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A B S T R A C T

Multi-task learning is a promising paradigm to leverage task interrelations during the training of deep neural
networks. A key challenge in the training of multi-task networks is to adequately balance the complementary
supervisory signals of multiple tasks. In that regard, although several task-balancing approaches have been
proposed, they are usually limited by the use of per-task weighting schemes and do not completely address
the uneven contribution of the different tasks to the network training. In contrast to classical approaches,
we propose a novel Multi-Adaptive Optimization (MAO) strategy that dynamically adjusts the contribution of
each task to the training of each individual parameter in the network. This automatically produces a balanced
learning across tasks and across parameters, throughout the whole training and for any number of tasks.
To validate our proposal, we perform comparative experiments on real-world datasets for computer vision,
considering different experimental settings. These experiments allow us to analyze the performance obtained in
several multi-task scenarios along with the learning balance across tasks, network layers and training steps. The
results demonstrate that MAO outperforms previous task-balancing alternatives. Additionally, the performed
analyses provide insights that allow us to comprehend the advantages of this novel approach for multi-task
learning.
1. Introduction

In recent years, deep learning has become the predominant tech-
nique for solving numerous computer vision problems. In this context,
Deep Neural Networks (DNNs) are typically trained to solve single
specific tasks, such as, e.g., image segmentation (Minaee et al., 2021),
bject detection (Zhao, Zheng, Xu, & Wu, 2019), or image classifica-
tion (Hervella, Rouco, Novo, & Ortega, 2021). However, in real-world
applications, it is common to face several tasks of interest that share
input domain and are related to each other (Almalioglu et al., 2022;
Eigen & Fergus, 2015). While using task-specific networks usually
provides satisfactory performance, in this context it is also possible
to take advantage of the task interrelations by adopting a Multi-Task
Learning (MTL) approach (Caruana, 1997). The MTL paradigm lever-
ages the availability of complementary supervisory signals for training
models that are capable of simultaneously solving several related tasks.
In the context of deep learning, this produces richer representations
that integrate complementary aspects of the data not available from a
single task. This leads to several advantages over single-task learning.
First, the additional multi-task feedback can potentially improve the
performance of the different tasks or, equivalently, allow a similar
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performance with less training samples (Misra, Shrivastava, Gupta, &
Hebert, 2016; Standley et al., 2020). Conveniently, this can also be
taken advantage of by using unsupervised or self-supervised auxiliary
tasks aiming to improve the performance of the main target task.
Second, the use of shared representations among tasks allows a lower
number of total parameters in the networks (Caruana, 1997). This
reduces the memory footprint and inference time.

Despite the advantages of MTL, the application of this paradigm
to real-world scenarios poses several challenges. During training, MTL
requires to integrate the supervisory signals of multiple tasks into
the same neural network. These supervisory signals, which are the
gradients of the different training losses with respect to the network
parameters, present varying magnitudes across tasks and parameters.
Therefore, following a naive MTL implementation, there is the risk
of an uneven contribution of the different tasks to the network train-
ing (Misra et al., 2016; Standley et al., 2020). In particular, the tasks
with overall larger gradients would contribute more to the parameter
updates and would dominate over the tasks with smaller gradients. This
uneven contribution of the different tasks to the network training is
a key issue in MTL. In practice, this issue is commonly addressed by
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using weighting coefficients for the different training losses associated
to each task (Vandenhende et al., 2021). In this case, the network
training is performed by optimizing a multi-task loss that is defined as
the weighted sum of the individual task-specific losses. This approach
requires to carefully tune the weighting coefficients in order to achieve
successful performance. Nowadays, many works applying MTL rely on a
grid search for finding the optimal values of the weighting coefficients.
However, with increasingly large network architectures and training
datasets, an exhaustive grid search gets increasingly prohibitive. There-
fore, there is a growing interest in the development of more efficient
alternatives.

Automated methods to dynamically balance the multi-task training
have also been proposed (Gong et al., 2019; Vandenhende et al.,
2021). Most of these methods dynamically adjust weighting coefficients
applied to the training losses. Although, equivalently, some methods
also explored to directly weight the gradient of each task in the shared
layers of the network (Sener & Koltun, 2018). Regarding the criteria to
estimate the optimal weights, the Uncertainty was used in Kendall, Gal,
and Cipolla (2018), prioritizing tasks with lower inherent noise in their
predictions. Meanwhile, other methods prioritize the tasks with lower
performance (Guo, Haque, Huang, Yeung, & Fei-Fei, 2018) or the ones
that improve through training at a lower rate, such as DWA (Liu, Johns,
& Davison, 2019). In contrast, GradNorm (Chen, Badrinarayanan, Lee,
& Rabinovich, 2018) aims to estimate the weights that make the gra-
dients of the different tasks more similar in magnitude. In comparison
with the standard grid search approach, these methods present the ad-
vantage of dynamically balancing the tasks, hence they can potentially
adapt to changing conditions during training. However, their capacity
to balance the contribution of the different tasks to the training is
limited by the use of a single weighting factor per task. In this regard,
it is worth noting that the balance among the gradients of the different
task can vary across the different parameters of the network. In this
scenario, existing methods based on loss-weighting schemes cannot
ensure a well-balanced training for all the parameters simultaneously.

In this work, we propose a novel method to balance the training
of multiple tasks. The aim of our proposal is to provide a balanced
contribution of the different tasks to the training of each individual
parameter in a neural network. In order to achieve this, we take as
reference the adaptive optimization algorithms that are commonly used
in deep learning (Kingma & Ba, 2015; Tieleman & Hinton, 2012).
In that regard, it is worth noting that, in a single-task setting, there
are usually uneven gradient magnitudes across network parameters. In
consequence, some parameters may be trained at a higher rate than
others. However, adaptive algorithms, such as Adam (Kingma & Ba,
2015) or RMSprop (Tieleman & Hinton, 2012), dynamically adapt the
effective learning rate for each individual parameter, such that larger
effective learning rates are used for parameters with usually smaller
gradient magnitudes and vice versa. This provides a well-balanced
training across parameters. Our proposal, denoted as Multi-Adaptive
Optimization (MAO), extends this idea to the multi-task setting, where
there are uneven gradient magnitudes across both parameters and
tasks. In that regard, instead of using per-task weighting coefficients
that are applied to either the training losses or the gradient, MAO
dynamically adapts the effective learning rate for each task at each pa-
rameter of the network. This results in a well-balanced training across
parameters and tasks regardless of the uneven gradient magnitudes.
In this work, we integrate our proposal with the Adam optimization
algorithm and demonstrate its advantages in the context of MTL for
computer vision. Although the proposed approach could be used to
balance to training of multiple tasks in any application domain. In
summary, the main contributions of our work are the following:

• A novel paradigm to balance the training of multiple tasks is
presented. MAO extends the adaptive optimization commonly
applied across parameters to be simultaneously applied across
both parameters and tasks. This allows automatically balancing
any number of tasks such that all of them contribute the same to
255

the training of the network.
• We integrate the proposed approach with the Adam optimization
algorithm and demonstrate that it is a superior alternative for
MTL in comparison to the combined use of Adam and other task-
balancing approaches based on per-task weighting coefficients.

• The advantages of MAO are demonstrated in the context of
MTL for computer vision, considering pixel-level and image-level
prediction tasks, different network architectures, and different
numbers of tasks. All the experiments are performed on public
datasets.

• The performed analysis provide relevant insight on how different
task-balancing approaches actually affect the contribution of the
different tasks to the training of the networks. This allows us
to understand the advantages of our proposal as well as the
performance of the different methods.

The remainder of the manuscript is organized as follows. First,
Section 2 provides a discussion of previous related works, especially
task-balancing approaches for the training of DNNs. In Section 3, we
present preliminary concepts that allow us to contextualize and moti-
vate the proposed approach. Then, in Section 4, the proposed approach
is presented, including the general formulation as well as the particular
integration with the Adam algorithm. Further on, in Section 5, we
present the experimental evaluation and discuss the obtained results.
Finally, Section 6 summarizes the main conclusions derived from our
work.

2. Related work

There exist numerous examples of works successfully applying MTL
in computer vision. In fact, complete visual understanding of an image
or video usually requires to simultaneously solve several related tasks,
such as, e.g., segmentation and classification (Ilyas et al., 2022), object
detection and segmentation (He, Gkioxari, Dollár, & Girshick, 2017),
pose estimation and depth estimation (Almalioglu et al., 2022), or
segmentation and depth estimation (Nakamura, Grassi, & Wolf, 2021).
Simultaneously, in the literature there are also several works that focus
on addressing key challenges in MTL, aiming at improving the neural
network architecture or the optimization process. Vandenhende et al.
(2021) provide a comprehensive review of these aspects.

Regarding the optimization in MTL, the difficulties are mainly due
to the uneven supervision that is provided by the different tasks, which
results in an imbalanced training. In that regard, existing approaches
aiming at providing a balanced multi-task training are mainly based
on the use of loss weighting schemes (Gong et al., 2019; Vandenhende
et al., 2021). In particular, these methods propose automated proce-
dures to dynamically estimate the loss-balancing weights during the
network training. The main difference among the existing alternatives
is the criteria followed to estimate the weights. In the work of Kendall
et al. (2018), the balancing weights are parameterized by the task-
dependent uncertainty, which is jointly estimated with the network
parameters during the training. In practice, this approach prioritizes
the tasks with lower inherent noise. In contrast, Guo et al. (2018)
propose to prioritize the more difficult tasks. In this case, the difficulty
at any point in the training is intuitively measured by using standard
performance evaluation metrics. Alternatively, other approaches explic-
itly focus on the learning dynamics to balance the multi-task training.
Particularly, DWA (Liu et al., 2019) aims at balancing the tasks by
increasing the relative weight of the losses that decrease at a slower rate
and vice versa. Instead, GradNorm (Chen et al., 2018) aims at directly
addressing the imbalanced backpropagated gradients by estimating
the loss weights that make the task-specific gradients to have similar
magnitude. In general, balanced gradients directly translates into bal-
anced parameter updates, which makes GradNorm the method most
closely related to our proposal. However, in contrast to GradNorm,
our proposal does not require to estimate any loss weights. Instead,
we directly compute per-parameter balanced updates by following a

multi-adaptive approximation to the MTL optimization.
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Alternatively, some works address the training of multi-task net-
works as a multi-objective optimization. Particularly, Sener and Koltun
(2018) propose to estimate balancing weights that provide a Pareto
optimal solution. Meanwhile, Nakamura et al. (2021) propose a greedy
method to improve the selection of the most adequate solution in the
Pareto front. Their approach aims to obtain a more adequate trade-
off between very imbalanced tasks. Additionally, in the case of Sener
nd Koltun (2018), to avoid affecting the task-specific layers in the net-
ork, the loss weights are only applied to the shared layers. Similarly,
iven that the proposed multi-adaptive approach directly balances the
pdates on each parameter, our proposal also only affects the shared
ayers in the network. In that regard, a key difference of our proposal
ith respect to all the previous methods is precisely that the balance
mong tasks is independently adjusted at each individual parameter.
his ensures a balanced training throughout the whole network.
The imbalanced training in MTL can be aggravated by the conflict-

ng supervision among different tasks. The conflicting supervision is
anifested in the form of gradients with opposite sign for the same
arameters. This issue has been specifically addressed by some works.
n particular, in Yu et al. (2020), gradient conflicts were mitigated
y substituting one of the gradients by its projection onto the normal
lane of the other. Alternatively, Chen et al. (2020) avoid aggregating
gradient components of different sign by masking out those of lower
magnitude. These kinds of approaches can be applied together with
existing task-balancing methods (Yu et al., 2020), and could potentially
be integrated with our proposal too. However, this work is focused
on the comparison of the proposed method with other task-balancing
methods. Thus, the study of additional conflict mitigation techniques is
out of the scope of this work.

3. MTL formulation and contextualization

In the context of deep learning, MTL can be defined as the simulta-
neous learning of several tasks performed by the same neural network.
In particular, given a set of 𝑁 tasks {𝑇𝑛}𝑁𝑛=1, with its associated set of
𝑁 losses {𝑛}𝑁𝑛=1, the multi-task network training is performed by the
simultaneous optimization of the different task-specific losses.

3.1. Classical MTL optimization

In general, the optimization process in deep learning is performed
by a gradient descent algorithm (Goodfellow, Bengio, & Courville,
2016). In particular, during the network training, the network param-
eters are iteratively updated according to the following rule:

𝜃𝑡+1 = 𝜃𝑡 + 𝛥𝜃𝑡 (1)

where 𝛥𝜃𝑡 denotes the update for parameter 𝜃 at time 𝑡. Following the
simplest form of gradient descent, the network parameter updates can
be computed as:

𝛥𝜃𝑡 = − 𝜂 𝑔𝜃𝑡 (2)

where 𝜂 denotes the learning rate and 𝑔𝜃𝑡 = (𝜕∕𝜕𝜃)𝑡 the gradient
component for parameter 𝜃 at time 𝑡 due to the training loss .

In previous works (Vandenhende et al., 2021), the MTL formulation
is commonly simplified by defining a new multi-task loss consisting in a
weighted sum of the individual task-specific losses. Thus, an integrated
multi-task training loss is obtained as:

 =
𝑁
∑

𝑛
𝜔𝑛𝑛 (3)

where 𝜔𝑛 denotes the weighting coefficient for task 𝑇𝑛. In this case,
taking into consideration the rules of differentiation, it is possible to
define the network parameter updates in terms of the task-specific
gradients. Particularly, the updates can be computed as:

𝛥𝜃𝑡 = − 𝜂
𝑁
∑

𝑔𝜃𝑛,𝑡 (4)
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𝑛

where 𝑔𝜃𝑛,𝑡 = (𝜔𝑛𝜕𝑛∕𝜕𝜃)𝑡 denotes the weighted gradient component for
parameter 𝜃 at time 𝑡 due to task 𝑇𝑛.

As it is shown in Eq. (4), the contribution of each task to the
parameters updates directly depends on the magnitude of its gradient at
each particular parameter. In this regard, the tasks with overall larger
gradients will have a greater influence in the direction of training and
vice versa. Following the usual MTL formulation with an integrated
multi-task loss, the balance among tasks can be adjusted by chang-
ing the gradients magnitude through the loss weighting coefficients
{𝜔𝑛}𝑁𝑛=1. However, these weighting coefficients do not allow to balance
the task-specific gradients at each particular parameter individually.

3.2. Adaptive optimization algorithms

Nowadays, adaptive optimization algorithms (such as Adam Kingma
& Ba, 2015, RMSprop Tieleman & Hinton, 2012, or AdaGrad Duchi,
azan, & Singer, 2011) are commonly used for the training of DNNs.
hese algorithms adapt the learning rate for each particular parameter
f a neural network, resulting in overall updates of similar magnitude
or all the parameters. In this regard, it must be noticed that in a
tandard gradient descent algorithm the learning rate remains constant
hroughout the network, hence the parameter updates magnitude is
lways proportional to the gradients magnitude (see Eq. (2)). In this
cenario, the parameters that receive stronger gradients will also be
ore updated. Conversely, parameters with usually mild gradients
ill be barely updated. This represents an imbalanced learning across
arameters. In contrast, the adaptive algorithms compute an effective
er-parameter learning rate that compensates for the varying mag-
itude of the gradients. This results in a balanced learning across
arameters.
Building upon standard gradient descent, the parameters updates

sing adaptive optimization are computed as:

𝜃𝑡 = − 𝜂𝜃𝑡𝑔𝜃𝑡 (5)

here 𝜂𝜃𝑡 denotes the effective learning rate for parameter 𝜃 at time 𝑡.
Without loss of generality, these effective per-parameter learning rates
are broadly defined as:

𝜂𝜃𝑡 =
𝜂

𝑓 (𝑔𝜃𝑡 , 𝑔𝜃𝑡−1 ,… , 𝑔𝜃0 )
(6)

where 𝑓 is a normalization function dependent on current and past gra-
dients for each particular parameter. Taking into consideration Eqs. (5)
and (6), it can be seen that the per-parameter learning rates provide
an implicit normalization of the gradients at the parameter level.
This allows a balanced training across parameters regardless of the
backpropagated gradients magnitude.

The definition of function 𝑓 in Eq. (6) is specific to each partic-
ular adaptive optimization algorithm and represents one of the main
differences among existing alternatives (Duchi et al., 2011; Tieleman
& Hinton, 2012). Additionally, it should be noted that some particular
optimization algorithms may also include additional terms dependent
on past gradients for the calculus of the parameters updates in Eq. (5),
either by substituting the gradient component 𝑔𝜃𝑡 , e.g. Kingma and Ba
(2015), or by adding momentum (Goodfellow et al., 2016).

4. Multi-adaptive optimization for MTL

The proposed approach aims to achieve a balanced contribution of
the different tasks to the training of each individual parameter in a
neural network. In order to do that, MAO extends the adaptive opti-
mization paradigm, previously applied at the parameter-level, to the
task-level. Particularly, the adaptive optimization is simultaneously ap-
plied across parameters and tasks by computing effective task-specific
per-parameter learning rates. These effective learning rates compensate
for the varying magnitude of the gradients across parameters and across
tasks. Thus, not only all the parameters receive updates of similar
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Fig. 1. Proposed approach for the simultaneous training of multiple tasks using Multi-Adaptive Optimization (MAO). The diagram represents the back-propagation and optimization
for two different parameters (𝜃 and 𝜃′) in a multi-task scenario with 𝑁 training losses.
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magnitude, but also all the tasks present a similar contribution to
the parameters updates during the network training. As normalization
function to compute the effective learning rates, we use the exponential
moving average of squared gradients, which was successfully applied
in Adam (Kingma & Ba, 2015) and RMSprop (Tieleman & Hinton,
2012) for balancing the training across parameters. In the case of MAO,
the same normalization function is used to balance the training across
both parameters and tasks. The proposed method is summarized in the
diagram of Fig. 1 whereas the corresponding pseudocode is provided
in Algorithm 1.

Algorithm 1 Proposed approach for the simultaneous training of
multiple tasks using Multi-Adaptive Optimization (MAO)
Require: Initial parameter vector 𝜃0, global learning rate 𝜂, and 𝑁
tasks {𝑇𝑛}𝑁𝑛=1.
𝑡 ← 0 (Initialize timestep)
for each task 𝑇𝑛 do

𝐸[𝑔2𝜃𝑛 ]𝑡 ← 0 (Initialize EMA of squared gradients for task 𝑇𝑛)
end for
while stopping criteria is not met do

𝑡 ← 𝑡 + 1 (Forward pass through the network)
for each task 𝑇𝑛 do

𝑔𝜃𝑛,𝑡 ← Back-propagate gradients of training loss for task 𝑇𝑛
𝐸[𝑔2𝜃𝑛 ]𝑡 ← Update EMA of squared gradients for task 𝑇𝑛 (Eq.

(7) using 𝑔2𝜃𝑛,𝑡 and 𝐸[𝑔2𝜃𝑛 ]𝑡−1)
𝜂𝜃𝑛,𝑡 ← Compute effective learning rates for task 𝑇𝑛 (Eq. (8)

using 𝜂 and 𝐸[𝑔2𝜃𝑛 ]𝑡)
end for
𝛥𝜃𝑡 ← Compute parameter updates (Eq. (9) / (10) using 𝑔𝜃𝑛,𝑡 and

𝜂𝜃𝑛,𝑡 from tasks {𝑇𝑛}𝑁𝑛=1)
𝜃𝑡 ← 𝜃𝑡−1 + 𝛥𝜃𝑡

end while
The process followed by MAO at each training iteration 𝑡 is as

ollows. First, for each parameter 𝜃 and task 𝑛, MAO computes the
xponential moving average of the squared gradient component for that
arameter 𝐸[𝑔2𝜃𝑛 ]𝑡. In that regard, the exponential moving average for
ny given variable 𝑥 is defined as:

[𝑥]𝑡 = 𝛽𝐸[𝑥]𝑡−1 + (1 − 𝛽)𝑥𝑡 (7)

here 𝛽 denotes the exponential decay rate of the moving average.
articularly, the square root of the moving average (𝐸[𝑔2𝜃𝑛 ]𝑡)

1∕2 is a
tatistical measure of the gradient magnitude of task 𝑛 throughout the
raining process, placing greater importance in the gradient magnitude
f more recent iterations. Intuitively, this value represents how strong
s the supervisory signal of task 𝑛 at parameter 𝜃.
The second step is to compute the effective learning rate for each

ask 𝑛 and parameter 𝜃. In this regard, the aim is to adapt the learning
ate such that all the tasks contribute the same to the training of each
257

arameter, regardless of the uneven strength of the supervisory signals.
his is achieved by normalizing the global learning rate with respect
o the strength of the supervisory signal, which is given by the term
𝐸[𝑔2𝜃𝑛 ]𝑡)

1∕2. Thus, we obtain task-specific effective learning rates that
re computed as:

𝜃𝑛,𝑡 =
𝜂

√

𝐸[𝑔2𝜃𝑛 ]𝑡 + 𝜖
(8)

where 𝜂 denotes the global learning rate and 𝜖 is a constant value to
avoid the denominator getting too close to zero.

The third step is to compute the parameter updates. Applying
gradient descent, the update for a given parameter 𝜃 at iteration 𝑡 is
efined as:

𝜃𝑡 = −
𝑁
∑

𝑛
𝜂𝜃𝑛,𝑡𝑔𝜃𝑛,𝑡 (9)

In this regard, the parameter update is obtained by aggregating the in-
dividual contributions of the different tasks (i.e. the products 𝜂𝜃𝑛,𝑡𝑔𝜃𝑛,𝑡 ).
The effective learning rates 𝜂𝜃𝑛,𝑡 ensure that, throughout training, all the
tasks contribute in a similar amount to the updates of each parameter.
However, at any particular iteration, each task can provide a different
contribution depending on the magnitude of 𝑔𝜃𝑛,𝑡 at that particular
point in time. Additionally, as the gradient component 𝑔𝜃𝑛,𝑡 is a signed
value, the magnitude of the final update will depend on the level of a
agreement among the different tasks regarding the direction of training
(i.e. the sign of the update, either positive or negative). Contributions
with the same sign will sum up to a larger update, whereas contri-
butions with opposite sign can counteract each other and will yield a
smaller update.

Finally, it is worth noting that our proposal can be integrated with
different optimization algorithms. The presented formulation is the re-
sult of building our proposal upon standard gradient descent. However,
for the experiments in this work, we integrate the proposed multi-
adaptive optimization strategy with the Adam (Kingma & Ba, 2015)
algorithm, which is one the most commonly used adaptive optimization
algorithms in deep learning. Additionally, during the optimization
process, we also use weight decay as regularization technique. The
adaption of our proposal for using the Adam algorithm and weight
decay regularization is explained in detail below.

4.1. MAO using Adam

In order to adapt our proposal to follow the formulation of Adam,
it is necessary to change the definition of the parameter updates
given in Eq. (9). In particular, for the calculus of the updates, Adam
substitutes the gradient component 𝑔𝜃𝑛,𝑡 by a function of the current
and past gradients. This function consists in the exponential moving
average of the gradients, i.e. 𝐸[𝑔𝜃𝑛 ]𝑡 for parameter 𝜃 and task 𝑛 at time
𝑡 (see Eq. (7)). Additionally, following the formulation of Adam, two
initialization bias correction terms are included. These terms are used
to correct the bias in the exponential moving averages due to their
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initialization with zeros. Finally, the parameter updates for MAO using
Adam are defined as:

𝛥𝜃𝑡 = −
𝑁
∑

𝑛
𝜂𝜃𝑛,𝑡𝐸[𝑔𝜃𝑛 ]𝑡

1 − 𝛽𝑡2
1 − 𝛽𝑡1

(10)

where 𝛽1 denotes the exponential decay rate for 𝐸[𝑔𝜃𝑛 ]𝑡 and 𝛽2 the
exponential decay rate for 𝐸[𝑔2𝜃𝑛 ]𝑡, which is included in the calculus
of 𝜂𝜃𝑛,𝑡 (see Eq. (8)).

4.2. MAO using weight decay

Weight decay is a regularization technique that decays the net-
work parameters in a way proportional to their own magnitude. In
the literature, this technique has been typically implemented as L2
regularization. However, this approximation would affect the calculus
of the task-specific per-parameter learning rates in our proposal. Thus,
in order to keep the intended balance across parameters and tasks, we
follow (Loshchilov & Hutter, 2019) and apply weight decay by directly
modifying the parameter updates defined in Eq. (9). In this case, the
parameter updates are obtained as:

𝛥𝜃𝑡 = −
𝑁
∑

𝑛
𝜂𝜃𝑛,𝑡𝑔𝜃𝑛,𝑡 − 𝜂𝜆𝜃 (11)

where 𝜆 denotes the weight decay coefficient. Similarly, when using
both Adam and weight decay, the parameter updates are obtained as:

𝛥𝜃𝑡 = −
𝑁
∑

𝑛
𝜂𝜃𝑛,𝑡𝐸[𝑔𝜃𝑛 ]𝑡

1 − 𝛽𝑡2
1 − 𝛽𝑡1

− 𝜂𝜆𝜃 (12)

Finally, regarding the computational complexity of the proposed
approach, the time complexity of the algorithm is linear with respect to
the number of tasks. This is due to the gradients and parameter updates
that are independently computed for each task. This applies both for the
general approximation using Eq. (9) as well as for the integration of our
roposal with Adam using Eq. (10). With regards to the default values
f the different hyperparameters in our proposal, we follow common
ractices for closely related algorithms, such as Adam or RMSprop. In
articular, we use 𝜖 = 1𝑒-8 as the small constant for Eq. (8), 𝛽1 = 0.9 as
he exponential decay rate for the moving average of gradients 𝐸[𝑔𝜃𝑛 ]𝑡,
nd 𝛽2 = 0.999 as the exponential decay rate for the moving average of
quared gradients 𝐸[𝑔2𝜃𝑛 ]𝑡. Meanwhile, the value of the global learning
ate 𝜂 and the weight decay coefficient 𝜆 will depend on the particular
pplication.

. Experiments and results

The proposed approach is validated and studied in the context
f MTL for computer vision. In that regard, we perform an exhaus-
ive experimentation with different multi-task settings and real-world
atasets, including both image-level and pixel-level prediction tasks.
dditionally, in order to evaluate the performance of our proposal
ith respect to the state-of-the-art, the same experimentation is also
erformed for several alternative approaches. Particularly, in our exper-
mentation, we include Uncertainty Weighting (Kendall et al., 2018),
WA (Liu et al., 2019), and GradNorm (Chen et al., 2018), which
re the three best performing approaches in the experimental analysis
erformed in Vandenhende et al. (2021). Additionally, we also include
n additional alternative where all the tasks are uniformly weighted
Equal Weights). In order to perform a fair comparison among the dif-
erent methods, we follow (Vandenhende et al., 2021) and use the best
learning rate for each method in each dataset. To take into account the
stochasticity of the training process, all the experiments are performed
with 5 repetitions using 5 different random seeds. In that regard, all
the quantitative results are reported as mean ± standard deviation.
Additionally, to assess whether the difference between the best method
and the others is statistical significant, we perform a Student’s t -test
with paired samples for each metric.
258
Fig. 2. Examples of input images and ground truth for EMOTIC (Kosti et al., 2020).
The bounding box for the person that is being analyzed is draw in red.

5.1. Image-level prediction tasks

5.1.1. Dataset and tasks
For the image-level prediction tasks, we use the emotion recognition

dataset EMOTIC (Kosti, Alvarez, Recasens, & Lapedriza, 2020). This
public dataset contains images of people in real-world environments an-
notated with their apparent emotions. The dataset includes annotations
for both multi-label classification and regression tasks. Particularly,
there are 26 non mutually exclusive emotion categories and 3 con-
tinuous emotion dimensions. Additionally, the bounding boxes for the
people in the images are also provided. The images, of varying sizes,
are resized to a common size of 224 × 224 pixels for convenience.
The dataset contains 23,571 images with 34,320 annotated people and
provides a standard split of 70% training, 10% validation, and 20%
test. Fig. 2 depicts some representative examples of the images in this
ataset and the different tasks.

.1.2. Network architecture and training objectives
We use the network architecture proposed in Kosti, Alvarez, Re-

asens, and Lapedriza (2017) for addressing this same multi-task sce-
ario. In general, this architecture follows the usual approach in the
iterature for image-level prediction tasks i.e. using a convolutional
ncoder followed by one or more fully connected layers. However, this
etwork consists of two encoders, one that receives the whole image
s input and other that receives the bounding box of each particular
erson. The output of both encoders is concatenated and fed to a
eries of fully connected layers that generate the final predictions. For
niformity among the experiments, we use ResNet-18 (He, Zhang, Ren,
Sun, 2016) as backbone, i.e. as the architecture for the two encoders

n the network.
For multi-label classification, the network predicts a vector contain-

ng the probabilities of all the discrete categories. A sigmoid function is
pplied in the last layer of the network to generate the bounded prob-
bilities. Then, the training objective is the minimization of the binary
ross-entropy between predicted and ground truth probabilities. For the
egression task, the network directly predicts the three independent
imensions using a linear output layer. The training objective is the
inimization of the L1-norm of the difference between prediction and
round truth. In summary, the standard setting of EMOTIC has 2 inde-
endent losses (using binary cross-entropy and L1-norm). However, we
lso use the EMOTIC dataset to study the performance of the different
ask-balancing methods with a higher number of tasks. This alternative
etting is constructed by addressing the multi-label classification as a
TL problem. In this case, each category represents an individual task
nd there are 26 independent losses (using binary cross-entropy).
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Table 1
Results with different learning rates on the EMOTIC dataset. Underline denotes the
best result of each method. The relative improvement of the best result with respect
to the result given by the alternative learning rate is indicated between parentheses.
LR denotes Learning Rate.
Method LR Categories (mAP ↑) Dimensions (MAE ↓)

Equal Weights 1e−3 23.69 0.9975 (3.45%)
1e−4 25.11 (6.00%) 1.0332

Uncertainty 1e−3 24.32 1.0151 (1.46%)
1e−4 25.48 (4.77%) 1.0301

DWA 1e−3 23.96 0.9981 (2.65%)
1e−4 25.26 (5.43%) 1.0253

GradNorm 1e−3 24.1 0.9940 (4.22%)
1e−4 25.41 (5.44%) 1.0378

MAO 1e−3 25.82 (2.91%) 0.9628 (2.16%)
1e−4 25.09 0.9841

5.1.3. Training details
The training methodology is mainly based on the proposal of Kosti

et al. (2017). In particular, both encoders of the network are pre-trained
in a supervised image classification task. The encoder that receives
the whole images as input is pre-trained on the Places dataset (Zhou,
Lapedriza, Xiao, Torralba, & Oliva, 2014), whereas the encoder that re-
ceives the bounding box of each person is pre-trained on the ImageNet
dataset (Deng et al., 2009). The optimization of the baseline methods is
conducted with the Adam algorithm (Kingma & Ba, 2015), adopting the
standard decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999 as well as the standard
mall constant 𝜖 = 1e-8. Also, weight decay with coefficient 𝜆 = 0.0005
s applied (Loshchilov & Hutter, 2019). The same hyperparameters
re used for MAO. The training is conducted with a batch size of 52
mages for a duration of 15 epochs. A reduction of the learning rate
y a factor of 10 is applied after the first half of training (Kosti et al.,
017). Regarding the initial learning rate, we followed (Vandenhende
t al., 2021) and selected the best initial learning rate 𝛼 for each
method. We performed an initial grid search in the set {1e-5, 1e-4,
1e-3} and progressively extended the range if the best value was any
of the extremes. We found that 𝛼 = 1e-3 provided the best results for
our proposal in both tasks, Categories and Dimensions. For the other
methods, 𝛼 = 1e-4 provided the best results for Categories, whereas 𝛼 =
1e-3 provided the best results for Dimensions. In these cases, we used
𝛼 = 1e-4, as it provided the best overall performance. The differences
between using 𝛼 = 1e-3 or 𝛼 = 1e-4 according to our preliminary
experiments can be seen in Table 1. As data augmentation, we use
andom horizontal flipping of the images.

.1.4. Evaluation metrics
The quantitative evaluation is performed using common metrics in

he literature (Kosti et al., 2020; Najar & Bouguila, 2022). In particu-
ar, multi-label classification is evaluated by means of mean Average
recision (mAP) and mean F1-score (mF1). The regression is evaluated
sing Mean Average Error (MAE) and Mean Squared Error (MSE).

.1.5. Results for EMOTIC
Table 2 depicts the results of the experiments on the EMOTIC

ataset. First of all, the obtained results show that MAO outperforms
ll the other alternatives in these experiments, obtaining significantly
etter results in both tasks. The improvement is especially notable
or Dimensions. However, it must be noticed that, in this case, the
ifferences between tasks are also affected by the selection of the learn-
ng rate for the baseline methods. As seen in Table 1, other methods
resent a compromise between the performance in Categories and the
erformance in Dimensions. In this case, it happens that the value that
rovides the best overall performance is less beneficial for the task
imensions, which explains the greater improvement of MAO in this
259

ask. It is worth noting that MAO does not present such compromise, F
ence it is able to simultaneously achieve the best possible result for
ach task. This makes it possible for MAO to always outperform the
ther alternatives, regardless of the hyperparameter selected for those
ethods.

.1.6. Multi-label classification as multi-task learning
In order to study the performance of the different methods when

acing a high number of tasks, we reformulate the multi-label classifi-
ation in EMOTIC as a MTL problem. For these experiments, we only
se the categorical annotations in this dataset and consider each of the
6 categories as an individual task. Then, the different task-balancing
ethods are used to balance the learning among categories/tasks.
Table 3 depicts the results of the experiments with 26 tasks. The

esults show that, in this challenging setting, MAO significantly out-
erforms all the other alternatives. This indicates that the proposed
ethod is robust and able to perform well regardless of the number of
asks. Additionally, MAO is the only method for which this experiment
eaches the same performance than the standard 2-task setting of
MOTIC. In that regard, it should be noticed that the result achieved
y Equal Weights in this experiment (24.29 ± 0.17% mAP) corresponds
o the single-task baseline for Categories. Thus, it can be seen in
able 2 that all the methods are able to improve the performance for
ategories by including Dimensions as an additional complementary
ask. However, MAO is able to achieve the same results by only ex-
loiting the relations among the 26 categories, without requiring any
dditional annotations (such as those corresponding to the regression
ask, i.e. Dimensions).

.2. Pixel-level prediction tasks

.2.1. Dataset and tasks
For the pixel-level prediction tasks, we use the public dataset

YUDv2 (Silberman, Hoiem, Kohli, & Fergus, 2012). This dataset is fo-
used on indoor scene understanding and provides a multi-task scenario
onsisting of semantic segmentation, monocular depth estimation, and
urface normal prediction. In particular, the dataset provides images
f common scenes in different room types, such as living rooms,
edrooms, kitchens, etc. The depth maps are obtained from a Microsoft
innect device and the surface normals are automatically derived from
he depth data (Eigen & Fergus, 2015). The semantic segmentation task
omprises 40 different classes. The size of the images is 480 × 640
ixels and the dataset provides 795 training images and 654 validation
mages. Fig. 3 depicts some representative examples of the images in
he dataset as well as the different tasks.

.2.2. Network architecture and training objectives
In this case, given the variety of alternatives in the literature, we use

wo different state-of-the-art network architectures in our experiments:
ulti-Task Attention Network (MTAN) (Liu et al., 2019) and Multi-
cale Task Interaction Network (MTI-Net) (Vandenhende, Georgoulis,
Van Gool, 2020). These two networks are exemplar of the two main
rends regarding the architectural approaches to MTL (Vandenhende
t al., 2021). Thus, we ensure that our experiments are relevant to the
road spectrum of current practices.
With regards to the characteristics of the two networks, MTAN

onsists of a shared backbone and several task-specific heads with
ttention modules. The attention modules aim at selecting the most
elevant features for each task from the global feature pool learned
n the shared backbone. Similarly, MTI-Net also presents a shared
ackbone followed by several task-specific heads. However, in this
ase, the heads make several initial task predictions at multiple scales.
hen, the learned task-specific features are distilled at every scale and
inally aggregated across scales to make the final predictions. In both
etworks, the shared backbone is an standard convolutional encoder.

or uniformity among the experiments, we use ResNet-18 (He et al.,
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Table 2
Results for EMOTIC (multi-label classification with 26 emotion and regression with 3 dimensions). Bold denotes the best result for each evaluation metric in terms of mean value.
Asterisks denote whether the difference between the best result and the others is statistically significant (∗ denotes 𝑝 value < 0.05; ∗∗ denotes 𝑝 value < 0.01).
Method Categories ↑ Dimensions ↓

mAP mF1 MAE MSE

Equal weights 25.35 ± 0.15 29.88 ± 0.56 1.0272 ± 0.0073 1.7139 ± 0.0182
Uncertainty (Kendall et al., 2018) 25.31 ± 0.13 29.74 ± 0.40 1.0254 ± 0.0055 1.7041 ± 0.0176
DWA (Liu et al., 2019) 25.23 ± 0.11 29.51 ± 0.61 1.0280 ± 0.0064 1.7154 ± 0.0117
GradNorm (Chen et al., 2018) 25.32 ± 0.16 29.62 ± 0.21 1.0273 ± 0.0100 1.7070 ± 0.0261
MAO (Proposed) ∗∗25.92 ± 0.09 ∗30.31 ± 0.34 ∗∗0.9557 ± 0.0050 ∗∗1.4942 ± 0.0163
Table 3
Results for EMOTIC-Categories (multi-label classification with 26 categories). Evaluation by means of AP(%) (higher is better). Bold denotes the best result for each category/task
in terms of mean value. Asterisks denote whether the difference between the best result and the others is statistically significant (∗ denotes 𝑝 value < 0.05; ∗∗ denotes 𝑝 value <
0.01).
Category/Task Equal Uncert DWA GNorm MAO

Affection 28.89 ± 0.87 28.80 ± 0.69 29.20 ± 0.68 29.27 ± 0.75 ∗31.20 ± 0.42
Anger 9.26 ± 0.93 9.39 ± 0.84 8.96 ± 0.83 11.47 ± 0.93 10.62 ± 0.28
Annoyance 12.99 ± 0.84 13.11 ± 0.56 12.81 ± 0.84 13.32 ± 0.92 13.79 ± 0.23
Anticipation 54.08 ± 0.82 54.48 ± 0.33 54.24 ± 0.75 55.64 ± 0.26 ∗∗56.57 ± 0.12
Aversion 5.28 ± 0.56 5.25 ± 0.19 5.37 ± 0.58 5.51 ± 0.22 ∗7.10 ± 0.44
Confidence 65.69 ± 0.55 65.95 ± 0.51 65.92 ± 0.51 70.13 ± 0.80 ∗∗75.27 ± 0.13
Disapproval 10.85 ± 0.80 11.34 ± 0.56 10.82 ± 0.79 12.12 ± 1.08 12.47 ± 0.30
Disconnection 23.21 ± 1.08 23.46 ± 0.62 23.30 ± 1.05 23.68 ± 0.56 24.47 ± 0.39
Disquietment 17.48 ± 0.51 17.16 ± 0.59 17.52 ± 0.56 17.23 ± 0.22 16.79 ± 0.26
Doubt/Confusion 17.67 ± 0.36 17.78 ± 0.48 17.66 ± 0.35 17.53 ± 0.34 17.25 ± 0.11
Embarrassment 2.17 ± 0.20 2.18 ± 0.20 2.07 ± 0.20 2.19 ± 0.16 ∗2.65 ± 0.20
Engagement 83.47 ± 0.47 83.41 ± 0.34 83.33 ± 0.38 84.41 ± 0.32 ∗∗86.20 ± 0.10
Esteem 15.05 ± 0.53 14.49 ± 0.63 15.07 ± 0.50 14.76 ± 0.31 ∗∗16.37 ± 0.16
Excitement 63.80 ± 0.50 63.47 ± 0.32 63.78 ± 0.51 65.26 ± 0.16 ∗∗68.76 ± 0.12
Fatigue 10.64 ± 0.42 10.73 ± 0.79 10.45 ± 0.44 11.45 ± 0.57 10.65 ± 0.20
Fear 4.83 ± 0.19 5.02 ± 0.61 4.84 ± 0.19 5.42 ± 0.55 5.78 ± 0.32
Happiness 67.28 ± 0.62 67.25 ± 0.62 67.46 ± 0.38 67.48 ± 0.33 66.69 ± 0.18
Pain 6.98 ± 0.80 7.17 ± 0.44 6.77 ± 0.87 8.29 ± 0.87 7.81 ± 0.78
Peace 21.98 ± 0.84 22.39 ± 0.65 21.97 ± 0.84 22.71 ± 0.57 23.44 ± 0.44
Pleasure 40.59 ± 0.90 41.04 ± 0.73 41.19 ± 0.73 41.69 ± 0.27 42.06 ± 0.16
Sadness 17.69 ± 1.56 17.61 ± 1.69 17.77 ± 1.65 19.95 ± 0.90 20.63 ± 0.90
Sensitivity 5.65 ± 0.39 5.96 ± 0.65 5.61 ± 0.36 6.11 ± 0.44 6.22 ± 0.21
Suffering 17.79 ± 2.02 17.32 ± 1.60 17.59 ± 1.87 19.18 ± 0.95 ∗21.68 ± 0.65
Surprise 7.16 ± 0.08 7.38 ± 0.61 7.22 ± 0.19 7.78 ± 0.47 ∗8.97 ± 0.38
Sympathy 12.37 ± 0.51 11.96 ± 0.34 12.38 ± 0.51 12.59 ± 0.58 13.19 ± 0.31
Yearning 8.82 ± 0.40 8.36 ± 0.42 8.75 ± 0.40 8.48 ± 0.26 8.22 ± 0.19

Mean 24.29 ± 0.17 24.33 ± 0.22 24.31 ± 0.18 25.14 ± 0.06 ∗∗25.96 ± 0.07
Fig. 3. Example of input image and ground truth of the different tasks in NYUDv2 (Silberman et al., 2012).
c
e
t

016) as backbone in MTAN and HRNet-18 (Sun, Xiao, Liu, & Wang,
019) as backbone in MTI-Net.
The training of the different tasks is formulated following the usual

pproaches in state-of-the-art related works (Liu et al., 2019; Xu,
Ouyang, Wang, & Sebe, 2018). For semantic segmentation, the prob-
ability of each class is predicted in a different output channel of
the network. Then, the normalized probabilities are obtained with a
softmax operation and the training objective is the minimization of
the cross-entropy between predicted and ground truth probabilities.
The monocular depth estimation is approached as a direct regression
of the depth values in a single output channel of the network. For
this task, the training objective is the minimization of the L1-norm of
the difference between predicted and ground truth values. For surface
260

F

normal prediction, the normal vectors are predicted using a different
output channel for each Cartesian component. Then, the training objec-
tive is the maximization of the cosine similarity between the predicted
and ground truth vectors. In total, there are 3 independent losses for
NYUDv2 (using cross-entropy, L1-norm, and cosine similarity).

5.2.3. Training details
Regarding the training methodology, we mainly adopt well-proven

practices from previous works (Liu et al., 2019; Xu et al., 2018). In this
ase, also considering the variety of approaches in the literature, we
xplore both training from scratch and the use of network backbones
hat were pre-trained on the ImageNet dataset (Deng et al., 2009).
or the experiments training from scratch, the networks are randomly
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Table 4
Results for NYUDv2 with MTAN and MTI-Net pretrained on ImageNet. Bold denotes the best result for each evaluation metric in each network architecture in terms of mean value.
Asterisks denote whether the difference between the best result and the others is statistically significant (∗ denotes 𝑝 value < 0.05; ∗∗ denotes 𝑝 value < 0.01).
Method Semantic ↑ Depth ↓ Normals ↓

mIoU pAcc Abs. 𝛿 Rel. 𝛿 Mean Median

MTAN

Equal Weights 39.77 ± 0.24 69.38 ± 0.08 0.4017 ± 0.0032 0.1585 ± 0.0016 22.31 ± 0.08 15.27 ± 0.07
Uncertainty (Kendall et al., 2018) 39.85 ± 0.30 69.51 ± 0.12 0.4017 ± 0.0025 0.1579 ± 0.0011 22.16 ± 0.06 15.10 ± 0.05
DWA (Liu et al., 2019) 39.83 ± 0.23 69.34 ± 0.10 0.4029 ± 0.0025 0.1586 ± 0.0012 22.36 ± 0.04 15.33 ± 0.07
GradNorm (Chen et al., 2018) 39.62 ± 0.40 69.20 ± 0.16 0.4020 ± 0.0036 0.1588 ± 0.0008 22.05 ± 0.08 14.98 ± 0.05
MAO (Proposed) 40.10 ± 0.31 69.62 ± 0.15 ∗∗0.3960 ± 0.0032 ∗∗0.1537 ± 0.0014 ∗∗21.28 ± 0.07 ∗∗14.05 ± 0.06

MTI-Net

Equal Weights 39.07 ± 0.45 68.94 ± 0.19 0.3829 ± 0.0021 0.1501 ± 0.0014 22.62 ± 0.05 16.25 ± 0.09
Uncertainty (Kendall et al., 2018) 38.67 ± 0.32 68.63 ± 0.25 0.3809 ± 0.0017 0.1489 ± 0.0020 22.39 ± 0.04 15.96 ± 0.06
DWA (Liu et al., 2019) 38.86 ± 0.36 68.78 ± 0.20 0.3812 ± 0.0014 0.1496 ± 0.0013 22.60 ± 0.03 16.15 ± 0.06
GradNorm (Chen et al., 2018) 38.59 ± 0.29 68.43 ± 0.16 0.3783 ± 0.0032 0.1475 ± 0.0023 21.78 ± 0.05 15.26 ± 0.08
MAO (Proposed) 37.94 ± 0.43 68.19 ± 0.10 0.3820 ± 0.0038 0.1484 ± 0.0018 ∗∗21.21 ± 0.05 ∗∗14.84 ± 0.08
Table 5
Results for NYUDv2 with MTAN and MTI-Net trained from scratch. Bold denotes the best result for each evaluation metric in each network architecture in terms of mean value.
Asterisks denote whether the difference between the best result and the others is statistically significant (∗ denotes 𝑝 value < 0.05; ∗∗ denotes 𝑝 value < 0.01).
Method Semantic ↑ Depth ↓ Normals ↓

mIoU pAcc Abs. 𝛿 Rel. 𝛿 Mean Median

MTAN

Equal Weights 26.21 ± 0.23 58.89 ± 0.16 0.4832 ± 0.0023 0.1874 ± 0.0005 25.82 ± 0.12 18.11 ± 0.15
Uncertainty (Kendall et al., 2018) 25.89 ± 0.53 58.68 ± 0.30 0.4779 ± 0.0014 0.1850 ± 0.0005 25.44 ± 0.09 17.68 ± 0.09
DWA (Liu et al., 2019) 26.22 ± 0.43 58.80 ± 0.15 0.4809 ± 0.0043 0.1865 ± 0.0013 25.78 ± 0.13 18.10 ± 0.13
GradNorm (Chen et al., 2018) 26.20 ± 0.24 58.76 ± 0.13 0.4789 ± 0.0018 0.1853 ± 0.0009 24.92 ± 0.09 17.11 ± 0.09
MAO (Proposed) ∗∗28.73 ± 0.29 ∗∗61.29 ± 0.18 ∗∗0.4496 ± 0.0021 ∗∗0.1735 ± 0.0008 ∗∗23.24 ± 0.08 ∗∗15.32 ± 0.09

MTI-Net

Equal Weights 28.16 ± 0.45 60.35 ± 0.27 0.4608 ± 0.0022 0.1783 ± 0.0007 25.85 ± 0.06 19.16 ± 0.06
Uncertainty (Kendall et al., 2018) 27.71 ± 0.32 60.07 ± 0.32 0.4571 ± 0.0034 0.1777 ± 0.0013 25.48 ± 0.13 18.64 ± 0.16
DWA (Liu et al., 2019) 28.34 ± 0.59 60.53 ± 0.37 0.4609 ± 0.0035 0.1793 ± 0.0016 25.87 ± 0.03 19.13 ± 0.07
GradNorm (Chen et al., 2018) 27.92 ± 0.24 59.98 ± 0.37 0.4494 ± 0.0064 0.1736 ± 0.0013 24.52 ± 0.12 17.40 ± 0.15
MAO (Proposed) ∗∗30.85 ± 0.28 ∗∗62.50 ± 0.40 ∗∗0.4324 ± 0.0063 ∗∗0.1670 ± 0.0027 ∗∗22.97 ± 0.08 ∗∗15.84 ± 0.11
R
t
t
o
f
s
f
t

initialized following the method of He, Zhang, Ren, and Sun (2015).
The optimization of the baseline methods is conducted with the Adam
algorithm (Kingma & Ba, 2015), adopting the standard decay rates of
𝛽1 = 0.9 and 𝛽2 = 0.999 as well as the standard small constant 𝜖 = 1e-8.
Also, weight decay with coefficient 𝜆 = 0.0001 is applied (Loshchilov
& Hutter, 2019). The same hyperparameters are used for MAO. The
training is conducted with a batch size of 4 images. The duration of
training is 100 epochs when using network backbones pre-trained on
ImageNet and 170 epochs when training from scratch. This difference
is intended to ensure the convergence of the networks in all the cases.
Regarding the initial learning rate, we followed (Vandenhende et al.,
2021) and selected the best initial learning rate 𝛼 for each method. We
performed an initial grid search in the set {1e-5, 1e-4, 1e-3} and pro-
gressively extended the range if the best value was any of the extremes.
In this case, a learning rate 𝛼 = 1e-4 was deemed the most adequate
or all the methods, hence this is the value used in all the experiments.
uring training, a polynomial learning rate decay with exponent 𝑝 = 0.9

is applied (Vandenhende et al., 2021). In order to avoid overfitting, we
perform spatial data augmentation in all the experiments. In particular,
we adopt the random transformations performed in Xu et al. (2018).

.2.4. Evaluation metrics
The quantitative evaluation is also performed using common met-

ics in the literature (Liu et al., 2019; Vandenhende et al., 2021).
n particular, semantic segmentation is evaluated by means of mean
ntersection over Union (mIoU) and total pixel Accuracy (pAcc). Depth
stimation is evaluated using the average Absolute error (Abs. 𝛿) and
the average Relative error (Rel. 𝛿). Meanwhile, surface normal predic-
tion is evaluated by means of the Mean and Median angular deviations
of the predicted vectors.
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5.2.5. Results for NYUDv2
Tables 4 and 5 show the results of the experiments on the NYUDv2

dataset using pretrained networks and training from scratch, respec-
tively. All the experiments are performed for two different neural
networks, MTAN and MTI-Net. In general, the obtained results show
that MAO produces the best overall performance. In particular, when
training from scratch, MAO clearly outperforms all the other alter-
natives in all the tasks and regardless of the network architecture.
Meanwhile, when using pre-trained networks, the overall performance
of the different methods is more similar. When using a pretrained
MTAN, MAO achieves significantly better results in two of the three
tasks, whereas when using a pretrained MTI-Net, MAO achieves signif-
icantly better results only in the Normals prediction task. In this case,
the improvement in Normals seems to be at the expense of a relatively
lower performance in Semantic segmentation. In this regard, it is worth
noting that Semantic is also the task for which MAO offers less improve-
ment when using a pretrained MTAN. These results could be explained
by a combination of the pretraining especially favoring the Semantic
segmentation task and an initial imbalanced scenario in which this task
provides stronger supervisory signals in comparison to the other two
tasks. This latter question is further studied in Sections 5.2.6 and 5.2.7.
egarding the effect of the pretraining on each task, taking as reference
he approach Equal Weights, it can be seen that the pretraining benefits
he Semantic segmentation the most (average relative improvement
f 45,24% mIoU in comparison to 16.88% for Depth and 13.04%
or Normals). This could reduce the beneficial impact of the learned
hared features in the Semantic segmentation, given that the pretrained
eatures seem to already be very well aligned with the requirements of
his task.
Regarding the network architectures, it is observed in Tables 4

nd 5 that MTAN and MTI-Net provide, overall, similar performance.
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Fig. 4. Layer-wise average magnitude of the task-specific gradients (left) and layer-wise average contribution of each task to the parameter updates (right) during the whole
raining. Experiments performed using MTAN on the NYUDv2 dataset.
lthough there are some particular trends, such as MTI-Net always
roviding the best results for depth estimation. In contrast, for semantic
egmentation, MTI-Net provides the best results when training from
cratch but MTAN does so when using pre-trained networks. In general,
t seems that different networks may be better suited to different scenar-
os. These results show that the network architecture also plays a role
n the balance among tasks, at least in terms of the final performance.
n this regard, it is known that basic decisions such as the number of
hared or task-specific layers can affect the obtained results (Bragman,
anno, Ourselin, Alexander, & Cardoso, 2019). Additionally, in this
case, MTAN and MTI-Net also present particular mechanisms that are
expected to positively affect the performance in MTL.

5.2.6. Task balance analysis across network layers
To better understand the success of the proposed approach and

study the real effect of the different alternatives on the learning process,
we perform an in-depth analysis of the learning dynamics within the
neural network. This analysis is carried out by measuring the backprop-
agated gradients during the training and computing a series of relevant
metrics. In particular, we calculate the average gradient magnitude
of each task at each layer of the network. These average gradient
magnitudes represent the overall strength of the supervisory signal
provided by each task. We also compute the average contribution of
each task to the parameter updates at each layer of the network. These
average contributions to the parameter updates represent how much
influence each task has on the training. The contribution of each task
to the parameter updates is computed as the product of the gradients
magnitude and the effective learning rate, following the formulation of
Adam. In the case of MAO, we use the computed task-specific learning
rates, whereas in the classical loss weighting approaches the same
effective learning rate is used for all the tasks.

The described analysis is performed on the NYUDv2 dataset using
262

MTAN. The obtained results are depicted in the graphs of Fig. 4, where
each bar represents the averages throughout the whole training. The
first observation is that, for all the alternatives, the gradients vary
significantly throughout the network whereas the updates are very
similar across the different layers. This is a consequence of the adaptive
optimization algorithm Adam that is used in all the cases, providing a
balanced learning across parameters regardless of the backpropagated
gradients magnitudes.

Regarding the relation among tasks, it is observed that the back-
propagated gradients are imbalanced in all the cases. For previous
methods, this gradient imbalance across tasks is directly translated
into imbalanced contributions to the parameter updates. However, the
proposed MAO approach is able to provide precisely balanced contri-
butions to the parameter updates in spite of the gradients imbalance.
This results in a balanced learning across tasks. This is an important
observation that explains the strong results obtained by the proposed
approach.

In general, considering all the studied alternatives, the contributions
to the parameters updates seem to correlate with the quantitative
results depicted in Table 5 for MTAN. For instance, in the reference sce-
nario Equal Weights, depth estimation and normal prediction present
lower contributions than semantic segmentation. Then, both Uncer-
tainty and GradNorm visibly increase the contributions of these tasks
(see Fig. 4) while also producing an improvement of their quantitative
results in Table 5. Moreover, GradNorm is the method providing the
highest contributions for normals after MAO and, again, it is also
achieving the second best quantitative results for this task in Table 5.
These observations indicate that the balance among tasks, in terms of
their contribution to the parameter updates, is directly related to the
final performance of each task.

5.2.7. Task balance analysis across training steps
Given the non-stationary nature of the network training, we perform
an additional analysis considering the evolution of the learning process
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Fig. 5. Average magnitude of the task-specific gradients (left) and average contribution of each task to the parameter updates (right) for every training step. Experiments performed
using MTAN on the NYUDv2 dataset.
through time. This analysis is based on the same experiments and
metrics that were used in Section 5.2.6. However, in this case, the
gradients and contributions to the parameter updates are averaged over
the whole network and computed for each training step. The results are
depicted in the graphs of Fig. 5. In this case, it must be noticed that the
drop-off in computed contributions towards the end of the training is
due to the applied learning schedule described in Section 5.2.3.

Regarding the comparison among alternatives, it is observed that,
n terms of contributions to the parameter updates, the best balance
t any training step is always provided by MAO. In this regard, the
roposed approach provides a very tight balance among tasks through-
ut the whole training. This allows a successful MTL performance as
t is demonstrated in the results of Table 5. Interestingly, GradNorm
also produces a good balance among tasks −although not as tight
as MAO− towards the end of the training. However, the imbalanced
scenario during the first half of the training negatively affects the final
performance of this approach. In this case, the existing lag is due to
the optimization process that is required to estimate the balancing loss
weights of GradNorm. In contrast, Uncertainty Weighting is capable
of producing an apparently adequate balance throughout the whole
training, but only for two of the three tasks involved.

Finally, these results are in line with those reported in Section 5.2.6
and show that a biased task balance during a limited number of epochs
can severely influence the aggregated contribution of each task to the
training. This demonstrates the importance of achieving an adequate
balance among all the tasks and during the whole training.

5.2.8. Evolution of evaluation metrics through training
Finally, we also analyze the evolution through the training in terms

of evaluation metrics for each of the tasks. These experiments are
conducted using the same network as previous analyses (Sections 5.2.6
and 5.2.7). However, given the differences in performance between
training from scratch and using pretrained networks, in this case we
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include both alternatives in the analysis. The results are depicted in
the graphs of Fig. 6. It can be seen that the different approaches start to
have an effect on the performance of the network since the first epochs
of training. Additionally, this effect usually matches the impact of each
approach on the final performance of the network. For instance, when
training from scratch, our proposal seems to be advantageous for the
three tasks since the beginning. This could be explained by the higher
quality of the learned features when all the tasks contribute equally to
the training. When using a pretrained network, the same advantage is
observed for Depth and Normals. However, our proposal slows down
the training of Semantic in comparison to the other approaches. This
can be explained by two main reasons. First, as seen in Section 5.2.5,
the features already provided by the pretraining are especially advan-
tageous for Semantic segmentation, thus reducing the benefit of the
shared features learned due to the complementary multitask feedback.
Second, as seen in Figs. 4 and 5, our proposal provides a very well
balanced training of the different tasks. This necessarily implies a
reduction of the relative importance of the tasks that were initially
dominating the training (in this case, Semantic segmentation). When
training from scratch, the benefits of the high quality shared features
outweigh this reduction, but that is not the case when pretrained
features very well aligned with the Semantic segmentation task are
already available since the beginning of training. In any case, as the
training progresses, the multitask shared features seem to be more
advantageous and our proposal is able to reach or even surpass other
alternatives.

5.3. Impact analysis

In this work, we have performed an extensive experimentation
to evaluate and compare the performance of different task-balancing
approaches. These experiments, focused on computer vision, have in-
cluded both image-level and pixel-level prediction tasks, experimental
settings with different number of tasks, and different network archi-

tectures. Considering all the experiments that were performed, MAO
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Fig. 6. Evolution of the performance of each task through training. Experiments performed using MTAN on the NYUDv2 dataset.
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roves to be the approach that provides the best overall performance.
n particular, MAO clearly outperforms the other alternatives in all
he experiments except for the one using a pre-trained MTI-Net on
YUDv2. Even in this case, MAO still provides a competitive perfor-
ance that is on par with the other methods. In this particular case,
he differences among methods are due to the tendency of some of
hem to favor some tasks over others. As it is shown in the analyses of
igs. 4 and 5, there is an imbalanced training scenario in the NYUDv2
ataset, with some tasks providing greater gradients than others. In
his scenario, MAO is the only approach able to completely balance
he contributions of the different tasks to the training of the network.
omparatively, other approaches have a smaller effect on the balance
mong tasks. This could explain why the performance of the other task-
alancing approaches is usually closer to the performance of Equal
eights and our proposal is the method always producing the most
rastic changes in performance. This is likely due to the greater effect
f MAO in the balance among tasks. According to Fig. 5, GradNorm
s also able to achieve a relatively well balanced contributions to the
arameter updates towards the end of the training. This seems to be
eflected in some results, such as e.g. the second-best performance in
he experiments with 26 tasks on EMOTIC as well as the second-best
erformance in Normals prediction on NYUDv2. However, in other
ases, the results of GradNorm are closer to those of Equal Weights. This
eems to indicate that not only it is important to achieve a good balance
mong tasks, but also it is necessary to do so throughout the whole
raining. We have demonstrated that this is achieved by the proposed
pproach.
Finally, regarding potential limitations and challenges for the appli-

ation of our proposal, it is worth noting that MAO requires to compute
he individual backpropagated gradients of each task. Therefore, the
omplexity of the method is linear with respect to the number of
asks. This can be a limitation when training a high number of tasks.
264

a

uture works could explore alternatives to improve the computational
fficiency in these scenarios. Additionally, regarding future research
irections, our analyses provide some relevant results than can be
aluable for future works, such as the importance of balancing the
ontributions of the different tasks throughout the whole training or
he interrelation between multi-task learning and the pre-training.

. Conclusions

In this work, we have presented a novel Multi-Adaptive Optimiza-
ion (MAO) strategy for automatically producing a task-balanced train-
ng in multi-task learning. In particular, our proposal avoids the use of
oss weighting schemes and, instead, extends the adaptive optimization
aradigm, previously applied at the parameter-level, to the task-level.
his allows to achieve a balanced contribution of the different tasks to
he network parameter updates, during the whole training and for any
umber of tasks.
The proposed approach is validated in the context of multi-task

earning for computer vision, considering both image-level and pixel-
evel prediction tasks. In this regard, the experimentation is conducted
n two public real-world datasets providing a variety of different
cenarios. Additionally, we further studied the performance of the
ethod under different settings, considering relevant factors such as
he network architecture and the pre-training of the networks as well
s multi-task scenarios with a high number of tasks. All the experiments
ere performed for several state-of-the-art alternatives, hence provid-
ng a valuable comparison of task-balancing approaches. In this regard,
he obtained results show that the proposed approach outperforms
revious alternatives in most of the studied scenarios
In order to better understand the advantages of our proposal, we

erformed additional experiments to analyze the learning balance

cross tasks, network layers, and training steps. The obtained results
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provide evidence that a balanced contribution of the different tasks
to the network parameter updates throughout the whole training is
key for the successful training of multi-task networks. This explains
the success of the proposed approach and should be considered for
future research in multi-task learning. Additionally, the results herein
presented show promising potential for the future application of MAO
to different multi-task settings, in computer vision as well as in any
other application domain where the optimization of multiple training
losses may be required.
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