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ARTICLE INFO ABSTRACT
Keywords: Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality used to evaluate
Central serous chorioretinopathy the retinal microvasculature. Recent advances in OCTA allows to visualize the blood flow within the
Evolutionary neural networks choriocapillaris region, where a granular image is obtained showing a pattern of small dark regions, called

Flow voids

Multi.tareet flow voids (FVs). Given its relevance, numerous clinical studies have linked the changes in FVs distribution to
ulti-targe:

multiple diseases. The granular structure of these images makes accurate labeling and segmentation difficult,
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which can be overcome by using a multi-target perspective. However, manually designing a neural architecture

that can accurately predict all targets in a balanced way is a major challenge. In this work, we propose a
novel methodology based on evolutionary multi-target optimized networks that, through a set of evolutionary
operators, traverses a search space of architectures in a deep but efficient way. This methodology allows us to
discover efficient and accurate multi-target architectures tailored to our problem, but which are also adaptable
to other tasks due to their robustness. To validate and analyze our methodology and the discovered network
model, we performed extensive experimentation with cases from a real clinical study, achieving better results
than the state of the art and manually designed architectures.

1. Introduction

In recent years, computer-aided diagnosis (CAD) systems have be-
come very popular as auxiliary tools in the clinical field. These systems
increase the robustness of diagnosis of different pathologies and can be
applied in different medical imaging modalities widely used in clinical
practice routine such as optical coherence tomography (OCT) [1] or
optical coherence tomography angiography (OCTA) [2,3]. Specifically,
OCTA is a non-invasive imaging modality that uses the time-varying
signal intensity of OCT scans to generate images of the ocular vessels.
Traditionally, this imaging modality has been used to visualize the
blood flow in the upper layers of the retina, but recent advances in
imaging devices have made it possible to image blood flow deeper in
the choroid (CC), obtaining new information about choroidal physi-
ology. These CC OCTA images extracted at the level of the choroid
present a granular appearance with bright regions representing areas
with blood flow and dark regions where there is no flow, called flow
voids (FVs) [4,5].

The quantification and visualization of changes in the distribution of
these FVs has recently become an area of great interest to the scientific
community, as numerous clinical studies have linked these changes to
the onset and progression of multiple ocular diseases [6-8], such as
diabetic retinopathy, glaucoma or age-related macular degeneration.
Therefore the particularities of OCTA images are critical in exploring
clinically significant features that are paramount in understanding
various ophthalmic conditions and exist the potential to use these
changes in FVs distribution as a biomarker to monitor the progression
of different pathologies. An example of these monitoring capabilities
can be seen during photodynamic therapy treatment applied to patients
suffering from central serous chorioretinopathy (CSC). The efficacy of
this treatment is highly variable between patients, so it is essential to
monitor the patient over the time. In clinical practice routines, this
involves a long and extremely tedious process, in which clinical experts
perform a careful visual inspection where they characterize changes in
the distribution of the FVs. This process is prone to errors, so it is of
great interest to have a system that allows to quantify changes in the
FVs distribution in a repeatable and fully automatic way, in order to
increase the accuracy and robustness of the process, while lightening
the workload of the clinical staff and, therefore, the costs of health
services [9,10]. The problem is that, due to the characteristics that
constitute the CC OCTA imaging, it is not easy to create a methodology
that allows an accurate analysis of changes in the distribution of the
FVs. CC OCTA images present distinctive challenges setting them apart
from typical images in general semantic segmentation. These images
often manifest intricate local deformations and diffuse edges, deviating
from the more structured boundaries prevalent in general datasets.
Furthermore, in contrast to other imaging modalities such as computed
tomography or magnetic resonance imaging, well-defined anatomical
structures cannot be observed in CC OCTA imaging because the vessels
present at this depth of the eye are too small to be observable. This
causes in the images to acquire a grainy appearance with a complex
and very rough texture, which makes it very difficult to perform an
accurate segmentation of the FVs and, therefore, prevents an adequate
patient monitoring.

2. Related work

At present, due to both the novelty and the drawbacks of working
with this imaging modality, there are only a few studies focused on
the segmentation and quantification of the FVs in CC OCTA imaging.
These works are mostly semi-automated auxiliary methodologies used
in clinical studies, or classical approaches used in other domains that
do not take into account the specific problems of CC OCTA imaging.
Moreover, there are no works on segmentation and quantification of the
FVs in CC OCTA images based on deep learning, although it is the state
of the art approach in general segmentation. For reference, in Sugano el
al. [11] a morphometric analysis of choriocapillaris is performed using
a semi-automated system called AngioTool [12], which was validated
using images of explants, brains and retinas. A clinical study on the
behavior of blood flow under the reticular pseudodrusen was presented
in Alten et al. [13]. As a method to segment the FVs, the authors used
a thresholding that sets the threshold value using the mean pixel value
in the outer retinal layer as reference. In Al-Sheikh et al. [14], the
authors used the classical Otsu global thresholding method to obtain
the measurement of FVs in OCTA CC images obtained from healthy
patients. Also, a method of segmentation of FVs based on local contrast
adjustment followed by global thresholding was proposed in Lépez-
Varela et al. [15]. Finally, Phansalkar’s local thresholding method [16]
is the standard method commonly used in ophthalmic research studies
related to the quantification of FVs [17-19]. This method was first
introduced to segment cell nuclei in cytologic and histologic images.
Although it works better than a global approach, this local approach
may overestimate the amount of FVs in the image by labeling pixels as
FVs that are not FVs in local areas with high values.

Furthermore, as previously mentioned, to the best of our knowl-
edge, there are no state-of-the-art proposals based on deep learning to
automatically segment and quantify FVs in CC OCTA images. Neural
networks have given great results for similar tasks in other medi-
cal imaging modalities [20-22], so there is a great potential use for
this quantification. The problem with this approach, consists in the
difficulty of obtaining a ground truth that can be used to train this
type of networks, since the CC OCTA image presents a very granular
structure with multiple and diffuse FVs. One way to solve this is to
use a multi-target perspective that allows the training of the network
using several different targets that are easier to label, which strengthens
the generalization capability of the network and allows performing the
quantification task in an optimal and robust way. While this multi-
target perspective can strengthen the robustness and accuracy of the
network, it also destabilizes its training, due to the difficulty of es-
tablishing an appropriate balance between the multiple targets. This
destabilization can greatly affect the accuracy of the model, losing
efficiency in solving the different tasks and thus the positive effects
produced by the multi-target perspective. Therefore, to avoid this effect
and get the most out of the multi-target perspective, the network archi-
tecture used must be able to predict all targets equally. This maximizes
the accuracy and robustness of the model and makes it more adaptable
to solve any other type of task. Unfortunately, achieving this type of
architecture is a major challenge. This is because the manual design of
network architectures of this type, with excellent performance, usually
requires a large amount of domain knowledge and a lot of development
time. To avoid this enormous expenditure of time and resources, what
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Fig. 1. Graphical representation of the different work categories in the state of the art, along with an example of ideal search.

is known as neural architecture search (NAS) has recently emerged as
a subarea of automatic machine learning [23].

NAS represents a groundbreaking approach in enhancing the effi-
ciency and effectiveness of deep learning networks. The process in-
volves automating the manual tuning of neural networks, leading to the
discovery of more intricate architectures. Reinforcement learning [24]
and evolutionary algorithms [25] have been pivotal in addressing this
challenge, showcasing superior performance in diverse applications
such as image classification [26], object detection [27], and more
recently in semantic segmentation [28]. So this technique presents the
potential to improve the effectiveness of deep learning in a wide variety
of applications in different imaging modalities. However, despite the
success of NAS, several limitations persist, primarily stemming from
the delicate balance required between exploring different architectures
and exploiting their benefits. In a general sense, based on the depth
of the search space, utility, and complexity of the addressed problems,
we can categorize the works in the state of the art into three general
categories: Architecture Compression, Cell Level or Block Level Search,
and Network Level Search. In Fig. 1, a graphical representation of these
three categories, along with an ideal search is shown:

+ Architecture Compression: This category focuses on optimizing
a predetermined architecture by reducing parameters [29,30],
frequently by minimizing the number of filters in each convo-
lutional layer. This approach utilizes a manually crafted single
architecture, resulting in the smallest search space, limited utility,
and lower difficulty.

Cell Level Search: Building upon architecture compression, cell-
level search involves altering the internal configuration of each
block within a predetermined network structure [26,31-33].
While maintaining a constant external architecture, this approach
expands the search space by modifying components at the cell

or block level. Some works aim to find an optimal block config-
uration for the entire network [34,35], often reusing the same
block, while more complex approaches optimize the internal
configuration of each block individually [36]. Some works also
employ multi-objective perspectives that enhance the learning of
each task [37]. However, a significant limitation arises from the
reliance on hand-designed architectures, restricting the outcomes
to optimized versions rather than entirely new architectures.
Network Level Search: Similar to the previous category,
network-level search optimizes individual blocks while introduc-
ing changes to the external configuration of the architecture,
overcoming limitations by expanding the search space [38,39].
However, this approach encounters challenges specific to seg-
mentation tasks, where output dimensions must match input
dimensions. To address this, methodologies in this category im-
pose constraints such as a fixed number of blocks or a single
branch of sequential blocks. Unfortunately, these constraints limit
the incorporation of essential segmentation paradigms, such as
skip-connections and multiscale features. Additionally, works in
this category typically lack multi-target approaches, which are
crucial for reinforcing and enhancing predictions.

All these approaches, while improving efficiency, often result in
limited exploration, hindering the exploitation of the algorithm. In ad-
dition, the evolutionary approaches often suffer from early stagnation
at a local minimum during the first few generations, as the population
of networks converges to a single type of architecture that delivers
the best results for that generation. To tackle this, a methodology
maintaining population diversity while selecting optimal individuals
becomes crucial for evolving network architectures effectively. Besides,
existing NAS approaches tend to optimize architectures for specific
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tasks, limiting their reusability across different tasks or imaging modal-
ities. The adoption of a multi-target perspective emerges as a promising
solution, enabling networks to encode more general knowledge and
enhancing adaptability.

The ideal NAS would transcend current limitations by expanding
the search space to create parallel branches, enabling the utilization
of multiscale features. Each network block should have the ability to
connect with various different blocks, and the number of blocks should
be variable for optimal network usage. Crucially, the ideal architectures
should embrace a multi-target approach, fostering adaptability and
robustness across diverse tasks and imaging modalities [40].

3. Contributions

Considering the potential of FVs as a biomarker, the potential of ar-
chitectural search and multi-target perspective, and the significant gap
in the literature, in this work we propose a fully automatic methodology
based on deep learning capable of robustly segmenting and quantifying
FVs in CC OCTA images, which allows us to follow the progression
of different pathologies accurately. For this purpose, an evolutionary
dynamic algorithm was used to search for multi-target architectures to
obtain three clinically relevant FV-associated biomarkers: (i) a location
mask that indicates where the largest amounts of FVs accumulate,
(ii) a segmentation mask that represents the pixel-wise classification,
and (iii) a regression showing the total area of FVs per image. To
obtain a suitable architecture, capable of carrying out these objectives
accurately, we present an evolutionary algorithm, which through a set
of evolutionary operators, allows us to find the optimal network archi-
tecture. Our evolutionary algorithm allows us to traverse the search
space in a deep but efficient manner, allowing the convergence of
the population of architectures without sacrificing exploration capacity
by keeping the genetic variability of the population high. Diverging
from the current state of the art, our approach significantly broadens
the search space, facilitating the generation of parallel branches to
harness multi-scale features. Every block within the network possesses
the capability to connect with diverse blocks, and the architectural
flexibility is enhanced by a variable number of blocks, promoting the
development of more efficient networks. To maintain the diversity of
architectures and avoid collapse, instead of selecting the best individ-
uals from our population, we propose to classify our population into
groups and select the best individuals from each group. For this, we
extract a representative feature vector from each architecture using
a graph encoder network and apply a clustering algorithm to classify
these vectors. In contrast to generalist architectures that are designed
manually for a single specific task, the architectures found by our
evolutionary algorithm are specifically optimized to solve the different
objectives as a whole in a precise way. The use of this multi-target
perspective results in the selection of architectures with a higher gener-
alization capability that produce more robust and accurate predictions
in images with complex characteristics such as those of our problem.
Besides, these features make the architectures more adaptable to other
tasks as well as other imaging modalities gaining reusability. Last, when
only one of the objectives needs to be achieved, these architectures
can be subjected to a pruning process, which makes these networks
more efficient too. To validate and analyze the proposed approaches,
we performed extensive experimentation with cases from a real clinical
study of patients affected by chronic CSC, demonstrating great potential
for use in real clinical applications. Through an in-depth analysis of
these images, our study contributes valuable insights to the continuous
research efforts within this domain.

4. Materials
4.1. Dataset

In this work, we use a dataset consisting of a total of 620 CC OCTA
(1024 x 1024 pixels) images acquired from the eyes of 10 healthy

Applied Soft Computing 153 (2024) 111304

subjects (20 eyes) and from the pathological and contralateral eyes of
52 patients (104 eyes) affected by chronic CSC. These images were
acquired during photodynamic therapy treatment of patients affected
by chronic CSC during 5 different time instants corresponding to pre-
treatment, 2 to 4 days after treatment, 1 month after treatment, 3
months after treatment, and 6 months after treatment. The acquisition
of these images during the various post-treatment reviews of the pa-
tients enables precise follow-up of the evolution of the patients as it
is done in the real clinical environment. This allows to validate our
proposals in a very effective and realistic way, observing their useful-
ness in routine medical monitoring cases. This dataset was obtained
with the Zeiss Plex Elite capture device, using a central wavelength
between 1040 nm and 1060 nm with an axial resolution of 6,3 pm, a
transverse resolution of 20 pm and a scanning speed of 100,000 A-scans
per second. This device uses SS-OCT technology and only images of
sufficient quality, as determined by a signal quality >7, were accepted.
In addition, a 6 X6 mm scan centered in the macula was performed and
based on the default settings of the OCTA software device, the CC slab
extends 29 to 49 pm below the RPE layer. The projection elimination
algorithm of the device software was applied to all the images in order
to eliminate false positives caused by deformations of the upper retinal
layers. In addition, regarding the criteria for inclusion and exclusion of
patients:

+ Inclusion criteria: Persistent central serous chorioretinopathy
with persistent subretinal fluid at or near the fovea (<500 pm) for
at least 3 months without any previous treatments in the last 6
months. Patients had to be susceptible to undergo a standardized
photodynamic therapy with a spot laser size of 4000 + 500 pm.
Exclusion criteria: Previous eye surgery, another maculopathy,
active treatment with steroids, pregnancy, poor image quality due
to motion artifacts or abundant vitreous floaters, and the presence
of choroidal neovascularization.

The patients underwent a complete ophthalmologic examination
including best corrected visual acuity (BCVA) using the Early Treatment
Diabetic Retinopathy Study (ETDRS) scale, slit lamp biomicroscopy and
posterior segment ophthalmoscopy. The age, gender and axial length
(AL) (IOL master 700; Carl Zeiss Jena, Germany) were also recorded.
The age of the patients enrolled in the study ranged from 30 to 60 years.
31 of the 52 patients were men and 21 were women. All explorations
were performed within the same time frame (between 9:00 am and
14:00 pm) to avoid diurnal variations of the choroidal structures.
Written informed consent was obtained from each participant and the
study protocol adhered to the principles of the Declaration of Helsinki
and was approved by the Ethics Committee of the Hospital Clinico San
Carlos of Madrid.

This set of images was labeled in three different ways in order
to train, improve and validate our networks. On the one hand, the
methodology defined in [15] was used to extract a preliminary FVs
mask. This is used because it is not feasible to mark these zones manu-
ally. Once extracted, an expert manually corrected small defects in the
mask such as portions of the optic disc detected as FVs. On the other
hand, the expert labeled each image creating a partial segmentation
mask where the areas with a greater number of FVs are marked in
an approximate manner. This mask is not only used for training, but
also to provide the expert with a quick visualization of the area to
be evaluated. Finally, the total area of FVs was extracted from the
mask and a logarithm was applied to normalize its scale to a smaller
range of values. In Fig. 2, an example of a CC OCTA image with its
two associated segmentation masks can be seen. In addition to these
labelings and in order to verify that our methodology is able to extract
the FVs in a robust and accurate manner, each patient was labeled in a
binary manner (recovered, not recovered) based on the efficacy of the
photodynamic therapy applied. This efficacy is based on several factors
involving the patient recovery over the next 3 months with the main
factor being the reabsorption of persistent subretinal fluid.
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Partial Mask

Fig. 2. CC OCTA image example with two labeled segmentation masks.

Table 1
Specifications of the equipment that was used during this work.
Name Description
(e} Ubuntu 20.04.1 LTS (Focal Fossa)
Kernel Linux 5.4.0-81-generic
Architecture x86-64
CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz
GPU NVIDIA Corporation Tesla M60
Driver version 460.91.03
CUDA version 11.2

4.2. Software and hardware resources

Regarding the software resources, Python 3.9.5 with PyTorch 1.9.1,
PyTorch Geometric [41] and CUDA v.11.2 were used for the imple-
mentation of the proposed methodology. OpenCV (4.5.3) [42], scikit-
learn [43] and Numpy (1.20.3) were used to perform image processing
operations. We also adapted a UNet [44] architecture with a DenseNet-
169 encoder pre-trained on the ImageNet, adding a branch to perform
the regression of the total area of FVs per image. We chose UNet as
a baseline for our comparative analysis, recognizing its pivotal role in
medical image segmentation. In addition, we used the Auto-Deep [39]
and ESEI [37] methodologies for a broader perspective. In the case of
ESEI, we replace the classification block with a block to perform the
regression. While UNet offers a comparison with a fundamental convo-
lutional model, these additional models provide contrast against other
advanced NAS methodologies. Furthermore, we also used the Tran-
sUNet model [45] into our analysis. Regarding hardware resources, we
include in Table 1 the full disclosure of the components used.

5. Methodology

In this section, we describe all the methodological details of our
proposal for the segmentation and quantification of FVs. To accomplish
this, we propose to use convolutional network architectures composed
of a set of blocks based on the inverted residuals [46], which we
create using an evolutionary algorithm. This evolutionary algorithm
creates and improves the initial architectures generated through a set of
evolutionary operators, while preserving the diversity of the population
of architectures using a graph embedding network and a clustering
algorithm. In addition to the segmented FVs, these networks give us the
areas where the largest numbers of FVs accumulate, allowing us to find
at a glance the main affected areas. These networks also give us a direct
estimation of the total area of FVs in the image. This estimation allows
us by pruning the network to calculate very efficiently these values
without having to use the segmentation masks. In Fig. 3, a diagram
of our methodology can be seen where the three outputs of a neural
network created by our evolutionary algorithm are shown.

5.1. Network architectures

In this work, we use two different types of neural networks: (i)
a Population of Evolutionary Networks and (ii) a Graph Network. In
Fig. 4, a scheme with the main elements and parts of the two types of
networks is shown. The Population of Evolutionary Networks comprise
a broad set of architectures initialized randomly. These architectures
evolve generation by generation, with the purpose of predicting various
objectives, the two segmentation masks and the estimation of the num-
ber of flow voids. All architectures in the population are represented
as a directed graph that does not form closed loops and consist of
three elements: base nodes, special node 1, and special node 2. Each
architecture may have a different number of base nodes, and these
nodes can be connected in various ways, as long as no closed loops
are formed, and the final resolution reaching special node 1 matches
the resolution of the input image. These characteristics ensure a wide
search space at the network level. All the base nodes of the networks are
formed by a common layer block, which is a derivation of the inverted
residuals [46], a type of block that allows to extract the features of the
images in a precise and efficient way. This block is represented by a
vector of seven base features that define and provide adaptability to
the block structure. These features include:

Number of filters: The number of filters used in the last convo-
lutional layer of the block and thus the number of feature maps
coming out of the block. The range can be from 12 to 1024.
Pooling layer: Defines whether a pooling layer is used at the
beginning of the block to reduce the input size by half or not.
The options for the pooling layer are MaxPool and AvgPool.
Expansion Level: Defines the level of expansion that is performed
to the feature maps within the block at the initial 1 x 1 convo-
lution. If it is set to one it does not expand, if it is set to two
the number of features expands to double and then shrinks to the
original size in the final convolution.

Squeeze and Excitation block: Defines whether a Squeeze and
Excitation block is used or not.

Final nonlinear layer: Defines which type of nonlinear layer is
used before the block output. It can be ReLU, SiLU, Tanh, Mish.
Normalization layer: Defines which normalization layer is used
in the block. It can be BatchNorm or InstanceNorm.

Dilation level: Defines the dilation level of the 3 x 3 convolu-
tional layer of the block. It can be 1, 2 or 4.

Fig. 4 illustrates a representative example of one of the population
architectures consisting of 19 base nodes. Each node shows a darker
blue color the more downsampled its input features are compared to
the original image resolution. The initial node is marked in green with
a zero, where the input image first passes through. The output of this
node (or block of layers) is connected to nodes 1, 2, 3, and so on, until
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Fig. 3. Diagram of our methodology showing the three outputs of a network architecture created by our evolutionary algorithm.

reaching the output of the network composed of the two final special
nodes. Each of the 19 base nodes forming the network is unique and
consists of a series of consecutive layers created based on the features
of the node. For example, node 3 may have 60 filters, no pooling layer,
and use InstanceNorm as the normalization layer, while node 11 may
have 245 filters, a MaxPooling layer, and use BatchNorm. This ensures
a broad search space at the block level. There are certain nodes, such as
node 8, which may have several parent nodes and therefore may have
several inputs. In these cases, if the feature maps are of different sizes,
we upsample to the size of the largest one and concatenate the feature
maps to form a single input. The two special end nodes are connected
to a series of layers that produce the outputs of the network. On the
one hand, special node 1 (end1) is connected to a 1 x 1 convolutional
layer followed by a sigmoid that gives rise to the two segmentation
maps. On the other hand, special node 2 (end2) consists of an adaptive
MaxPool layer that reduces the size to 256, a 1 x 1 convolutional layer
that reduces the feature maps to one and a linear layer that outputs the
final numerical value of the estimated FVs (total area of FVs).

In addition, we also use a graph network with a complementary
function during the evolutionary process. The role of this network is to
convert the graph representing each of the networks in our population
into a feature vector. These feature vectors represent more compactly
each architecture and allow us to perform clustering to group the
population based on their similarity. This is crucial in the selection
process, as it enables us to select the best individuals within the most
diverse groups. If, instead, we only select the best individuals from
the total population, we would quickly fall into a local minimum, as
the lack of diversity in structures and node types would often lead to
too similar structures. Therefore, it is necessary to use this network to

promote diversity within the population. This network accepts as input
the set of nodes and edges that form a graph and is formed by a set
of graphical attention layers that encode the information of each node
based on its nearby nodes. First, the network has two continuous blocks
of a graph attention layer followed by a ReLU. Next, comes another
graphical attention layer but this time followed by an Average Pooling
that reduces and conjugates the number of nodes. Finally we have a
linear function that encodes the final feature vector.

5.2. Evolution of neural architectures

In this section, we show how our evolutionary dynamic multi-
target algorithm works. This algorithm is repeated in a loop for a
given number of generations to improve the set of neural architectures
(graphs) that form the population and can be divided into three basic
operations defined as; initialization (generation of new individuals),
selection and mutation. In addition, there is a special operation called
pruning that although it is not part of the cycle, it can be applied to
our final optimized architectures. In Fig. 5, a comprehensive diagram
illustrating the completion of a generation is presented. Each of the
basic operations is detailed in the following subsections, but a basic
overview of the initialization, selection, and mutation processes can be
gleaned from Fig. 6.

5.2.1. Initialization

We start our networks in such a way that they can have multiple
branches connected in any way, as long as they have no loops or
unconnected nodes. This ensures a wide search space without major
restrictions that limit the potential of the architectures that are found.
To create each of these networks there are two main steps, the creation
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Fig. 4. Diagram showing the main elements and parts of the two types of networks used: evolutionary networks and graph encoder.

of the network, and the specification of the feature vector of each of
the base nodes. For the creation of the network, we use a three-step
sequence. The first step consists of creating a single branch which we
call trunk. For this, we add sequentially and with a given probability
nodes to the network until we add the final node 1. Since the final node
1 predicts the segmentation maps, we avoid the nodes that compose
the trunk to have a pooling layer. In the second step, we create
new branches that can have pooling layers and therefore can perform
convolutions and other operations much more efficiently. This allows
the branches to be much deeper, to use many more filters and to obtain
image features at different scales. To do this, with a given probability,
we create the source nodes of these new branches as children of the
base nodes in the trunk. Then, with another given probability, we
expand these new branches sequentially and we attach them to a non

ancestor random node. We repeat this cycle recursively, and each time
the depth is reduced, we decrease the probabilities of creating and
expanding new branches, to avoid infinite graphs. In the third step,
once we have created the entire network with end node 1, we add the
rest of the special end nodes by joining them to a random base node. At
the end of this process we have a graph representing our network where
each base node is a block of layers. To finish the creation of our archi-
tecture, we establish for each of the base nodes the seven characteristics
that compose the block (number of filters, pooling, etc.). All the char-
acteristics are set randomly except the number of filters. To optimize
the initiation of the number of filters, we sample the number of filters
from all network nodes of a specific distribution and sort them by node
depth (pooling level) and order of occurrence. A network architecture
created following this initiation methodology is shown in Fig. 7.
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graph network, and the resulting vectors are grouped using a clustering algorithm. The obtained metrics are then used to select the best architectures from each group, and these

are mutated to form the population of the next generation.

5.2.2. Selection process

Once the population is created, the process of training the different
architectures begins. All the networks in the population are trained
using the same configuration and a final test metric is obtained for each
architecture. This final test metric is the fitness function Eq. (1), being
ultimately used to select individuals for the next generation. In our case
our three objectives present a similar range of values, therefore a sum
of the three objectives is used and can be represented as:

=X +X,+ X3 (€))

where X, is the value obtained for the FVs accumulation segmenta-
tion metric, X, is the value obtained for the pixel-wise segmentation
metric, and X; is the regression value obtained of the area of the FVs
metric. Next, instead of performing the selection of the best performing
individuals, we perform a clustering of the population, grouping the
different neural architectures based on their similarity. This allows
us to select the best individuals from each cluster by evolving the
population while maintaining diversity, which allows us to traverse
the search space efficiently. To do this, we first pass all the graphs
that compose the population through our graph network (clustering
encoder) which transforms each graph into a feature vector that rep-
resents more compactly the structure, composition and shape of each
architecture. Then, we perform a clustering of these vectors with which
we subgroup our population into several groups and we select the best
performing individuals within each group. This results in the popula-
tion converging over the generations to a set of different individuals
that are very effective at solving the different objectives set, preventing
the population from converging to a single local minimum.

5.2.3. Mutation process

In this step, we generate the next generation of architectures by
mutating the set of individuals within each group. In this work, we use
four basic evolutionary operators that we define as node deletion, node
addition, edge change and node features change. This set of operations
allows the different architectures of our population to mutate into new
variants with their own characteristics, although similar to their close
predecessors, gradually evolving the population until the convergence
of multiple architectures capable of effectively solving the different
objectives. Each of these operations are applied with a given probability
to each of the base nodes of the network and are defined as:

Node deletion: The node is deleted and its parents are randomly
reconnected to its direct descendants. If there is any uncon-
nected direct descendant, it is randomly connected upwards to
a non-descendant node.

Node creation: A new child node is created for the selected node.
With a 50% probability this new child node is connected to any
other random node that is not its ancestor, otherwise this new
child node is connected as an intermediate node to some of the
child nodes of the selected node (changing parent—child to parent-
intermediate-child).

Edge change: The edges of the node are changed. The node
randomly adds new links to other nodes that become its children
and removes links from its current children that are reconnected
to other random nodes that are not its descendants.

Change of node features: Several node characteristics are ran-
domly changed. In the case of the number of filters, the number is
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Fig. 6. Basic overview illustrating the functioning of the initialization, selection, and mutation operations of the genetic algorithm.

increased or decreased based on a percentage of change sampled
from a specific distribution. For example, if there are 100 filters in
the node and the percentage is 0.4, the node will have 140 filters.

5.2.4. Pruning

Pruning is a special operation that we can apply to any of our
architectures since they are built as a graph. Within the different
architectures of our population, several output nodes have multiple
base nodes in common that provide robustness and stability when
encoding the input image information, but there are also nodes that
are only used in one of the outputs. In cases where we only want to
obtain one of the network outputs, such as when a doctor only needs a
numerical biomarker and not a visualization of the segmentation, our
architectures allow us to prune the nodes that are not necessary. This
greatly reduces the time and number of calculations required, making
the use of our networks much more efficient. In Fig. 8, we can observe

a network architecture of our population before and after being pruned
to obtain only the total area of FVs.

5.3. Evolution and training details

Before entering the cyclic phase of our evolutionary algorithm, we
initialized the population of neural architectures. For the creation of
each architecture we used 0.3, 0.4 and 0.6 as probabilities of trunk
expansion, creation of new branches and expansion of new branches.
These probability values that we achieved in a previous experiment
allow us to generate networks with small trunks and very large and
diverse branches, thus initializing the population to a set of efficient
and effective architectures. The probabilities of expansion and creation
of new branches decreased by half each time that we descend one
unit of depth to avoid infinite recursion. This also brings the initial
population closer to more optimal structures by avoiding inefficient
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Fig. 7. Example of a network architecture created following the initialization methodology.

networks that are too small or too large. The number of node filters
for each architecture was obtained by sampling a random continuous
gamma variable set using a probability density function (2), which can
be represented as follows:

1,-x

x% e

f(x,a) = 2
y(a@)

where y(a) refers to the gamma function. When « is an integer, y

reduces to the Erlang distribution, and when a = 1 to the exponential

distribution which promotes the existence of an important percentage
of nodes with a relatively low number of filters. We set a to be 1.2
and limit the minimum and maximum of the value to between 12
and 1024 filters. Thus, we obtain a total of 100 distinct architectures
that compose our population. We set 10 as the number of clusters and
cluster the architectures using the K-Means algorithm and the feature
vector extracted by our graph encoder. Our graph encoder was trained
previously using three architectures in each batch as input. Basically
two random architectures are created using our initialization algorithm
and one of them is mutated. After the network encodes the three feature

10

vectors, we implement a process that encourages similarity between
the feature vectors of the source and mutated architecture. Simultane-
ously, we ensure that these vectors are distinctly differentiated from
the feature vector of the remaining architecture. For this purpose the
TripletMarginLoss (3) was used as loss function in the training of the
model.

L(a, p,n) = max(d(a;, p;) — d(a;, n;) + margin, 0) 3

where a,p,n represent an anchor vector, a positive example and a
negative example, and d represents the euclidean distance. As an
optimizer for this training we used Adam and set an initial learning
rate of 0.001 that decreases exponentially at each epoch using a gamma
equal to 0.90. On the other hand, our population of 100 networks was
trained at each evolution cycle using the same training configuration.
Our dataset was divided into training (50%), validation (25%) and test
(25%). In this case in each cycle we use the training and validation to
obtain the metrics to select the architectures while reserving the test
for the final evaluation. Each architecture was trained a total of 60
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Fig. 8. Network architecture of our population before and after being pruned.

epochs and a batch size of 1. In addition, a data augmentation process
was used in which the images were flipped vertically and horizontally
and 256 x 256 crops were performed. This set of parameters was used
in order to speed up the training of each network to make the costly
evolution process more efficient. As loss function, a combination of two
losses was used, the Dice loss defined in (4) for the segmentations,
where X represents the prediction region and Y the ground truth region,
and the MSE loss defined in (5) for the regression, where m and n
are the number of rows and columns in the cover image. To combine
the losses of each target in a balanced way we used the methodology
described in [47] letting the model learn how to balance each specific
loss as given in the total loss (L) defined in (6), where w, and w, are
learnable parameters. These parameters update their values using the
gradient which reduces the prioritization of the network by a single
target during training.
XnyY)

X+Y

DSC =2

4

MSE = — 3 3 (x; -3, ®)

i=1 j=1

L=w;+(1-=DSC)-e™)+ (w, + MSE -e72) (6)

For each cluster, we select 3 individuals and mutate all of them to
generate a new population. For the mutation of each architecture, we
randomly sampled in the range (0.1, 0.3) the probabilities of deleting
the node, creating a new node, changing the edges or changing the
node features. Further with a probability of 0.25 we mutate only the
node characteristics without changing the network structure. This last
type of mutation serves to precisely refine the characteristics of already
efficient architectures. Finally, to evaluate the efficiency of our models
we use the MSE defined in (5), the Dice coefficient (DSC) defined in
(4) and the Jaccard index (IoU) defined in (7).
XnY

IoU =
XUY

)
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Fig. 9. Evolution of the total loss (L) achieved by the 10 best architectures of the population along the generations of our evolutionary algorithm without using and using the

clustering methodology.

6. Results and discussion
6.1. Evaluation of neural architectures

In this section, we present the results obtained from the evaluation
of our evolutionary algorithm and the evaluation of the best generated
network architecture. To test the effectiveness of the application of this
network together with the clustering strategy to maintain the diversity
of the population, we have run our evolutionary algorithm with and
without the clustering strategy. When this strategy was not used, the
best individuals from the entire population were selected, while when
it was used, the best individuals within each group (in our case 10
clusters) were selected. In Fig. 9, we can see the evolution of the
total loss (L) achieved by the 10 best architectures of the population
along the generations of our evolutionary algorithm. By maintaining a
diversity of architectures within the population, we enable the survival
and evolution of multiple individuals. While these individuals may
not currently perform tasks optimally, their unique structural features
hold the potential for significant improvements. This diversity ensures
a broad exploration of the architectural space, preventing the algo-
rithm from converging prematurely on local optima. Consequently, it
enhances our ability to discover ever more effective architectures over
successive generations. We can observe how the 10 best individuals
of the population have managed to converge satisfactorily. These 10
individuals represent diverse structures, although some convergence to
a series of common structures or parameters can be observed, such as
the little use of dilation in the convolutional layers, or the expansion of
the number of filters only where the input feature maps are of smaller
size.

In Fig. 10, we can observe the graph structure, and the characteris-
tics of each node, of the best performing architecture in our population.
The Redu column indicates the size of the feature maps in that node,
for example with an initial image of size 256 x 256, a Redu equal to
—1 would indicate that in that node the input has a size of 128 x 128.
We can see how this architecture has some similarity with a Feature
Pyramid Network (FPN) [48] in the sense that multiple feature maps
obtained at different depths are concatenated to establish the final
segmentation maps. From the structural point of view, the architecture
also presents many skip-connections that arise naturally during the
evolutionary process, which makes sense from the point of view of
network stability. We also see how this architecture complies with the
previous comments, since the feature maps only undergo an expansion
in deep nodes, while the dilation is only present in a single node that
uses the original size of the image. Regarding the nonlinear functions
that are used, we can see that there is a clear bias not to use the Tanh
except at special nodes. This makes sense knowing the special behavior
of Tanh with respect to other functions such as ReLU or SiLU. Finally
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Table 2
Different metrics showing the performance of the evolutionary network and the
performance of the baseline methods for the three different objectives.

Full mask Partial mask Total area
DSC 1t IoU 1t DSC 1t IoU 1t MSE |
UNet (Baseline) 0.882 0.875 0.05 0.01 1.3x10*
TransUNet 0.891 0.879 0.086 0.073 -
Auto-Deep 0.879 0.873 0.583 0.561 -
ESEI 0.895 0.891 0.752 0.748 0.93
Our proposal 0.903 0.896 0.805 0.798 0.02

we can see how in general using a Squeeze and Excitation block is very
beneficial, especially in those nodes that use the original size of the
image. This is because this block helps to concentrate the information
on the most important feature maps, while diluting the noise present
in others.

To evaluate the learning capacity and the effectiveness in solving
the different tasks of the architectures discovered using our evolution-
ary algorithm, we compare these results with those achieved by a state
of the art baseline architecture (UNet). In Fig. 11, we can observe the
evolution of the training and validation loss for the baseline and for our
best evolutionary network. As we can observe, the baseline network is
unable to solve the multiple objectives effectively, which causes one
of them to be prioritized while the others remain unsolved. This lack
of balance also causes a clear overfitting during the training of the net-
work resulting in worse results in general. In contrast, our evolutionary
network is able to maintain this balance by solving the different tasks
in a precise and balanced way, which also avoids overfitting.

In Table 2, we present the results for the different evaluation
metrics, separated by objectives, obtained by the baseline networks and
by our evolutionary network on the test set. We can clearly observe
that UNet and TransUNet networks predominantly focus on learning
the segmentation of the total FVs mask, disregarding the segmentation
of the partial mask entirely. In contrast, networks trained using NAS
methodologies exhibit superior adaptability to the established multi-
objectives. Specifically, our evolutionary network manages to fulfill
the three objectives accurately, improving the results of the baseline
networks to a great extent.

In Fig. 12, we can see the difference for the two segmentation masks
obtained with respect to the ground truth. The baseline network is
unable to generate the partial mask at the same time as it generates
the full mask and attempts to predict the total area of FVs. Instead, our
network predicts the partial masks in much the same way as the expert
does. In addition, we can observe in more detail several zooms of the
segmentation masks of the FVs predicted by both networks. Looking at
these details, we can see how our evolutionary network is much more
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Fig. 10. Diagram of the graph structure, and the features of each node, of the best performing architecture in our population.

Baseline Network

Loss over 73 Epochs

Evolutionary Network

Loss over 73 Epochs

Loss

= Train Loss
—— Val Loss

Loss

= Train Loss
—— Val Loss

10 20

30

Epoch

40

50 60

70

13

10 20 30

40
Epoch

50

60 70

Fig. 11. Evolution of the training and validation loss for the baseline and for our best evolutionary network.



E. Lépez-Varela et al

Label

Applied Soft Computing 153 (2024) 111304

Baseline

Evolutionary

Fig. 12. Original and zoomed example of an image and the segmentation masks predicted by the networks. Green and red squares indicate zoomed areas, while yellow circles

indicate significant differences between masks.

robust and accurate in extracting the FVs from the CC OCTA images.
This robustness and accuracy is due to the higher generalization ca-
pability of the neural architecture and the multi-target training that
forces to solve all the objectives in a balanced way. In addition, our
network architecture has a much lower number of parameters (2.7M)
than the baseline architecture (7.7M), this reduction of parameters
increases the generalization capacity and avoids network overfitting
helping to further improve network efficiency. This is achieved thanks
to our evolutionary algorithm that performs a precise tuning of the
required components instead of using a sequence of layers of a general
untuned architecture.

6.2. Prediction of the evolution of the FVs changes

To test the usefulness and robustness of our evolutionary network,
as well as to compare it with the state-of-the-art methodologies, we
performed an experiment using an imaging dataset composed of CC
OCTA images that were acquired during photodynamic therapy treat-
ment of patients affected by chronic CSC (described in Section 4.1). The
long-term efficacy of photodynamic therapy treatment can be estimated
by observing the change in the distribution of FVs before and after
treatment. This involves segmenting the FVs in both images, calculating
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the total area of FVs in each image, and measuring the percentage
change from one to the other. It is worth mentioning that our network
allows us to obtain this biomarker in two ways, indirectly through
the segmentation mask or directly through the regression node. This
allows that in cases like this, in which we only want to obtain the
biomarker, we can prune our network leaving only the necessary nodes
to perform this direct estimation. This makes the calculation process
much more efficient by reducing greatly the number of layers and the
number of network parameters required from 2.7M to 0.1M parameters.
With this, our network is able to perform the estimation much faster,
taking on average for 100 images 0.16 s instead of 0.61 s to perform
the estimation.

We measured the correlation between the biomarker and the re-
covered and non-recovered classes using the point biserial correlation,
where a better correlation indicates a more robust and accurate ex-
traction of FVs. In Table 3, we can observe the correlation coefficient
obtained by each of the approaches. We can see how this coefficient is
higher when we use our evolutionary network than when we use the
state of the art. This suggests that our evolutionary network is capable
to extract the biomarker in a more accurate and robust way, which
improves our predictions.

Finally, in Fig. 13 we show a visual comparison of the segmentation
masks extracted using the methodologies proposed in the state of the
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Fig. 13. Comparison of the segmentation masks extracted using the methodologies proposed in the state of the art and our evolutionary network.

Table 3
Comparison of the correlation coefficient obtained using the state of the art and our
evolutionary network indirectly and directly.

State of the art State of the art Evolution Evolution
[16] [15] direct indirect
Coefficient 0.2649 0.5016 0.5179 0.5187

art and our evolutionary network. As when compared to the baseline
network, we can see how our evolutionary network is much more
robust and accurate in extracting the FVs than the state of the art
methodologies. This accurate extraction together with the partial seg-
mentation mask helps the clinician when monitoring different patients,
which facilitates and removes subjectivity from this medical task.

7. Conclusions

In this work, we have described the enormous potential and the
significant gap that exists in the literature with respect to segmentation
and quantification of FVs. This gap is due to, on the one hand, the
novelty of the imaging modality, and on the other hand, to the com-
plex characteristics that make it difficult to perform accurate manual
labeling of these regions. In order to overcome these challenges and
extract the maximum potential of this biomarker, we have proposed
a optimized neural network architecture trained with a multi-target
paradigm. This paradigm allows us to train the network in a much
more generalized way, making our model more robust, accurate and
adaptable while allowing us to obtain multiple objectives that together
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contribute to facilitating medical work. However, it is extremely diffi-
cult to manually find a suitable architecture to obtain all the proposed
objectives in a balanced and accurate way. Therefore, in this work,
we have proposed an evolutionary algorithm, based on a set of evo-
lutionary operators, that allows us to create and progressively improve
a population of network architectures. This population of architectures,
in contrast to a generalist architecture, is optimized and tuned to most
efficiently and accurately obtain a set of biomarkers used in the CC
OCTA imaging. Moreover, our evolutionary algorithm allows us to
create very diverse architectures in a large search space. To traverse
this space efficiently and avoid falling into local minima, we propose a
selection mechanism based on clustering. In particular, this clustering
allows us to select the best individuals from each group within the
population, which makes the population progressively better while
maintaining the diversity of architectures.

Our evolutionary algorithm progressively improves the architec-
tures using this multi-target perspective. This has numerous advantages
from all points of view. On the one hand, the architectures become
increasingly robust and accurate for multiple tasks. This makes them
more adaptable for new tasks as well as for other imaging modalities.
Therefore our models have great potential from the perspective of
transfer learning and fine tuning. On the other hand, this type of
learning confers much more utility to the models by directly extracting
various targets. In our case, our best evolutionary network manages to
accurately and robustly segment the FVs, while segmenting the areas
with the highest accumulation of FVs and obtaining a direct estimate
of their total area. This makes it possible to show a visualization to
the clinical staff where the affected area is identified at a glance, to
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show the specific FVs areas, or to extract relevant biomarkers for the
diagnosis of multiple pathologies.

Even taking all this into account, there are several applications
to test and some limitations to improve as future work. From an
application point of view, it is interesting to test the potential of the
best architectures discovered to be used in other imaging tasks and
modalities. The adaptability of these models can be exploited to per-
form other complex tasks on other image types that present difficulty in
labeling. In addition, our evolutionary algorithm can be tested on other
datasets by adding new features or changing the hyper-parameters of
its use. From the point of view of limitations, although our clustering
methodology manages to maintain the diversity of the population, some
convergence can be observed in some individuals. Based on this, our
graph encoder network could be improved by adding more depth and
changing the pooling. Besides, our evolutionary algorithm is still quite
computationally expensive. To improve this, transfer learning can be
adapted so that it is applied to nodes that share parents and children
and thus reduce the training time of each network.
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