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Credit fraud poses a challenging task in terms of detection. It can result in significant losses 
depending on the amount, so a cost-sensitive perspective needs to be taken. Classical approaches 
focus on estimating the probability of fraud and selecting a decision threshold, but they often 
fail to consider the transaction amount or account for the cumulative losses incurred within the 
sample. Consequently, these approaches can result in sub-optimal strategies. A new thresholding 
approach is proposed, based on the construction of a two-dimensional decision space with an 
estimated probability and the credit amount. This expansion allows more freedom for the optimal 
classification rule search, which is performed with a new algorithm. The proposed method 
generalizes previous approaches, so an improvement is consistently achieved. In addition, it 
allows a restricted search. This is shown in a study of two real data sets, comparing the results 
obtained by a wide range of classifiers.

1. Introduction

Fraud is a significant and growing risk for financial institutions [1,2], defined as an operation that intentionally leads to the 
total loss of the financed credit. Consequently, all operations must undergo initial fraud screening before following the standard 
risk analysis and granting procedures. This incurs in operational costs and limitations that cannot be overlooked [3–5], for which 
a percentage of operations to analyze (POA) restriction of ideally less than 5% and no more than 10% is imposed in practical 
applications. Detecting fraud in the context of consumer finance presents several challenges. Fraudsters adapt to risk policies and 
often modify their information, leading to class overlap [6] and making it difficult to identify patterns when training supervised 
models. Moreover, fraudulent cases are scarce, resulting in an extraordinarily imbalanced problem [3]. Lastly, regulation constraints 
limit the use of complex models, such as neural networks, in consumer finance [7,1,8], as all the decisions that are made must be 
explainable to the regulator and the client.

Classification models are commonly trained in terms of statistical performance measures that do not take into account the actual 
business objective, which is to minimize financial losses due to fraud. Several authors have pointed out that decision making based 
only on an estimated probability has a worse performance in problems where not all error types have the same weight [1,9–11]. 
Note that it would be preferable to detect a 10, 000 e fraud than five 1, 000 e frauds. Consequently, fraud should be acknowledged 
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Table 1

Amount-dependent cost matrix.

�̂�𝑖 = 0 �̂�𝑖 = 1

𝑦𝑖 = 0 𝐶𝑇𝑁
𝑖

= 0 𝐶𝐹𝑃
𝑖

= 𝑎𝜉𝑖 + 𝑏

𝑦𝑖 = 1 𝐶𝐹𝑁
𝑖

= 𝜉𝑖 𝐶𝑇𝑃
𝑖

= 𝑏

as an instance-dependent cost-sensitive problem [12]. This creates an additional degree of complexity, as costs depend not only on the 
class but also on characteristics of the instance (the loan amount).

The literature, although extensive, lacks state-of-the-art references due to the absence of publicly available datasets and con-

sequent comparisons. To overcome this, a wide range of models and methods is introduced and tested in this paper. Among 
cost-insensitive approaches, undersampling and oversampling techniques [3,5,13,1], although appropriate given the problem im-

balance, imply bias or an increase in variance respectively [14,5,15]. Classification techniques as support vector machines (SVM) 
[2], data envelopment analysis methods [8] or fuzzy models [16,17] do not consider the loan amount in the decision making, which 
is an important drawback. In addition, given the difficulties presented, more complex models are unlikely to achieve a better classifi-

cation than state-of-the-art models [7,18,9,5,19]. Regarding cost-sensitive approaches, there are two distinguished philosophies. The 
first one, known as predict-and-optimize, consists on construct a classifier considering a cost-sensitive objective function, tuning the 
estimated probabilities [20,6,21,4] or using weighted versions of logistic regression [20,12] or boosting algorithms [9,12] among 
others. The second one, known as predict-then-optimize or thresholding, is to focus on the decision making. A predictive model is 
trained with the aim of maximizing accuracy and then decision-making is optimized minimizing losses [3,22,13,12,10,4,23]. The 
drawback of these techniques is that classification rules are individual, overlooking aggregated losses.

The method introduced in this paper belongs to the latter thresholding philosophy, which [10,13] found to be the more effective. 
It is constructed a novel decision space using the variables on which losses depend on: an estimated fraud probability and the credit 
amount. In this expanded space there is more freedom for the optimal decision rule search, which is estimated with a new proposed 
algorithm. It includes and expands all previous thresholding approaches, so an improvement is obtained. Furthermore, the restricted 
search is possible, something that any previous approach solves [4,11]. As the algorithm works on a given cost specification and an 
estimated probability, it can be generalized to any other cost-sensitive problem as churn prediction, credit risk, medical diagnosis or 
logistic planning.

The rest of the paper is as follows. Next section presents the cost-sensitive classification problem to be addressed. Section 3

introduces state-of-the-art approaches for the fraud probability estimation. In Section 4, the available thresholding strategies are 
listed, emphasizing their drawbacks and motivating the proposed methodology, which is explained in Section 5. Finally, Section 6

studies the performance of the different combinations of classifiers and thresholding strategies over two real data sets. One was 
provided by a collaborator financial company (Bank data set) and the other one is a wide-used open fraud data set (Credit Card data 
set). Conclusions and future extensions are included in Section 7.

2. Cost-sensitive classification

Cost-sensitive classification address the prediction of a binary dependent variable 𝑌 ∈ {0, 1} (0 indicating legitimate and 1 fraud) 
from a set of independent variables 𝐗 = (𝑋1, … , 𝑋𝑝) taking into account costs of prediction error and potentially other costs. The 
objective is loss reduction, so model performance must be evaluated considering classification error costs, which depends on the 
estimated probability, �̂�(𝐱), of the conditional probability, 𝑝(𝐱) = 𝑃 (𝑌 = 1 ∣ 𝐗 = 𝐱), the credit amount, 𝜉, and the thresholding 
strategy. When only the estimated probability is considered for decision-making, prediction is defined by a cut-off point 𝑡 as 𝑌 =
𝕀(�̂�(𝐱) > 𝑡).

Classical approaches consider a cost matrix based on the true class 𝑌 and the predicted class 𝑌 . These approaches assume that 
all errors of the same type have equal costs [13,9], which means a clear overlook of information [20,22,13,24]. To address this 
issue we consider a loss function constructed from an instance-dependent cost matrix as the one defined in Table 1, generalized from 
[3,22,13,11]. Costs are assumed independent of the covariable vector 𝐗 in line with [24] and are motivated by the specific fraud 
problem raised by our collaborator financial entity.

In Table 1, 𝐶𝐹𝑁
𝑖

encloses the cost of an undetected fraud, i.e. the total credit amount 𝜉𝑖. The lost benefit when classifying a 
legitimate client as a fraudster is summarized in 𝐶𝐹𝑃

𝑖
. It incorporates the proportion of clients who forgo financing for doubting 

them, 𝑎1, and the mean gain per operation, 𝑎2𝜉𝑖, with 𝑎 = 𝑎1𝑎2. The fixed cost of investigating the operation, 𝑏, is included both in 
𝐶𝐹𝑃
𝑖

and 𝐶𝑇𝑃
𝑖

, i.e. whenever �̂�𝑖 = 1. Gains could be introduced, but they do not appear as there is only the possibility of loss when 
dealing with fraud. From Table 1, the loss function is defined as:

𝓁(�̂�𝑖, 𝜉𝑖, 𝑦𝑖) = (1 − 𝑦𝑖)(1 − �̂�𝑖)𝐶𝑇𝑁𝑖 + (1 − 𝑦𝑖)�̂�𝑖𝐶𝐹𝑃𝑖 + 𝑦𝑖(1 − �̂�𝑖)𝐶𝐹𝑁𝑖 + 𝑦𝑖�̂�𝑖𝐶𝑇𝑃𝑖 (1)

In this paper the performance metric considered is savings, with an spread use in the literature [3,20,22]. For a sample (�̂�𝑖, 𝜉𝑖, 𝑦𝑖)𝑛𝑖=1
it is expressed as:

∑𝑛

𝑖=1 𝓁(�̂�𝑖, 𝜉𝑖, 𝑦𝑖)
2

Savings = 1 − ∑𝑛

𝑖=1 𝑦𝑖𝜉𝑖
(2)
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Fig. 1. Accuracy (dashed black), recall (red), POA (blue) and savings (solid black) considering different cut-off decision points over the score.

where the denominator is the total loss faced if no preventive action is taken in order to have a base reference [11]. The objective is 
minimization of 

∑𝑛

𝑖=1 𝓁(�̂�𝑖, 𝜉𝑖, 𝑦𝑖), equivalently maximization of (2), along possible classifiers.

In order to show the importance of considering a cost-sensitive metric, for the Bank data set, a logistic model is fitted. Its 
POA =

∑𝑛

𝑖=1 �̂�𝑖∕𝑛, accuracy, recall and savings (2) are shown in Fig. 1 for different decision thresholds over the estimated probability, 
where it can be seen the nonlinear relationship between them. “Score” is referred as the escalation of the estimated fraud probability 
between 0 and 10, for the sake of confidentiality, and metrics are represented as percentages. This notation is followed throughout 
the paper. It can be seen that detecting more frauds not necessarily leads to an increase in savings (2) due to analysis costs. Also, the 
extreme class imbalance biases accuracy, as the greatest is achieved labeling all operations as legitimate. Consequently, the fraud 
detection problem should be addressed from a cost sensitive perspective, both conceptually and in order to obtain better practical 
results.

3. Classification methods

Probability estimation methods are presented in this section, so the thresholding strategies introduced in next section can be 
applied afterwards. There are introduced different non and cost-sensitive approaches, so in the practical application it could be 
tested if the latter help in the posterior thresholding, in line with [10]. Boosting approaches are introduced so as to obtain a measure 
of the predictive capacity that can be reached by considering a more complicated model. Other complex methods as bagging and 
SVM are not considered since, based on simplicity, flexibility and performance, boosting has shown to have a better behavior in 
practical applications [2,9]. In addition, they cannot be used in practice due to the interpretability restraints aforementioned, so just 
boosting seems to be enough as a benchmark.

3.1. Logistic regression

In practice, fraud detection is often addressed as a mere classification problem. Logistic regression is the de facto model in credit 
risk, modeling the probability as:

𝑃 (𝑌 = 1 ∣𝐗 = 𝐱) = 𝑝𝜃(𝐱𝑖) =
1

1 + exp−(𝛽0+𝜷′𝐱)
(3)

The problem becomes estimating the parameter 𝜽 = (𝛽0, 𝜷) that maximizes the log-likelihood function in equation (4) below with 
𝑤𝑖 = 1∕𝑛 for 𝑖 = 1, ⋯ , 𝑛. It assigns the same weight to both classification error types, which is not the case in many real applications 
as fraud detection.

3.2. Weighted logistic regression

In order to enhance and adapt logistic regression to the cost-sensitive setting, weights are introduced in the log-likelihood function 
[20,6,25]:

(𝜃) = −
𝑛∑
𝑖=1
𝑤𝑖

[
𝑦𝑖 log(𝑝𝜃(𝐱𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝𝜃(𝐱𝑖))

]
(4)

where 𝑝𝜃(𝐱) is as defined in (3) and 𝑤𝑖 is the weight of the 𝑖-th instance. The probability modeling is the same as in equation (3), but 
it is considered another objective function. This affects the model parameter estimation, and therefore the classification. Weights are 
introduced either for balancing the data set [25] or for putting more emphasis on an operation depending on its amount [20], which 
3

is expected to improve classification error costs.
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3.3. Boosting algorithms

Boosting [26] is an ensemble learning algorithm which outputs the estimated probability as a sum of 𝑇 weak classifiers, whose 
performance is slightly better than random guessing. In this paper, shallow binary decision trees are considered as weak classifiers. 
Given a sample (𝑦𝑖, 𝐱𝑖)𝑛𝑖=1, a tree 𝑚1 with 𝑄 terminal leafs is fitted depending on 𝐱. This tree has associated a weight vector 𝜔(1) ∈ℝ𝑄, 
which assigns the weight 𝜔(1)

𝑞 to each terminal node 𝑞 ∈ {1, … , 𝑄}. Next, a tree 𝑚2 with weights 𝜔(2) is fitted in order to improve 
the previous prediction. This is iterated 𝑇 times and the estimated conditional fraud probability is computed as:

�̂�(𝐱) =
𝑇∑
𝑡=1
𝑚𝑡(𝐱) (5)

Adaboost and XGBoost are two of the most outstanding boosting algorithms, whose main difference is the regularization function 
present in XGBoost. They are introduced below.

3.3.1. AdaBoost

In Adaboost [9,27], each weak classifier is trained over a new weighted data set which gives more weight to misclassified 
observations in previous models. Thus, on each iteration, focus is put on refining the classification of all points as the algorithm 
progresses. Given a sample (𝑦𝑖, 𝐱𝑖)𝑛𝑖=1, weights for each observation 𝑖 are equally initialized 𝑣1

𝑖
= 1∕𝑛 and a weak classifier, 𝑚1

fitted maximizing accuracy, 𝑎𝑐𝑐1. On each successive step 𝑡, 𝑚𝑡 is fitted with updated weights 𝑣𝑡
𝑖
∝ 𝑣𝑡−1

𝑖
𝑒−𝑦𝑖𝛼𝑡𝑚𝑡−1(𝐱𝑖), where 𝛼𝑡 =

log(𝑎𝑐𝑐𝑡−1∕(1 − 𝑎𝑐𝑐𝑡−1)).

3.3.2. XGBoost

Extreme Gradient Boosting (XGBoost) [28,9] is a boosting algorithm which trains the model considering the objective function:

(𝜃) =
𝑛∑
𝑖=1

𝓁(�̂�(𝐱𝑖), 𝑦𝑖) +
𝑇∑
𝑡=1

Ω(𝑚𝑡) (6)

where 𝓁 is a differentiable convex objective function, as the log-likelihood in equation (4) with 𝑤𝑖 = 1∕𝑛 for 𝑖 = 1, … , 𝑛, Ω(𝑚𝑡) =
𝛾𝑇 + 1

2𝜆‖𝜔‖2 and 𝜆, 𝛾 ≥ 0 constants penalizing the model complexity. The regularization function aims to choose a model that uses 
simple functions by penalizing the complexity of each tree, which prevents over fitting. In each step, a tree is trained to improve the 
previous prediction. For a prediction, �̂�(𝐱𝑖)(𝑡−1), of the 𝑖-th observation at the (𝑡 − 1)-th iteration, 𝑚𝑡 is trained to minimize:

(𝑡) =
𝑛∑
𝑖=1

𝓁(�̂�(𝐱𝑖)(𝑡−1) +𝑚𝑡(𝐱𝑖), 𝑦𝑖) + Ω(𝑚𝑡)

with a gradient descent algorithm. This process is iterated 𝑇 times and the final prediction computed as in (5).

3.3.3. LightGBM

Light gradient-boosting machine (LightGBM) [29] is another boosting algorithm similar to XGBoost. The main difference lies in 
the way it constructs trees. XGBoost grows a tree level by level. Instead, LightGBM grows trees leaf-wise, so in each step it selects 
the leaf that is expected to improve more the objective function and the tree grows from this leaf. In addition, the split point for 
the decision trees is selected with a histogram-based approach, yielding a greater efficiency. It implements more refinements to run 
faster than previous approaches maintaining a high level of accuracy, which is the principal advantage of this algorithm.

3.4. Instance-dependent cost-sensitive logistic regression

In this approach, introduced in [12] as cslogit, the novelty is that the estimation of the parameters is carried out in a cost-sensitive 
manner, minimizing the average expected cost (AEC) of a given loss function (1):

𝐴𝐸𝐶(𝜽;𝐱𝑖, 𝜉𝑖, 𝑦𝑖) =
∑𝑛

𝑖=1 𝓁(𝑝𝜃(𝐱𝑖), 𝜉𝑖, 𝑌𝑖)
𝑛

(7)

where 𝑝𝜃(𝐱𝑖) is as in Equation (3). Then, 𝜽 is estimated as the minimizer of (7), which can be found using a gradient descent 
algorithm. By incorporating the AEC into the model fitting, there is a higher probability of detecting high-amount frauds, leading to 
an improvement in terms of savings.

3.5. Instance-dependent cost-sensitive boosting

Introduced in [12], this method is constructed as the XGBoost model introduced in Section 3.3.2 but optimizing AEC, instead of 
the accuracy. In order to do this, 𝓁(𝐱𝑖, 𝜉𝑖, 𝑌𝑖) =𝐴𝐸𝐶(𝜽; 𝐱𝑖, 𝜉𝑖, 𝑌𝑖) is considered in the objective function (6). As the AEC is introduced 
4

in the model fitting, it is more likely to rely on high-amount frauds and therefore obtain greater savings.
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4. Previous thresholding approaches

All classifiers produce probability estimates. Thresholding selects a decision strategy based on misclassification cost, converting 
cost-insensitive learning algorithms into cost-sensitive ones [23,10]. Most of the approaches rely on the estimated probability, for 
which calibrated probabilities are needed [15]. This is an added degree of complexity, as these are not always easy to obtain, specially 
in an unstable setting as fraud detection. State-of-the-art approaches are introduced in this section and represented in Fig. 2. This 
figure shows their difference and shortfalls. For the sake of confidentiality, the logarithm of the amount, rescaled into the interval 
[0, 10], is shown. This notation is followed throughout the paper.

4.1. Youden’s J statistic

Youden’s 𝐽 statistic [30] is often used in dichotomous decision problems, taking its maximizer as an optimal classification 
threshold. It is defined as:

𝐽 = recall + specifity − 1 =
∑𝑛

𝑖=1 𝑦𝑖�̂�𝑖∑𝑛

𝑖=1 𝑦𝑖
+

∑𝑛

𝑖=1(1 − 𝑦𝑖)(1 − �̂�𝑖)∑𝑛

𝑖=1(1 − 𝑦𝑖)
− 1 (8)

where �̂�𝑖 = 𝕀(�̂�(𝐱𝑖) > 𝑡). The cut-off point, 𝑡, maximizing 𝐽 (8) minimizes the false positive and false negative rates. Nevertheless, as 
shown in Section 2, this could be sub optimal when the objective is loss reduction.

4.2. Brute force threshold

In order to scrutinize the best strategy considering only the estimated fraud probability, an empirical exhaustive search is con-

sidered. A grid is constructed dividing the one-dimensional decision space in 1, 000 equally spaced intervals. Savings obtained when 
considering each cut-off point 𝑡 in the grid is computed. The one that produces the maximum is taken as classification threshold 
[23]. Since the resulting savings are computed for each cut-off, the restricted search can be implemented as well, considering only 
the thresholds satisfying the POA restriction.

4.3. Bayes minimum risk

Bayes minimum risk (BMR) approach [22,13] corresponds to the theoretical optimal cost-sensitive decision rule. Considering the 
exogenous variable, 𝜉, and an estimated probability, �̂�(𝐱), the risk of a data point is defined:

𝑅(�̂�, 𝜉 ∣ 𝐱) = 𝓁(�̂�, 𝜉,0)(1 − �̂�(𝐱)) + 𝓁(�̂�, 𝜉,1)�̂�(𝐱)

where �̂� ∈ {0, 1} and 𝓁 is a loss function as in (1). Then, an operation is labeled as fraud if 𝑅(1, 𝜉 ∣ 𝐱) ≤ 𝑅(0, 𝜉 ∣ 𝐱), i.e. if the risk of 
classifying it as a fraud is lower than as legitimate. This leads to the decision rule �̂�𝑖 = 𝕀(�̂�(𝐱𝑖) > 𝑡𝑖) with:

𝑡𝑖 =
𝐶𝐹𝑃
𝑖

−𝐶𝑇𝑁
𝑖

𝐶𝐹𝑃
𝑖

−𝐶𝑇𝑁
𝑖

+𝐶𝐹𝑁
𝑖

−𝐶𝑇𝑃
𝑖

=
𝑎𝜉𝑖 + 𝑏
(1 + 𝑎)𝜉𝑖

(9)

Note that although this approach is theoretically optimal, it could not be the case when considering the aggregated sample results 
[12]. For example, for 𝑏 = 10$, 𝑎1 = 0.05 and 𝑎2 = 0.08, a data point with 𝜉𝑖 = 300$ will be analyzed for fraud if �̂�(𝐱𝑖) ≥ 0.037. 
Suppose that there are 40 operations, of which one is a fraud, with �̂�(𝐱𝑖) = 0.04 and 𝜉𝑖 = 300$, likely to occur in an umbalanced 
problem as fraud detection. The aggregated costs would be 40 ⋅ 10$ versus a 300$ fraud. Thus, a global strategy is more likely to 
produce better practical results. Besides, the frontier defined by (9) does not allow any flexibility in order to adapt the decision 
region, so the method cannot be used in practice as it does not fulfill the imposed POA restrictions.

4.4. Fixed cost matrix

Classical approaches consider a fixed value in the four entries of the cost matrix introduced in Table 1 for all 𝑖. The optimal 
threshold in terms of missclassification costs is the same as the one defined in Equation (9), but with a fixed cut-off point for every 
instance [13]. Thus, it can be considered as the fixed-threshold version of the BMR approach. Considering the mean of the instance-

dependent cost matrix as proposed in [10], the optimal decision cut-off point becomes 𝑡 = 1
𝑛

∑𝑛

𝑖=1 𝑡𝑖, whit 𝑡𝑖 as in Equation (9).

5. Two-dimensional thresholding

In order to overcome the limitations of the thresholding approaches presented in Section 4, we propose expanding the decision 
space to a two-dimensional map generated by the estimated probability, �̂�(𝐱), and the loan amount, 𝜉. In this space a more flexible 
and effective decision region can be explored, which is performed with a new proposed algorithm.

For numerical optimization, given a sample {(�̂�(𝐱𝑖), 𝜉𝑖)}𝑛𝑖=1, a grid, 𝐺(𝑘), is defined depending on a 𝑘 parameter which drives the 
5

search smoothness:
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Fig. 2. State-of-the-art thresholding approaches: Youden’s J Statistic (cyan), brute force (black), BMR (black parabola), fixed cost matrix threshold (blue).

𝐺(𝑘) =
{(
�̂�min + 𝑠𝛿1, 𝜉min + 𝑡𝛿2

)}𝑘−1
𝑠,𝑡=0 (10)

where

𝛿1 = (�̂�max − �̂�min)∕𝑘

𝛿2 = (𝜉max − 𝜉min)∕𝑘

�̂�min = min{�̂�(𝐱𝑖)}𝑛𝑖=1, �̂�max = max{�̂�(𝐱𝑖)}𝑛𝑖=1,

𝜉min = min{𝜉𝑖}𝑛𝑖=1, 𝜉max = max{𝜉𝑖}𝑛𝑖=1

(11)

The grid 𝐺(𝑘) could be based on the quantiles of orders 0∕𝑘, 1∕𝑘, … (𝑘 − 1)∕𝑘 of the empirical distribution in each of the 
dimensions. This can speed up the search process when the distributions are skewed, omitting regions of the space with low density.

When considering a two-dimensional decision space, a simple generalization is to take a threshold in each dimension. Hence the 
decision region consists of an upper right quadrant 𝑄𝐫 =

{
(�̂�, 𝜉) ∈ℝ2 ∣ �̂� > 𝑟1, 𝜉 > 𝑟2

}
defined by a point 𝐫 = (𝑟1, 𝑟2). Considering a set 

of points, 𝑅 =
{
𝐫𝑗
}𝑚
𝑗=1, a decision region is constructed as the union of the upper right quadrants 𝑄𝐫𝑗 ,

𝐷(𝑅) =
𝑚⋃
𝑗=1
𝑄𝐫𝑗 (12)

Given an instance (�̂�𝑖, 𝜉𝑖) and a decision region 𝐷(𝑅) as (12), its labeling is defined as �̂�𝑅
𝑖
= 𝕀 

(
(�̂�𝑖, 𝜉𝑖) ∈𝐷(𝑅)

)
. For a sample 

 =
{
(�̂�𝑖, 𝜉𝑖, 𝑦𝑖)

}𝑛
𝑖=1, savings is defined as:

(𝑅 ∣ ) = 1 −
∑𝑛

𝑖=1 𝓁(�̂�
𝑅
𝑖
, 𝜉𝑖, 𝑦𝑖)∑𝑛

𝑖=1 𝑦𝑖𝜉𝑖
(13)

Algorithm 2-DDR(k) (2-dimensional decision region algorithm depending on the parameter 𝑘) is proposed for the optimal 
decision-making estimation. It starts with a decision region defined by the most northeast point of the grid 𝐺(𝑘), the one with 
highest estimated fraud probability and amount. In a recursively manner, each of the points of 𝐺(𝑘) surrounding the current decision 
region is added to the current region as in (12) and savings computed as in (13). The point whose inclusion produces the greatest 
savings increase is added. If there is no savings improvement with respect to the previous decision region, the next surrounding 
points of 𝐺(𝑘) are explored. The algorithm stops when the minimum in the data support is reached. An example of the first iterations 
is shown in Fig. 3. Starting with a preliminary decision region, savings is calculated considering the surrounding points of the grid. 
As no improvement is obtained, the next surrounding vertices are explored. This time, an improvement is obtained, so it is updated.

The algorithm works on a given estimated probability/score and loss function as the one introduced in Equation (1). Consequently, 
it can be generalized to any cost-sensitive problem just considering other loss function. The search is performed over all the space, 
so if the optimal decision has the shape of one of the thresholding proposals introduced in Section 4, it will be found except for some 
roughness depending on the 𝑘 parameter. Thus, Algorithm 2-DDR(k) is expected to improve (or at least reproduce) state-of-the-art 
thresholding approaches in terms of savings. Calibrated probabilities are not needed as the proposed approach only rely on the points 
6

ordering, reducing the degree of complexity of the problem. In addition, it permits exploring restricted decision rules as well, just 
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Algorithm 2-DDR(k) Two-dimensional decision region algorithm.

1: Data  = {(�̂�𝑖 , 𝜉𝑖, 𝑦𝑖)}𝑛𝑖=1
2: Input 𝑘 parameter

3: Compute

4: Steps 𝛿1 and 𝛿2 as (11) and the grid 𝐺(𝑘) as defined in (10);

5: 𝑅 ∶= (�̂�max, 𝜉max);
6: 𝐹 ←𝑅

7: while min(𝐹 ) ≠ (�̂�min, 𝜉min) do

8: 𝑅𝑜𝑙𝑑 ←𝑅

9: 𝑠 ← (𝑅𝑜𝑙𝑑 ∣ ), as defined in (13)

10: 𝑡 ← 1
11: while 𝑅 =𝑅𝑜𝑙𝑑 do

12: 𝐹 ∶= subset of 𝐺(𝑘) at distance 𝑡𝛿1 in the first dimension or 𝑡𝛿2 in the second dimension from 𝐷(𝑅)
13: 𝐟𝑚 = arg max

𝑓∈𝐹
{(𝑅 ∪ {𝑓} ∣ )}

14: if (𝑅 ∪ {
𝐟𝑚
}
∣ ) > 𝑠 then

15: 𝑅 ←𝑅 ∪ {
𝐟𝑚
}

16: end if

17: 𝑡 ← 𝑡 + 1
18: end while

19: end while

20: Output A decision region defined as in (12)

Fig. 3. Algorithm 2-DDR representation along the grid 𝐺(𝑘) (black dots), evaluated decision region (dashed lines) and the updated decision region (solid lines).

iterating until the POA restriction (e.g. 10% or 5%) is met. Thus, the optimal decision rule can be estimated in any cost-sensitive 
problem. Resulting regions for the Bank data set are plotted in Fig. 4. The algorithm, as it would be expected, focuses on high 
fraud probability and amount operations. Besides, it avoids areas with high legitimate points density, where the analysis cost do not 
compensate the fraudulent amount detected when considering aggregated costs. The strength of the algorithm is that this intuitive 
logic is developed automatically without any need of additional estimation neither parameter tuning.

Algorithm 2-DDR(k) depends only on a parameter, 𝑘, that determines how thorough the search is. A greater 𝑘 implies a finer 
grid, giving more flexibility to the search, which results in greater savings. In practice we would suggest to start with a small value 
of 𝑘 and try larger values until a plateau in savings in a validation set is reached. In our experience, this is achieved with 𝑘 smaller 
than the number of cases. Regarding the computational complexity, it depends mainly on 𝑘2. This makes the algorithm suitable for 
scalation to biggest data sets as it does not depend on the sample size.

Lastly, note that, by construction, the algorithm is stable and robust against outliers. Fig. 5 (left) shows the estimated frontiers 
for 5 simulated data from the same model, with 40, 000 instances and a 0.5% fraud percentage. It can be seen that there are slight 
differences depending on the sample, but the frontiers have an stable shape. Fig. 5 (right) shows the estimated decision region when 
considering four types of possible fraudulent outliers, situating 20 of each type in the score-amount space. Only frauds with high 
amount will be susceptible of influencing the algorithm. If they have a high estimated probability of being fraud as well, they are 
included in the first steps in the decision region and the same frontier is obtained. When having a low estimated probability, the 
same optimal decision region is obtained but including these outliers (as they imply a significant loss), which would not have any 
consequences in practice.

This proposal, Algorithm 2-DDR(k), belongs to the class of greedy algorithms. The algorithm iteratively makes an optimally local 
7

choice after another, reducing the problem into a smaller one. There is no a universal theoretical result that ensures optimality 
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Fig. 4. Optimal decision frontiers in terms of savings estimated running Algorithm 2-DDR(k) with 𝑘 = 100, fulfilling that POA ≤ 100% (black), ≤ 10% (blue), ≤ 5%
(cyan).

Fig. 5. Estimated decision frontiers running Algorithm 2-DDR over 5 simulated data from the same model (left) and over a sample with fraudulent outliers situated 
in the four corners of the graph (right), when not considering the outliers (black) and when considering the outliers (blue).

of greedy algorithms. Huffman trees for discrete/categorical variable simulation, Dijkstra’s algorithm for shortest path finding and 
Kruskal algorithm for finding minimum spanning trees are examples of optimal greedy algorithms. Although, there exist other 
well-known examples of greedy algorithms (as the nearest unvisited city algorithm for the traveling salesman problem) that may 
perform much worse in pathological examples. Just to examine the practical performance of Algorithm 2-DDR(k), some experimental 
scenarios are considered in Section 6.2.

6. Experiments

Two real data sets are presented to evaluate the performance of all introduced approaches. Both consists in real fraud data sets, 
according to which they exhibit the difficulties presented in Section 1 as extreme imbalance and class overlap. To assess the classifiers 
performance independently from the thresholding strategy, we rely on threshold-independent metrics, namely AUC, Gini index, the 
Kolmogorov-Smirnov statistic (KS) and H-measure (H). The latter may be more informative given the high degree of class imbalance 
[10]. Expected savings (ES) = 1 −

∑𝑛
𝑖=1 𝓁(�̂�𝑖 ,𝜉𝑖,𝑌𝑖)∑𝑛

𝑖=1 𝑌𝑖𝜉𝑖
, inspired from (7), are summarized as well. To evaluate the impact of the threshold 

strategy, it is reported the accuracy (Acc), recall (Rec), specifity (Spec) and F-score (F) along with the objective function, savings 
(Sav) defined in (2).

The classifiers introduced in Section 3 are trained over the two data sets. These are logistic regression (LR), weighted logistic 
8

regression (WLR), Adaboost (AB), XGBoost (XGB), LightGBM (LGBM), cslogit (CSL) and csboost (CSB). Thresholding methods in-
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Table 2

Summary of the second data set variables.

Variable Type IV

Commerce activity Categorical 0.227
Client activity sector Categorical 0.162
Housing situation Categorical 0.152
Marital status Categorical 0.136
Profession Categorical 0.112
Region Categorical 0.108
Commerce class Categorical 0.032
Previous request indicator Categorical 0.007
Commerce monthly amount Continuous 0.007
Age Continuous 0.004
Commerce mean default rate Continuous 0.001
Loan term Continuous 0.001

troduced in Section 4 and the algorithm proposed in Section 5 with 𝑘 = 25, 50, 100 are applied over the estimated probabilities, 
previously calibrated following [13,15]. Thus, the thresholding approaches that rely on probabilities are not distorted. For each data 
set, a 5-fold cross validation is performed, stratified by the proportion of frauds and the amount following [12]. The mean results 
over the test sets are summarized in Section 6.2.

6.1. Data sets

Available at kaggle .com /mlg -ulb /creditcardfraud [5,12], the Credit Card data set consists of 284, 807 credit card transactions 
made in two days, where there are 492 (0.17%) frauds. It consists in 28 variables resulting from a PCA along with a “Time” variable 
(seconds elapsed from the first use) and the “Amount” of each transaction. The “Class” variable indicates if an operation is legitimate 
(0) or fraudulent (1).

The Bank data set is a real data set of 210, 180 loan requests lend by a collaborator financial entity, collected between January 
2018 and December 2021 with a 0.67% fraud percentage. In order to preserve confidentiality, the number of registers is truncated 
and so the fraud proportion. The variables considered are summarized in Table 2 in terms of their information value (a measure of 
the relation between a variable and the odds ratio [31]). These are limited to information provided at the request time. There is no 
history of behavior or extensive databases to draw on, as is the case for credit cards, implying another handicap for modeling fraud. 
Only formalized requests are considered, because nothing can be assured about a non-formalized operation. Note that these are the 
operations of interest, and most difficult to detect, as they are the ones that passed all the filters and controls.

6.2. Results

Classifiers results obtained in the Credit Card data set over the test samples are summarized in Table 3. Prediction performance of 
all classifiers is outstanding in terms of classification as it can be seen in the high values of the AUC. This occurs thanks to the number 
of variables available and the discrimination power of these. As expected, the greatest ES is obtained with a cost-sensitive model 
(CSB). The flexibility offered by boosting combined with a cost-sensitive approach offers a model able to detect high-amount frauds, 
which leads to the highest ES. Table 5 summarizes thresholding approaches performance for the different classifiers. In this case the 
restricted search is not considered as it is a public data set without any imposed restriction. The first highlight is that detecting more 
frauds does not imply an increase in savings, as can be seen with JS. As cost are not considered in the decision making, the highest 
frauds are not detected and there is an increase in POA, leading to high analysis costs and consequently smaller savings. This is a clear 
example of the importance of the correct selection of operations to inspect in an amount-dependent problem. Csboost and LightGBM 
obtain the best metrics in the train set, but a much lower performance in the test set, due to a clear overfitting that could become 
dangerous in practice. This can be seen with all boosting approaches. In the test set, the best results in terms of savings are achieved 
with significantly smaller POA with the new proposed approach: Algorithm 2-DDR(k). It focuses on detecting high amount frauds, so 
it obtains the smaller POA with every classifier as well as the highest savings, for which is considered the outperforming approach. 
The smoothness effect of the parameter 𝑘 is clear, with a direct relation with savings obtained in the train set and certain overfit in 
some classifiers. We highlight the cslogit approach, outperforming all other existing methods in the test set with an understandable 
model and low POA. Thus, for this dataset, cslogit with Algorithm 2-DDR(k) is the selected approach.

Regarding the Bank data set, classifiers results are summarized in Table 4. Cost-sensitive approaches outperform classical ones 
again in terms of ES, as expected. This setting is more difficult, which is reflected in the smaller values in Table 4 compared to the 
previous data set. Table 6 summarizes different thresholding strategies results. Csboost gives a very good performance, probably due 
to the scarcity of variables that make necessary a more complex modeling. Nevertheless, it seems to be falling into overfitting again, 
leading to improvable results in the test samples. Algorithm 2-DDR(k) outputs the best results under each classifier in terms of savings 
(2) again. It is also worth noting the fact that Algorithm 2-DDR(k) outperforms all classical approaches in terms of classification 
metrics except recall, making clear how the algorithm focus on the more profitable operations to analyze. As a consequence, POA 
9

tends to be significantly smaller, which is another advantage. Highest savings are obtained with Adaboost and Algorithm 2-DDR(k)

http://kaggle.com/mlg-ulb/creditcardfraud
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Table 3

Classification metrics for the different classifiers over the Credit 
Card data set.

Classifier AUC Gini H KS ES

LR 97.56 95.13 87.13 88.99 44.12

WLR 96.81 93.62 85.45 87.73 42.80

AB 97.57 95.15 87.62 89.89 68.13

XGB 97.34 94.68 87.29 89.19 85.97

LGBM 97.62 95.23 82.63 86.87 49.50

CSL 93.85 87.70 81.13 83.54 67.51

CSB 95.45 90.91 82.22 86.05 92.49

Table 4

Classification metrics for the different classifiers over the Bank 
data set.

Classifier AUC Gini H KS ES

LR 76.11 52.22 21.64 41.15 0.99

WLR 76.11 52.22 21.77 41.47 0.98

AB 77.06 54.12 22.63 42.48 1.14

XGB 77.13 54.27 23.59 42.75 2.56

LGBM 77.18 54.35 26.81 43.88 1.20

CSL 72.34 44.66 15.15 37.15 47.11

CSB 77.00 54.00 23.88 42.88 67.13

Fig. 6. Mean results summary in the Bank data set for the combination of all the classifiers introduced throughout the paper and the proposed algorithm with different 
values of 𝑘. Left graphs show the mean savings for the train and datasets respectively and the right graph the mean computational times in minutes, with a quadratic 
curve represented with a dashed black line superimposed.

in the test samples, but almost the same savings can be obtained considering logistic regression, a simpler model. This shows to what 
extent the results can be improved considering the proposed algorithm.

The restricted search is performed as it was required by our collaborator financial entity. POA of 10% and 5% are considered in 
Table 7. The results are parallel to the ones obtained in the unrestricted case. It is worth mentioning the 40.25% of savings achieved 
adjusting to the 10% POA restriction compared to the 47.65% of savings obtained with the best unrestricted approach. In this case, 
the best results are obtained with CSB. Thus, a complex model combined with Algorithm 2-DDR(k) produces satisfactory results, 
thanks to the flexibility of the model to discriminate frauds and the flexibility of Algorithm 2-DDR(k) to detect high-amount frauds. 
Likewise, similar results are obtained considering LightGBM, a complex cost-insensitive model, but with the proposed approach costs 
are taken into account in the decision-making. Nevertheless, taking into account the explainability restriction in the financial context, 
the finally selected model is the logistic regression along with Algorithm 2-DDR(k). Thus the bank can have a model that satisfies the 
interpretability restrains and its own workload limits obtaining a 33% reduction in losses due to fraud.

Undertaking a performance study for the proposed algorithm is fundamental in assessing its viability and practical utility. To 
better understand the effect of the parameter 𝑘 and justify its choice, a sensitivity analysis of 𝑘 is presented. The results obtained for 
the Bank data set are summarized in Fig. 6. Regarding the results in terms of savings, the plots at the left show the results obtained 
over the previous introduced data sets for different values of the parameter 𝑘. The upper-left plot in Fig. 6 shows the direct relation 
between 𝑘 and savings in the train sets. This is due to the additional flexibility, but the performance clearly achieves a “horizontal 
10

asymptote” with all models. In the test set (bottom-left graph in Fig. 6) for the simpler models a larger value of 𝑘 is needed, obtaining 
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Table 5

Mean results summary in the Credit Card data set for the combination of all the approaches introduced throughout the paper.

TRAIN set TEST set

Classifier Threshold Sav Acc Rec F Spec POA Sav Acc Rec F Spec POA

LR

JS -5.43 98.33 88.98 99.15 98.34 1.80 -4.48 98.32 89.25 99.15 98.34 1.81

BF 67.65 99.93 80.91 99.96 99.96 0.18 63.07 99.91 78.49 99.95 99.95 0.18

CM 66.73 99.93 77.96 99.97 99.97 0.16 48.21 99.91 72.04 99.96 99.96 0.16

BMR 68.80 99.86 38.98 99.93 99.96 0.10 65.98 99.85 36.56 99.92 99.95 0.11

2-DDR(25) 70.78 99.88 40.05 99.94 99.98 0.09 67.76 99.87 35.48 99.93 99.97 0.08

2-DDR(50) 71.16 99.88 39.78 99.94 99.98 0.08 66.12 99.86 34.41 99.93 99.97 0.08

2-DDR(100) 73.30 99.86 42.20 99.93 99.96 0.11 63.94 99.83 36.56 99.91 99.93 0.13

WLR

JS 17.55 98.78 87.63 99.38 98.80 1.35 16.91 98.77 88.17 99.38 98.79 1.36

BF 68.35 99.86 81.99 99.93 99.89 0.24 49.09 99.83 79.57 99.92 99.87 0.26

CM 66.86 99.92 72.58 99.96 99.97 0.15 49.00 99.91 67.74 99.95 99.96 0.15

BMR 72.52 99.85 39.78 99.93 99.95 0.11 65.46 99.83 36.56 99.91 99.93 0.13

2-DDR(25) 70.68 99.88 38.17 99.94 99.98 0.08 51.58 99.86 32.26 99.93 99.98 0.08

2-DDR(50) 72.42 99.87 38.71 99.94 99.97 0.09 50.34 99.84 32.26 99.92 99.95 0.10

2-DDR(100) 73.07 99.86 38.98 99.93 99.96 0.11 62.66 99.83 33.33 99.91 99.94 0.12

AB

JS -139.44 95.60 93.82 97.75 95.61 4.54 -116.50 95.72 93.55 97.81 95.73 4.42

BF 64.07 99.93 73.12 99.97 99.98 0.14 55.78 99.92 72.04 99.96 99.96 0.16

CM 62.68 99.92 77.42 99.96 99.95 0.17 55.36 99.92 75.27 99.96 99.96 0.17

BMR 64.34 99.83 41.40 99.92 99.93 0.14 54.01 99.83 41.94 99.92 99.93 0.14

2-DDR(25) 67.54 99.88 39.52 99.94 99.98 0.08 57.63 99.87 39.78 99.93 99.97 0.10

2-DDR(50) 68.25 99.87 40.32 99.93 99.97 0.10 56.14 99.86 39.78 99.93 99.96 0.11

2-DDR(100) 68.44 99.87 40.32 99.94 99.97 0.10 56.22 99.86 39.78 99.93 99.96 0.11

XGB

JS 9.79 98.56 90.86 99.28 98.58 1.57 4.33 98.58 88.17 99.28 98.60 1.54

BF 71.26 99.95 84.95 99.97 99.97 0.17 63.78 99.92 82.80 99.96 99.94 0.19

CM 71.24 99.95 85.22 99.97 99.97 0.17 63.78 99.92 82.80 99.96 99.94 0.19

BMR 74.14 99.84 44.09 99.92 99.94 0.14 63.37 99.81 40.86 99.90 99.91 0.16

2-DDR(25) 74.96 99.90 42.20 99.95 99.99 0.08 64.13 99.87 35.48 99.93 99.98 0.08

2-DDR(50) 76.80 99.89 44.35 99.94 99.98 0.10 63.39 99.86 37.63 99.93 99.96 0.10

2-DDR(100) 76.80 99.89 44.35 99.94 99.98 0.10 65.25 99.86 38.71 99.93 99.96 0.10

LGBM

JS 85.81 99.94 96.77 99.97 99.94 0.22 49.60 99.89 77.42 99.95 99.93 0.20

BF 87.42 99.97 96.51 99.99 99.98 0.18 46.45 99.93 76.34 99.96 99.97 0.16

CM 81.72 99.98 93.82 99.99 99.99 0.17 47.65 99.95 74.19 99.97 99.99 0.13

BMR 89.91 99.90 46.77 99.95 99.99 0.09 54.74 99.87 32.26 99.94 99.99 0.07

2-DDR(25) 90.99 99.91 49.19 99.96 99.99 0.09 50.04 99.88 34.41 99.94 99.99 0.07

2-DDR(50) 90.99 99.91 49.19 99.96 99.99 0.09 49.95 99.88 33.33 99.94 99.99 0.07

2-DDR(100) 91.01 99.91 49.73 99.96 99.99 0.09 50.04 99.88 34.41 99.94 99.99 0.07

CSL

JS -1.28 98.48 85.22 99.23 98.50 1.64 1.94 98.51 86.02 99.25 98.53 1.61

BF 69.40 99.95 79.84 99.97 99.98 0.15 64.94 99.92 76.34 99.96 99.96 0.16

CM 69.23 99.94 80.65 99.97 99.97 0.16 66.48 99.92 77.42 99.96 99.96 0.17

BMR 71.22 99.89 44.09 99.94 99.98 0.09 67.42 99.86 43.01 99.93 99.95 0.12

2-DDR(25) 72.23 99.89 42.47 99.95 99.99 0.08 68.82 99.87 40.86 99.94 99.97 0.10

2-DDR(50) 72.23 99.89 42.47 99.95 99.99 0.08 68.82 99.87 40.86 99.94 99.97 0.10

2-DDR(100) 72.23 99.89 42.47 99.95 99.99 0.08 68.82 99.87 40.86 99.94 99.97 0.10

CSB

JS 32.35 98.96 84.68 99.48 98.98 1.15 34.89 98.89 83.87 99.44 98.92 1.22

BF 91.39 99.89 48.39 99.95 99.98 0.10 62.37 99.86 45.16 99.93 99.95 0.13

CM 92.29 99.91 46.77 99.95 99.99 0.08 62.97 99.88 40.86 99.94 99.97 0.09

BMR 92.31 99.91 46.77 99.95 100.00 0.08 62.76 99.87 40.86 99.94 99.97 0.10

2-DDR(25) 92.36 99.91 46.77 99.95 100.00 0.08 62.89 99.87 34.41 99.94 99.98 0.07

2-DDR(50) 92.36 99.91 46.77 99.95 100.00 0.08 62.97 99.88 34.41 99.94 99.98 0.07

2-DDR(100) 92.36 99.91 46.77 99.95 100.00 0.08 62.97 99.88 34.41 99.94 99.98 0.07

a peak mainly with 𝑘 = 50 with all classifiers. This suggests that a larger value of 𝑘 is not needed to obtain better results, as these 
are limited by the ranking provided by the considered classifier. The right plot in Fig. 6 shows the time (minutes) needed to run 
the algorithm for different values of 𝑘. It can be seen a quadratically correlation between the computational time and 𝑘. As a visual 
check, the curve 0.004𝑥2 −0.798 is represented with a dashed black line. Cost-sensitive classifiers and LightGBM were faster, probably 
due to the good ranking of high-amount frauds offered by these models.

7. Summary and conclusions

This work introduces a new cost-sensitive methodology for fraud detection to reduce aggregated losses, the main concern in any 
business. Algorithm 2-DDR(k) obtains the optimal classification rule given an estimated probability and a cost specification. In addi-
11

tion, it has the added advantage that any POA restriction can be considered. Thus, it can be generalized to any cost-sensitive setting, 
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Table 6

Mean results summary in the Bank data set for the combination of all the approaches introduced throughout the paper.

TRAIN set TEST set

Classifier Threshold Sav Acc Rec F Spec POA Sav Acc Rec F Spec POA

LR

JS 40.33 72.27 68.01 83.81 72.30 27.97 39.56 72.24 66.05 83.79 72.28 27.98

BF 40.59 64.82 74.57 78.44 64.76 35.51 40.27 64.77 74.85 78.39 64.70 35.57

CM 40.26 65.62 73.73 79.12 65.56 34.70 41.19 65.55 74.16 79.06 65.49 34.78

BMR 45.21 74.12 59.36 85.06 74.22 26.01 45.19 74.14 58.98 85.08 74.25 25.98

2-DDR(25) 44.36 72.37 57.53 83.86 72.47 27.73 41.70 72.31 55.85 83.81 72.43 27.77

2-DDR(50) 46.52 73.23 58.14 84.47 73.33 26.88 46.73 73.25 58.17 84.49 73.36 26.86

2-DDR(100) 47.02 73.37 58.81 84.56 73.47 26.75 46.18 73.36 58.63 84.56 73.47 26.75

WLR

JS 40.82 71.49 68.85 83.27 71.50 28.77 40.66 71.51 67.78 83.29 71.54 28.73

BF 40.54 66.73 72.94 79.89 66.69 33.58 40.96 66.71 72.76 79.87 66.66 33.61

CM 40.20 65.42 73.79 78.97 65.37 34.90 41.01 65.33 74.04 78.91 65.27 34.99

BMR 45.50 74.05 59.62 85.02 74.15 26.08 44.51 74.04 59.09 85.01 74.14 26.08

2-DDR(25) 44.11 72.13 57.85 83.69 72.23 27.98 42.91 72.07 56.54 83.65 72.18 28.02

2-DDR(50) 46.49 73.67 57.65 84.76 73.79 26.43 45.72 73.59 56.66 84.70 73.71 26.50

2-DDR(100) 47.21 73.95 58.08 84.95 74.06 26.16 45.51 73.92 57.01 84.93 74.04 26.18

AB

JS 46.09 69.63 73.70 81.96 69.60 30.69 43.46 69.72 70.68 82.03 69.71 30.57

BF 46.14 66.82 75.70 79.99 66.76 33.53 44.14 66.92 73.23 80.06 66.88 33.40

CM 46.21 67.88 74.69 80.75 67.84 32.45 44.50 67.91 72.65 80.77 67.87 32.40

BMR 49.11 74.53 61.71 85.34 74.63 25.62 44.97 74.62 60.95 85.40 74.72 25.53

2-DDR(25) 48.30 72.56 61.51 83.99 72.64 27.59 45.73 72.77 59.79 84.14 72.86 27.36

2-DDR(50) 49.63 74.07 60.93 85.03 74.16 26.08 47.65 74.31 59.33 85.19 74.42 25.82

2-DDR(100) 50.36 75.00 60.38 85.64 75.10 25.14 47.02 75.16 57.71 85.75 75.28 24.94

XGB

JS 48.80 73.27 74.57 84.46 73.26 27.07 42.91 73.15 67.91 84.40 73.19 27.10

BF 48.87 70.64 76.90 82.68 70.60 29.73 42.87 70.50 70.22 82.59 70.50 29.78

CM 48.42 70.54 76.78 82.61 70.49 29.83 43.43 70.12 70.91 82.33 70.12 30.17

BMR 51.33 76.33 64.30 86.51 76.42 23.86 45.70 76.13 58.86 86.38 76.25 23.99

2-DDR(25) 49.46 74.02 63.45 84.99 74.09 26.16 44.84 73.83 60.26 84.87 73.93 26.31

2-DDR(50) 50.55 73.06 63.92 84.35 73.13 27.13 44.76 72.88 59.56 84.23 72.97 27.25

2-DDR(100) 51.75 76.28 62.64 86.47 76.37 23.90 46.29 76.17 59.09 86.41 76.29 23.95

LGBM

JS 52.38 78.07 69.14 87.57 78.13 22.19 45.18 77.84 61.77 87.42 77.95 22.33

BF 52.51 78.92 68.01 88.14 78.99 21.33 44.96 78.72 60.84 88.02 78.84 21.43

CM 48.73 67.99 77.01 80.82 67.93 32.38 42.43 67.71 70.69 80.63 67.69 32.57

BMR 44.36 70.54 63.22 82.64 70.59 29.64 39.82 70.35 56.32 82.52 70.45 29.74

2-DDR(25) 52.61 84.67 57.59 91.66 84.86 15.43 43.54 84.43 47.85 91.53 84.68 15.54

2-DDR(50) 53.11 84.58 56.75 91.60 84.77 15.52 45.35 84.34 46.70 91.47 84.60 15.61

2-DDR(100) 53.61 86.84 55.65 92.92 87.05 13.24 43.93 86.56 44.72 92.77 86.84 13.37

CSL

JS 48.18 71.50 66.74 83.28 71.53 28.73 44.01 71.47 63.84 83.27 71.53 28.71

BF 48.31 71.91 66.10 83.56 71.95 28.31 44.25 71.89 63.26 83.55 71.95 28.29

CM 47.33 70.39 67.32 82.52 70.41 29.85 43.47 70.34 64.77 82.49 70.38 29.86

BMR 47.27 70.69 66.65 82.72 70.72 29.54 43.94 70.66 64.31 82.71 70.71 29.53

2-DDR(25) 48.49 73.92 59.07 84.93 74.03 26.20 44.44 73.98 56.77 84.97 74.10 26.11

2-DDR(50) 48.60 74.19 58.43 85.11 74.30 25.92 44.56 74.23 55.97 85.14 74.36 25.85

2-DDR(100) 48.61 74.20 58.49 85.11 74.31 25.92 44.55 74.23 56.55 85.13 74.35 25.86

CSB

JS 72.62 85.22 75.99 91.97 85.28 15.14 44.63 85.16 50.87 91.95 85.40 14.85

BF 72.64 86.57 73.90 92.75 86.65 13.76 44.68 86.68 47.85 92.83 86.95 13.29

CM 66.80 76.03 82.44 86.29 75.99 24.41 44.61 75.84 65.47 86.19 75.91 24.37

BMR 66.78 77.36 79.80 87.15 77.33 23.05 44.17 77.22 63.15 87.08 77.31 22.97

2-DDR(25) 72.87 86.00 74.57 92.42 86.08 14.34 44.87 86.05 48.67 92.47 86.31 13.93

2-DDR(50) 72.90 86.26 74.28 92.58 86.34 14.07 44.59 86.40 47.97 92.67 86.66 13.57

2-DDR(100) 72.92 86.11 74.43 92.49 86.19 14.22 44.57 86.18 48.32 92.54 86.44 13.80

with potential in other settings as churn prediction, credit risk, medical diagnosis or logistic planning. Regarding the computational 
time, empirical results show that it depends mainly on 𝑘 quadratically, as it controls the search grid size, and not on the sample 
size, which makes this approach suitable for scalability to larger data sets. Moreover, it has been checked empirically that a larger 
value of 𝑘 is not needed to obtain satisfactory and stable results. In fact, using a large 𝑘 can become counterproductive leading to 
overfitting.

Previous thresholding approaches are contained in Algorithm 2-DDR(k) search, so it extends and improves previous thresholding 
approaches, without any need of further estimations. Thus, a consistent improvement was expected. This has been verified with the 
results over two real fraud data sets, summarized in Tables 5 and 6. Although some thresholding approaches outperform the proposed 
methodology in terms of classification, given a classifier they are always beaten by the new proposal in terms of the objective function, 
12

savings in (2). This illustrates the contrast between minimizing costs or classification error during training, indicating that these are 
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Table 7

Mean results summary in the Bank data set considering the 5% and 10% POA restriction for the combination of all the approaches introduced throughout the paper.

TRAIN set (5% POA) TEST set (5% POA)

Classifier Threshold Sav Acc Rec F Spec POA Sav Acc Rec F Spec POA

LR

BF 18.20 94.75 23.34 97.30 95.25 4.88 16.95 94.72 21.78 97.28 95.22 4.90

2-DDR(25) 21.83 95.17 12.80 97.52 95.73 4.33 19.36 95.13 11.35 97.50 95.70 4.35

2-DDR(50) 22.91 94.99 16.40 97.43 95.53 4.55 22.23 95.03 15.88 97.45 95.57 4.51

2-DDR(100) 24.90 94.85 14.66 97.35 95.40 4.67 21.07 94.87 11.93 97.36 95.44 4.61

WLR

BF 18.24 94.77 23.31 97.31 95.26 4.86 16.84 94.74 21.78 97.30 95.25 4.87

2-DDR(25) 21.32 94.80 13.79 97.33 95.36 4.70 20.99 94.82 13.21 97.34 95.38 4.68

2-DDR(50) 25.56 94.60 15.73 97.22 95.14 4.93 22.45 94.60 13.67 97.22 95.15 4.91

2-DDR(100) 26.05 94.75 14.37 97.30 95.31 4.76 23.63 94.75 12.52 97.31 95.32 4.73

AB

BF 20.36 94.79 26.18 97.32 95.27 4.88 19.29 94.84 24.10 97.34 95.32 4.81

2-DDR(25) 24.52 95.33 14.86 97.61 95.88 4.19 22.01 95.40 13.09 97.64 95.96 4.10

2-DDR(50) 26.85 95.00 17.01 97.43 95.54 4.55 24.64 94.99 15.29 97.43 95.54 4.53

2-DDR(100) 28.84 94.64 17.07 97.24 95.17 4.91 26.87 94.62 15.52 97.24 95.17 4.90

XGB

BF 26.60 94.90 33.38 97.38 95.33 4.87 19.13 94.91 26.07 97.39 95.39 4.76

2-DDR(25) 27.66 95.97 15.88 97.94 96.52 3.56 18.76 95.91 10.78 97.91 96.50 3.56

2-DDR(50) 29.05 95.28 15.56 97.58 95.83 4.25 21.66 95.21 11.59 97.55 95.79 4.26

2-DDR(100) 32.04 95.01 18.55 97.44 95.54 4.56 25.74 94.96 14.25 97.41 95.52 4.55

LGBM

BF 33.57 94.95 39.62 97.40 95.33 4.90 18.74 94.77 27.11 97.31 95.24 4.91

2-DDR(25) 35.11 95.74 28.97 97.81 96.19 3.98 22.99 95.61 18.19 97.75 96.14 3.95

2-DDR(50) 38.20 95.02 29.06 97.44 95.48 4.69 25.91 94.81 18.89 97.33 95.33 4.77

2-DDR(100) 40.48 94.85 29.87 97.35 95.29 4.88 29.95 94.62 19.93 97.23 95.14 4.97

CSL

BF 0.00 99.32 0.00 99.66 100.00 0.00 99.31 0.00 99.66 100.00

2-DDR(25) 9.70 95.51 4.33 97.70 96.14 3.86 11.14 95.59 4.87 97.74 96.21 3.80

2-DDR(50) 15.70 94.71 7.40 97.29 95.32 4.70 15.93 94.80 7.30 97.33 95.41 4.61

2-DDR(100) 16.89 94.59 7.87 97.21 95.18 4.84 16.49 94.67 7.65 97.26 95.26 4.76

CSB

BF 42.24 95.67 30.51 97.78 96.12 4.06 21.16 96.11 17.95 98.01 96.65 3.45

2-DDR(25) 48.81 95.11 25.84 97.49 95.58 4.56 27.62 95.64 14.94 97.77 96.19 3.88

2-DDR(50) 50.12 94.94 27.11 97.40 95.41 4.75 29.97 95.45 16.91 97.67 95.99 4.09

2-DDR(100) 51.96 94.76 29.09 97.31 95.22 4.95 30.45 95.27 17.61 97.58 95.81 4.28

TRAIN set (10% POA) TEST set (10% POA)

Classifier Threshold Sav Acc Rec F Spec POA Sav Acc Rec F Spec POA

LR

BF 28.82 90.07 39.97 94.76 90.41 9.80 27.72 90.11 38.36 94.78 90.46 9.73

2-DDR(25) 30.46 91.15 19.39 95.36 91.65 8.43 30.23 91.14 18.54 95.35 91.64 8.43

2-DDR(50) 32.59 90.04 21.45 94.75 90.52 9.57 27.63 89.99 17.85 94.73 90.49 9.57

2-DDR(100) 33.85 90.55 23.92 95.03 91.01 9.09 32.93 90.64 22.83 95.09 91.11 8.99

WLR

BF 28.67 89.93 39.97 94.69 90.28 9.93 27.89 89.98 38.70 94.71 90.33 9.87

2-DDR(25) 29.73 91.72 18.78 95.67 92.22 7.85 30.32 91.75 18.19 95.69 92.25 7.82

2-DDR(50) 32.53 90.00 21.36 94.73 90.47 9.61 27.90 89.97 18.08 94.71 90.47 9.59

2-DDR(100) 33.31 90.16 22.90 94.82 90.62 9.47 29.01 90.15 19.81 94.81 90.63 9.44

AB

BF 31.03 90.10 39.71 94.78 90.44 9.76 28.06 90.13 36.73 94.79 90.50 9.69

2-DDR(25) 33.68 91.35 21.71 95.47 91.82 8.27 32.84 91.43 20.74 95.51 91.91 8.17

2-DDR(50) 38.66 89.93 27.72 94.69 90.36 9.77 37.13 89.97 25.60 94.71 90.41 9.70

2-DDR(100) 38.89 89.99 26.18 94.72 90.43 9.68 35.06 89.99 23.52 94.72 90.44 9.65

XGB

BF 35.51 90.31 46.13 94.89 90.62 9.64 26.65 90.30 37.65 94.89 90.66 9.53

2-DDR(25) 37.48 90.35 24.59 94.92 90.81 9.30 32.79 90.38 21.67 94.94 90.85 9.24

2-DDR(50) 40.09 90.23 27.02 94.85 90.66 9.46 31.71 90.29 21.79 94.89 90.76 9.33

2-DDR(100) 42.71 89.86 29.67 94.65 90.27 9.86 34.25 89.91 24.22 94.68 90.36 9.74

LGBM

BF 44.74 90.17 52.10 94.81 90.43 9.86 33.05 89.99 41.83 94.71 90.32 9.90

2-DDR(25) 44.20 92.57 35.99 96.13 92.97 7.23 33.17 92.43 26.54 96.06 92.89 7.24

2-DDR(50) 47.79 90.89 39.27 95.21 91.24 8.97 38.71 90.71 30.13 95.11 91.13 9.02

2-DDR(100) 50.39 90.03 43.25 94.74 90.35 9.88 40.16 89.80 33.60 94.61 90.19 9.97

CSL

BF 0.00 99.32 0.00 99.66 100.00 0.00 99.31 0.00 99.66 100.00

2-DDR(25) 28.54 91.04 16.46 95.30 91.55 8.50 25.63 91.08 14.83 95.32 91.60 8.44

2-DDR(50) 30.19 90.12 18.43 94.80 90.61 9.45 27.84 90.15 16.92 94.81 90.65 9.40

2-DDR(100) 31.72 89.81 19.39 94.62 90.29 9.77 28.19 89.83 17.38 94.64 90.33 9.72

CSB

BF 66.67 90.45 59.51 94.96 90.66 9.68 38.39 90.97 37.42 95.26 91.33 8.86

2-DDR(25) 66.11 90.24 49.20 94.85 90.52 9.75 39.53 90.44 29.89 94.97 90.86 9.29

2-DDR(50) 67.36 90.21 51.35 94.83 90.48 9.81 39.68 90.48 31.16 94.99 90.89 9.27
13

2-DDR(100) 67.80 90.06 52.16 94.75 90.32 9.97 40.25 90.28 31.86 94.87 90.68 9.48
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two different objectives. For each data set a different classifier was selected. Given the no-free-lunch theorem, there is never an 
overall winner and some experimentation will always be required to optimize performance.

Further extensions can be considered. More dimensions could be introduced, as an extra default probability dimension to optimize 
the credit admission strategy globally. More complex loss functions could be introduced as well. These are just some examples of 
possible extensions that can be made from the flexibility offered by the proposed method, which has shown a satisfactory performance 
in amount-dependent problems.
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