not 
try to maximize the separability of the class, but tries to 
maintain the discriminative power of the data defined by the 
original features. The aim would be to find the smallest subset 
of features that distinguishes the classes the same as the original 
set of features.  

■ Search strategy: LinearForwardSelection.  
• Wrapper  

○ Wrapper J48 [56]:  
■ It uses J48 as an auxiliary classification algorithm, a free java 

implementation of the C4.5 algorithm, which uses the concept 
of information entropy for the selection of variables that 

provide the best classification in the class under study. The C4.5 
algorithm is used to generate a decision tree.  

■ Search strategy: LinearForwardSelection.  
○ Wrapper Naive Bayes [57]:  

■ It uses Naive Bayes as an auxiliary classification algorithm, 
which is a probabilistic algorithm based on Bayes’ theorem.  

■ Search strategy: LinearForwardSelection. 

The final result of applying the aforementioned dimensionality 
reduction methods is a subset of the initial set of input variables (a 
different one for each of the methods and for each of the temporal ho
rizons over which the comparison will be made: 1, 5 and 9 years prior to 
failure) that will constitute the set of explanatory variables on which 
different classification methods will then be applied. 

4.3. Classification methods 

The different selected sets of explanatory variables (one for each 
feature selection method and for each of the temporal horizons) are 
evaluated with each of the chosen classification methods. These classi
fication methods have also been chosen for their popularity and in order 
to offer a representative variety of them. The selected classification 
methods (except GP) are divided into two categories: single methods and 
ensemble methods. 

The selected classification methods are the following, again 
including some basic comments on them:  

• Single methods (only one classifier)  
○ J48: generates a type (C4.5) of decision trees (pruned or unpruned) 

that have certain advantages over other types of decision trees 
(including mitigating overfitting) [58].  

○ Multilayer Perceptron (MLP): This is a classical artificial neural 
network topology consisting of several layers, which allows it to 
address problems that are not linearly separable. It uses back
propagation for learning. 

○ JRip: Implements a propositional rule learner called Repeated In
cremental Pruning to Produce Error Reduction (RIPPER). This 
RIPPER algorithm is a classification method based on rules that are 
extracted from the training set, which was proposed by Cohen [59] 
as an optimized version of IREP (Incremental Reduced Error 
Pruning).  

○ QDA: Quadratic Discriminant Analysis is a generalization of LDA 
(Linear Discriminant Analysis) that uses a quadratic decision sur
face to separate two or more classes.  

○ Logistic: performs the classification using a multinomial logistic 
regression model with a ridge estimator.  

○ Naive Bayes: it is a probabilistic method based on Bayes’ Theorem, 
with some simplifications about the independence of the explan
atory variables.  

○ LibSVM: Support Vector Machine implementation for 
classification.  

○ KStar: It is a classifier in which the class of an observation is 
determined by the class of other observations similar to it, ac
cording to some previously defined similarity function. It uses a 
distance function based on entropy [60].  

• Ensemble methods  
○ Bagging: Also known as “bootstrapping and aggregating”. It is an 

ensemble algorithm that, starting from a training set, selects 
random samples from that set (with replacement) and fits to each 
of them a weak learning model, understanding as such those 
models with behaviors slightly superior to that of a random model. 
It then combines these models to make a single prediction [61].  

○ Decorate: It builds ensembles of classifiers by creating artificial 
training sets. It is considered to be more accurate than Bagging and 
Random Forest [62]. 
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○ Random Forest: Constructs a forest of random trees and then 
combines them. Each tree depends on a “random vector” generated 
independently of the random vectors of the rest of the trees, but 
with the same distribution for each of them and which governs the 
growth of each tree in the set [63]. It is a modification of Bagging. 
Briefly, the random vector contains the key to randomly choose the 
elements of the training set and the variables of each of them to be 
used in the development of the tree.  

○ Vote8: The idea of voting methods is to combine different machine 
learning models and predict the class label by means of the ma
jority vote or the average of the predicted probabilities. In our 
case, we decided to combine the eight different single classifiers 
above mentioned and the average of the predicted probabilities as 
a rule to predict the class [64].  

○ Random Subspace: This method (also called “feature bagging” or 
“attribute bagging”) constructs a decision tree-based classifier. The 
classifier consists of multiple trees. Each tree is trained on all ex
amples, but only considers a random subset of the attributes 
instead of the entire feature set. The size of these subsets is the 
parameter of the method, and the result is the average or voting of 
the individual results of the models. In this way, the method at
tempts to reduce the correlation between estimators [65].  

○ AdaBoost M1: Boosting always works with the full input set (unlike 
bagging) and modifies the weights of the outputs obtained from 
weak classifiers to create different models. In each iteration the 
weights of the misclassified items are increased in order that in the 
next iteration these items will be more important and more likely 
to be classified well. We use the AdaBoost M1 algorithm [66]. 

Some ensemble methods (such as boosting) intrinsically implement 
feature selection (as does GP) since it uses an iterative approach to 
build a sequence of models, where each model focuses on correcting 
the errors of the previous model, assigning different weights to the 
models (and consequently to their input variables), resulting in an 
intrinsic selection of variables. Other ensemble methods such as 
bagging and random subspace use random subsets of variables for 
learning, so it is debatable whether this is intrinsic variable selection 
at all. Finally, the voting ensemble methods do not perform intrinsic 
variable selection. Anyway, it is documented that the performance of 
ensemble classifiers improves with feature selection [67,68]. On the 
other hand, ensemble methods can be profitably used for feature 
selection [69,70].  

• Genetic programming 
As previously mentioned, GP obtains optimized programs/trees 
through an evolutionary process over several generations [14,21]. In 
order to compare the different dimensionality reduction methods 
using GP only as a classification method, an experiment (1000 in
dependent GP runs) with a similar profile except for the set of input 
variables is carried out for each of the 10 options considered: the 9 
external ones (InfoGain, RelieF, …) and one corresponding to the 
dimensionality reduction by relative frequency in the case of GP. 
This is done independently for each of the three prediction temporal 
horizons. 
It should be noted that these 1000 runs of GP, which are used with 
GP as a classifier, are independent and are not related to the 1000 GP 
runs used with GP as a feature selector. That is, the initial selection of 
variables with GP (as a feature selector) is an independent and prior 
process to the possible later use of GP as a classifier. 

5. Results 

5.1. Setup of feature selection methods and classifiers used 

To obtain the feature subsets according to the aforementioned 
methods (in Section 4.2) the Weka software and the configurations it 

provides by default were used. A complete description of that software 
can be found in the online appendix of the book by Frank et al. [71,72]. 
The FS approaches used (with Weka’s default configuration employed) 
in the comparison do not have stochastic components. The number of 
features selected when the method provides as output a ranking of the 
features has been set to 20 (20.61% of the initial 97). To set the number 
of features to be selected in the methods that provide a ranking, the 
Pareto principle (80% of the effects come from 20% of the causes) has 
been used. Other criteria could be used, such as setting a threshold of 
importance, a cumulative contribution, etc., but the criterion applied 
allows for a homogeneous approach for all the methods concerned. 

Weka software was also used to implement the classifiers (except GP) 
that have been used to compare the selected sets of features. All pa
rameters associated with such classifiers, specified in Section 4.3, have 
been set as those that Weka software sets by default. 

Regarding GP, HeuristicLab (HL) software [73] (https://dev.heuristi 
clab.com/trac.fcgi/) was used to implement the BP models in GP. 
HeuristicLab was selected because of its detailed user interface, and 
especially because it strongly abstracts the process of heuristic optimi
zation [73]. 

The solution representation used is the traditional tree-based repre
sentation in GP with the HL environment. Note that the solutions of the 
GP population (classifiers of insolvency) can use as inputs the ample set 
of explanatory variables previously detailed in Section 4.1.2. 

Table 1 lists the most relevant GP parameters (considering HL 
nomenclature), showing also their options or values. The parameters are 
the same when GP is used both as a classifier and as a feature selector. 
The values of some parameters are kept as the usual values set in HL 
(such as “Model Creator” and “Solution Creator”), while the others (such 
as “Maximum Length” and “Maximum Depth” in the evolved trees, 
“Mutation Probability”, “Maximum Generations”, “Population Size” and 
“Tournament window size”) were experimentally adjusted with the 
objective of obtaining BP models with high performance in the classi
fication (considering the 1000 independent GP runs, used when GP is 
used both as a feature selector and as a classifier, Sections 3.2 and 4.3). 
Likewise, the function set was chosen experimentally, since with the 
basic arithmetic functions (+, -, *, /) high-performance GP solutions 
were obtained in the classification. 

Each of the methods of feature selection by dimensionality reduction 
(categorized by filter or wrapper and including GP by relative fre
quency) was evaluated using the classification methods divided into the 
following groups: single methods, ensemble methods and GP. The re
sults will focus on the comparison between the use of selected features 
with respect to the use of all features in the classifiers, as well as on the 
comparison of the performance of the feature selection methods with the 

Table 1 
GP parameters.  

GP Parameter Value/option 

Evaluator Mean squared error 
Solution Creator Probabilistic Tree Creator 
Tree Grammar Arithmetic Functions (+, -, * and /). 
Maximum Depth 10 (maximum tree depth) 
Maximum Length 100 (maximum number of tree nodes) 
Maximum 

Generations 
100 

Mutation 
Probability 

15% 

Population Size 1500 
Selector Tournament - Window size 8 (used in crossover and mutation) 
Elites 1 (the best solution is maintained in the population over 

generations.) 
Crossover At the crossing point, it is used a Subtree Swapping Crossover 
Mutation Multi Symbolic Expression Tree Manipulator (it allows 

different mutation types) 
Model Creator Accuracy Maximizing Thresholds (the optimized solution is 

returned as the one that uses a classification threshold that 
maximizes accuracy and considering the training set)  
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different classifiers. 
For reference, when using GP as FS with the HL environment, each 

independent GP run with the considered setup requires an average 
computational time of 76 s (using Model 5, which has the largest 
training size, Section 4.1.3), on a platform with an Intel i7–7700 pro
cessor and 24 GB of RAM. As noted above in Section 3.2.2, this implies a 
large computational time when running 1000 independent GPs. How
ever, the computational time of the independent runs can be reduced 
since HL allows executing in parallel the independent GP runs on the 
available processor threads. 

Finally, the performance measure considered in the following results 
is the Area Under the ROC Curve (AUC). The AUC measures the two- 
dimensional area under the full ROC curve, providing an aggregate 
measure of performance at all possible classification thresholds. It is one 
of the most common measures in the comparative analysis of business 
failure prediction. Therefore, this measure – AUC – is the one that will be 
used to evaluate the different methods at different temporal horizons. To 
obtain the corresponding AUC, the Weka software and its default set
tings have been used for each of the methods, except in the case of those 
corresponding to GP, which have been performed with HeuristicLab. 

In this AUC measure and for the comparison between classifiers, the 
possible stochasticity in the training of classifiers must be considered. 
Stochastic classification methods could be defined as those that incor
porate some element of randomness in their learning process (this may 
be due to several factors, such as random selection of training data, 
random selection of model parameters or the use of stochastic optimi
zation techniques). Among the selected classification methods there are 
some that are non-stochastic or deterministic (e.g., QDA), some have 
stochasticity in the learning optimization technique (e.g., MLP) and 
some that, depending on the parameters selected (which depend partly 
on the software employed) can be used as stochastic or deterministic (e. 
g., LibSVM). As indicated above, for each of the selected classification 
methods, the default parameter configuration of the Weka software has 
been used. This leads to the following classification methods being 
considered stochastic in this work: MLP, JRip, Bagging, Decorate, 
Random Forest, Random Subspace and AdaBoostM1. On the contrary, 
J48, QDA, Logistic, Naive Bayes, LibSVM, KStar and Vote8, are 
considered deterministic. 

The incorporation of stochastic classification methods implies the 
need to establish a criterion to evaluate their performance. In this paper 
we have sampled the AUC obtained in each temporal horizon (Models 1, 
5 and 9) and for each of the tuples defined by the classification method 
(J48, MLP, …) and the variable selection method (CFS, Consistency, …). 
Each classification method with stochasticity was trained with 30 in
dependent runs and using the features provided by each FS method (or 
all features as will be discussed below), calculating the corresponding 
AUC for each independent training. For each of these AUC samples, a 
confidence interval for the average AUC has been obtained with a con
fidence level set at 99%. The upper limit of this confidence interval for 
the average AUC is the reference to be used for the comparison of the 
performances in the case of any of the methods indicated as stochastic. 
This upper limit of the confidence interval is a homogeneous approxi
mation of the maximum average performance that could be expected 
from the stochastic model in each of the cases. 

Moreover, based on the upper limit of the confidence interval above, 

it is possible to calculate an estimated maximum value. This would be 
done by calculating the population standard deviation (based on the 
sample standard deviation) and calculating the result of adding two 
standard deviations to the upper limit. This yields a maximum value 
with a confidence greater than 99.9%.1 

5.2. Results with the different classification methods (except GP) 

The following tables (Table 2, Table 3 and Table 4) show, for each of 
the prediction temporal horizons (it should be remembered that Models 
1, 5 and 9 refer to BP models with a prediction horizon of 1, 5 and 9 
years before failure), the AUC obtained by each of the feature selection 
methods with each of the classification methods (with the exception of 
GP which is analyzed separately). As explained above, for a classifica
tion method with stochasticity, the AUC shown in the tables corresponds 
to the upper limit of its confidence interval for the average AUC (99% 
confidence level) after several independent training runs, while for a 
classification method without stochasticity it corresponds to its AUC 
after training the model. 

The results corresponding to GP as a feature selector are identified in 
all tables as GPFS. Also included as a reference in the tables is the AUC 
obtained when using the initial set of unreduced input variables with 
each of the classification methods (“TotalVar”). The maximums per row 
(of each classification method) are highlighted in bold and the maxi
mums per column (per feature selector method) are highlighted in gray 
fill. 

As shown in the tables, the AUCs decrease as the prediction temporal 
horizon increases. It should be taken into account that, at present, 
studies with temporal horizons longer than 5 years are scarce and that 
the problem of deterioration of the forecasting power of BP models is 
still a minority field of research. In this particular field of deterioration 
of predictive power, the works of Matenda et al. [19], Zambrano Farias 
et al. [74] and, especially, Altman et al. [6,41] provide a detailed 
overview of the research progress and results obtained by various 
methods. However, addressing this deterioration is not the focus of this 
study. 

Based on these results, the effectiveness and performance (as defined 
below) of the different methods are analyzed. 

5.2.1. Effectiveness of feature selection methods 
We define a feature selection method as “effective” if it improves 

classification results over the use of all features. However, it is observed 
that dimensionality reduction by feature selection does not always 
improve the results obtained when the classifier uses the totality of 
variables. That is, AUCt,x,a < AUCt,0,a (t is the prediction horizon, x is the 
feature selection method, 0 refers to TotalVar and a is the classification 
method). 

Calculating the number of possible scenarios (3 temporal horizons, 
10 feature selection methods and 14 classification methods, not 
including GP as a classifier) gives 420 scenarios, of which, in 176, 
feature selection is ineffective (i.e., AUCt,x,a < AUCt,0,a). In more detail, 
the most effective feature selection methods are as follows: 

1 It must be taken into account that the probability that the average is less 
than or equal to the calculated upper limit is 99.5% – since the confidence level 
is 99% –. Similarly, since the probability that a value is in the interval defined 
by the average and two standard deviations is 95.44%, the probability that the 
value is less than the average plus two standard deviations is 97.72%. With 
these figures, the probability that a value is higher than the calculated upper 
limit of the average AUC plus two standard deviations – estimated maximum 
value – is (1-0.9950)*(1-0.9772)=0.000114 and the probability that it is lower 
than the aforementioned reference will be (1-0.000114)=0.999886 
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• CFS: ineffective in 6 out of 42 scenarios (3 prediction temporal ho
rizons, 14 classification methods)2 .  

• RelieF: ineffective in 7 scenarios.  
• GPFS: ineffective in 8 scenarios. 

At the other extreme are:  

• Wrapper J48: ineffective in 27 scenarios out of 42.  
• Wrapper Naive Bayes: ineffective in 26 scenarios  
• SVM and InfoGain: ineffective in 24 scenarios. 

Moreover, it is also observed that not all the classification methods 
analyzed react equally to feature selection. The 176 scenarios, in which 
feature selection methods are ineffective, are not evenly distributed 
among the different classification methods (excluding GP). There are 
classification methods in which most of the subsets provided by the 
different feature selection methods (explanatory variables of the model) 
present higher AUC than those obtained with the same classifier and the 
totality of input variables. As an example, the Logistic classification 
method presents 0 inefficient scenarios (out of a total of 30, given by 3 
temporal horizons and 10 feature selection methods) and QDA 4. At the 
opposite extreme are Decorate (21 ineffective scenarios), MLP and Vote8 
(each 18 ineffective scenarios) and RandomForest and J48 (17 ineffec
tive scenarios). This suggests that attention should be focused on the 2- 
tuple defined by the feature selection method and the classification 
method, and not only on the first term of the tuple. It should be 
remembered that the above refers exclusively to the fact that AUCt,x,a <

AUCt,0,a, which says absolutely nothing about the value achieved by 
AUCt,x,a, or that AUCt,x,a > AUCt,x,b (where a and b are different classi
fication methods). At this point, we analyze efficiency and not 
comparative performance between different classifiers (which is 
analyzed in the following subsection). 

Table 5 summarizes the average behavior (ineffectiveness percent
age) of the different tuples (feature selection method; classification 
method) in the three temporal horizons and at the aggregate level of 
feature selector/classifier types. The column “Average selection 
methods” shows the average of each classifier considering all of the 
feature selection methods. In terms of ineffectiveness, it is observed that 
filter-type feature selection methods perform better than wrapper-type 
methods and both perform worse with ensemble-type classifiers than 
with single classifiers. That is, for ensemble classifiers, the selection 
provided by many feature selection methods is not effective in 
increasing their classification performance. On the contrary, GPFS has 
the best average effectiveness with both single and ensemble classifiers. 
Thus, the selection provided by GPFS (totally different from analyzing 
the intra and interclass variation of a variable as in filter methods, or 
based on how well it works with a particular classifier, as in wrapper 
methods) certainly does provide a subset of features that increases 
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Table 5 
Percentage of ineffectiveness at the aggregate level by feature selector type 
(columns) and classifier type (rows), combining the results of Models 1, 5 and 9.   

Filter Wrapper GPFS Average selection 
methods 

Average single 
methods 

32.7% 41.7% 20.8% 33.3% 

Average ensemble 
methods 

47.6% 91.7% 16.7% 53.3%  

2 It should be noted when analyzing the data in Tables 2, 3 and 4 that they 
have been calculated to 3 decimal places, although they are only shown to 2 
decimal places. 
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effectiveness when used by many different classifiers. 

5.2.2. Performance of feature selection methods 
Now, for a given classifier, the AUCs obtained with the different 

feature selection methods are compared to obtain a measure of the 
performance of each selection approach. First, given a temporal horizon 
t and a classification method a, the AUC obtained by GPFS (GP-based 
selection proposal) is compared with the averages of the AUC obtained 
by the other feature selection methods (CFS, Consistency, etc.) grouped 
by type, which can provide that performance measure of the GPFS se
lection method. These averages are shown in three columns in 
Tables 2–4 at each prediction temporal horizon. The result of the com
parison of these values are:  

• The AUC obtained with GPFS and the average AUC obtained by the 
other 7 filter-type selection methods show that in 29 out of 42 sce
narios (3 prediction temporal horizons, 14 classification methods) 
the AUC obtained by GPFS is higher than the average of the selection 
methods of filter type.  

• The AUC obtained with GPFS and the average AUC obtained by the 
other 2 wrapper-type selection methods show that in 33 out of 42 
scenarios the AUC obtained by GPFS is higher than the average of the 
wrapper methods.  

• In summary, the AUC obtained by GPFS is higher than the average 
obtained by all feature selection methods in 31 of the 42 scenarios. 

After this first consideration, the following values are analyzed: i) the 
number of times (out of 42 scenarios: 3 prediction temporal horizons 
and 14 classification methods) in which each of the different selection 
methods obtains the highest AUC (with each of the classifiers) and ii) the 
number of times in which each of the selection methods is among the top 
three with the highest AUC. 

In terms of the number of times each of the selection methods ob
tained the highest AUC in the 42 scenarios, the positions are as follows: 

• CFS obtained the highest AUC in 11 scenarios (6 with single classi
fiers and 5 with ensemble classifiers). 

• Relief obtained the highest AUC in 9 scenarios (4 with single clas
sifiers and 5 with ensemble classifiers). 

• GPFS obtained the highest AUC in 7 scenarios (2 with single classi
fiers and 5 with ensemble classifiers).  

• Consistency obtained the highest AUC in 7 scenarios (6 with single 
classifiers and 1 with ensemble classifiers). 

When evaluating the number of times each method is among the 
three with the highest AUC, the positions are as follows:  

• CFS: among the top 3 with the highest AUC in 35 (out of 42 
scenarios).  

• Relief: among the top 3 with the highest AUC in 26 scenarios.  
• Consistency: among the top 3 with the highest AUC in 20 scenarios.  
• GPFS: among the top 3 with the highest AUC in 18 scenarios. 

This shows the high effectiveness and performance of GP as a feature 
selector. More comments on this are discussed below (Section 6). 

In this point, two aspects of the performance of the ensemble clas
sifiers should also be highlighted:  

• Tables 2–4 show that, given a feature selector (CFS, Consistency, 
etc.), the ensemble classifiers perform better than the single ones in 
26 out of 30 (10 feature selector methods and 3 temporal horizons). 
This fact can be generalized when using the total set of variables (See 
Tables 2–4, values in grey fill). These results ratify the ones of Die
tterich [75].  

• Ensemble classifiers (even if they perform intrinsic feature selection) 
can improve their performance when a feature selection method is 

used [67,68]. Without exceptions in the 18 scenarios considered (6 
ensemble classifiers and 3 temporal horizons), the best performance 
of each ensemble classifier is obtained in conjunction with a feature 
selection method. That is, in all cases, ensemble classifiers obtain 
their maximum AUC with a subset of selected features and not with 
the totality of the variables, although, when using the subsets pro
vided by most feature selection methods, their performance de
creases with respect to the use of all the variables (as noted above in 
the comments to Table 5). That is, ensemble classifiers are very 
sensitive to the prior feature selection applied. 

5.3. Results with genetic programming as a classification method 

As indicated (Section 4.3), to perform the comparison of the different 
methods of dimensionality reduction, having GP as the classification 
method, an experiment (1000 GP runs) with the same profile is per
formed for each of the prediction temporal horizons, except for the set of 
input variables given by each of the 10 feature selection methods. The 
stochastic nature of GP leads to experiments with a high number of runs 
and implies that a very good solution can be obtained by chance. Hence, 
it is important not only to take into account the best solution (the highest 
AUC in this case), but also to verify that good solutions can be obtained 
recurrently. Therefore, the average AUC of the 5 best solutions obtained 
in the experiment is evaluated together with the best solution. 

The results obtained with GP as the classification method and each of 
the feature selection methods in each prediction temporal horizon are 
shown in Table 6. Each column of the table specifies in bold with which 
set of selected variables the best AUC value was obtained. It is observed 
that the proposed feature selection (GPFS), based on GP, offers – with 
the best solution – the best result in 1 prediction temporal horizon 
(Model 9) while RelieF offers the best result in Model 1 and Model 5. In 
the case of assessing the average of the 5 best solutions, it is observed 
that the proposed feature selection (GPFS) offers the best result in 2 
prediction temporal horizons (Models 1 and 9) while RelieF offers the 
best result in Model 5. 

It is also observed that, with GP as the classification method, there 
are still ineffective feature selection methods. Of the 30 tuples (predic
tion temporal horizon, feature selection method) used with GP as the 
classification method, 18 (60%) are ineffective, in that better results 
(AUC of the best solution) are obtained with the total variables than with 
the subset proposed by the feature selection method (Table 6). That is, 
AUCt,x,GP < AUCt,0,GP (t is the prediction horizon, x is the feature se
lection method and 0 is TotalVar, and GP is the classification method). 
However, note that the selection of GPFS is effective since with the 
selected features, GP (as a classifier) performs better with respect to the 
use of all features and at all three temporal horizons. Table 7 summarizes 
the results by type of feature selection method. 

Table 6 
Classification with genetic programming – AUC of the best solution and average 
AUC of the 5 best solutions. Values in bold: selected feature set that provides the 
best AUC with GP as a classifier (best value per column).   

GP - best solution GP - average 5 best solutions  
Model 
1 

Model 
5 

Model 
9 

Model 
1 

Model 
5 

Model 
9 

CFS 0.94 0.81 0.68 0.94 0.80 0.67 
Consistency 0.93 0.80 0.68 0.93 0.79 0.68 
Chi-squared 0.92 0.79 0.69 0.92 0.79 0.68 
Correlation 0.94 0.80 0.68 0.94 0.79 0.68 
SVM 0.94 0.79 0.68 0.93 0.79 0.67 
InfoGain 0.94 0.80 0.67 0.94 0.79 0.67 
RelieF 0.95 0.81 0.69 0.94 0.81 0.69 
Wrapper Naive 

Bayes 
0.93 0.77 0.68 0.93 0.77 0.68 

Wrapper J48 0.91 0.78 0.69 0.91 0.78 0.69 
GPFS 0.94 0.81 0.70 0.94 0.81 0.69 
TotalVar 0.94 0.80 0.69 0.94 0.80 0.68  
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Now, we consider the comparison between the different classifica
tion methods versus GP as a classifier. For each prediction temporal 
horizon (1, 5 and 9 years prior to failure) and each feature selection 
method (CFS, Consistency, etc.), we compare the results of the different 
classification methods (J48, MLP, etc.) with those corresponding to the 
application of GP (AUC of the best solution). Therefore, in this case, 
there are 420 possible scenarios. 

Comparing the values in Table 6 with the corresponding values in 
Tables 2–4, it is observed that in 415 scenarios (99%) the AUC of the best 
GP solutions is higher than the AUC of the other classifiers used. If 
instead of the upper limit of the average confidence interval for the 
classification methods with training stochasticity (shown in Tables 2–4), 
the estimated maximum AUC values (defined as the average that cor
responds to the upper limit of the confidence interval + 2 population 
standard deviations, Section 5.1) were considered, in 92% of the cases 
(387 scenarios out of 420), AUCt,x,a < AUCt,x,GP. Also considering the 
estimated maximum AUC, if instead of using the AUC of the best solution 
as a measure, the average AUC of the 5 best solutions is used, there 
would be 373 scenarios (89%) in which the AUC of the average 5 GP 
solutions is higher than the estimated maximum AUC of the other 
classifiers used. In other words, it is remarkable the fact that using GP as 
a classifier consistently improves the results provided by the other 
classification methods. 

Finally, Fig. 2 includes an example of an evolved GP classifier. It 
corresponds to the best solution (best AUC) of Model 1. The evolved tree 
is shown in the hierarchical format provided by HeuristisLab. In Fig. 2, 
the input variables are denoted in HL as log_rXX, where “XX” refers to 
the specific input variable (out of the 97 indicated in Section 4.1.2) and 
“log” corresponds to the logistic distribution normalization used on the 
variables (Section 4.1.2). These explanatory variables used in this so
lution are:  

r20 Shareholder funds / Total assets 
r40 Operating income / Total assets 

(continued on next column)  

(continued ) 

r43 Income from ordinary activities / Total assets 
r63 Financial expenses / Total sales 
r69 Financial expenses / Total debt 
r82 Variation of purchases/ Variation of trade payables, 

being Variation (X) = X(t)/X(t-1), t refers to fiscal year 
r86 DSR(t) /DSR(t-1) DSR = Days Sales Receivables 
r89 Log (Total assets) 
r91 (Short-term debt (t) - Short-term debt (t-1)) / Total assets  

As can be seen, most of the variables used in the model refer to the 
short-term, either because they include income statement accounts or 
because they are time variations (t vs. t-1). Only one variable (r20) refers 
to balance sheet structure and another (r89) to size. This is perfectly 
consistent with the temporal horizon of the prediction model and with 
the behavior shown by the rest of the solutions with this temporal ho
rizon (see Section 5.4 below). 

In addition, HeuristicLab allows a subsequent manual pruning of this 
tree (not shown here, which may slightly change the AUC), allowing to 
have a simpler classification tree for easier interpretability. 

5.4. Analysis of selected features with the dimensionality reduction 
methods 

Each of the proposed dimensionality reduction methods (CFS, Con
sistency, etc.) selects a subset of features (among the initial variables) 
that become the explanatory variables of the model created by each 
classification method at each temporal horizon. When analyzing these 
subsets, it is necessary to remember the following limitations:  

• As stated by Viegas et al. [38], each feature selection approach may 
select different features, as they use different criteria in their selec
tion process. Moreover, “These different sets may contain good 
discriminative features as well as not so relevant ones. Furthermore, 
good features selected by one method will not necessarily be selected 
by a different one” [38].  

• Only the appearance of a given variable in the different subsets of 
variables that determine the feature selection methods will be 
considered, but not the relevance of the variables in the final solution 
of the given models. A variable may appear in a model, but the 
relative relevance to the classification may be higher or lower.  

• No ranking of the selected variables is used since there are variable 
selection methods that provide such ranking information (e.g., 

Table 7 
Percentage of ineffectiveness at the aggregate level by feature selector type 
(columns) and using GP as a classifier - best solution (row), combining the results 
of Models 1, 5 and 9.   

Filter Wrapper GPFS Average selection 
method 

GP as a classifier - best 
solution 

61.9% 83.3% 0.0% 60.0%  

Fig. 2. Best evolved GP solution of Model 1.  
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InfoGain, RelieF and GPFS), while others do not (e.g., CFS and 
Consistency).  

• There are subjective parameters that condition the selected variables 
(e.g.: set p-value <= 0.05 when using GP as a variable selection 
method). 

Despite these limitations, it may be relevant to analyze some of the 
results. First, an analysis of the number of variables selected by the 
different FS methods can be confusing, since 6 of the 10 methods provide 
a ranking of the variables. In five of these methods, 20 variables are 
selected from the total of 97 (Section 5.1). In addition, in the case of 
GPFS (which also provides that ranking), the number of variables de
pends on the threshold (p-value) used. Because of this, the analysis that 
takes into account the number of distinct variables selected by the 
different FS methods is more informative. In this regard, Table 8 con
tains detailed information on the distinct selected variables. The 
meaning of the different columns in Table 8 is as follows:  

• “N. of distinct variables in total methods” indicates the number of 
variables that have been selected at least 1 time in any of the 
methods. It is computed only once for each variable.  

• “N. of distinct variables in total methods without GPFS” is the same 
concept as above, but does not include GPFS among the variable 
selection methods.  

• “N. distinct variables in GPFS” indicates the number of variables 
selected by GPFS.  

• “N. distinct variables contributed by GPFS” indicates the variables 
selected by GPFS and which were not selected in any other method.  

• “Sum of selected variables in total methods” indicates the sum of the 
number of variables selected by the different feature selection 
methods. The value indicated in this column is greater than the 
number of initial variables considered (97), since the same variable 
could have been selected by different methods, computing several 
times in this final value of the column. 

It can be seen that the number of different variables used by the total 
number of feature selection methods is quite high (recall that there are a 
total of 97 initial variables). This is a sign of the lack of consensus among 
the different variable selection methods as to which variables are rele
vant within the total number of variables. It is also observed that the 
total number of different variables selected decreases as the prediction 
temporal horizon increases. That is, the potential predictors of BP are 
smaller as the temporal horizon is longer. 

It is observed that the different selection methods (without GPFS) 
remain at a fairly constant number of different variables selected over 
the different temporal horizons (between 45 and 49). The same can be 
seen considering the average size of the selected subsets (measured as 
“Sum of selected variables in total methods”/“Number of selection 
methods”), although falling in the 9-year temporal horizon. However, 
focusing on the behavior of GPFS, this GP-based selection method shifts 
from using 46 variables (Model 1) to using 16 (Model 9). In addition, it 

selects 25 different variables than the other methods in Model 1 
(although this number decreases to 5 and 3 in Models 5 and 9, respec
tively). This means that GP clearly focuses on fewer features for possible 
BP models over the longest temporal horizons. 

It is also possible to analyze the frequency of selection of each var
iable (the number of times each variable is selected by one of the vari
able selection methods) by grouping the selected variables into the 
categories indicated in Section 4.1.2. Table 9 provides the relative fre
quency (in percentages) of the variables selected by the totality of 
dimensionality reduction methods, grouped by each of the categories. 
The 5 highest relative frequencies for each model are indicated in bold. 
An analysis of the groups of ratios to which the five highest frequencies 
per model correspond shows that, beyond the short-term (Models 5 and 
9), the relevant groups (based on the relative frequency of their 
appearance in any of the models) are the same (in no order of prece
dence): Liquidity and solvency, Financial structure, Profitability, Turn
over and Interest expense. Of these, 3 are repeated as important in the 
very short-term (Model 1): Liquidity and solvency, Profitability and 
Interest expense. In addition, two new groups appear (in Model 1 with 
respect to Models 5 and 9): Efficiency and Fraud (replacing Financial 
structure and Turnover). 

Therefore, the relevant groups in Model 1 focus exclusively on the 
short-term: some based on various aspects of the income statement, such 
as Profitability, Efficiency and Interest expense, another on Liquidity 
and Solvency and, finally, the Fraud group, which is based on year-on- 
year variations of certain items. On the other hand, the relevant 
groups in Models 5 and 9 include some that contain a strong incidence of 
variables with longer-term significance (Financial structure and Turn
over). Consequently, selection methods do tend to focus on the appro
priate variables for each specific temporal horizon. 

6. Overall discussion of the results 

The environment in which the different dimensionality reduction 
methods (by feature selection) were compared is characterized by the 
fact that the BP problem generally presents two relevant circumstances:  

• An initial set of available input variables, with a high number of 
highly correlated variables and – probably – with redundant vari
ables (e.g.: different transformations of a single original variable).  

• The evaluation of the models is performed on a highly imbalanced 
test set, with a negative class (observations of non-failed firms) with 
a much larger number of examples than the positive class (observa
tions of failed firms). 

In no particular order of priority, there are some relevant aspects to 
pay attention to: 

Table 8 
Number of variables selected per model.   

N. of 
distinct 
variables 
in total 
methods 

N. of 
distinct 
variables in 
total 
methods 
without 
GPFS 

N. distinct 
variables 
in GPFS 

N. distinct 
variables 
contributed 
by GPFS 

Sum of 
selected 
variables 
in total 
methods 

Model 
1 

70 45 46 25 177 

Model 
5 

54 49 31 5 183 

Model 
9 

49 46 16 3 136  

Table 9 
Relative frequency of the groups of variables selected in each model. Values in 
bold: the 5 highest relative frequencies for each model.   

Model 1 Model 5 Model 9 

LIQUIDITY AND SOLVENCY 13.56% 20.22% 21.32% 
FINANCIAL STRUCTURE 9.04% 19.67% 22.79% 
PROFITABILITY 22.60% 14.75% 11.76% 
EFFICIENCY 10.73% 2.73% 1.47% 
TURNOVER 2.26% 9.84% 10.29% 
VARIATIONS IN MAGNITUDES 2.82% 2.73% 0.74% 
CONTRIBUTION 3.95% 4.37% 5.88% 
INTEREST EXPENSE 16.38% 13.11% 18.38% 
SIZE 5.08% 8.20% 1.47% 
GROWTH 0.56% 0.00% 0.00% 
CHANGES IN RATIOS 1.13% 0.55% 0.74% 
DEGREE OF DECOMPOSITION 0.00% 0.00% 0.74% 
PRODUCTIVITY 2.26% 1.64% 0.00% 
FRAUD 9.60% 2.19% 4.41%  
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• The percentage of scenarios in which feature selection is ineffective 
is noteworthy, 43.1% (194 out of 450 scenarios, considering now 15 
classification methods). This is especially important in some of the 
selection methods analyzed (Wrapper Naive Bayes, SVM, InfoGain 
and Wrapper J48, where the above percentage exceeds 50%, or 
Consistency, Chi-squared and Correlation where the percentage ex
ceeds 40% but not 50%). This fact shows that feature selection is not 
fully effective, since it does not always achieve the expected effect 
after dimensionality reduction (at least if the expected effect is AUC 
improvement). This possibility is not new: as indicated by Liang et al. 
[13] in their work focused on financial distress prediction, depend
ing on the techniques chosen, feature selection does not improve 
prediction performance in all cases.  

• The reduction of the dimension of the initial set of input variables by 
the proposed feature selection method (GPFS) is a more efficient 
feature selection method than most of the methods analyzed (only 8 
inefficient scenarios out of 45 analyzed, Sections 5.2.1 and 5.3). This 
makes it a reliable feature selection method, since the results ob
tained by the different prediction models when using its output 
(explanatory variables) will be – in most cases – better than the re
sults of the prediction models obtained with the totality of input 
variables as explanatory variables. 
The above, together with the high performance (as defined in Section 
5.2.2) obtained by the GP reduction method (GPFS) compared to 
other feature selection methods, make GPFS an excellent feature 
selection method.  

• According to the results obtained, it is observed that – in the case of 
the BP addressed in this work – the feature selection methods by 
filtering clearly outperform the wrapper methods analyzed, which 
occupy the last positions in both categories (efficiency and perfor
mance). This poor performance of the analyzed wrapper methods 
occurs both when using single classifiers, ensemble classifiers or GP, 
even when using as a classifier the same method they have used for 
feature selection (Wrapper Naive Bayes and Wrapper J48). It should 
be noted that filtering methods tend to generalize better [18] than 
wrapper methods – which present better performance when 
modeling [16] – and the evaluation is being performed on the test 
set.  

• GPFS presents its best performance in conjunction with the GP as a 
classifier, where its superiority over the other methods used is 
evident, since it presents the highest AUC in 2 of the prediction 
temporal horizons (Section 5.3).  

• Considering the results of the comparison, in terms of performance, 
between the classifiers, in most cases GP has provided better classi
fication results with respect to the other classification methods (as 
pointed out in Section 5.3). Therefore, it can be concluded that GP as 
a classification method is an excellent method that improves the 
results of practically any 2-tuple (temporal horizon, selection 
method). 

On the other hand, with specific regard to the variables chosen by the 
different feature selection methods, there are a number of data that 
provide interesting indications. Briefly, they are as follows:  

• The different feature selection methods do not converge on a subset 
of selected variables. The percentage of the number of distinct var
iables used by the methods out of the total number of input variables 
is sufficiently high (especially in Model 1 where the methods select 
70 distinct variables out of a total of 97 input variables) to affirm the 
lack of consensus (Table 8 in Section 5.4).  

• Diversity (understood as the number of different variables selected) 
decreases as the prediction horizon increases (Table 8). Long-term 
BP indicators (distinct variables selected by the models 5 and 9 
years prior to failure) are less than in the short-term (1 year prior to 
failure). In other words, the predictors, the signals warning of failure, 
decrease as the prediction horizon does, which would make 

prediction more difficult and is in line with the deterioration of 
performance as the prediction temporal horizon increases. 

• The number of different variables used by GPFS in each of the pre
diction models and the number of different variables added by GPFS 
over those provided by the other feature selection methods (Table 8) 
can be interpreted as a sign of adaptability (greater adaptation to the 
temporal horizon) compared to other models. This results in a lower 
probability, with GPFS, of losing relevant variables in the process of 
reducing the initial set of variables, as corroborated by the results 
shown in Section 5.  

• Despite the wide variety of variables selected, there does seem to be a 
consensus among the different models (Models 1, 5 and 9) on the 
basic aspects that warn of BP. As detailed in Section 5.4, it has been 
shown that the selection methods do tend to focus on the appropriate 
variables for each specific temporal horizon (groups of variables 
focused on the short-term in Model 1 and variables with longer-term 
significance in Models 5 and 9). This implies that the selection of 
variables is indeed consistently focused on those with relevance for 
the temporal horizon considered. 

• These aspects discussed can be analyzed in more detail if the rele
vance of each of the explanatory variables (and, therefore, of the 
groups) is also taken into account. However, this analysis would 
belong to the field of Explainable Artificial Intelligence (XAI) and is 
beyond the scope of this study. 

7. Conclusions and future work 

In this study, a new GP-based feature selection method within the BP 
domain was proposed. A comparative analysis of the proposed method 
with different feature selection methods has been performed, also 
considering different classifiers in the analysis. For this comparison, the 
AUC has been used and it has been carried out based on two aspects: 
efficiency and performance. 

The two main contributions in our study are:  

i) The proposed new GPFS method is based on the relative frequency of 
the presence of variables in the evolved trees/programs in the 
evolutionary process. For a correct detection of the relevant vari
ables, the statistical significance of this frequency is taken into ac
count. GPFS performs a global search in the feature space, the FS 
process is inherent to the GP evolutionary process, is context sensi
tive and provides a ranking of the most relevant variables. 

ii) The results indicate that the proposed method (using Genetic Pro
gramming as a variable selection method) is superior to the most 
tested and widely used methods analyzed. Superiority was tested in 
terms of efficiency (i.e., the FS method improves classification results 
over using all features), and in terms of performance (i.e., for a given 
classifier, the classification performances – AUC – obtained with the 
different feature selection methods are compared). Furthermore, the 
superiority increases if Genetic Programming is also used as a clas
sification method. 

On the basis of this study, future work could be carried out in three 
directions: 

• GPFS parameter selection. In this work, we have chosen those vari
ables with p-value<0.05 (referring to the relative frequency of the 
different variables in the GP runs that lead to obtaining the best 
solutions). Note that, in addition to testing different p-values, 
another selection criterion could be used, e.g., the mean and/or 
median (to qualify the possible relevance of the different variables).  

• One of the risks of feature selection is to lose information on relevant 
variables. Variable selection is a non-monotonic problem, in the 
sense indicated by du Jardin [5]: “Variable selection remains diffi
cult because it is often non-monotonic. Indeed, the best subset of p 
variables rarely includes the best subset of q variables, where q<p”. 
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In the proposal presented in this work (GPFS), dimensionality 
reduction has been performed according to the statistical signifi
cance of the relative frequency of occurrence (in the evolved trees) of 
each variable of the input set (p-value<0.05) and the results show 
that it is a good approximation. 
The second methodology proposed could be a stepwise filtering 
process, which would attempt a progressive reduction of the 
dimension of the set of input variables by eliminating, in each of the 
stages, those variables with clear signs of irrelevance (e.g.: p-val
ue>0.333). In other words, the central idea would be to gradually 
reduce the number of input variables while minimizing the risk of 
eliminating relevant variables. A p-value<=0.333 means that the 
variables whose probability of being significant is >= 66.67% will be 
selected in each iteration or filtering stage, which is a very lax cri
terion, as opposed to the usual 95–99%.  

• Another possible aspect to explore would be to replace statistical 
significance with some more precise measure of the real impact of 
the variable on the classification. This line of action is “a priori” more 
complicated since classifiers will often supply non-linear models in 
which the calculation of a single value of impact per variable will be 
complex. 

As a final conclusion and as the main contribution of our work, it is 
worth noting that the proposal analyzed in this study (using Genetic 
Programming as a method of feature selection), becomes – in terms of 
the combination of efficiency and performance – a feature selection 
method superior to the rest of the methods analyzed, highlighting that 
the proposed variable selection method provides a performance that 
stands out over the performance of the other variable selection methods 
when GP is also used as a classification method. 
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