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A B S T R A C T

Time series data are ubiquitous nowadays. Whereas most of the literature on the topic deals with real-valued
time series, categorical time series have received much less attention. However, the development of data mining
techniques for this kind of data has substantially increased in recent years. The R package ctsfeatures offers
users a set of useful tools for analyzing categorical time series. In particular, several functions allowing the
extraction of well-known statistical features and the construction of illustrative graphs describing underlying
temporal patterns are provided in the package. The output of some functions can be employed to perform
traditional machine learning tasks including clustering, classification and outlier detection. The package also
includes two datasets of biological sequences introduced in the literature for clustering purposes, one dataset
of sleep stages, and three interesting synthetic databases. In this work, the main characteristics of the package
are described and its use is illustrated through various examples. Practitioners from a wide variety of fields
could benefit from the valuable tools provided by ctsfeatures.

1. Introduction

Traditionally, most of the literature on time series analysis has focused on real-valued time series, while the study of time series with discrete
response has received much less attention even though they arise in a natural way in many applications. Examples include weekly counts of new
infections with a specific disease [1], temporal records of EEG sleep states [2], the stochastic modeling of DNA sequence data [3,4] and financial
time series [5], and the use of hidden Markov processes to deal with protein sequences [6], among others. An excellent introduction to the topic
of discrete-valued time series is provided by [7], including classical models, recent advances, relevant references and specific application areas.

Categorical time series (CTS) are characterized by taking values on a qualitative range consisting of a finite number of categories, which is
referred to as ordinal range, if the categories exhibit a natural ordering, or nominal range, otherwise. In this work, the most general case of
nominal range is considered. Indeed, dealing with unordered qualitative outcomes implies that some classical analytic tools are no longer useful,
since categories cannot be ranked and no algebraic operations can be performed on them. This way, standard measures of location (mean, median,
quantiles), dispersion (standard deviation, range) and serial dependence (autocorrelation, partial autocorrelation) are not defined in the nominal
setting, and alternative measures considering the qualitative nature of the range are needed for the analysis of CTS. Although the case of ordinal
time series falls outside the scope of this article, it is worth mentioning that the statistical features described throughout this work are also useful
with ordinal responses. However, in this case, additional features (measuring dispersion, skewness, serial dependence,. . . ) can be used to take
advantage of the latent ordering existing in the series’ range (see e.g., [8]). The importance of considering the ordinal nature of the series is
properly discussed and illustrated in the recent work by the authors [9], where the ordinal series are characterized by cumulative probabilities
describing both the marginal properties and the serial dependence patterns.

While early articles about CTS mainly focused on problems of statistical inference and modeling, several works addressing the construction of
machine learning algorithms for categorical series have been published in recent years. For instance, in the context of clustering, [10] proposed
an algorithm based on a mixture of first order Markov models to group time series recording navigation patterns of users of a web site. A different
strategy was considered in [11], where a dissimilarity measure combining both closeness of raw categorical values and proximity between dynamic
behaviors is used as input to a modified version of the 𝐾-modes algorithm. Alternatively, a well-known approach in time series analysis consists
of representing the series by means of extracted features capturing their main properties (see e.g., [12] and specific software packages considering
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this via such as [13,14]). Dealing with CTS, a feature-based clustering algorithm aimed at detecting groups of series with similar dependence
structures was introduced by [15]. Their approach consists of replacing the original series by a set of informative statistics extracted from each
one of them, which are then used as input to a standard clustering procedure. The feature-based approach has also been employed for other
tasks as CTS classification. For example, [16] proposed a novel approach relying on the so-called spectral envelope and its corresponding set of
optimal scalings, which characterizes oscillatory patterns in a categorical series. Besides clustering and classification, there are other interesting
and challenging problems related to categorical sequences, as anomaly detection [17]. Previous references highlight the remarkable growth that
CTS mining has recently undergone.

According to these considerations, it seems clear that the development of software specifically designed to deal with CTS is of great importance.
However, although there exist several packages revolving around the analysis of categorical data without a temporal nature (e.g., the R [18] package
confreq [19,20] or the Python [21] package categorical-encoding), only a few computing tools are focused on categorical sequences. Moreover,
these tools are often restricted to one specific task, application domain or class of categorical models. For instance, the R package TraMineR [22]
implements a collection of dissimilarity measures between CTS (see [23]) related to the so-called sequence analysis [24], a topic of great interest in
social sciences. Most of these metrics attempt to detect differences concerning the order in which successive categories appear, the timing and the
duration of the spells for different categories. Another interesting tool devoted to sequence analysis is the STATA [25] package SADI [26], which
incorporates graphical summaries and tools for cluster analysis besides computing several dissimilarity criteria. Some other packages are designed
to deal with a particular type of model for CTS. For example, the R package HMM [27] provides several functions to perform statistical inference
for Hidden Markov Models (HMM). Note that, in terms of exploratory analyses, focusing on a specific class of models is too restrictive, since most
real CTS datasets are expected to contain series generated from different types of stochastic processes. Although their usefulness is beyond doubt,
none of the available software packages for handling CTS provides the necessary tools to compute classical statistical features for categorical series.

The goal of this article is to present the R package ctsfeatures, which contains several functions to compute well-known statistical features for
CTS. Besides providing a valuable description of the structure of the series, these features can be used as input for traditional machine learning
procedures, as clustering, classification and outlier detection algorithms. In addition, ctsfeatures includes some visualization tools, as well as
serial dependence plots, which can be seen as an extension of the autocorrelation plots for numerical time series. The two databases of biological
sequences introduced in [15] are also available in the package, along with other real database with sequences of sleep stages used in [16] and
several synthetic datasets formed by CTS generated from different stochastic processes. These data collections allow the users to test the functions
provided in the package.

In summary, ctsfeatures intends to integrate a set of simple but powerful functions for the statistical analysis of CTS into a single framework.
Implementation was carried out by using the open-source R programming language due to the role of R as the most used programming language
for statistical computing. The package ctsfeatures is available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/
package=ctsfeatures.

The rest of the paper is structured as follows. A summary of relevant features to analyze marginal properties and serial dependence of categorical
time series is presented in Section 2. Furthermore, features measuring cross-dependence between categorical and numerical processes are also
introduced. The main functions implemented in ctsfeatures and the available datasets are listed and discussed in Section 3. Section 4 is devoted
to illustrate the functionality of the package through several examples considering the synthetic data and the biological databases included in
ctsfeatures. In addition, the way in which the outputs of some functions can be used to perform classical machine learning tasks is properly
described. Lastly, some concluding remarks are provided in Section 5.

2. Analyzing marginal and serial properties of categorical time series

Let {𝑋𝑡, 𝑡 ∈ Z} be a one-dimensional categorical stochastic process taking values on a finite number 𝑟 of unordered qualitative categories, which
are coded with the integer numbers from 1 to 𝑟. The range of the process is denoted by  = {1,… , 𝑟}. In order to ensure that the statistical features
implemented in ctsfeatures to characterize the marginal properties and the serial dependence of 𝑋𝑡 are well-defined, we will assume that 𝑋𝑡 is a
weakly stationary process. Notice that the usual notion of weak stationarity for real-valued series refers to the invariance in 𝑡 of the expectations
𝐸(𝑋𝑡) and the covariances 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝑙), which are not defined for categorical data. Thus, among the different approaches proposed to define weak
stationary for CTS, we assume that 𝑋𝑡 satisfies the concept of bivariate stationarity introduced in [4]. According to Definition and Theorem 3.1
in [4], a categorical time series 𝑋𝑡 satisfies the bivariate stationarity property if the pairwise joint distribution of (𝑋𝑡, 𝑋𝑡+𝑙) is invariant in 𝑡 for each
lag 𝑙 ∈ Z.

It is often useful to represent {𝑋𝑡, 𝑡 ∈ Z} as the binary 𝑟-variate process {𝒀 𝑡 = (𝑌𝑡,1,… , 𝑌𝑡,𝑟)⊤, 𝑡 ∈ Z}, where 𝑌𝑡,𝑗 = 1 iff 𝑋𝑡 = 𝑗 and 0 otherwise,
for 𝑗 = 1,… , 𝑟. In other words, 𝑋𝑡 = 𝑗 iff 𝒀 𝑡 = 𝒆𝑗 , with 𝒆𝑗 being the unit vector of length 𝑟 taking the value 1 in the 𝑗th position and 0 in all others.
This representation, usually referred to as binarization of {𝑋𝑡, 𝑡 ∈ Z}, makes it easier to employ algebraic expressions to introduce some concepts
and is frequently used in this context [7]. As a simple example, using the binarization, the vector of frequencies of the different categories in a
realization of 𝑋𝑡 can be obtained as the sum of the corresponding binarized observations.

According to Theorem 3.1 in [4], bivariate stationarity implies marginal stationarity, which states that all the marginal probabilities are invariant
in 𝑡. Hereafter, the marginal distribution of 𝑋𝑡 is denoted by 𝒑 = (𝑝1,… , 𝑝𝑟)⊤, with 𝑝𝑗 = 𝑃 (𝑋𝑡 = 𝑗) = 𝑃 (𝒀 𝑡 = 𝒆𝑗 ), 𝑗 = 1,… , 𝑟.

In order to describe the marginal properties of the process, features measuring dispersion could be considered. However, categorical dispersion
is not a simple concept due to the fact that the range of {𝑋𝑡, 𝑡 ∈ Z} is intrinsically qualitative and the expectation of the process cannot be computed
in the standard way. An intuitive approach to understand the degree of dispersion of an arbitrary variable is in terms of the capability to predict
its outcome. That is, the smaller the dispersion, the better we can predict the result. This intuitive understanding of dispersion can be adapted for
categorical variables by simply considering the marginal probabilities: maximal dispersion when all probabilities 𝑝𝑗 are equal to each other (uniform
marginal distribution), and minimal dispersion if 𝑝𝑖 = 1 for some 𝑖 ∈  , and 𝑝𝑗 = 0 for 𝑗 ≠ 𝑖 (one-point distribution). Then, any concentration index
mapping the extremes of its range to their values for the one-point and uniform distributions can be used as measure of dispersion. Several indexes
have been proposed in the literature (see a brief review in Appendix A of [4] and the references therein). Three of these measures are the Gini
index, the entropy and the Chebycheff dispersion, which are given in the first rows of Table 1. All of them have range [0, 1], reaching the value 0
for the one-point distribution (minimal dispersion) and the value of 1 for the uniform distribution (maximal dispersion). The asymptotic properties
2

of the sample versions of these measures in the i.i.d. case can be seen in [7].

https://cran.r-project.org/package=ctsfeatures
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Table 1
Some relevant features to measure dispersion and serial dependence of a one-dimensional categorical stochastic process (top) and cross-dependence between the categorical and
numerical components of a two-dimensional mixed process (bottom).

One-dimensional categorical processes
Measure Definition Range Type

Gini index 𝑔 = 𝑟
𝑟 − 1

(

1 −
𝑟

∑

𝑖=1
𝑝2𝑖

)

[0, 1] Marginal

Entropy 𝑒 = −1
ln(𝑟)

𝑟
∑

𝑖=1
𝑝𝑖 ln 𝑝𝑖 [0, 1] Marginal

Chebycheff dispersion 𝑐 = 𝑚
𝑚 − 1

(1 − max
𝑖
𝑝𝑖) [0, 1] Marginal

Goodman and Kruskal's 𝜏 𝜏(𝑙) =

𝑟
∑

𝑖,𝑗=1

𝑝𝑖𝑗 (𝑙)2

𝑝𝑗
−

𝑟
∑

𝑖=1
𝑝2𝑖

1 −
∑𝑟
𝑖=1 𝑝

2
𝑖

[0, 1] Serial

Goodman and Kruskal's 𝜆 𝜆(𝑙) =

𝑟
∑

𝑗=1
max
𝑖
𝑝𝑖𝑗 (𝑙) − max

𝑖
𝑝𝑖

1 − max𝑖 𝑝𝑖
[0, 1] Serial

Uncertainty coefficient 𝑢(𝑙) = −

𝑟
∑

𝑖,𝑗=1
𝑝𝑖𝑗 (𝑙) ln

( 𝑝𝑖𝑗 (𝑙)
𝑝𝑖𝑝𝑗

)

𝑟
∑

𝑖=1
𝑝𝑖 ln 𝑝𝑖

[0, 1] Serial

Pearson measure X2
𝑛(𝑙) = 𝑛

𝑟
∑

𝑖,𝑗=1

(𝑝𝑖𝑗 (𝑙) − 𝑝𝑖𝑝𝑗 )2

𝑝𝑖𝑝𝑗
[0, 𝑛(𝑟 − 1)] Serial

𝛷2-measure 𝛷2(𝑙) = X2
𝑛(𝑙)∕𝑛 [0, 𝑟 − 1] Serial

Sakoda measure 𝑝∗(𝑙) =

√

𝑟𝛷2(𝑙)
(𝑟 − 1)(1 +𝛷2(𝑙))

[0, 1] Serial

Cramer's 𝑣 𝑣(𝑙) = 𝛷(𝑙)∕
√

𝑟 − 1 [0, 1] Serial

Cohen's 𝜅 𝜅(𝑙) =

𝑟
∑

𝑗=1
(𝑝𝑗𝑗 (𝑙) − 𝑝2𝑗 )

1 −
𝑟

∑

𝑖=1
𝑝2𝑖

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−

𝑟
∑

𝑖=1
𝑝2𝑖

1 −
𝑟

∑

𝑖=1
𝑝2𝑖

, 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Serial

Total correlation 𝛹 (𝑙) = 1
𝑟2

𝑟
∑

𝑖,𝑗=1
𝜓𝑖𝑗 (𝑙)2 [0, 1] Serial

Two-dimensional processes with numerical and categorical components
Measure Definition Range Type

Total mixed cross-correlation 𝛹 ∗
1 (𝑙) =

1
𝑟

𝑟
∑

𝑖=1
𝜓∗
𝑖 (𝑙)

2 [0, 1] Serial

Total mixed q-cross-correlation 𝛹 ∗
2 (𝑙) =

1
𝑟

𝑟
∑

𝑖=1
∫

1

0
𝜓𝜌
𝑖 (𝑙)

2𝑑𝜌 [0, 1] Serial

To analyze the serial dependence structure of {𝑋𝑡, 𝑡 ∈ Z} for a given lag 𝑙 ∈ Z, it is interesting to consider the lagged joint probabilities 𝑝𝑖𝑗 (𝑙)
nd the lagged conditional probabilities 𝑝𝑖|𝑗 (𝑙), for 𝑖, 𝑗 = 1,… , 𝑟, which are defined by

𝑝𝑖𝑗 (𝑙) = 𝑃 (𝑋𝑡 = 𝑖, 𝑋𝑡−𝑙 = 𝑗) = 𝑃 (𝒀 𝑡 = 𝒆𝑖, 𝒀 𝑡−𝑙 = 𝒆𝑗 ),

𝑝𝑖|𝑗 (𝑙) = 𝑃 (𝑋𝑡 = 𝑖|𝑋𝑡−𝑙 = 𝑗) = 𝑃 (𝒀 𝑡 = 𝒆𝑖|𝒀 𝑡−𝑙 = 𝒆𝑗 ) =
𝑝𝑖𝑗 (𝑙)
𝑝𝑗

.
(1)

Based on probabilities in Eq. (1), [4] introduce notions of perfect serial independence and dependence for a categorical process. Specifically,
e have perfect serial independence at lag 𝑙 ∈ Z if and only if 𝑝𝑖𝑗 (𝑙) = 𝑝𝑖𝑝𝑗 for any 𝑖, 𝑗 ∈  . On the other hand, we have perfect serial dependence
t lag 𝑙 ∈ Z if and only if the conditional distribution 𝑝⋅|𝑗 (𝑙) is a one-point distribution for any 𝑗 ∈  . This way, knowledge about 𝑋𝑡−𝑙 does not
elp at all in predicting the value of 𝑋𝑡 in a perfect serially independent process, while 𝑋𝑡 is completely determined from 𝑋𝑡−𝑙 under perfect
erial dependence. Note that these concepts describe the so-called unsigned dependence of the process 𝑋𝑡. However, it is often desirable to know
hether a process tends to stay in the state it has reached (positive dependence) or, on the contrary, the repetition of the same state after 𝑙 steps

s infrequent (negative dependence). In other terms, by analogy with the autocorrelation function of a numerical process, which takes positive or
egative values, it is interesting to introduce a signed dependence measure for categorical processes. Again following [4], provided that perfect
erial dependence holds, we have perfect positive (negative) serial dependence if 𝑝𝑖|𝑖(𝑙) = 1 (𝑝𝑖|𝑖(𝑙) = 0) for all 𝑖 ∈  .

Once the notions of independence, perfect dependence and signed dependence at lag 𝑙 have been introduced, it is interesting to have available
pecific measures accounting for the amount and type of existing dependence. For this purpose, some association measures have been proposed in
he literature. As a general rule, a measure of association between two nominal variables evaluates the level of mutual relationship between both
f them, and it may be used to account for the amount of dependence if the limits of its range are related to the extreme cases of independence and
erfect dependence. For instance, a desirable property to relate association and dependence is that the association measure achieves the minimum
alue of its range when both variables are independent.

Some of the most important association measures available in the literature to describe the serial dependence structure of a categorical process
t lag 𝑙 are listed in the upper part of Table 1. Note that all of them are based on the probabilities introduced in Eqs. (1) and (3), although they
an be organized at different categories according to how they are constructed.

The measures 𝜏(𝑙) and 𝜆(𝑙) of Goodman and Kruskal and the uncertainty coefficient 𝑢(𝑙) form a first group of measures of unsigned association.
ll of them are aimed at assessing the proportional reduction of any dispersion measure of 𝑋𝑡 induced by 𝑋𝑡−𝑙. In fact, given a specific measure
3

f dispersion 𝐻(𝑋𝑡) (such as 𝑔, 𝑒 and 𝑐 in Table 1), one can define the conditional dispersion 𝐻(𝑋𝑡|𝑋𝑡−𝑙 = 𝑗) replacing the marginal probabilities
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𝑝𝑖 by the lagged conditional probabilities 𝑝𝑖|𝑗 (𝑙) in the definition of 𝐻 . Then, E(𝐻(𝑋𝑡|𝑋𝑡−𝑙)) =
∑𝑟
𝑗=1𝐻(𝑋𝑡|𝑋𝑡−𝑙 = 𝑗) 𝑝𝑗 and a measure of association

etween 𝑋𝑡 and 𝑋𝑡−𝑙 can be introduced as

𝐴𝐻 (𝑙) =
𝐻(𝑋𝑡) − E(𝐻(𝑋𝑡|𝑋𝑡−𝑙))

𝐻(𝑋𝑡)
= 1 −

E(𝐻(𝑋𝑡|𝑋𝑡−𝑙))
𝐻(𝑋𝑡)

. (2)

Thus, 𝐴𝐻 (𝑙) provides information about the proportional part of the variability of 𝑋𝑡 accounted for 𝑋𝑡−𝑙. The Goodman and Kruskal's 𝜏, the
oodman and Kruskal's 𝜆 and the uncertainty coefficient are association measures in the form 𝐴𝐻 (𝑙) in Eq. (2), which result from selecting as
ispersion measure, 𝐻(⋅), the Gini index (𝑔), the Chebycheff dispersion (𝑐), and the entropy (𝑒), respectively. The three measures satisfy suitable
roperties to assess unsigned dependence. Under independence, these measures take the value zero, although the inverse implication only holds
or the Goodman and Kruskal's 𝜏 and the uncertainty coefficient. In the three cases, we have perfect dependence iff they take the value one. It is
orth remarking that these measures are not symmetric.

A second group in Table 1 is formed by measures of unsigned association derived from the Pearson's 𝜒2-statistic. Specifically, the Pearson
easure, 𝑋2

𝑛 (𝑙), computes the squared differences between the joint probabilities 𝑝𝑖𝑗 (𝑙) and their corresponding factorization under independence,
𝑖𝑝𝑗 . Similarly, the 𝛷2-measure, the Sakoda measure, and the Cramer's 𝑣 are based on the Pearson's 𝑋2

𝑛 . In all cases, independence occurs iff the
orresponding measure takes the value zero, while perfect dependence is present iff the maximum value in the range is achieved (which differs
rom one for the Pearson and 𝛷2 measures). Unlike the measures in the first group, these four measures are symmetric.

While previous measures do not shed light on the signed dependence patterns, the Cohen's 𝜅(𝑙) can take either positive or negative values, since
the differences between probabilities in the numerator are not squared. In fact, 𝜅(𝑙) takes its lowest (highest) possible value iff 𝑋𝑡 and 𝑋𝑡−𝑙 exhibit
perfect negative (positive) dependence. Note that 𝜅(𝑙) is symmetric.

All of the quantities in the upper part of Table 1 have been extensively used in the CTS literature. Several examples related to the interpretation
of these measures are provided in [7], while their asymptotic properties for a specific type of categorical models are given in [28]. It is also worth
remarking that the assumption of bivariate stationarity implies the invariance in 𝑡 of these association measures, thus ensuring that all of them are
well-defined.

An alternative way of evaluating serial dependence within a categorical process is by considering pairwise correlations in the binarization of
𝑋𝑡 [15], that is, obtaining

𝜓𝑖𝑗 (𝑙) = 𝐶𝑜𝑟𝑟(𝑌𝑡,𝑖, 𝑌𝑡−𝑙,𝑗 ) =
𝑝𝑖𝑗 (𝑙) − 𝑝𝑖𝑝𝑗

√

𝑝𝑖(1 − 𝑝𝑖)𝑝𝑗 (1 − 𝑝𝑗 )
. (3)

By construction, features in Eq. (3) play a similar role as the autocorrelation function of a numerical stochastic process, which accounts for their
apability to characterize the underlying dependence. In fact, a clustering algorithm based on the values 𝜓𝑖𝑗 (𝑙) was proposed by [15] and exhibited

a high accuracy grouping together series with similar underlying dependence patterns.
In practice, the quantities in the upper part of Table 1 must be estimated from a 𝑇 -length realization of the process, 𝑋𝑡 = {𝑋1,… , 𝑋𝑇 }. For each

easure, a standard estimate is directly obtained by replacing in the corresponding expression the probabilities 𝑝𝑖 and 𝑝𝑖𝑗 (𝑙) by their respective
nbiased estimates 𝑝𝑖 and 𝑝𝑖𝑗 (𝑙) given by

𝑝𝑖 =
𝑁𝑖
𝑇
, with 𝑁𝑖 =

𝑇
∑

𝑡=1
1
(

𝑋𝑡 = 𝑖
)

,

𝑝𝑖𝑗 (𝑙) =
𝑁𝑖𝑗 (𝑙)
𝑇 − 𝑙

, with 𝑁𝑖𝑗 (𝑙) =
𝑇
∑

𝑡=𝑙+1
1
(

(𝑋𝑡, 𝑋𝑡−𝑙) = (𝑖, 𝑗)
)

,

(4)

for 𝑖, 𝑗 = 1,… , 𝑟, and where 1() stands for the indicator function taking the value 1 if  happens and 0 otherwise. In all cases, the symbol ⋅̂ is
used to denote the corresponding estimates (e.g., 𝑔 refers to the estimate of the Gini index). These estimates are often used to construct statistical
procedures aimed at testing the serial independence of a given categorical process at a given lag 𝑙 (see Section 3.2).

Another interesting issue when dealing with a categorical process {𝑋𝑡, 𝑡 ∈ Z} is to measure its degree of cross-dependence with a given real-
valued process. Let {𝑍𝑡, 𝑡 ∈ Z} be a strictly stationary real-valued process with variance 𝜎2. Then, for 𝑖 = 1,… , 𝑟, the level of linear dependence
between the 𝑖th category of 𝑋𝑡 and the process 𝑍𝑡 at a given lag 𝑙 ∈ Z can be evaluated by means of

𝜓∗
𝑖 (𝑙) = 𝐶𝑜𝑟𝑟(𝑌𝑡,𝑖, 𝑍𝑡−𝑙) =

𝐶𝑜𝑣(𝑌𝑡,𝑖, 𝑍𝑡−𝑙)
√

𝑝𝑖(1 − 𝑝𝑖)𝜎2
, (5)

where 𝑌𝑡,𝑖 is the 𝑖th component of the binarization of 𝑋𝑡.
Cross-correlations 𝜓∗

𝑖 (𝑙) are based on expected values and constitute the traditional way to examine linear dependence. However, uncorrelated
variables might exhibit dependence in different parts of the joint distribution. A deeper analysis of cross-dependence can be performed by examining
dependence in quantiles. More specifically, by using the quantities

𝜓𝜌𝑖 (𝑙) = 𝐶𝑜𝑟𝑟
(

𝑌𝑡,𝑖,1
(

𝑍𝑡−𝑙 ≤ 𝑞𝑍𝑡 (𝜌)
)

)

=
𝐶𝑜𝑣

(

𝑌𝑡,𝑖,1
(

𝑍𝑡−𝑙 ≤ 𝑞𝑍𝑡 (𝜌)
)

)

√

𝑝𝑖(1 − 𝑝𝑖)𝜌(1 − 𝜌)
, (6)

for 𝑖 = 1,… , 𝑟, where 𝜌 ∈ (0, 1) is an arbitrary probability level and 𝑞𝑍𝑡 (⋅) denotes the quantile function of the process 𝑍𝑡. By considering different
alues for 𝜌, 𝜓𝜌𝑖 (𝑙) provide measures of dependence at lag 𝑙 between the 𝑖th category of 𝑋𝑡 and the probabilities to exceed a range of quantiles of
𝑡, which leads to a more comprehensive picture of the underlying dependence and allows us to detect different types of dependence structures.

In order to have available a global measure of linear cross-correlation between categorical and numerical processes, the features 𝜓∗
𝑖 (𝑙) can be

sed to define the total mixed cross-correlation at lag 𝑙 given by

𝛹∗
1 (𝑙) =

1
𝑟
∑

𝜓∗
𝑖 (𝑙)

2. (7)
4

𝑟 𝑖=1
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Analogously, a measure of the quantile cross-correlation between both processes, herein referred to as total mixed q-cross-correlation at lag 𝑙, can
e defined as

𝛹∗
2 (𝑙) =

1
𝑟

𝑟
∑

𝑖=1
∫

1

0
𝜓𝜌𝑖 (𝑙)

2𝑑𝜌. (8)

By definition, both measures 𝛹∗
1 (𝑙) and 𝛹∗

2 (𝑙) (see the lower part of Table 1) take values on [0, 1], reaching the value 0 in the case of null
cross-dependence between 𝑋𝑡 and 𝑍𝑡, and larger values when a stronger degree of cross-dependence between both processes is present.

In practice, given a 𝑇 -length realization (𝑋𝑡, 𝑍𝑡) = {(𝑋1, 𝑍1),… , (𝑋𝑇 , 𝑍𝑇 )} of the two-dimensional process {(𝑋𝑡, 𝑍𝑡), 𝑡 ∈ Z}, respective estimates
f 𝜓∗

𝑖 (𝑙) and 𝜓𝑝𝑖 (𝑙) can be constructed by considering

�̂�∗
𝑖 (𝑙) =

𝐶𝑜𝑣(𝑌𝑡,𝑖, 𝑍𝑡−𝑙)
√

𝑝𝑖(1 − 𝑝𝑖)𝜎2
,

�̂�𝑝𝑖 (𝑙) =
𝐶𝑜𝑣

(

𝑌𝑡,𝑖,1
(

𝑍𝑡−𝑙 ≤ 𝑞𝑍𝑡 (𝜌)
)

)

√

𝑝𝑖(1 − 𝑝𝑖)𝜌(1 − 𝜌)
,

(9)

where 𝐶𝑜𝑣(⋅, ⋅) denotes the standard estimate of the covariance between two random variables, and 𝜎2 and 𝑞𝑍𝑡 (⋅) are standard estimates of the
ariance and the quantile function of process 𝑍𝑡 computed from the realization 𝑍𝑡. Then, estimates in Eq. (9) allow to estimate the global measures
𝛹∗
1 (𝑙) and 𝛹∗

2 (𝑙) by computing �̂�∗
1 (𝑙) =

1
𝑟
∑𝑟
𝑖=1 �̂�

∗
𝑖 (𝑙)

2 and �̂�∗
2 (𝑙) =

1
𝑟
∑𝑟
𝑖=1 ∫

1
0 �̂�

𝜌
𝑖 (𝑙)

2𝑑𝜌, respectively.
So far, the features introduced to characterize dependence are defined in the time domain, but valuable features in the frequency domain have

also been proposed in the literature. A well-known spectral feature is the so-called spectral envelope [2,29]. The idea is to assign numerical values
(scaling) to each of the categories of the process and then perform a spectral analysis of the resulting discrete-valued time series. Each scaling is
properly selected to emphasize a specific cyclic pattern existing in the categorical process. Specifically, for 𝜸 = (𝛾1,… , 𝛾𝑟)⊤ ∈ R𝑟, 𝑋𝑡(𝜸) = 𝜸⊤𝒀𝑡
denotes the real-valued stationary time series corresponding to the scaling that assigns the 𝑖th category of 𝑋𝑡 the value 𝛾𝑖, 𝑖 = 1,… , 𝑟. For a
given frequency 𝜔, the vector 𝜸 = 𝜸(𝜔) is determined by following the approach in [2,29]. First, the Fourier transform is applied to compute the
spectral density 𝑓 (𝜔; 𝜸) or a sample version of it for given time series data. If 𝜎2(𝜸) denotes the variance of 𝜸⊤𝒀𝑡, then 𝜸(𝜔) is chosen to maximize
𝑓 (𝜔; 𝜸)∕𝜎2(𝜸). The corresponding maximal value, so-called 𝜆(𝜔), is called the spectral envelope of process 𝑋𝑡. Note that 𝜆(𝜔) expresses the maximal
proportion of the variance that can be explained by the frequency 𝜔, and this maximal proportion is reached if the optimal scaling 𝜸(𝜔) is used.
More details on the computation of 𝜆(𝜔) and on corresponding sample versions 𝜆(𝜔) can be found in [2,29,30]. If 𝜆(𝜔) is plotted against 𝜔, a visual
frequency analysis of the categorical time series is possible.

Besides the features introduced above, there are several alternative statistics used to describe categorical series as the so-called pattern-based
features, whose main idea relies on discovering certain cyclical behaviors in a given time series [31,32]. An interesting example of such kind of
features is given by the so-called motifs, which are short sequences repeating themselves regularly within the time series of interest. It is worth
highlighting that motifs have been successfully employed in the context of time series data mining [33,34].

3. Main functions in ctsfeatures

This section is devoted to present the main content of package ctsfeatures. First, the datasets available in the package are briefly described, and
then the main functions of the package are introduced, including both graphical and analytical tools. It is worth recalling that the analytical functions
in ctsfeatures require the CTS under consideration to have been generated from stationary processes (see Section 2). Otherwise, misleading
conclusions can be reached from the corresponding outputs.

3.1. Available datasets in ctsfeatures

The package ctsfeatures includes some CTS datasets that can be used to evaluate different machine learning algorithms or simply for illustrative
purposes. Specifically, the available data collections consist of two databases of biological sequences introduced by [15], one database of sequences
of sleep stages partially employed by [16], and three synthetic datasets used in [15] for the evaluation of clustering algorithms. All of them are
briefly described below.

• Real datasets. The first real dataset contains the genome of 32 viruses pertaining to 4 different families. Each genome can be seen as a
sequence consisting of the four DNA bases, namely adenine, guanine, thymine and cytosine. Therefore, this database contains 32 CTS with
four categories. In addition, we assume the existence of four underlying classes corresponding to the family of each virus. The second database
includes 40 protein sequences. As proteins are constituted of 20 different amino acids, each sequence can be originally considered as a CTS
with 20 categories. However, we chose to categorize the amino acids into three groups according to their hydrophobicity, which is a common
transformation [15,35,36], so that the number of categories is reduced to three. In this case, there exist two different classes in the collection,
since each protein is present either in human beings or in variants of COVID-19 virus. The third dataset contains 62 categorical sequences
of sleep stages generated from 62 different subjects who took part in a medical study. The participants were monitored during a night and
their sleep stages were recorded by experienced technicians every 30 s. The range of each sequence consists of seven categories associated
with several sleep stages. One category represents rapid eye movement (REM) sleep, four categories represent different types of nonrapid eye
movement (NREM) sleep, and the remaining ones are associated with subjects who were awake or in continuous movement. The subjects
under study suffered from nocturnal frontal lobe epilepsy (NFLE) or from REM behavior disorder (RBD), which are two well-known sleep
diseases. Thus, these two conditions give rise to the existence of two different classes in the sleep stage database. Data in the first, second
and third databases were sourced from the National Center for Biotechnology Information1 (NCBI), the UniProt Knowledgebase2 (UniProtKB),
and the Research Resource for Complex Physiologic Signals3 (PhysioNet) websites, respectively.

1 https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/
2 https://www.uniprot.org.
3

5

https://physionet.org/content/capslpdb/1.0.0/.

https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/
https://www.uniprot.org
https://physionet.org/content/capslpdb/1.0.0/
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Table 2
Summary of the 6 datasets included in ctsfeatures.
Dataset Object No. series Series length No. categories No. classes

DNA sequences GeneticSequences 32 Variable 4 4
Protein sequences ProteinSequences 40 Variable 3 2
Sleep stages SleepStages 62 Variable 7 2
Synthetic I SyntheticData1 80 600 3 4
Synthetic II SyntheticData2 80 600 3 4
Synthetic III SyntheticData3 80 600 3 4

Table 3
Functions for visualization in ctsfeatures.
Graph Function in ctsfeatures

Time series plot plot_cts()
Rate evolution graph plot_reg()
IFS circle transformation plot_ifsct()
Pattern histogram plot_ph()
Serial dependence plot

(

𝑣(𝑙)
)

plot_cramer()
Serial dependence plot

(

�̂�(𝑙)
)

plot_cohen()
Control chart (cycle length) plot_ccc()
Control chart (marginal distribution) plot_mcc()
Spectral envelope plot_se()

• Synthetic datasets. Each one of the synthetic datasets is associated with a particular model of categorical stochastic process, namely
Markov Chains (MC), Hidden Markov Models (HMM) and New Discrete ARMA (NDARMA) processes for the first, second and third database,
respectively. In all cases, the corresponding database contains 80 series with 3 categories and length 𝑇 = 600, which are split into 4 groups
of 20 series each. All series were generated from the same type of process defining the dataset, but the coefficients of the generating model
differ between groups. For instance, four distinct transition matrices were used to generate the 80 series forming the first dataset. The specific
coefficients were chosen according to Scenarios 1, 2 and 3 in [15] (see Section 3.1 in [15]).

It is worth highlighting that the biological sequences are one of the most common types of CTS arising in practice. In fact, some machine
earning algorithms for CTS are specifically designed to deal with this class of series [37,38]. Some papers have also applied different methods for
ime series data mining to CTS of sleep stages [16,39]. Therefore, it is useful for the user to have collections of these kind of data available through
tsfeatures. On the other hand, the distinct classes forming the synthetic databases can be distinguished by means of both the marginal distributions
nd the serial dependence patterns. This property makes these datasets particularly suitable to evaluate the effectiveness of the features in Table 1
or several machine learning problems. In particular, the usefulness of these features to perform clustering and classification tasks (among others)
n these databases is illustrated in Section 4.3. Table 2 provides a summary of the six datasets included in ctsfeatures.

3.2. Graphical tools in ctsfeatures

The set of visualization tools for CTS available in ctsfeatures is presented and properly detailed in this section. Specifically, graphs for
exploratory purposes, two types of plots aimed at characterizing serial dependence, and two graphs mainly designed for quality control. Although
the corresponding plots are carefully explained throughout this section, an overview of the main functions for visualization is included in Table 3.
Notice that, with the aim of providing the user with visually attractive and informative representations, most graphical tools of ctsfeatures make
use of several functions of the well-known R package ggplot2 [40].

3.2.1. Time series plot
The most common type of graph when dealing with real-valued time series is probably the so-called time series plot, which displays the values

of the time series (𝑦-axis) with respect to time (𝑥-axis). A similar representation can be indeed considered for categorical series. As the categories
have been coded with integer numbers from 1 to 𝑟, the range is  = {1, 2,… , 𝑟} and the classical time series plot can be easily depicted for any CTS.
However, although this plot can be useful for exploratory purposes, it presents serious problems with nominal time series because a comparison
of the different categories in a numerical scale is not possible in this case. Note that this issue no longer exists by analyzing ordinal time series.
In fact, as the range of these series exhibits a natural ordering, the corresponding plot is meaningful as long as this ordering is preserved when
encoding the categories, i.e., 1 ≤ 2 ≤ ... ≤ 𝑟.

The top left panel of Fig. 1 shows the time series plot based on the first 50 observations of the first series in SyntheticData1. As this series
was generated from a MC, it has a nominal nature, so the corresponding categories were arbitrarily coded by using the integers 1, 2 and 3.

3.2.2. Rate evolution graph
Since the standard time series plot cannot be applied to nominal time series in a completely meaningful way, several alternative tools for a

visual analysis of CTS have been introduced in the literature (see [41] for a survey). Although none of these graphs seems to be a perfect substitute
for the time series plot in the categorical setting, the so-called rate evolution graph proposed by [42] is one of the most frequently used tools for
stationary analysis [7]. Let 𝒀 𝑡 = {𝒀 1,… , 𝒀 𝑇 } with 𝒀 𝑘 = (𝑌 𝑘,1,… , 𝑌 𝑘,𝑟)⊤ such that 𝑌 𝑘,𝑖 = 1 if 𝑋𝑘 = 𝑖 (𝑘 = 1,… , 𝑇 , 𝑖 = 1,… , 𝑟) be the binarized time
series associated with the 𝑇 -length categorical series 𝑋𝑡. Consider the series of cumulated sums given by 𝑪 𝑡 = {𝑪1,… ,𝑪𝑇 } with 𝑪𝑘 =

∑𝑘
𝑠=1 𝒀 𝑠,

= 1,… , 𝑇 . The rate evolution graph displays a standard time series plot for each one of the components of 𝑪 𝑡 simultaneously in one graph. For each
one of the components, the slope of the corresponding curve is an estimate for the associated marginal probability. If the process is stationary, then
the curves should be approximately linear with 𝑡, while visible violations of linearity indicate nonstationarity. In fact, the rate evolution graph is
frequently employed to check the assumption of stationarity before carrying out specific machine learning tasks in CTS databases (see, e.g., Section
6.1 in [15]).

The rate evolution graph corresponding to the first time series in dataset SyntheticData1 is shown in the bottom left panel of Fig. 1.
6
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Fig. 1. Some examples of graphical tools available in ctsfeatures applied to the first series in dataset SyntheticData1: the time series plot based on the first 50 records (top
left), the pattern histogram for the 2nd category (top right), the rate evolution graph (bottom left) and the IFS circle transformation (bottom right).

3.2.3. Pattern histograms
A categorical series 𝑋𝑡 can be described by means of the occurrence of certain patterns called cycles. Specifically, a cycle, beginning at time 𝑡1

with 𝑋𝑡1 = 𝑗, is closed at time 𝑡1 + 𝑡2 > 𝑡1 if and only if the series returns to the value 𝑗 for the first time after 𝑡1, i.e., if 𝑋𝑡1 = 𝑗 = 𝑋𝑡1+𝑡2 but 𝑋𝑡∗ ≠ 𝑗
for all 𝑡1 < 𝑡∗ < 𝑡1+ 𝑡2. By definition, a cycle starts at any time, and a previous cycle is closed except the case when the corresponding symbol occurs
for the first time. The length of a cycle starting at 𝑡1 and ending at 𝑡1+ 𝑡2 is defined as 𝑡2. Note that the cycles can be easily identified by examining
the binarized time series. In fact, for a given category 𝑗 ∈  , a cycle of length 𝑡2 starting at time 𝑡1 occurs if and only if 𝑌 𝑡1 ,𝑗 = 1 = 𝑌 𝑡1+𝑡2 ,𝑗 but
𝑌 𝑡∗ = 0 for all 𝑡1 < 𝑡∗ < 𝑡1 + 𝑡2. The distribution of the length of the cycles existing in a given CTS represents an important statistical feature of
the series. Thus, for each category 𝑗 ∈  , [41] suggests to record the corresponding cycles, group them according to their length, and construct
an histogram with the corresponding counts. In this way, each series gives rise to 𝑟 histograms, which are often referred to as pattern histograms.
Pattern histograms can be used for several purposes, including model identification, hypothesis testing or anomaly detection, among others.

The top right panel of Fig. 1 contains the pattern histogram concerning the second category of the first series in dataset SyntheticData1.

3.2.4. Circle transformation
Other type of exploratory tool for visualizing categorical time series is the so-called IFS circle transformation. This approach was suggested

by [43] and is based on iterated function systems (IFS). Although IFS are mainly known for their use to generate fractals, they are frequently
applied for the visualization of genetic sequences, a particular type of CTS. The main idea behind the approach proposed by [43] is that an
arbitrary categorical series can be appropriately transformed by linear contractions. Afterwards, similar strings are represented by close points in
R2. So pattern analysis can be done visually: the existence and frequency of patterns can be studied by zooming into certain regions of the real
plane R2. The procedure by [43] consists of the following steps:

1. Transform the series range  by applying the circle transformation, which is a one-to-one mapping 𝝋 from  on points of the unit circle in
R2 defined by

𝝋(𝑖) =

(

cos
(

2𝜋(𝑖 − 1)
𝑟

)

, sin
(

2𝜋(𝑖 − 1)
𝑟

)

)

. (10)

2. Construct the series 𝑹𝑡 = {𝑹1,… ,𝑹𝑇 } such that 𝑹𝑘 = 𝝋(𝑋𝑘), 𝑘 = 1,… , 𝑇 .
3. Generate the fractal series, denoted by 𝑭 𝑡 = {𝑭 1,… ,𝑭 𝑇 }, by means of the following recursion:

𝑭 𝑘 = 𝛼𝑭 𝑘−1 + 𝛽𝑹𝑘, (11)

where 𝛼 ∈ (0, 1), 𝛽 > 0 and 𝑭 0 is an arbitrary initialization from R2.

A scatterplot of the two-dimensional fractal time series 𝑭 𝑡 (IFS circle transformation) is frequently useful to identify cycles of arbitrary
length (see Theorem 4.2 in [41]). In fact, this graph contains frequency information on any subsequence of arbitrary length within it. The
corresponding information can be obtained simply by zooming in into interesting regions. Interesting explanations concerning the interpretation
of this visualization tool are given in Example 4.3 of [41].

The IFS circle transformation for the first series in dataset SyntheticData1 is depicted in the bottom right panel of Fig. 1.
7
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Fig. 2. Serial dependence plots based on 𝑣(𝑙) and 𝜅(𝑙), with a maximum lag 𝐿 = 10, for the first series in dataset SyntheticData1.

3.2.5. Serial dependence plots
When dealing with real-valued time series, a plot of the autocorrelation function (ACF) is usually depicted to identify the lags showing significant

correlations and analyze the serial dependence structure. Since this function is not defined in the categorical case (neither nominal nor ordinal),
alternative statistical representations are required. For a given CTS, a well-known approach to examine serial dependence at lag 𝑙 ∈ Z consists
in analyzing the sample versions of the Cramer's 𝑣, �̂�(𝑙), and the Cohen's 𝜅, �̂�(𝑙) (see Table 1). While the former statistic assesses the unsigned
dependence, the later measures signed dependence (both dependence notions introduced in Section 2). In both cases, the value 0 is associated
with an i.i.d. process. Moreover, the asymptotic distributions of the estimates 𝑣(𝑙) and 𝜅(𝑙) under the i.i.d. assumption were derived by [28,44],
respectively. The corresponding limit distributions are given by

𝑇 (𝑟 − 1)𝑣(𝑙)2 ∼
𝑎
𝜒2
(𝑟−1)2

and
√

𝑇
𝑉 (𝒑)

(

𝜅(𝑙) + 1
𝑇

)

∼
𝑎
𝑁
(

0, 1
)

, (12)

where 𝑉 (𝒑) = 1 −
1 + 2

∑𝑟
𝑖=1 𝑝

3
𝑖 − 3

∑𝑟
𝑖=1 𝑝

2
𝑖

(1 −
∑𝑟
𝑖=1 𝑝

2
𝑖 )2

.

The asymptotic results in Eq. (12) are quite useful in practice, since they can be used to test the null hypothesis of serial independence at lag 𝑙.
In particular, critical values for a given significance level 𝛼 can be computed, which do not depend on the specific lag. Thus, in both cases, serial
dependence plots can be constructed by following a similar approach as the ACF plot in the real-valued case. Specifically, after setting a maximum
lag 𝐿 of interest, the values of 𝑣(𝑙) or 𝜅(𝑙), for lags 𝑙 ranging from 1 to 𝐿, are simultaneously depicted in one graph. Next, the corresponding critical
value is added to the plot by means of a horizontal line. According to Eq. (12), the critical values for an arbitrary significance level 𝛼 are given by

+

√

√

√

√

𝜒2
(𝑟−1)2 ,1−𝛼

𝑇 (𝑟 − 1)
and ±

𝑧1−𝛼∕2
√

𝑇 ∕𝑉 (𝒑)
− 1
𝑇
, (13)

for the plots based on 𝑣(𝑙) and 𝜅(𝑙), respectively, where 𝜒2
𝑔,𝜏 and 𝑧𝜏 denote the respective 𝜏-quantiles of the 𝜒2 distribution with 𝑔 degrees of freedom

and the standard normal distribution. The described graphs allow us to easily identify the collection of significant lags for a given categorical series.
Likewise the autocorrelation plot in the numerical setting, serial dependence plots for CTS can be used for several purposes, including model
selection or identification of regular patterns in the series, among others.

For illustrative purposes, the serial dependence plots based on 𝑣(𝑙) and 𝜅(𝑙) for the first series in dataset SyntheticData1 are displayed Fig. 2.
A maximum lag 𝐿 = 10 was considered in both cases.

3.2.6. Control charts
Techniques of statistical process control (SPC) aim at monitoring and improving production processes. Most popular among them are control

charts, which help to identify deviations from the state of control, but are also frequently used for exploratory purposes. In the latter context, the
calculation of the so-called control limits is based on historical data and a hypothetical process model. If some records violate these limits, they are
flagged to be out of control and possible causes for those deviations are analyzed. In particular, some of these records can be excluded if they are
considered as single outliers. Afterwards, revised control limits are determined. However, if the out-of-control points imply a systematic deviation
from the model assumptions, then the original model has to be rejected.

As it is stated in [41], it is characteristic for categorical processes that the control statistics 𝐶𝑡 does not only depend on the monitoring time
𝑡, but also on the concrete value observed at time 𝑡, in the sense that the distribution of 𝐶𝑡 is influenced by the concrete outcome. Consider, for
instance, the case that 𝐶𝑡 expresses the length of a cycle ending with 𝑋𝑡 = 𝑖. Then, the corresponding cycle length distribution depends on 𝑖,
leading to individual control limits 𝐿𝐶𝐿𝑡 and 𝑈𝐶𝐿𝑡 for 𝐶𝑡. If 𝜇𝑡 denotes the corresponding mean of 𝐶𝑡, we consider the standardized statistics
𝑇𝑡 = 𝑇 (𝐿)

𝑡 + 𝑇 (𝑈 )
𝑡 , where

𝑇 (𝐿)
𝑡 = min

(

0,
𝐶𝑡 − 𝜇𝑡

|

|

𝐿𝐶𝐿𝑡 − 𝜇𝑡||

)

and 𝑇 (𝑈 )
𝑡 = max

(

0,
𝐶𝑡 − 𝜇𝑡

|

|

𝑈𝐶𝐿𝑡 − 𝜇𝑡||

)

. (14)

Thus, an out-of-control alarm is signaled if and only if 𝑇𝑡 < −1 or 𝑇𝑡 > 1.
An alternative possibility for controlling categorical processes relies on monitoring their marginal distribution. Specifically, if 𝒄 ∈ [0, 1]𝑟 and

0 < 𝜆 < 1, then

𝝅(𝜆) = 𝜆𝝅(𝜆) + (1 − 𝜆)𝒀 , for 𝑡 ≥ 1, and 𝝅(𝜆) = 𝒄, (15)
8
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Fig. 3. Control charts associated with Eq. (14) (top panel), Eq. (16) (middle panel) and Eq. (17) (bottom panel) concerning the first time series in dataset SyntheticData1.

is called an EWMA estimator of the marginal distribution. If 𝒄 is set equal to the hypothetical marginal distribution vector, then 𝝅(𝜆)
𝑡 is unbiased in

the state of control, and its variance 𝜎2𝑡,𝑖 is an expression depending on the concrete process model. The exact distribution is difficult to derive, but
if 𝜆 is chosen large enough, then 𝑘𝜎-limits will also perform well. So we choose 𝐿𝐶𝐿𝑖 = 𝑝𝑖 − 𝑘𝜎𝑡,𝑖 and 𝑈𝐶𝐿𝑖 = 𝑝𝑖 + 𝑘𝜎𝑡,𝑖, and statistic in Eq. (14)
simplifies to

𝑇𝑡,𝑖 =
�̂�(𝜆)𝑡,𝑖 − 𝑝𝑖
𝑘 ⋅ 𝜎𝑡,𝑖

, (16)

where �̂�(𝜆)𝑡,𝑖 is the 𝑖th component of vector 𝝅(𝜆)
𝑡 .

Finally, there are some modifications of the EWMA approach for controlling the marginal probabilities. For instance, if the range is very large,
then it may be preferable not to plot all statistics 𝑇𝑡,𝑖 given by the formula Eq. (16) simultaneously, but only the statistics

𝑇min
𝑡 = min

𝑖∈
𝑇𝑡,𝑖 and 𝑇max

𝑡 = max
𝑖∈

𝑇𝑡,𝑖. (17)

The panels of Fig. 3 show control charts associated with Eqs. (14) (top), (15) (middle) and (17) (bottom) concerning the first time series in
dataset SyntheticData1. In all cases, some observations are beyond the upper control limit, thus deserving a careful investigation.
9
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Table 4
Possible values for the argument type in function calculate_features() along with the corresponding estimates. The
complexity associated with the computation of each estimate is indicated in brackets.

Feature Argument type Feature Argument type

𝑔 ‘gini_index’
(

𝑂(𝑇 𝑟)
)

𝑝∗(𝑙) ‘sakoda_measure’
(

𝑂(𝑇 𝑟2)
)

𝑒 ‘entropy’
(

𝑂(𝑇 𝑟)
)

𝑣(𝑙) ‘cramers_vi’
(

𝑂(𝑇 𝑟2)
)

𝑐 ‘chebycheff_dispersion’
(

𝑂(𝑇 𝑟)
)

𝜅(𝑙) ‘cohens_kappa’
(

𝑂(𝑇 𝑟)
)

𝜏(𝑙) ‘gk_tau’
(

𝑂(𝑇 𝑟2)
)

�̂� (𝑙) ‘total_cor’
(

𝑂(𝑇 𝑟2)
)

𝜆(𝑙) ‘gk_lambda’
(

𝑂(𝑇 𝑟2)
)

𝜆(𝜔) ‘spectral_envelope’
(

−
)

�̂�(𝑙) ‘uncertainty_coefficient’
(

𝑂(𝑇 𝑟2)
)

�̂� ∗
1 (𝑙) ‘total_mixed_cor’

(

𝑂(𝑇 𝑟)
)

X̂
2
𝑛(𝑙) ‘pearson_measure’

(

𝑂(𝑇 𝑟2)
)

�̂� ∗
2 (𝑙) ‘total_mixed_qcor’

(

𝑂(𝑇 𝑟)
)

�̂�2(𝑙) ‘phi2_measure’
(

𝑂(𝑇 𝑟2)
)

As indicated in Table 3, apart from the previously described graphical tools, package ctsfeatures also provides the function plot_se() to
represent the spectral envelope of a given CTS (see Section 2).

3.3. Functions for feature extraction in ctsfeatures

Two main functions are available to compute well-known statistical quantities providing information on marginal and serial properties of CTS.
The first function, calculate_features(), allows to calculate the estimated features presented in Section 2. The specific feature one wishes
to calculate is indicated to the function by means of the argument type. The possible values for this argument according to the different estimated
quantities are given in Table 4. The second function, calculate_subfeatures(), returns the individual components of the corresponding
features, and also uses the argument type. For instance, calculate_features(type=‘cohens_kappa’) computes by default the value of
𝜅(𝑙) for a given lag 𝑙, which must be properly given as input. However, by running calculate_subfeatures(type=‘cohens_kappa’), a

ector formed by the estimates of
𝑝𝑗𝑗 (𝑙) − 𝑝2𝑗
1 −

∑𝑟
𝑖=1 𝑝

2
𝑖

, 𝑗 = 1,… , 𝑟, is returned. Note that the latter function is usually more useful than the former in machine

learning tasks, since it provides a more meaningful description of the dependence structures of the CTS. In Table 4, the computational complexity
of the function calculate_features() according to the different values for type is also provided in brackets. The only exception corresponds
to the case of type=‘spectral_envelope’, since the corresponding computation is based on a function of the R package astsa [45]. Note
hat all the serial features introduced in Table 1 for a one-dimensional process have an associated complexity of 𝑂(𝑇 𝑟2) except for the Cohen's 𝜅,

which can be computed with a complexity of 𝑂(𝑇 𝑟).
Apart from a structural description of the categorical time series, a shape-based characterization is also helpful. With this purpose in mind,

ctsfeatures also includes the function calculate_motifs(), which returns the relative frequencies of words of a certain length. This way,
users can identify the existence of relevant shape-based patterns and analyze levels of similarity between several CTS based on their common
substructures, which is interesting in different data mining tasks [33,34]. The computational complexity of this function is 𝑂(𝑇 𝑟𝑊 ), with 𝑊 being
the length of the corresponding word.

4. Using ctsfeatures: Generalities and illustrative examples

This section is devoted to illustrate the use of package ctsfeatures. First, we give some general considerations about the package and, next, we
provide some examples concerning the use of several functions for visualization and feature extraction.

4.1. Some generalities about ctsfeatures

Most functions in ctsfeatures take as input a 𝑇 -length CTS, represented through an object of class tsibble (see package tsibble [46]).
tsibble objects are data structures specifically designed to store time series. Specifically, they must contain an index column giving information
about the times the observations were recorded. The tsibble objects given as input to ctsfeatures functions must include the corresponding
categorical sequences in a column named Value, of class factor, the standard R class for categorical objects. Factors have associated a vector
of character strings, called levels, where the categories forming the range of the CTS are stored and arranged in a given order, usually specified
by the user.

The output of the graphical functions listed in Table 3 is simply the requested plot, which can be customized to some extent. Functions
calculate_features() and calculate_subfeatures() return by default the corresponding estimate or its individual components,
respectively. It is worth remarking that most functions in ctsfeatures require a proper specification of the underlying categories of the series,
which is done by means of the column Value in the corresponding tsibble object. This can be very useful in several situations, including the
ase in which a particular realization lacks some of the values in the original range. For instance, if one specific realization lacks the 𝑟th category,

then the function calculate_subfeatures(type=‘entropy’) can return the correct output (𝑝1 ln 𝑝1, 𝑝2 ln 𝑝2,… , 𝑝𝑟−1 ln 𝑝𝑟−1, 0) if the original
range is properly provided. Therefore, when analyzing such a series, one could circumvent the lack of the corresponding category by properly using
the column Value. In addition, this column allows the user to specify the desired order for a particular analysis, which can be helpful in many
applications. For instance, when dealing with DNA sequences, the usual convention consists of considering the DNA base adenine as the first one.

As with the individual time series that are given as input to most functions, every database included in ctsfeatures is stored as a tsibble
with the name indicated in the second column of Table 2 and contains four columns. One of them is the column Value, previously introduced.
The remaining three columns are described below.

• The column called Series contains integer values ranging from 1 to the number of series in the dataset, and allows to identify the time
series.
10

• The column called Time includes the temporal information associated with each observation.
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• The column called Class contains integer values indicating the class labels associated with each time series.

Let's visualize the first twenty observations of one series in the dataset GeneticSequences.

library(ctsfeatures)
series <- GeneticSequences[which(GeneticSequences$Series==1),]
series$Value[1:20]
1] a t g g c c c a a g c a c a a a t t c t
evels: a c g t

In this series, the DNA bases, adenine, guanine, thymine and cytosine, were coded with the letters ‘a’, ‘g’, ‘t’ and ‘c’, respectively. In addition,
he categories were alphabetically ordered. Indeed, a different order could be specified, but one should be always aware of the considered order
hen analyzing the output of several functions (see Sections 4.2 and 4.3). Concerning the column Class in GeneticSequences, this column

akes four different values (1, 2, 3 or 4) depending on the family of each virus.

unique(GeneticSequences$Class)
1] 1 2 3 4

Note that the integer values in the previous output are not related to the different categories in the range of the series under study, but they
ust represent the different classes existing in the data collection GeneticSequences considering a context of supervised classification.

.2. Visualizing categorical time series and testing for serial dependence

The functions described in Section 3.2 implementing graphical tools allow the user to construct valuable plots on the performance and
ependence structure of a categorical time series. The classical plot showing the profile of the series is obtained with the function plot_cts().
or instance, a plot based on the first 50 observations of the first series in dataset SyntheticData1 is generated as follows.

series <- SyntheticData1[which(SyntheticData1$Series==1)[1 : 50],]
plot_cts(series)

Note that the time series in dataset SyntheticData1 are nominal, taking values on three attributes coded with integers from 1 to 3. The
esired order for the categorical range is indicated through the column Value. The corresponding output is depicted in the top left panel of Fig. 1
nd valuable information can be extracted from this graph. For instance, it seems that the third category has a much lower marginal probability
han the remaining. In addition, one could try to derive some conclusions about the serial dependence structure of the series. However, as stated
n Section 3.2.1, the time series plot can be misleading when visualizing nominal time series. In fact, the consideration of a numerical scale in
he 𝑦-axis implicitly assumes an underlying ordering, which does not exist in the nominal setting. One of the most well-known proposals for the
isual analysis of nominal time series is the rate evolution graph (see Section 3.2.2), which is obtained for the first series in SyntheticData1
y executing

series <- SyntheticData1[which(SyntheticData1$Series==1),]
plot_reg(series)

The above code produces the plot shown in the bottom left panel of Fig. 1. This representation indicates a stationary behavior of the examined
ime series (at least concerning the marginal distribution), since the three curves exhibit an approximately linear behavior. The slopes of these
urves give estimates of the corresponding marginal probabilities. Note that the slope of the blue line is substantially lower than the slopes of their
ounterparts, thus indicating that the third category appears with much lower frequency than the remaining ones, which is consistent with the
ime series plot in the top left panel of Fig. 1.

While the rate evolution graph gives information about the marginal distribution, some alternative graphical representations are useful to
nalyze the existence of certain serial patterns, such as cycles. One of them is the pattern histogram (see Section 3.2.3), which represents counts of
he cycles associated with a given category 𝑖 ∈  after grouping them in accordance with their length. Pattern histograms can be directly generated
y using the function plot_ph(), whose main arguments are the corresponding CTS and the category for which we wish to analyze the cycles.
n the following code, we indicate category=2.

plot_ph(series, category = 2)

The generated pattern histogram is shown in the top right panel of Fig. 1. It is observed that the second category frequently repeats itself either
mmediately or after one step, as the cycles of lengths 1 and 2 are the most common. Note that large counts for these cycles are totally related
o the fact that the second category is the one displaying the maximum marginal probability as seen in the rate evolution graph. Similar analyses
ould be carried out by considering the pattern histograms of the remaining two categories.

Another interesting graph to examine the cyclical behavior of a categorical series is the circle transformation (see Section 3.2.4). Frequency
nformation concerning any subsequence in the original CTS can be extracted from this tool. Let's construct the circle transformation of the series
e are dealing with throughout this section. To this aim, we use the function plot_ifsct(). The parameters 𝛼 and 𝛽 involved in the construction

of the fractal time series in Eq. (11) must be given as input to this function.

> ct <- plot_ifsct(series, alpha = 0.17, beta = 0.10)
11

> ct
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Fig. 4. Region of interest (for subsequences of the form ‘111’) concerning the circle transformation in the bottom right panel of Fig. 1.

For illustrative purposes, we set the values 𝛼 = 0.17 and 𝛽 = 0.10. The corresponding plot is provided in the bottom right panel of Fig. 1. This
graph is of limited use to perform a static analysis, but it is very helpful as an interactive exploratory tool, since the circles of any level are always
organized in the same way. For instance, a subsequence starting with ‘1’ is always at the top of its parent circle. In fact, by navigating appropriately
within the graph, one could determine the frequency of any arbitrary string in the original series. Thus, to obtain the number of subsequences of
the form ‘111’, we should first zoom into the upper right part within the circle of red points. This results in another circle whose upper right part
(which can be accessed again via zooming) contains as many points as subsequences of the desired type. The command coord_cartesian()
of the R package ggplot2 [40] provides an easy way to navigate within a given graph.

> ct + coord_cartesian(x = c(0.117, 0.120), y = c(-0.025, 0.025))

Fig. 4 displays the resulting graph, which contains only two points. Therefore, we can conclude that only two subsequences of the form ‘111’
exist in the first series in dataset SyntheticData1. The frequency of any subsequence of arbitrary length could be obtained analogously. An
interesting analysis regarding the interpretation of the graph resulting from the circle transformation can be seen in [41] (Example 4.3).

The previous graphs are frequently used for standard exploratory data analysis. However, ctsfeatures also contains some tools to carry out
more specific tasks. One of such tools are the serial dependence plots described in Section 3.2.5, which can be obtained by means of the functions
plot_cramer() and plot_cohen(). For instance, the plots shown in the left and right panels of Fig. 2 correspond to the values 𝑣(𝑙) and 𝜅(𝑙),
respectively, for the first series in SyntheticData1, and were obtained by running the code lines below.

> plot_1 <- plot_cramer(series)
> plot_2 <- plot_cohen(series)

By default, both functions consider lags from 1 to 10 (argument max_lag) and a significance level 𝛼 = 0.05 for the tests in Eqs (12) and
(13) (argument alpha). As the standard autocorrelation plots, the corresponding estimates are displayed in a sequential order, with dashed lines
indicating the critical values for the associated tests. In this case, the serial dependence plots clearly exhibit significant dependence at lags 1, 2 and 3.
Moreover, dependence at lag 7 could also be considered significant, but this may be due to chance since multiple tests are simultaneously carried out.
Indeed, the dependence structure suggested by both graphs is expected, since the considered series was generated from a MC. Certainly, a realization
of a MC is expected to show a decreasing trend with respect to the degree of serial dependence. Specifically, the level of dependence is maximum
at lag 1, then progressively decreases for further lags until it is no longer significant. Besides the dependence plots, functions plot_cramer()
and plot_cohen() also produce numerical outputs. For instance, the corresponding 𝑝-values can be obtained by using the argument plot =
FALSE.

> plot_1 <- plot_cramer(series, plot = FALSE)
> plot_2 <- plot_cohen(series, plot = FALSE)
> round(plot_1$p_values, 2)
[1] 0.00 0.00 0.00 0.28 0.88 0.61 0.01 0.05 0.07 0.07
> round(plot_2$p_values, 2)
[1] 0.00 0.00 0.00 0.07 0.62 0.15 0.01 0.24 0.04 0.04

The 𝑝-values in these outcomes corroborate that both the Cramer's 𝑣 and the Cohen's 𝜅 are significantly nonnull at the first three lags, thus
confirming the existence of significant serial dependence at these lags. Note that the 𝑝-value associated with lag 7 is rather low in both cases (0.01)
and 𝜅(9) and 𝜅(10) also differ from zero in a significant way for 𝛼 = 0.05. However, each set of 𝑝-values should be properly adjusted to handle
random rejections of the null hypothesis that can arise in a multiple testing context. For instance, the well-known Holm's method, which controls
the family-wise error rate at a pre-specified 𝛼-level, could be applied to the 𝑝-values associated with the 𝜅(𝑙)-based test by executing

> p.adjust(round(plot_2$p_values, 2), method = ‘holm’)
[1] 0.00 0.00 0.00 0.28 0.62 0.45 0.07 0.48 0.24 0.24

According to the corrected 𝑝-values, the values of �̂�(𝑙) for 𝑙 = 1, 2 and 3 are still significant, but the null hypothesis of serial independence at
lags 7, 9 and 10 cannot be now rejected.
12
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4.3. Performing data mining tasks with ctsfeatures

Jointly used with external functions, ctsfeatures becomes a versatile and helpful tool to carry out different machine learning tasks involving
ategorical series. In this section, for illustrative purposes, we focus our attention on three well-known problems, namely classification, clustering
nd outlier detection. However, it is worth emphasizing that package ctsfeatures is not limited to the mentioned tasks and can be used for multiple
urposes beyond them, e.g., model selection and inference or regression, among others.

.3.1. Performing CTS classification
Firstly, we show how the output of the functions in Table 4 can be used to perform feature-based classification. We illustrate this approach by

onsidering the data collection GeneticSequences, which contains the genome of 32 viruses pertaining to 4 different families (class labels).
sing the function calculate_features(), we create the matrix feature_dataset formed by the values 𝑔 and 𝑣(1) extracted from each
ne of the 32 series as follows.

l_1 <- list()
l_2 <- list()
classes <- numeric()

for (i in 1 :32) {

ind <- which(GeneticSequences$Series==i)
l_1[[i]] <- calculate_features(GeneticSequences[ind,],type=‘gini_index’)
l_2[[i]] <- calculate_features(GeneticSequences[ind,],type=‘cramers_vi’)
classes[i] <- unique(GeneticSequences[ind,]$Class)

}

feature_dataset <- cbind(unlist(l_1), unlist(l_2))
head(feature_dataset, 3)

[,1] [,2]
1,] 0.9975936 0.11578926
2,] 0.9971419 0.11874799
3,] 0.9963633 0.11308114

The 𝑖th row of feature_dataset contains estimated values characterizing the marginal and serial behavior of the 𝑖th CTS in the dataset.
herefore, several traditional classification algorithms can be applied to the matrix feature_dataset by means of the R package caret [47].

Package caret requires the dataset of features to be an object of class data.frame whose last column must provide the class labels of the elements
and be named ‘Class’. Thus, as a preliminary step, we create df_feature_dataset, a version of feature_dataset properly arranged
to be used as input to caret functions, by means of the following chunk of code.

> df_feature_dataset <- data.frame(cbind(feature_dataset, classes))
> colnames(df_feature_dataset)[3] <- ‘Class’
> df_feature_dataset[,3] <- factor(df_feature_dataset[,3])

The function train() allows to fit several classifiers to the corresponding dataset, while the selected algorithm can be evaluated, for instance,
by Leave-One-Out Cross-Validation (LOOCV). A grid search in the hyperparameter space of the corresponding classifier is performed by default.
First, we consider a standard classifier based on 𝑘 Nearest Neighbors (𝑘NN) by using method = ‘knn’ as input parameter. By means of the
command trControl(), we define LOOCV as evaluation protocol.

> library(caret)
> train_control <- trainControl(method = ‘LOOCV’)
> set.seed(123)
> model_kNN <- train(Class~., data = df_feature_dataset,
+ trControl = train_control, method = ‘knn’)

The object model_kNN contains the fitted model and the evaluation results, among others. The reached accuracy can be accessed as follows.

> max(model_kNN$results$Accuracy)
[1] 0.78125

The 𝑘NN classifier achieves an accuracy of 0.78 in the dataset of genetic sequences. Next, we study the performance of the random forest. To
this aim, we need to set method = ‘rf’.

> set.seed(123)
> model_RF <- train(Class~., data = df_feature_dataset,
+ trControl = train_control, method = ‘rf’)
> max(model_RF$results$Accuracy)
13

[1] 0.90625
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The random forest obtains a higher accuracy, around 0.91. Any other classifier can be evaluated in a similar way. Note that, in the previous
analyses, the serial dependence structure of the series was summarized by means of a single estimate, 𝑣(1). However, a more meaningful description

f the CTS could be provided by employing the individual features involved in the definition of 𝑣(𝑙), that is, the quantities
(

𝑝𝑖𝑗 (𝑙)−𝑝𝑖𝑝𝑗
)2

𝑝𝑖𝑝𝑗
, 𝑖, 𝑗 = 1,… , 𝑟.

This way, the degree of deviation from serial independence is considered separately for each pair (𝑖, 𝑗). These features can be directly obtained by
using the function calculate_subfeatures(). To perform the classification by considering these new features, we should proceed as follows.

> for (i in 1 :32) {

+ ind <- which(GeneticSequences$Series==i)
+ l_2[[i]]<-calculate_subfeatures(GeneticSequences[ind,],
+ lag = 1, type=‘cramers_vi’)

+ }

> new_feature_dataset <- cbind(unlist(l_1), matrix(unlist(l_2),
+ ncol = 16, byrow = T))
> dim(new_feature_dataset)
[1] 32 17
> df_new_feature_dataset <- data.frame(cbind(new_feature_dataset,
+ classes))
> colnames(df_new_feature_dataset)[18] <- ‘Class’
> df_new_feature_dataset[,18] <- factor(df_new_feature_dataset[,18])
> set.seed(123)
> model_kNN <- train(Class~., data = df_new_feature_dataset,
+ trControl = train_control, method = ‘knn’)
> max(model_kNN$results$Accuracy)
[1] 0.84375
> set.seed(123)
> model_RF <- train(Class~., data = df_new_feature_dataset,
+ trControl = train_control, method = ‘rf’)
> max(model_RF$results$Accuracy)
[1] 0.90625

While the 𝑘NN classifier improves its accuracy when the new features are considered, the random forest exhibits exactly the same effectiveness
for both sets of features.

Classification of CTS is often a challenging problem due to the complex nature of temporal data. If a feature-based approach is considered, the
quality of the classification procedure strongly depends on the capability of the selected features to distinguish the underlying classes (as it has
just been illustrated). In this context, trial and error (e.g., via LOOCV) is a common way of determining a suitable set of features. To illustrate the
previous remarks, we decided to analyze the quality of the features based on pattern histograms (see Sections 3.2.3 and 4.2). Specifically, for each
time series, we extract the counts of the cycle lengths for the category ‘a’ (adenine). In particular, only the counts associated with cycles of lengths
less than or equal to ten are considered. The following chunk of code creates the desired dataset.

> l_counts <- list()

> for (i in 1 :32) {

+ ind <- which(GeneticSequences$Series==i)
+ l_counts[[i]] <- plot_ph(GeneticSequences[ind,],
+ category = ‘a’, plot= F)[,2][1:10]

+ }

> feature_counts <- matrix(unlist(l_counts), nrow = 32, byrow = T)
> head(feature_counts, 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 111 81 68 43 30 38 26 13 10 8
[2,] 99 77 65 48 31 31 25 13 17 11
[3,] 110 79 76 38 35 27 23 12 11 7

Note that the argument plot = FALSE in the function plot_ph() allows to obtain the counts. Let's analyze the accuracy of the previously
considered classifiers (𝑘NN and random forest) with these new descriptive features.

> df_feature_counts <- data.frame(cbind(feature_counts, classes))
> colnames(df_feature_counts)[11] <- ‘Class’
> df_feature_counts[,11] <- factor(df_feature_counts[,11])
> set.seed(123)
14
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b

> model_kNN <- train(Class~., data = df_feature_counts,
+ trControl = train_control, method = ‘knn’)
> max(model_kNN$results$Accuracy)
[1] 0.78125
> set.seed(123)
> model_RF <- train(Class~., data = df_feature_counts,
+ trControl = train_control, method = ‘rf’)
> max(model_RF$results$Accuracy)
[1] 0.8125

Although both methods show a worse performance than in previous analyses, they exhibit a rather high accuracy, thus indicating a great ability
of the considered features (frequencies of cycle lengths for the category ‘a’) to identify the underlying families of viruses. Indeed, we could examine
the classification effectiveness of alternative sets of features (e.g., those involved in the definition of the estimates in Table 1) by proceeding in
exactly the same way.

4.3.2. Performing CTS clustering
The package ctsfeatures also provides an excellent framework to carry out clustering of categorical sequences. Let's consider the dataset

SyntheticData1 and assume that the clustering structure is governed by the similarity between underlying models. In other terms, the ground
truth is given by the 4 groups involving the 20 series from the same generating process. We wish to perform clustering and, according to our
criterion, the clustering effectiveness of each algorithm must be measured by comparing the experimental solution with the true partition defined
by these four groups.

In cluster analysis, distances between data objects play an essential role. In our case, a suitable metric should take low values for pairs of
series coming from the same stochastic process, and high values otherwise. A classical exploratory step to shed light on the quality of a particular
metric consists of constructing a two-dimensional scaling (2DS) based on the corresponding pairwise distance matrix. In short, 2DS represents the
pairwise distances in terms of Euclidean distances into a 2-dimensional space preserving the original values as well as possible (by minimizing a
loss function). For instance, we are going to construct the 2DS for dataset SyntheticData1 by using two specific metrics between CTS proposed
y [15] and denoted by 𝑑𝐶𝐶 and 𝑑𝐵 . More specifically, given two CTS, 𝑋
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𝑡 and 𝑋
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where 𝐿 denotes the largest lag and superscripts (1) and (2) indicate that the corresponding estimates are based on the realizations 𝑋
(1)
𝑡 and 𝑋

(2)
𝑡 ,

respectively. Note that both dissimilarities assess discrepancies between the marginal distributions (last term) and the serial dependence structures
(remaining terms) of both series. Therefore, they seem appropriate to group the CTS of a given collection in terms of underlying stochastic processes.

Let's first create the datasets dataset_dcc and dataset_db with the features required to compute 𝑑𝐶𝐶 and 𝑑𝐵 , respectively. As the series
in SyntheticData1 were generated from MC processes, we consider only one lag to construct the distance, i.e., we set 𝐿 = 1 (default option).

> list_1_dcc <- list()
> list_2_dcc <- list()
> list_3_dcc <- list()
> classes <- numeric()

> for (i in 1 : 80) {

+ ind <- which(SyntheticData1$Series==i)
+ list_1_dcc[[i]] <- calculate_subfeatures(SyntheticData1[ind,],
+ type=‘cramers_vi’)
+ list_2_dcc[[i]] <- calculate_subfeatures(SyntheticData1[ind,],
+ type=‘cohens_kappa’)
+ list_3_dcc[[i]] <- marginal_probabilities(SyntheticData1[ind,])
classes[i]<- unique(SyntheticData1[ind,]$Class)

+ }

> dataset_1_dcc <- matrix(unlist(list_1_dcc), nrow = 80, byrow = T)
> dataset_2_dcc <- matrix(unlist(list_2_dcc), nrow = 80, byrow = T)
> dataset_3_dcc <- matrix(unlist(list_3_dcc), nrow = 80, byrow = T)
> dataset_dcc <- cbind(dataset_1_dcc, dataset_2_dcc, dataset_3_dcc)

> list_1_db <- list()
15
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Fig. 5. Two-dimensional scaling planes based on distances 𝑑𝐶𝐶 (top panel) and 𝑑𝐵 (bottom panel) for the 80 series in the dataset SyntheticData1.

> list_2_db <- list()

> for (i in 1 : 80) {

+ ind <- which(SyntheticData1$Series==i)
+ list_1_db[[i]] <- calculate_subfeatures(SyntheticData1[ind,],
+ type=‘total_correlation’)
+ list_2_db[[i]] <- marginal_probabilities(SyntheticData1[ind,])

+ }

> dataset_1_db <- matrix(unlist(list_1_db), nrow = 80, byrow = T)
> dataset_2_db <- matrix(unlist(list_2_db), nrow = 80, byrow = T)
> dataset_db <- cbind(dataset_1_db, dataset_2_db)

The 2DS planes can be built using the function plot_2d_scaling() of the R package mlmts [48], which takes as input a pairwise
dissimilarity matrix.

> library(mlmts)
>
> distance_matrix_dcc <- dist(dataset_dcc)
> plot_dcc <- plot_2d_scaling(distance_matrix_dcc,
+ cluster_labels = classes)$plot
> distance_matrix_db <- dist(dataset_db)
> plot_db <- plot_2d_scaling(distance_matrix_db,
+ cluster_labels = classes)$plot

The resulting plots are shown in Fig. 5. In both cases, the points were colored according to the true partition defined by the generating models.
For it, we had to include the argument cluster_labels in the function plot_2d_scaling(). This option is indeed useful to examine whether
a specific metric is appropriate when the true class labels are known. The 2DS planes reveal that both metrics are able to identify the underlying
structure rather accurately. However, there are two specific groups of CTS (the ones represented by red and green points) exhibiting a certain
degree of overlap in both plots, which suggests a high level of similarity between the corresponding generating processes. This can be corroborated
by observing that the coefficients in the transition matrices of these processes are certainly very similar (see Scenario 1 in Section 3.1 of [15]).

To evaluate the clustering accuracy of both metrics, we consider the popular Partitioning Around Medoids (PAM) algorithm, which is
implemented in R through the function pam() of package cluster [49]. This function needs the pairwise distance matrix and the number of
clusters. The latter argument is set to 4, since the series in dataset SyntheticData1 were generated from 4 different MC.

> library(cluster)
> set.seed(123)
> clustering_dcc_pam <- pam(distance_matrix_dcc, k = 4)$clustering
> clustering_db_pam <- pam(distance_matrix_db, k = 4)$clustering
16
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The vectors clustering_dcc_pam and clustering_db_pam provide the respective clustering solutions based on both metrics. The quality
of both partitions requires to measure their degree of agreement with the ground truth, which can be done by using the Adjusted Rand Index
(ARI) [50]. This index can be easily computed by means of the function external_validation() of package ClusterR [51].

> library(ClusterR)
> external_validation(clustering_dcc_pam, classes)
[1] 0.9662323
> external_validation(clustering_db_pam, classes)
[1] 0.9038919

The ARI index is bounded between −1 and 1 and admits a simple interpretation: the closer it is to 1, the better is the agreement between
the ground truth and the experimental solution. Moreover, the value of 0 is associated with a clustering partition picked at random according to
some simple hypotheses. Therefore, it can be concluded that both metrics 𝑑𝐶𝐶 and 𝑑𝐵 attain great results in this dataset when used with the PAM
algorithm. In particular, the partition produced by the former is slightly more similar to the ground truth. Note that the high value of ARI index
was already expected from the 2DS plots in Fig. 5.

The popular 𝐾-means clustering algorithm can also be executed by using ctsfeatures utilities. In this case, we need to employ a dataset of
eatures along with the kmeans() function of package stats [18].

set.seed(123)
clustering_dcc_kmeans <- kmeans(dataset_dcc, c = 4)$cluster
external_validation(clustering_dcc_kmeans, classes)
1] 1
set.seed(123)
clustering_db_kmeans <- kmeans(dataset_db, c = 4)$cluster
external_validation(clustering_db_kmeans, classes)
1] 0.9341667

In this example, slightly better results are obtained when the 𝐾-means algorithm is employed, although the differences with respect to the
RI values produced by the PAM algorithm do not seem statistically significant. The performance of alternative dissimilarities or collections of

eatures concerning a proper identification of the underlying clustering structure could be determined by following the same steps as in the previous
xperiments.

.3.3. Performing outlier detection in CTS datasets
Other challenging issue when analyzing a collection of CTS is to detect outlier elements. First, it is worth noting that different notions of

utliers are considered in the context of temporal data (additive outliers, innovative outliers, and others). Here, we consider the outlying elements
o be whole CTS objects. More specifically, an anomalous CTS is assumed to be a series generated from a stochastic process different from those
enerating the majority of the series in the database.

To illustrate how ctsfeatures can be useful to carry out outlier identification, we create a dataset including two atypical elements. To this aim,
e consider all the series in SyntheticData1 along with the first two series in dataset SyntheticData3.

tsibble_outliers <- SyntheticData3[1 : 1200,]
tsibble_outliers$Series <- tsibble_outliers$Series + 80
library(dplyr)
data_outliers <- bind_rows(SyntheticData1, tsibble_outliers)

The resulting data collection, data_outliers, contains 82 CTS. The first 80 CTS can be split into four homogeneous groups of 20 series,
ut those located into positions 81 and 82 are actually anomalous elements in the collection because they come from a NDARMA model (see
ection 3.1).

A distance-based approach to perform anomaly detection consists of obtaining the pairwise distance matrix and proceeding in two steps as
ollows.

tep 1. For each element, compute the sum of its distances from the remaining objects in the dataset, which is expected to be large for anomalous
elements.

tep 2. Sort the quantities computed in Step 1 in decreasing order and reorder the indexes according to this order. The first indexes in this new
vector correspond to the most outlying elements, while the last ones to the least outlying elements.

We follow this approach to examine whether the outlying CTS in data_outliers can be identified by using the distance 𝑑𝐵 given in Eq. (19).
irst, we construct the pairwise dissimilarity matrix based on this metric for the new dataset.

list_1_db_outl <- list()
list_2_db_outl <- list()

for (i in 1 : 82) {

ind <- which(data_outliers$Series==i)
list_1_db_outl[[i]]<- calculate_subfeatures(data_outliers[ind,],
17
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Fig. 6. Two-dimensional scaling plane based on distance 𝑑𝐵 for the dataset containing 2 anomalous series.

+ type=‘total_correlation’)
+ list_2_db_outl[[i]]<- marginal_probabilities(data_outliers[ind,])

+ }

> data_1_db_outl <- matrix(unlist(list_1_db_outl), nrow = 82, byrow = T)
> data_2_db_outl <- matrix(unlist(list_2_db_outl), nrow = 82, byrow = T)
> data_db_outl <- cbind(data_1_db_outl, data_2_db_outl)
> dist_db_outl <- dist(data_db_outl)

Then, we apply the mentioned two-step procedure to the matrix dist_db_outl by running

> order(colSums(as.matrix(dist_db_outl)), decreasing = T)[1:2]
[1] 81 82

The previous output indicates that 𝑑𝐵 is able to properly identify the two series generated from an anomalous stochastic process. As an illustrative
exercise, let's represent the corresponding 2DS plot for the dataset containing the two outlying CTS by using a different color for these elements.

> library(mlmts)
> labels <- c(classes, 5, 5)
> plot_2d_scaling(dist_db_outl, cluster_labels = labels)$plot

The resulting graph is shown in Fig. 6. The 2DS configuration is very similar to the one in the bottom panel of Fig. 5 but, this time, two isolated
points representing the anomalous series appear on the top left part of the plot. Clearly, 2DS plots can be very useful for outlier identification
purposes, since they provide a great deal of information on both the number of potential outliers and their location with respect to the remaining
elements in the dataset.

In the previous example, the number of outliers was assumed to be known, which is not realistic in practice. In fact, when dealing with real
CTS datasets, one usually needs to determine whether the dataset at hand contains outliers. To that aim, it is often useful to define a measure
indicating the outlying nature of each object (see, e.g., [52,53]). In this way, those elements with an extremely large scoring could be identified as
outliers. In order to illustrate this approach, we consider the dataset GeneticSequences and compute the pairwise distance matrix according
to distance 𝑑𝐵 .

> list_3_db <- list()
> list_4_db <- list()

> for (i in 1 : 32) {

+ ind <- which(GeneticSequences$Series==i)
+ list_3_db[[i]]<- calculate_subfeatures(GeneticSequences[ind,],
+ type=‘total_correlation’)
+ list_4_db[[i]]<- marginal_probabilities(GeneticSequences[ind,])

+ }

> data_3_db <- matrix(unlist(list_3_db), nrow = 32, byrow = T)
> data_4_db <- matrix(unlist(list_4_db), nrow = 32, byrow = T)
> data_db <- cbind(data_3_db, data_4_db)
> dist_db <- dist(data_db)
18
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Fig. 7. Boxplot of the outlying scores in dataset GeneticSequences based on distance 𝑑𝐵 .

As before, the sum of the distances between each series and the remaining ones is computed.

> outlier_score <- colSums(as.matrix(dist_db))

The vector outlier_score contains the sum of the distances for each one of the 32 genetic sequences. Since the 𝑖th element of this vector
can be seen as a measure of the outlying character of the 𝑖th sequence, those genetic sequences associated with extremely large values in this
vector are potential outliers. A simple way to detect these series consists of visualizing a boxplot based on the elements of outlier_score and
checking whether there are points located into the upper part of the graph.

> boxplot(outlier_score, range = 1, col = ‘blue’)

The resulting boxplot is shown in Fig. 7 and suggests the existence of two series with abnormally high outlying scores. Hence, these genetic
sequences could be considered to be anomalous and their individual properties could be carefully investigated. Note that the prior empirical
approach provides an automatic method to determine the number of outliers. Similar analyses could be carried out by considering alternative
dissimilarity measures.

5. Concluding remarks

Data mining of time series has experienced a significant growth during the 21st century. Although most of the works focus on real-valued time
series, categorical time series have received a great deal of attention during the last decade. The R package ctsfeatures is an attempt to provide
different functions enabling to compute well-known statistical quantities for categorical series. Besides giving a valuable description about the
structure of the time series, the corresponding features can be used as input for traditional machine learning procedures, as clustering, classification
and outlier detection algorithms. Furthermore, ctsfeatures includes visualization tools and serial dependence plots, thus allowing the user to carry
out meaningful exploratory analyses. The main motivation behind the package is that, to the best of our knowledge, no previous R packages are
available for a general statistical analysis of categorical series. In fact, the few software tools designed to deal with categorical sequences focus
on specific tasks (e.g., computation of dissimilarities), application domains (e.g., sequence analysis), or types of categorical models (e.g., Markov
Chains). Package ctsfeatures also incorporates two databases of biological sequences, one database of sleep stages, and several synthetic datasets,
which can be used for illustrative purposes. In sum, ctsfeatures provides rather simple tools, but necessary for standard analyses and of great
usefulness to perform more complex tasks as modeling, inference, or forecasting.

A description of the functions available in ctsfeatures is given in the first part of this work to make clear the details behind the software and
its scope. However, the readers particularly interested in specific tools are encouraged to check the corresponding key references, which are also
provided in the article. In the second part, the use of the package is illustrated by means of several examples involving synthetic and real data.
This can be seen as a simple overview whose goal is to make the use of ctsfeatures as easy and understandable as possible for first-time users.

There are two main ways through which this work can be extended. First, as ctsfeatures is under continuous development, we expect to perform
frequent updates by incorporating functions for the computation of additional statistical features which are introduced in the future. Second, the
package focuses on the analysis of categorical series with nominal range. When the range is ordinal, alternative statistical features can be defined
by taking into account the underlying ordering (see [8]). Moreover, in the ordinal setting, these features are more meaningful than their nominal
counterparts, since the former ignores the fact that a distance between the different categories can be considered. In this regard, the development
of a software tool allowing the computation of statistical features for ordinal time series could be carried out in the future.
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