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A B S T R A C T

Over the years metaheuristics have been successfully applied to optimization problems in many real-world
applications. The increasing complexity and scale of the problems addressed has posed new challenges
to researchers in the field. The application of distributed metaheuristics is a common approach to speed
up the time to solution or improve its quality by leveraging traditional parallel programming models on
platforms like multicore processors or computer clusters. More recently, the emergence of Cloud Computing
and new programming models and frameworks for Big Data has facilitated access to an unprecedented
amount of computational resources, which led to a growing interest in optimization frameworks that support
the development and execution of distributed metaheuristics taking advantage of this potential. In this
paper, we present the current status of development of one such framework that aims to provide support
for the application of distributed population-based metaheuristics to the global optimization of large-scale
problems in Spark. The framework provides a reduced set of abstractions to represent the general structure of
population-based metaheuristics as templates and strategies to particularize them into concrete metaheuristics,
as well as other nice features like out of the box implementations of the most common distributed models,
full configurability through a human-friendly format, and the possibility of rapid prototyping and testing
metaheuristics in the Spark shell. To validate the approach, a template for Particle Swarm Optimization (PSO)
was implemented as a proof of concept, which includes strategies for instantiating different variants of the
algorithm, configurable topologies, and sequential and distributed execution models.
1. Introduction

Optimization problems arise in almost every discipline, including
engineering, economics, social sciences, computational biology, busi-
ness management or logistics, only to cite a few. Different optimization
methods have been applied during decades to solve increasingly large
and complex problems. Among these methods, metaheuristics [1] have
ained more popularity over exact methods in hard optimization prob-
ems due to their potential to achieve satisfactory solutions at an
ffordable cost when exact methods fail to find an optimal solution.
ven so, there are still many challenging problems for which meta-
euristics are not able to reach satisfactory results within a reasonable
ime due to their complexity or size. High-dimensional search spaces
ith a large number of local optima or fitness functions with an
xtremely high computational cost are typical of these problems. The
evelopment of distributed metaheuristics to reduce the time needed
o obtain a solution or to improve its quality, using traditional par-
llel programming models such as OMP or MPI to take advantage of
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the computational resources available on platforms such as multicore
processors or computer clusters, has been a common approach to
overcome the limitations of the applicability of metaheuristics to large-
scale problems. Furthermore, in recent years, the emergence of new
computing platforms, such as GPUs or the Cloud, has aroused interest
and led to new developments in order to take greater advantage of the
unprecedented availability of computing resources.

However, implementing scalable and efficient distributed meta-
heuristics is a non-trivial task. Fully exploiting available computa-
tional resources requires knowledge of complex hardware architec-
tures and software platforms, sometimes requiring to carefully make
trade-offs among different performance metrics. Moreover, the under-
lying platform partially influences the implementation, conditioning
its performance, scalability and fault-tolerance [2]. In this context,
the availability of frameworks that provide customizable distributed
implementations of the most popular metaheuristics is helpful for prac-
titioners with different expertise, knowledge of the underlying platform
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and programming skills. But, although there are many frameworks for
metaheuristics available [3–7], the few existent studies, as far as we
now, that have compared them [8–10] show that there are significant
ifferences in the level of support for distribution, if any, and the
xecution performance they provide.
Furthermore, although the availability of new frameworks for Big

ata [11], has opened the possibility for solving optimization problems
t an unprecedented scale, there has not yet been much work on frame-
orks to support the development and efficient execution of distributed
etaheuristics on these platforms. So far, most proposals have been ad
oc distributed implementations of specific metaheuristics applied to
articular problems. In this respect, the situation resembles when the
irst frameworks supporting the execution of metaheuristics on tradi-
ional parallel infrastructures were proposed, and it reproduces many
f the pitfalls that have been identified as inhibitors for reproducibility
nd progress in the field [12]: duplication of effort and siloing of re-
earch, tendency to re-implement metaheuristics from scratch because
t is difficult to reuse existing implementations, or difficulty to indepen-
ently replicate the results of other proposals, which is fundamental
or the comparison between different approaches, because algorithm
escriptions in many papers are not precise enough and public access
o the source code of the implementations or experimental data is rarely
vailable.
In this paper, we present the current status in the development of
framework to support the development and efficient execution of
istributed population-based metaheuristics in Spark [13]. The motiva-
ion of this proposal comes from our own interest in the optimization
f large-scale problems from Computational Biology in distributed
rameworks such as Hadoop (the most popular MapReduce [14] frame-
ork) or Spark. After having implemented and evaluated different
istributed population-based metaheuristics on these frameworks [15–
9], we decided to start the development of the Metaheuristic Opti-
ization Framework (MOF) we introduce in this paper to facilitate
he development of new metaheuristics and improve the automation
nd reproducibility of our experiments. From the two main Big Data
rameworks known for having support for efficient iterative algorithms,
.e. Spark and Flink [20], we selected Spark because it is the most ma-
ure and widely adopted. Spark facilitates the development of scalable
istributed algorithms through features such as high-level program-
ing abstractions and built-in support for data distribution, fault tol-
rance and load balancing [18,19]. To validate the approach, Particle
warm Optimization (PSO) was used as a proof of concept. The result is
template for PSO with support to the instantiation of different variants
f the algorithm and configurable topologies, which can be executed on
park clusters using various sequential or distributed execution models.
he source code is available in a public repository [21].
It should be noted that our proposal is focused on population-based
etaheuristics applied to Large-Scale Global Optimization (LSGO) prob-
ems as defined in [22], and that, due to the early stage of development,
t does not support many of the features that would be expected in
MOF [10], although it already provides some nice features such as
human-friendly format for the configuration of experiments, prob-
ems and metaheuristics, the possibility of rapid prototyping and test-
ng metaheuristics in the Spark shell or the availability of LSGO
enchmarks out of the box.
The main contributions of this paper are:

• The initial design of a framework to support the development
and efficient execution of population-based metaheuristics on
Spark clusters is presented. The design of the framework aims at
providing a reduced set of abstractions that capture the common
structure of population-based metaheuristics as general templates.
From the general templates, specific metaheuristics are instanti-
ated by defining the concrete abstractions to model the popula-
tion and the strategies applied by the metaheuristic. Strategies
2

can be reused between metaheuristics, enforcing code reusability.
• The proposed framework provides implementations of the most
common distributed execution models. A detailed discussion of
these implementations in Spark and their efficiency, supported by
experiments, is provided.

• A template for PSO was defined using the abstractions of the
framework to validate the approach. In addition, several strate-
gies have been implemented to support the instantiation of dif-
ferent variants of PSO, including configurable topologies, whose
genericity and correctness have been experimentally proven. Fur-
thermore, the PSO instances can run on Spark clusters using any
of the distributed execution models provided by the framework.
To the best of our knowledge, no other implementation of a PSO
template supports all of these features together.

The remainder of this paper is organized as follows: Section 2 is a
summary of the related work; the design and main abstractions pro-
vided by the proposed framework are described in Section 3; Section 4
introduces the PSO template that was implemented to validate the
approach; in Section 5 the results of the experimental evaluation are
presented; and Section 6 gives some remarks to conclude the paper.

. Related work

This section summarizes the main findings in the literature related
o the proposal of this paper. To provide a general context, the section
tarts by referring to some recent reviews on metaheuristics, their par-
llelization and supporting frameworks. Then, the main proposals on
he implementation of population-based metaheuristics in distributed
rameworks for Big Data like Hadoop or Spark are included. The section
nds by commenting on the MOFs proposed to support the develop-
ent and execution of population-based metaheuristics in distributed
rameworks for Big Data.

.1. Metaheuristics

Research on metaheuristics has been extensively reported in the
iterature. Some recent surveys can be found in [1,23–27]. Also, the
parallelization of metaheuristics has been studied extensively in the last
decade [28] with the aim of reducing the time needed to solve larger
problem instances and improve the robustness of sequential versions.
The following are some recent reviews about the parallelization of
different types of metaheuristics: in [29] the main concepts and gen-
eral strategies for the design of parallel metaheuristics are presented;
a new integrative framework of parallel computational optimization
across optimization problems, algorithms and application domains is
presented in [30]; a conceptual framework and the most important
models for distributed evolutionary computing (dEC) are presented and
analyzed in [2]; a systematic review on dEC and a new taxonomy
for distributed optimization problems is presented in [31]; recent ad-
vances in parallel genetic algorithms (PGAs) are reported in [32] and
a systematic survey on parallel PSO algorithms can be found in [33].

Metaheuristic Optimization Frameworks (MOFs) have numerous
advantages for practitioners and researches in the field of optimization,
such as including default implementations of the most popular meta-
heuristics, support for evaluating and comparing different methods,
ease of adapting or developing metaheuristics for particular problems,
or advanced features such as support for hybridization and parallel
and distributed execution capabilities. Although there are many MOFs
reported in the literature, e.g. HeuristicLab [3], ECJ [4], ParadisEO [5],
DEAP [6], jMetal [7], to the best of our knowledge there are only a few
studies that compare them. The most prominent ones – in chronological
order – are: (i) a comparative study of ten MOFs over a set of 271
features grouped into 30 characteristics and 6 areas of interest is pre-
sented in [8]. Among the conclusions, a significant lack of support for
parallel and distributed computing capabilities and the need for wider
implementation of Software Engineering best practices were identified;
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Table 1
Summary of related work in Section 2.2 by metaheuristic and framework.
Metaheuristic Hadoop Spark

PSO [34–38] [39,39–48]
GA [49,49,50,50–52] [53–57]
DE [58] [15,18,59,60]
WOA [61,62] [62–64]
ACO [65] [66]
CS [67] [68]
GSO [69] [70]
Other metaheuristics BA [71] eSS [19], ALO [72], SCA [73], ABC [74,75], CRO [76]
Hybrid approaches GA-PSO [77] ACO-GA [78], PSO-K-means [79–82]
(ii) the review in [9] extended that of [8] by performing a comparative
analysis of 25 MOFs over a set of 22 characteristics grouped into 4
categories, focusing particularly on issues related to the use of multi-
agent structures in the development of hybrid metaheuristics, such as
the level of support for hybridization, cooperation and parallelism.
From the results of the analysis, it is concluded that there are still
important gaps to be filled in the development of MOFs, and with
respect to support for parallel and distributed computing, the analysis
shows that there are significant differences in the level of support, if
any, that the frameworks provide; and (iii) a comparative study of 10
MOFs that provide support for multi-objective optimization over a set
of features organized around seven characteristics is presented in [10].
Notably, two of the characteristics were assessed by performing an
analysis of code metrics and a series of experiments. The experimental
comparison found significant differences between the MOFs in perfor-
mance under demanding configurations, both in terms of execution
time and memory usage. Regarding support for parallel and distributed
execution, the analysis shows that most MOFs only parallelize the
evaluation of solutions and only two provide support for both of the
most common distributed models, i.e., the master–worker model and
the island-based model.

2.2. Population-based metaheuristics in Big Data frameworks

The design and development of parallel metaheuristics using pro-
gramming models and frameworks for Big Data, such as Hadoop and
Spark, is receiving increasing attention in recent years. Some of the
main proposals related to population-based metaheuristics are collected
in this section. A summary of the references by metaheuristic and
framework is shown in Table 1.

MapReduce (MR) was the first programming model successfully and
idely applied for Big Data applications. The parallelization of PSO
n MR was proposed in [34], where the constricted version of PSO
as implemented following a synchronous approach that preserves the
emantics of the sequential PSO. In the mapping phase the updated
elocity, position and best position of each particle is obtained and in
he reduce phase, all the swarm information is collected and the global
est updated. The scalability of the proposal was demonstrated using
he problem of training a radial basis function network (RDF) with
p to 256 processors. The main drawback is the overhead introduced
o update the global best of each particle, because the particle has
o store a list with the identifiers of all its neighbors and a message
as to be emitted for each of them, i.e. N*N messages for a swarm
f size 𝑁 with global topology. A cooperative PSO is implemented
n [35] which outperforms significantly the sequential version of the
lgorithm on both time and quality of solution. Moreover, it also has
etter performance on several problems, and a significant advantage on
ime, over two algorithms of the CEC 2013 competition with which it
s compared. A distributed quantum-behaved PSO is proposed in [36]
howing better experimental results on both quality of solution and
ime cost than the sequential version. Also, clustering algorithms based
n PSO have been proposed in [37,38] showing to scale well with
atasets of increasing size.
3

Different approaches to implement Genetic Algorithms (GA) in MR
can be found in [49–51]. In [49] the evaluation of the population
fitness is performed in the map function whereas the selection and
recombination operations are applied in the reduce function. According
to [50], GAs cannot be easily parallelized using MR due to their specific
characteristics, so they propose to incorporate a hierarchical reduction
phase to overcome this problem, however, the results shown little
scalability. Also, in [52] the performance of three different models of
PGAs – global, grid and island – were assessed on a Hadoop cluster,
showing that the island model outperforms the others.

Other population-based metaheuristics that were also implemented
using MR are: Differential Evolution (DE) [58], Ant Colony Optimiza-
tion (ACO) [65], Whale Optimization Algorithm (WOA) [61], Cuckoo
Search (CS) [67], Glowworm Swarm Optimization (GSO) [69], Parallel
Bat Algorithm (PBA) applied to solve clustering problems [71] or a
hybrid GA-PSO to infer large networks of genes [77].

One of the drawbacks of MapReduce when implementing iterative
algorithms, such as population-based metaheuristics, is that it is a
batch-oriented programming model which introduces I/O overhead
penalties between iterations. Spark adds support for streaming appli-
cations and improves the performance of iterative algorithms through
in-memory computing [83]. Thus, the number of population-based
metaheuristics implemented in Spark has seen an increase in recent
years. In [39] a parallel PSO is implemented and tested, both in Spark
and Hadoop, with a real world use case of energy optimization in
buildings. The design of the parallel PSO follows a map-reduce scheme
computing the velocity update, position update, fitness evaluation and
local best update of each particle in the map and the global best update
in the reduce. Experimental results show that both platforms could
handle the optimization problem but Spark is faster than Hadoop while
having the same accuracy. In [40] a parallel PSO is proposed and
compared with a parallel dynamic programming algorithm using the
cascade eight-reservoir system in the Yuanshui basin in China as a
testbed. As in [39] the map operator is used to evaluate the fitness
function and update the position and velocity of particles. Simulation
experiments were performed on the Alibaba Cloud Computing platform
showing that the computational efficiency is influenced by the number
of particles, whereas a small amount is used, increasing the number
of cores will increase the overhead of Spark tasks and the execution
time does not always decrease. In [41] a Cooperative co-Evolution
PSO for solving high-dimensional problems which combines global and
local versions of PSO is proposed. Dynamic grouping and computing
multiple algorithms at the same node are adopted to increase the
degree of parallelism, reduce the computation time and improve the
algorithm efficiency. Experimental evaluation shows that the proposal
outperforms other approaches for some of the benchmark functions
used. In [42] a distributed implementation of the quantum-behaved
PSO is proposed. The same idea is then reused in the quantum-behaved
cooperative evolutionary PSO proposed in [43]. In this work, the
population is initialized using an opposition-based learning scheme,
particles are updated using a quantum attractor and a parallel search is
performed distributing the population in sub-populations and partition-
ing the search space in sub-spaces. The proposal is compared with the
distributed PSOs implemented in [44] concluding that it can be applied
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to address the complexity of LSGO problems because it improves the
search efficiency and shows high scalability. In [45] an island model
of PSO is implemented and hybridized with an evolutionary strategy
of DE. Experimental evaluation shows that the proposal outperforms
other approaches on the set of benchmark functions tested. In [46] a
distributed training algorithm based on PSO for a type of Recurrent
Neural Networks is proposed, and in [47] a parallel PSO is applied to
the efficient utilization of water resources among reservoirs in Jinsha
River basin.

Also several proposals for applying PSO to clustering problems
using Spark can be found in the literature, for example: a parallel
PSO clustering algorithm for a learning analytics system where the
arrival of data is continuous in [48]; PSO has been combined with K -
eans in [79–81]; a classification algorithm which uses PSO to find
he optimal centroid for each target label in [84]; or a feature selection
lgorithm using Binary PSO integrated with a combination of PSO and
-means for effective clustering in cancer prognosis in [82].
There have been several proposals for implementing GAs in Spark.

n [53] the population is distributed to the workers and a map func-
ion is used to apply the genetic operations and evaluation, then a
educe function is used to aggregate most promising individuals of the
ub-populations when the termination condition is met. In [54] the
valuation is performed in parallel in the map function and then all the
opulation is collected and the genetic operators applied to the whole
opulation at once. GAs applied to a pairwise test suite generation
roblem were implemented in [55] following a map-reduce scheme.
he fitness of the chromosomes is evaluated in the map function and
ggregated in the reduce function to obtain the input for the selection
perator. More recently, a detailed critical review of some previous
roposals is presented in [56] and a new GA distributed architecture is
roposed and implemented both in MR and Spark. Experimental results
how that the proposed architecture outperforms significantly the other
revious approaches, especially for LSGO problems. Also, two versions
f parallel GAs, the master–worker and island models, to solve large
imensional classifier problems using Spark were proposed in [57].
DE was implemented in [85]. In [15] a sequential and two Spark

mplementations of the distributed master–worker and island-based
odels were implemented and compared. In [18] MR and Spark imple-
entations of DE are compared concluding that the Spark implementa-
ions outperform MR in this kind of iterative algorithms. An enhanced
E for LSGO problems based on the use of a ring topology and CUDE
s the internal optimizer is proposed in [59], which has been extended
n [60] with the proposal of a novel grouping topology model that uses
ive DE variants as internal optimizers.
Other population-based metaheuristics that were implemented in

park are: the MAX-MIN variant of ACO [66]; sequential, MR and
park implementations of ACO are compared and an hybridization of
CO and GA is proposed to avoid premature converge to local optima
n [78]; an enhanced Scatter Search (eSS) [19]; WOA [63]; sequential,
R and Spark implementations of WOA are compared in [62] showing
hat the Spark implementation successfully handles higher-complexity
roblems than the others; also a feature selection method based on
istributed WOA is proposed in [64]; Spark and MR implementations
f GSO are compared in [70]; Ant Lion Optimizer (ALO) [72]; Sine
osine Algorithm (SCA) [73]; a multi-objective Artificial Bee Colony
ABC) [74]; a multi-swarm ABC based on clustering which has demon-
trated excellent performance in medical image registration tests is
roposed in [75]; CS were applied in [68] to solve the crew scheduling
roblem; and the Coral Reflection Optimization (CRO) in [76] to solve
he Job Shop Scheduling Problem.

.3. MOFs in Big Data frameworks

To the best of our knowledge, there are only a few proposals of
OFs that support the development and execution of parallel meta-
euristics in Big Data frameworks. ECJ+Hadoop [86] is an enhance-
4

ent to ECJ based on MapReduce for deploying massive runs of o
volutionary algorithms on Hadoop clusters. The proposal implements
he simplest form of the master–worker distribution model in which
he fitness evaluation of individuals is distributed by means of a map
valuator.
jMetalSP [87] was originally conceived as a framework that com-

ined the jMetal multi-objective MOF with Spark. Since then, it has
volved into a framework which supports dynamic multi-objective
ptimization using jMetal with different streaming engines such as
park, Flink or Kafka [88]. The framework is implemented in Java
nd the source code is freely available on a Github repository. The
upport to parallelize metaheuristics with Spark was added to jMetalSP
n [89]. jMetal provides an interface which defines an evaluate method
o encapsulate the evaluation of solutions and two implementations
f this interface: sequential and multi-threaded. Metaheuristics using
his interface are agnostic of the concrete implementation used to
valuate the solutions. The approach used in jMetalSP was to provide
new implementation of this interface that uses Spark RDDs (Resilient
istributed Datasets) to distribute the evaluation of solutions to worker
odes. However, this approach has some limitations: (i) it is an imple-
entation of the simplest form of the master–worker distribution model
n which only the evaluation of the solutions is parallelized; and (ii) the
bjective function (i.e. the evaluation method of the problem in jMetal)
sed to evaluate the solutions must not modify variables outside the
cope of the RDD containing the list of solutions to be evaluated.
A high level description of a unified framework to explain how

o parallelize data clustering algorithms based on population-based
etaheuristics for cloud computing platforms was presented in [66].
he framework represents population-based metaheuristics in terms
f three general operators: (i) transition, used to adjust the searched
olution; (ii) evaluation, used to evaluate the objective function; and
iii) determination, used to decide the search directions for the following
terations; and assign the transition and evaluation operators to the map
unction and the determination operator to the reduce function. Using
he proposed framework several data clustering algorithms such as k-
eans, genetic k-means, and PSO were implemented. Implementations
ere written in Python and Java and evaluated with eleven datasets
oth on a stand-alone system and Spark. Neither details about the
mplementations, nor a repository with source code, are provided.
egarding PSO, the original proposal of [90] is cited, but no details
re given on whether any enhancements, variants or topology support
ere included. Although in theory the framework could be used for any
opulation-based metaheuristic, it is very general and follow a map-
educe scheme that does not take into account enhancements like other
odels (e.g. cooperative islands), variants, hybridization or topologies.
A framework to support the development of parallel population-

ased metaheuristics – more specifically, parallel evolutionary algo-
ithms (PEAs) – in Spark is proposed in [44]. This work has two
ain contributions: (i) a quantitative and experimental analysis of
he master–worker model based on Amdahl’s law is performed to
xplain when and why this model could work well for PEAs; and
ii) a software framework is developed in which parallel versions of
hree different PSO variants are implemented in a unified way. The
ramework is implemented in Scala combining functional and object
riented approaches and the source code was freely distributed in
Github repository, although the development seems to have been
iscontinued. Running an optimization problem is configured by means
f three types of configuration classes: (i) test parameters (e.g. number
f runs, random seeds); (ii) objective function parameters (e.g. function
imension, search bounds); and (iii) algorithm parameters (e.g. pop-
lation size, maximum number of fitness evaluations) which can be
urther customized for each algorithm by subclassing. All PSO variants
re implemented in a unified way, encapsulating the implementation
f each variant in a class that defines an optimize method with a
ommon signature, i.e. it takes the objective function as input and
eturns the optimization result as output. The optimization method

f the algorithm, the objective function and the test parameters are
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passed to the main class in charge of running the optimization problem
at hand. Although this proposal is a first step in – what we think –
is the right direction in the development of a framework to support
population-based metaheuristics in Spark, it shows some drawbacks: (i)
only one distribution model is implemented, i.e. the simplest version
of the master–worker model which distributes the evaluations of the
objective function to workers; (ii) although different PSO variants are
implemented in a unified way, this is just a convention followed by the
authors, which is not enforced in the framework using any of the mech-
anisms provided by Scala (e.g. inheritance from abstract base classes
or mixin composition using traits); and (iii) the three PSO variants
implemented have a similar structure and share much of the same code,
however no mechanisms are provided by the framework to model that
common structure or reusing code between implementations.

HyperSpark, a MOF that supports the design and execution of
parallel metaheuristics on a Spark cluster is proposed in [91]. The
ramework is implemented in Scala and the source code is freely
vailable on a Github repository, although the development seems
o have been discontinued. The framework is composed of two main
omponents: (i) a conceptual architecture inspired by other MOFs like
Metal, which provides the abstract entities (i.e. Problem, Algorithm,
Solution) to represent any arbitrary combination of a problem repre-
sentation, metaheuristic algorithm, and solution encoding; and (2) an
execution workflow which supports the iterative execution of user-
provided algorithms as independent parallel tasks, with or without
cooperation between them, on a Spark cluster. The workflow is com-
posed of several steps that iteratively split the problem into different
sub-problems (e.g. different regions of the solution space or different
objective functions), distribute the execution of the user-provided al-
gorithms assigned to each sub-problem to the available computational
nodes, aggregate the algorithm outcomes and use them to feedback
the process until the stopping condition is met. Although the workflow
iterations are implemented with a fixed map-reduce structure, the
user can configure some steps and parameters such as the splitting
of the problem, the assignment of algorithms to sub-problems, the
aggregation function, the collaboration strategy used to distribute the
results of an iteration between the algorithm instances, the number of
iterations or the stopping condition, among others.

HyperSpark shares most of its design principles (i.e. ease-of-use,
configurability, flexibility, extensibility) with the proposal presented
in this paper, although with a different approach. HyperSpark follows
what could be called a top-down approach by providing a high-level
execution workflow for metaheuristic instances, but without being
concerned about the internal parallelism of individual metaheuristics,
nor providing mechanisms for code reuse between them. Whereas our
proposal follows a bottom-up approach based on the use of strategies
to enforce code reuse between metaheuristics and which supports
various parallel models at different levels, e.g. strategy or metaheuristic
instance. In our opinion, the following are some drawbacks of the Hy-
perSpark approach: (i) the framework implements a fixed map-reduce
distribution model and the parallelism is at the level of metaheuristic
instances. No support or guidance for the parallel implementation of
individual metaheuristics is provided, being it under the user’s responsi-
bility; (ii) no mechanisms are provided to enforce reusing code between
metaheuristics. Only a limited form of code reuse based on single
inheritance with method overriding is used in the implementation of
some of the metaheuristics included with the framework. Moreover,
due to the strong dependencies between the entities of the conceptual
model, the types of the problem and solution encoding are hard-coded
in the implementation of metaheuristics, preventing them to be reused
between different types of problems; and (iii) although the framework
is implemented in Scala, its design and implementation is highly biased
towards an object oriented approach and procedural style that does not
5

take advantage of the functional capabilities of the language.
3. The framework

This section introduces the design of the proposed software frame-
work and the main features it provides for the implementation and
execution of parallel population-based metaheuristics.

The approach is based on the observation that population-based
metaheuristics such as, for example, Evolutionary Algorithms (EAs),
Swarm-based metaheuristics (e.g. PSO), Differential Evolution (DE),
or Scatter Search (SS) share a common structure in which an initial
population of candidate solutions to a given optimization problem is
repeatedly evolved by applying a composition of different intensifi-
cation and diversification strategies until a termination condition is
met. So they can be abstracted, from an algorithmic point of view, as
general templates that can be particularized through the composition
of reusable strategies for a wide class of optimization problems. The
representation of metaheuristics as general abstractions that can be
particularized through concrete instances of abstract components is an
approach that has been followed, from diverse perspectives, in different
proposals found in the literature, for example: software design pat-
terns [92], grammar-guided genetic programming [93], parallel solvers
specification languages [94] or generalized metaheuristic mathematical
models [95].

The framework is being developed using Scala [96] as the program-
ming language. Scala was chosen because is a concise, very expressive
high-level language that combines object-oriented and functional ap-
proaches, it is the programming language of distributed frameworks
like Spark or Flink, and it is highly interoperable with Java. The
framework functionality is built upon a reduced set of abstractions
to support the implementation of general algorithm templates and
reusable strategies to instantiate different variants, including parallel,
of metaheuristics. It leverages mainly a functional approach based on
the use of higher-order functions (i.e. functions that take other functions
as parameters and, possibly, return new functions created dynamically)
combined with some of the object-oriented features provided by Scala
(e.g. inheritance using traits and classes, mixin compositions) to im-
plement well-known software design patterns such as Template Method,
Composite, Strategy or Dependency Injection.

The status of the framework presented here is an evolution of
some of the ideas already put in practice in [19], in which a general
template for the enhanced SS metaheuristic was developed from which
different instances of the algorithm, including a parallel version, could
be instantiated. For simplicity, in the following, some details of the
actual implementation have been omitted or slightly changed in the
source code listings and UML diagrams. Interested readers are referred
to the original source code that is publicly available in the companion
repository [21].

3.1. Population, state and evolution

At the core of the framework there are the abstractions to represent
a population and its evolution in the context of an optimization prob-
lem. A population is implemented as a collection of individuals. Each
individual represents a solution in the search space of the problem at
hand which holds two pieces of information: (i) the position vector of
the solution in the search space, i.e. a collection of D – the dimension
of the problem – real values, that is named Element in the framework;
and (ii) a fitness value. As it can be seen in Fig. 1 the definition of the
Individual class provides a minimum set of operations to evaluate the
fitness, improve the solution, i.e. apply an intensification strategy, and
bound the solution to search space limits. All these methods have been
defined as higher-order functions so the concrete fitness, improvement
or bounding functions to apply are passed as input arguments to the
method call. Moreover, to support applying different strategies for the
generation of the initial solutions, a factory method (i.e. apply) with
a parameter for the generation function is defined in the Individual

companion object.
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Fig. 1. Individual and Population class diagram. The Scala companion object concept is represented as a class tagged with the Object stereotype, which contains only static methods,
with a dependency tagged with the companion stereotype to its companion class.
Fig. 2. Class diagram of the generic types to model states and evolutions. Generic functions are represented as generic classes tagged with the Function stereotype.
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The Population abstract class defines, at the population level, the
same methods as Individual. Besides, it provides additional methods
to get the best individual, the size of the population and to evolve
the population, as it is shown in Fig. 1. The evolveUntil method was
lso defined as a higher-order function, with the evolution function
nd termination condition to apply in the evolution of the population
s input parameters. Moreover, it is a generic function parameter-
zed by the type of the evolution state that is propagated between
volution iterations, which allows evolution functions with different
tate representations to be used to evolve the population. The default
mplementation of the method – not shown in the figure – initializes an
volution state with the initial population and calls EvolveUntil (Fig. 2),
the generic function provided by the framework to evolve an state
until a termination condition is met, as it is explained later. The
reason Population is defined as an abstract class is that two different
population states, grouped and distributed, are distinguished by the
framework and implemented differently by subclassing Population. As
it will be explained in Section 3.4, this is used to support the parallel
implementation of population-based metaheuristics in the framework.

Population-based metaheuristics are iterative methods that prop-
agate state information between iterations during the evolution of a
population. Therefore, the framework provides generic types and func-
tions to support the representation of a state and its evolution. These
generic definitions form the basis for the implementation of population-
based metaheuristics as general templates from which specific instances
are obtained by particularizing the generic types. As it is shown in
Fig. 2, an EvolutionState is represented as a generic class that contains,
at least, the population being evolved and a timestamp field to account
for the evolution elapsed time. EvolutionStep and TerminationCondition-
Function are the generic types for functions that, respectively, evolve
an state and check for the fulfillment of a termination condition.
EvolveUntil is the higher-order function that implements the generic it-
erative process followed by any population-based evolutionary method
to evolve an initial state, by repeatedly applying an evolution function,
until a termination condition is met. The function pseudocode is shown
in algorithm 1. The initial state is passed as input argument and the
evolved state is returned as output.
6
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Algorithm 1 The general algorithm of a state evolution
Inputs: state (the state to be evolved); evolve (an evolution function);
converged (a termination condition)
Output: the evolved state

1: if 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑(𝑠𝑡𝑎𝑡𝑒) then
2: state
3: else
4: evolveUntil(evolve(state)) ⊳ recursive call
5: end if

3.2. Algorithms and strategies

The core functionality of the framework also provides abstractions
for the implementation of general algorithm templates and reusable
strategies. The common structure of population-based metaheuristics
was captured as a general algorithm template (algorithm 2) applying
the template method design pattern. The template was implemented
using mixin composition and the generic definitions introduced in
Section 3.1, as it is shown in Fig. 3 and listing 1. With this template, a
articular population-based metaheuristic will only have to extend the
ase algorithm and provide the implementation of the three functions
sed as input parameters in the call to the EvolveUntil (algorithm 1)
eneric evolution function: (i) the function to generate the initial state
ontaining the population to be evolved; (ii) the function to evolve
he state; and (iii) the termination condition. Note that each of these
unctions can be itself implemented as a general template that uses
igher-order functions, so concrete instances of the algorithm can be as
omplex as needed.
To illustrate how this general approach is applied to get a con-

rete metaheuristic, we will use the PG method of algorithm 2 as an
xample. Algorithm 3 shows a possible general algorithm for the PG
ethod, whose purpose is to provide the initial set of solutions (initial
opulation) that will then be iteratively evolved. To accomplish that,

hree methods are involved: (i) the generation method (GM) to generate
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Fig. 3. Class diagram of the generic types to model the algorithm template of population-based metaheuristics. Scala concepts are represented in the following manner: traits as
eneric classes tagged with the Trait stereotype, mixins as dependencies tagged with the mixin stereotype and mixed operations indicated with the mixin property, and the object
efinition as a frame tagged with the Object stereotype.
Fig. 4. Class diagram of the PG method. The Scala self-type concept is represented as a dependency tagged with the self stereotype, and mixed attributes are indicated using the
mixin modifier.
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Algorithm 2 The general algorithm of a population-based metaheuris-
tic

Inputs: PG (population generation method); PE (population evolution
method); TC (termination condition)
Output: the best solution found

1: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = apply PG
2: while ¬𝑇𝐶 do
3: apply PE to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
4: end while
5: return the best individual in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Algorithm 3 A general algorithm for the population generation method
(PG)

Inputs: GM (generation method); IM (improvement method); EM
(evaluation method)
Output: the initial population evaluated and improved

1: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = apply GM
2: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 = apply EM to evaluate the solutions in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
3: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = apply IM to 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 using EM to evaluate the
improved solutions

4: return 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

a collection of diverse solutions; (ii) the improvement method (IM) to
pply an intensification strategy to the initial solutions; and (iii) the
valuation method (EM) to evaluate the fitness of both the initial and
mproved solutions. To obtain a specific instance of the PG method,
mplementations of the GM, IM and EM methods must be provided as
7

nputs to the algorithm.
type PopulationGenerator[T] = () => EvolutionState[T]

trait EvolutionaryMetaheuristic[T] {
def apply():T

}

object EvolutionaryMetaheuristic {
// a population generator
trait PopulationGeneration[T] {

def generate:PopulationGenerator[T]
}
// an evolution step
trait PopulationEvolution[T] {

def evolution:EvolutionStep[T]
}
// a termination condition
trait TerminationCondition[T] {

implicit def converge:TerminationConditionFunction[T]
}
// the general algorithm of an evolutionary
// metaheuristic
abstract class Algorithm[T]

extends EvolutionaryMetaheuristic[EvolutionState[T]]
with PopulationGeneration[T]
with PopulationEvolution[T]
with TerminationCondition[EvolutionState[T]] {

// implemented by calling the generic evolveUntil
// function
override def apply() = generate evolveUntil evolution

}
}

isting 1: Implementation of the general algorithm of a
opulation-based metaheuristic.
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Fig. 5. Class diagram of the EM method.
Fig. 4 shows how the PG method would be added to the framework,
using again a higher-order function to apply the template method design
pattern. PG is defined as a trait PopulationGenerator that implements
the generate method defined in the PopulationGeneration trait of Evolu-
tionaryMetaheuristic. The dependencies of PG on the GM, IM and EM
methods are resolved by mixing the traits that implement the methods
using self-types (i.e. a form of Dependency Injection in Scala). The same
approach is also followed when mixing AlgorithmStep, a trait provided
by the framework that can be used to bring configuration parameters
into the context of other types, to access the population size configured
in the configuration parameters. The concrete implementation of the
generate method is obtained by delegating its construction to the func-
tion builder (i.e. a higher-order function that returns a function) defined
in the companion object, passing the mixed methods and parameters
as arguments.

To support the variety of implementations that a method could
have and enforce reusability of method implementations between meta-
heuristics, the framework also defines abstractions to apply the Strategy
design pattern. Generic types for optional and required strategies,
and a generic strategy factory are provided. Fig. 5 shows how this
approach would be applied for the implementation of the EM method
of algorithm 3. The method is defined as a trait ElementEvaluator
with an AlgorithmStep self-type. AlgorithmStep and AlgorithmTemplate –
not shown in the figure – are traits provided by the framework to
implement the Composite design pattern through mixin composition.
Any trait with an AlgorithmStep self-type can be mixed into another
AlgorithmStep or AlgorithmTemplate. They are therefore a way to reuse
algorithm steps between algorithms and, in addition, they are also used
to enable access to configuration parameters, as we have seen in the
example of Fig. 4.

ElementEvaluator declares a fitness function as a required strategy.
Fitness functions are instances of FitnessFunction, and have an input
parameter of type Element (i.e. a solution in the search space) and an
output parameter of type Double (i.e. the fitness value). Function types
are fundamental to the composition and implementation of strategies
because they define the signatures that strategy variants must adhere to
and that the algorithm steps that mix them must use. The instantiation
of the fitness function is delegated to the ElementEvaluator companion
object, which is a specialization of the generic StrategyFactory that
applies pattern matching on the fitness function name configured in
the configuration parameters to select the fitness function to create.

The set of abstractions explained so far is enough to provide a
concrete implementation to the general algorithm of a population-
based metaheuristic of Fig. 3, as it is shown in the example of listing
2 and Fig. 6. The Algorithm of the concrete metaheuristic is defined by
extending EvolutionaryMetaheuristic.Algorithm and mixing in the traits
with the three functions required by the generic evolution function
8

implemented by EvolutionaryMetaheuristic.Algorithm (i.e. generate, evolu-
tion and converge). For simplicity, in the example is assumed that these
functions have already been implemented using the strategy approach
described earlier in this section. Therefore, only the parts of their trait
declarations and dependencies needed for the explanation are included
in listing 2 and Fig. 6. An example of how the concrete metaheuristic
would be instantiated and executed is shown in listing 3. The algorithm
instance is configured with the configuration parameters passed at
construction time and the result is a state that contains the evolved
population, the number of evaluations of the fitness function performed
and the evolution elapsed time.

3.3. Configuration and properties

The configuration of a metaheuristic and its strategies require some
configuration parameters to be provided as input at construction time.
The framework is very flexible in supporting the loading of configu-
ration parameters from files, URLs, or classpath in a combination of
three different formats: Java properties, JSON, and HOCON, i.e. a
human-friendly JSON superset with nice features such as comments,
file includes or variable substitution.

The current format of the configuration has three sections: (i)
execution context, optional section with parameters for sequential – used
by default – or Spark execution; (ii) libraries, optional section with
parameters to load external libraries that provide access to existent
problems (e.g. models in Computational Systems Biology) or methods
(e.g. local solvers) usually written in languages like Fortran or C;
and (iii) experiments, with parameters for configuring one or more
executions. For each experiment it can be specified, between others,
the number of runs, the population size, the algorithm and strategies
to use and their specific parameters, the fitness function, the search
space dimension and bounds and the termination condition.

While configuration parameters provide the initial static informa-
tion needed to configure metaheuristics, the behavior of a metaheuristic
also depends on accessing and modifying information that changes
dynamically during execution, i.e. what has been described as envi-
ronmental state in [97]. The framework provides two ways for making
that information accessible to a metaheuristic and its strategies: (i) the
evolution state (Section 3.1), which is passed on during the evolution
through the strategies that are part of the metaheuristic; and (ii) a
properties store, which can be mixed in any algorithm or strategy in
the same way as other dependencies.

3.4. Sequential and parallel implementations

As it has been explained in Section 3.2, the framework provides
support for algorithm templates and strategies with different implemen-
tations. Which one to use is configured in the configuration parameters
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Fig. 6. Class diagram of an implementation of the algorithm template of Fig. 3. Only the PopulationGenerator dependencies explained in the example of Fig. 4 are shown. For
clarity, they are included in a separate trait AlgorithmDependencies.
and instantiated at metaheuristic construction time. The same approach
is followed to support sequential and parallel implementations of an
algorithm or strategy. An example of how it would be applied to
have two implementations of PopulationGenerator, a sequential and a
master–worker parallel version, is shown in Fig. 7. A function builder is
defined for each implementation (Sequential and MasterWorker objects
in Fig. 7(a)), and the proper version is chosen at construction time
using pattern matching on the execution context configured in the
configuration parameters (Fig. 7(b)). The only difference between the
two implementations is that in the parallel version, after the population
is generated, it is distributed before it is evaluated and improved.

This similarity between the implementations is possible because
Population was defined as an abstract class (Fig. 1) which can be in
one of two different states, grouped – the initial state – or distributed.
Both states are implemented differently by subclassing Population, and
group and distribute operations are available to switch between states.
Fig. 8 shows an example of how the evaluate operation is implemented
in two Population subclasses: (i) a grouped population that stores the
individuals using a Scala collection; and (2) a distributed population
that stores the individuals using a Spark RDD. Both implementations
evaluate the population by delegating the evaluation to the population
individuals, using the collection map in the grouped population and the
RDD map in the distributed population.

3.5. Base evolutionary metaheuristic

Because similar population generation methods and termination
conditions are used by many population-based metaheuristics, to fa-
cilitate the development of new metaheuristics, the framework pro-
vides a BaseEvolutionaryMetaheuristic with some common functionalities
already implemented. Metaheuristics which reuse this BaseEvolution-
aryMetaheuristic will have the following features:

• An evolution state comprised of the population being evolved,
the number of generations, the number of fitness evaluations
performed, and the evolution time elapsed.

• Access to the configuration parameters and the properties store
(Section 3.3).

• Sequential and parallel implementations of a population gener-
ation method that can be configured with different strategies
9

for the generation and evaluation of the individuals. A random
generation strategy is used by default and fitness functions from
some common benchmarks are included out of the box [98].

• A configurable termination condition based on a combination
of different criteria, i.e. number of fitness function evaluations,
evolution elapsed time, quality of the best solution found so
far, number of generations and number of evolutions without
improvement.

• Logging of meaningful information at each iteration and at the
end of the evolution.

• Hook methods at some points of the evolution (e.g. after generat-
ing the initial population, at the beginning and at the end of each
iteration) which can be overridden to add additional features such
as custom logging, checkpointing the evolution state, etc. without
having to modify the metaheuristic logic.

This common functionality is expected to be sufficient for many meta-
heuristics that will only have to provide the implementation of the
function to evolve the population (Fig. 3).

4. A general template for PSO

To validate the approach, this section presents the implementation
of a general template for PSO developed using the abstractions pro-
vided by the framework explained in Section 3. PSO was selected as a
proof of concept because it is one of the most popular metaheuristics
found in the literature, which has been applied to all kinds of complex
optimization problems in different fields, and that, although it has a
simple algorithmic description, it also has a huge number of variants
and improvements proposed over the years. The PSO template includes
support to configurable topologies and strategies to instantiate different
variants of the algorithm, which can be executed on Spark clusters
using the sequential or parallel models provided by the framework. To
the best of our knowledge, there is no other PSO template that supports
all these features together.

4.1. The PSO algorithm

PSO is an stochastic optimization algorithm originally proposed
in [90] that is inspired by the collective behavior observed in some
animal groups, such as flocks of birds or schools of fish, in which
members cooperate in foraging, changing their behavior based on
their own experiences and those of other members. The algorithm

represents the set of candidate solutions as a swarm of particles that
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Fig. 7. Sequential and Master–Worker implementations of the PG method of Fig. 4.
Fig. 8. Class diagram of the implementation of the evaluate operation in the grouped and distributed states of Population. As recommended in the Spark documentation, the
unction to be distributed to Spark executors to evaluate the individuals is implemented in a separate object.
raverse a multidimensional search space seeking the optimum. During
he traversal, the position and velocity of each particle are updated
onsidering both its own trajectory and those of the other particles
n the swarm. Better solutions are progressively found by iteratively
pdating and evaluating the particles, which eventually will lead the
warm towards the global optimum.
Algorithm 4 shows the pseudocode of the PSO algorithm used as a

asis in this work for the development of the general template. Its main
teps are the following:

• Initializing the swarm. The first step of the algorithm initializes the
𝑁 particles of the swarm. Each particle stores its current position,
velocity, fitness, and its best historical position and fitness. Note
that, as this work is aimed at continuous optimization problems,
position and velocity are assumed to be D-dimensional vectors of
10
real values. At the time of creation, the position and velocity are
initialized and the objective function is evaluated to obtain the
initial fitness value. Also, the particle best is initialized with the
initial position and fitness.

• Moving the swarm. This is the step that provides the algorithm
with its optimization capability. The position and velocity of each
particle are updated based on its own trajectory, as well as the
trajectory of its neighbors.

• Evaluating the swarm. In this step the particles are evaluated indi-
vidually, i.e., the fitness value is calculated evaluating the objec-
tive function at the current position. Furthermore, the historical
best of the particle is updated if the best fitness is improved.

The move and evaluate steps are repeated until the termination
condition is fulfilled. In the synchronous version of the algorithm, all
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object AnEvolutionaryMetaheuristic {

trait PopulationGenerator
extends EvolutionaryMetaheuristic.PopulationGeneration[

Evaluations] {
self:AlgorithmStep

with ElementGenerator
with IndividualImprover
with ElementEvaluator =>

override
def generate:PopulationGenerator[Evaluations] = {

/* concrete implementation */
}

}

trait PopulationEvolution
extends EvolutionaryMetaheuristic.PopulationEvolution[

Evaluations] {
self:AlgorithmStep

with ... => // other dependencies
override
def evolution:EvolutionStep[Evaluations] = {

/* concrete implementation */
}

}

trait TerminationCondition
extends EvolutionaryMetaheuristic.TerminationCondition[

EvolutionState[Evaluations]] {
self:AlgorithmStep

with ... => // other dependencies
override
implicit def converge:TerminationConditionFunction[
EvolutionState[Evaluations]] = {
/* concrete implementation */

}
}

// dependencies to mix the traits in the algorithm
trait AlgorithmDependencies
extends ElementGenerator // PopulationGenerator

with IndividualImprover
with ElementEvaluator
with ... // other dependencies

case class Algorithm(
implicit override val config:ConfigurationParameters)

extends EvolutionaryMetaheuristic.Algorithm[Evaluations]
with AlgorithmTemplate
with AlgorithmDependencies
with PopulationGenerator
with PopulationEvolution
with TerminationCondition

}

isting 2: Implementation of a population-based metaheuristic.

// create a metaheuristic with default configuration
val config = ConfigurationParameters()
val metaheuristic =

AnEvolutionaryMetaheuristic.Algorithm(config)
// apply the metaheuristic and get the best solution
val (population ,evaluations ,duration) = metaheuristic()
val best = population.best

isting 3: Instantiation and execution of a metaheuristic.

articles are updated at once in each iteration, while in the asyn-
hronous version one particle is updated at a time. The particle with
he best historical fitness is returned as the best solution found.
In PSO the neighborhoods are determined by the social topology,

hich dictates which particles share information during the search. The
wo most common topologies are: (i) global best (gbest), in which each
article is connected to all other particles; and (ii) local best (lbest),
n which each particle is connected to its nearest neighbors, usually
wo. In both topologies, the particles share their best position with
heir neighbors and the best of the neighborhood is used to update the
11
Algorithm 4: Pseudocode of the PSO algorithm.
1: initialize a swarm of N particles
2: while the termination condition is not met do
3: for 𝑖 = 1 → 𝑁 do
4: update the velocity of particle𝑖
5: update the position of particle𝑖
6: evaluate the fitness of particle𝑖
7: if the fitness of particle𝑖 is better than its historical best then
8: update the historical best of particle𝑖
9: end if
0: end for
1: end while
2: return the best particle

velocity of the particles. As it is well known that the topology affects
the performance of the algorithm, and that the optimal topology is
problem dependent, other topologies, static and dynamic, and models
of influence (using the nomenclature of [99]) have been proposed in
the literature [100–103].

4.2. PSO variants

Over the years many modifications have been proposed to over-
come PSO limitations and improve its performance, making it widely
applicable to a great variety of optimization problems. For this work,
a representative set of modifications were selected to provide a signif-
icant number of choices in all the main components of the algorithm.
The Strategy approach (Section 3.2) was applied to implement the
selected variants, which are summarized in Table 4 and their signatures
shown in Table 2. The variants were selected, for the most part, based
on some recent PSO reviews [104–109] and can be grouped in the
following categories:

• Particle initialization, which comprises modifications in the initial-
ization of the particles position and velocity. For the position, the
ElementGenerator strategy already implemented in BaseEvolution-
aryMetahuristic (Section 3.5) that, by default, generates random
positions (Elements in the framework jargon) was reused. For
the velocity, a strategy VelocityInitialization with two instances to
initialize the velocity to zero or to a random value within the
reduced search space range, were implemented.

• Particle update, which comprises modifications in the updating of
the position and velocity of particles. For the position, a strategy
PositionUpdate with an instance to apply the position update of the
standard PSO 2007 [110] was implemented. For the velocity, a
strategy VelocityUpdate with three instances was implemented: (i)
the velocity update of the standard PSO 2007; (ii) the version with
constriction coefficient [111]; and (iii) the condensed form of the
previous. All the instances of the VelocityUpdate strategy were
implemented to accept different models of influence (represented
as 𝐼 𝑡

𝑖 in the equations) to take into account the contribution
of the neighborhood to the velocity update (Section 4.5). This
category is completed with optional strategies, MovementBound
and VelocityClamping, to keep the position and velocity of particles
within given limits.

• Control parameters, which comprises proposals to initialize and ad-
just the control parameters of the algorithm and its components. A
strategy InertiaWeightAdjustment with seven instances was imple-
mented to dynamically adjusting the inertia weight parameter (𝑤)
used in the velocity update equation of the standard PSO, and two
strategies, VelocityLimitInitialization and VelocityLimitUpdate, were
implemented to optionally initialize and update the velocity limit
when velocity clamping is activated.
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Table 2
Signatures of the strategies used to implement the PSO variants.
Strategy Signature

ElementGenerator () ⟶ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

VelocityInitialization () ⟶ 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦

PositionUpdate (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦) ⟶ 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒

VelocityUpdate (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒) ⟶ 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦
Influence = neighborhood influence

MovementBound (𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡, 𝐵𝑜𝑢𝑛𝑑, 𝐵𝑜𝑢𝑛𝑑) ⟶ 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡
𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦)

VelocityClamping (𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝐵𝑜𝑢𝑛𝑑) ⟶ 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦

InertiaWeightAdjustment (𝐷𝑜𝑢𝑏𝑙𝑒, 𝑆𝑡𝑎𝑡𝑒) ⟶ 𝐷𝑜𝑢𝑏𝑙𝑒

VelocityLimitInitialization () ⟶ 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦

VelocityLimitUpdate (𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑆𝑡𝑎𝑡𝑒) ⟶ 𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Table 3
Notation used in the article.
𝑥⃗ 𝑡
𝑖 position of the i-th particle at time t

𝑣 𝑡
𝑖 velocity of the i-th particle at time t

𝑤 inertia weight
𝜒 constriction factor
𝑐1 cognitive coefficient
𝑐2 social coefficient
𝑐𝑚𝑎𝑥 upper limit of coefficients sum
𝑟1 𝑡𝑖 , 𝑟2

𝑡
𝑖 uniformly distributed random value vectors

𝑝 𝑡
𝑖 best historical position of the i-th particle at time t
𝑔 𝑡 best solution at time t
𝐼 𝑡
𝑖 neighborhood influence on the i-th particle at time t
𝑥⃗𝑚𝑖𝑛 , 𝑥⃗𝑚𝑎𝑥 search space limits
𝑣𝑚𝑎𝑥 velocity limit
𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 inertia weight limits
𝑔 current generation
𝑇 maximum elapsed time
𝐺 maximum number of generations
𝑓 fitness function
𝑈 uniform distribution

4.3. The PSO template

One of the difficulties to be faced when implementing a template
for PSO is that, due to the huge number of modifications introduced
to the original proposal over the years, it would be unfeasible to have
a template that could accommodate every proposed modification. But
unlike SS, for which a five-method template was proposed in [114]
that has served as the main reference for most implementations to date,
including our germinal work [19] on the framework proposed in this
paper, even there is no agreement on a common template for PSO.
Different proposals can be found in the literature, e.g. the template
used in [93] for the grammar-guided genetic programming (GGGP)
of PSO algorithms; the template used in PSO-X [99], a component-
based framework for the automatic generation of PSO algorithms; or
the templates found in some of the most popular MOFs, like Paradiseo
[5], ECJ [4], HeuristicLab [115] or JMetal (v6.0) [116].

The pseudo-code of the PSO template used in this paper is shown
in algorithm 5. The strategies in Table 4, the fitness function and the
termination condition are the inputs of the template. The strategies
applied at each step are shown on the right side. When the strategy
is used to parameterize the step, it is shown inside square brackets
(i.e. the parameters initialized and updated in steps 1 and 12 of the
algorithm depend on the concrete instance of the VelocityUpdate strat-
egy, although the strategy is not applied in the step). It should be noted
that, although it would be possible to implement both synchronous
and asynchronous versions of the PSO algorithm with the template, a
synchronous version was assumed in which all particles are updated at
once, which has an effect on the implementation of models of influence
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(Section 4.5) and parallel models (Section 4.6).
Algorithm 5 Pseudo-code of the PSO template.
Input strategies: EG (position generation); VI (velocity initialization);
VU (velocity update); VC (velocity clamping); PU (position update);
MB (movement bound); WA (inertia weight adjustment ); VLI (velocity
limit initialization); VLU (velocity limit update); FF (fitness function);
TC (termination condition)
Output: the best particle found

1: initialize the algorithm parameters ⊳ [VU], VLI
2: initialize a swarm of N particles ⊳ EG, VI, FF
3: while ¬𝑇𝐶 do ⊳ TC
4: for 𝑖 = 1 → 𝑁 do
5: update the velocity of particle𝑖 ⊳ VU, VC
6: update the position of particle𝑖 ⊳ PU, MB
7: evaluate the fitness of particle𝑖 ⊳ FF
8: if the fitness of particle𝑖 is better than its best so far then
9: update the historical best of particle𝑖
10: end if
11: end for
12: update the algorithm parameters ⊳ [VU], WA, VLU
13: end while
14: return the best particle

In the implementation of the template (Fig. 9 and listing 4), the
abstractions provided by the framework were applied as explained in
Section 3.2. Furthermore, the template reuses BaseEvolutionaryMeta-
heuristic (Section 3.5), so only the implementation of the evolution step
(Fig. 3) is required, as all other components of the algorithm are already
provided by the framework. The PSO evolution step is declared as a
trait that extends the BaseEvolutionaryMetaheuristic evolution step and
overrides the evolution method. The creation of the concrete instance
of the evolution strategy defined in the configuration parameters is
delegated to the companion object. Several instances have been im-
plemented, both sequential and parallel, which are described in more
detail in Section 4.6.

Similarly, the PSO algorithm is declared by extending the BaseEvo-
lutionaryMetaheuristic algorithm and adding the dependencies on traits
that are specific to PSO, which includes those required by the evolu-
tion step. These dependencies bring into the context of the algorithm
the definitions of the strategies needed to manage the PSO variants
described in Section 4.2. Since a detailed description of their implemen-
tations is not necessary for a general understanding of the proposal, it
is left out of the scope of this article. Interested readers are referred to
the source code in the companion repository [21].

The rest of the functionality required by the PSO template is imple-
mented by overriding the hook methods defined in the BaseEvolution-
aryMetaheuristic algorithm, which mainly includes:

1. Converting the initial Population created by the BaseEvolution-
aryMetaheuristic population generation method into a Swarm
and grouping or distributing it according to the configuration
parameters.

2. Initializing and updating algorithm and strategy-related param-
eters in the properties store, as well as evolution metrics not
included in the evolution state.

3. Detailed logging for debugging.

4.4. Particle and swarm

Some abstractions has been added to the framework, as part of the
PSO template implementation, to model particles and swarms. Particles
(Fig. 10) have been modeled as individuals (Fig. 1) with an identifier
that is used to assemble neighborhoods, a velocity, and a historical
best. The Particle class defines a move method with a parameter for the
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Table 4
PSO variants implemented as strategies in this paper. The notation used is explained in Table 3.
Strategy Instances Description

ElementGenerator Random 𝑥⃗ 0
𝑖 ∼ 𝑈 [𝑥⃗𝑚𝑖𝑛 , 𝑥⃗𝑚𝑎𝑥]

VelocityInitialization Zero 𝑣 0
𝑖 = 0⃗

Bounded 𝑣 0
𝑖 ∼ 𝑈 [𝑥⃗𝑚𝑖𝑛 , 𝑥⃗𝑚𝑎𝑥] × 𝑘 for a given 𝑘 ∈ [0, 1]

PositionUpdate Standard 2007 𝑥⃗ 𝑡+1
𝑖 = 𝑥⃗ 𝑡

𝑖 + 𝑣 𝑡+1
𝑖

VelocityUpdate Standard 2007 𝑣 𝑡+1
𝑖 = 𝑤𝑣 𝑡

𝑖 + 𝑐1𝑟1 𝑡𝑖(𝑝
𝑡
𝑖 − 𝑥⃗ 𝑡

𝑖 ) + 𝑐2𝑟2 𝑡𝑖(𝐼
𝑡
𝑖 − 𝑥⃗ 𝑡

𝑖 ) with 𝑟1 𝑡𝑖 , 𝑟2
𝑡
𝑖 ∼ 𝑈 [0, 1]

ConstrictionFactor 𝑣 𝑡+1
𝑖 = 𝜒(𝑣 𝑡

𝑖 + 𝑐1𝑟1 𝑡𝑖(𝑝
𝑡
𝑖 − 𝑥⃗ 𝑡

𝑖 ) + 𝑐2𝑟2 𝑡𝑖(𝐼
𝑡
𝑖 − 𝑥⃗ 𝑡

𝑖 )) with 𝑟1 𝑡𝑖 , 𝑟2
𝑡
𝑖 ∼ 𝑈 [0, 1]

CondensedConstrictionFactor 𝑣 𝑡+1
𝑖 = 𝜒(𝑣 𝑡

𝑖 + 𝑐𝑚𝑎𝑥(𝐼 𝑡
𝑖 − 𝑥⃗ 𝑡

𝑖 ))

MovementBound None movement is not restricted (i.e. let them fly)

Standard 2007 (𝑥⃗ 𝑡+1
𝑖 , 𝑣 𝑡+1

𝑖 ) =

⎧

⎪

⎨

⎪

⎩

(𝑥⃗𝑚𝑖𝑛 , 0⃗) if 𝑥⃗ 𝑡+1
𝑖 < 𝑥⃗𝑚𝑖𝑛

(𝑥⃗𝑚𝑎𝑥 , 0⃗) if 𝑥⃗ 𝑡+1
𝑖 > 𝑥⃗𝑚𝑎𝑥

(𝑥⃗ 𝑡+1
𝑖 , 𝑣 𝑡+1

𝑖 ) otherwise

VelocityClamping None velocity is not limited

Bounded 𝑣 𝑡+1
𝑖 =

⎧

⎪

⎨

⎪

⎩

−𝑣𝑚𝑎𝑥 if 𝑣 𝑡+1
𝑖 < −𝑣𝑚𝑎𝑥

𝑣𝑚𝑎𝑥 if 𝑣 𝑡+1
𝑖 > 𝑣𝑚𝑎𝑥

𝑣 𝑡+1
𝑖 otherwise

InertiaWeightAdjustment [112] None 𝑤 = 𝑐 for a given 𝑐
LinearDecreasingTime 𝑤𝑡 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) × ( 𝑇−𝑡

𝑇
)

LinearDecreasingGenerations 𝑤𝑡 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) × ( 𝐺−𝑔
𝐺

)
Random 𝑤𝑡 ∼ 𝑈 [0.5, 1)
ChaoticTime 𝑤𝑡 = 𝑤𝑚𝑖𝑛 × 𝑧 + (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) × ( 𝑇−𝑡

𝑇
) with 𝑧 = 4.0 × 𝑟 × (1 − 𝑟), 𝑟 ∼ 𝑈 [0, 1]

ChaoticGenerations 𝑤𝑡 = 𝑤𝑚𝑖𝑛 × 𝑧 + (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) × ( 𝐺−𝑔
𝐺

) with 𝑧 = 4.0 × 𝑟 × (1 − 𝑟), 𝑟 ∼ 𝑈 [0, 1]
ChaoticRandom 𝑤𝑡 = 0.5 × (𝑧 + 𝑟) with 𝑧 = 4.0 × 𝑟 × (1 − 𝑟), 𝑟 ∼ 𝑈 [0, 1]

VelocityLimitInitialization None 𝑣𝑚𝑎𝑥 is not set
Constant 𝑣𝑚𝑎𝑥 = 𝑐 for a given 𝑐
Factor 𝑣𝑚𝑎𝑥 = 0.5 × (𝑥⃗𝑚𝑎𝑥 − 𝑥⃗𝑚𝑖𝑛) × 𝑘 for a given 𝑘 ∈ (0, 1]

VelocityLimitUpdate None 𝑣𝑚𝑎𝑥 if set is kept constant
LVDM [113] (𝑤⃗ 𝑡+1 , 𝑣 𝑡+1

𝑚𝑎𝑥) = (𝛼𝑤⃗ 𝑡 , 𝛽𝑣 𝑡
𝑚𝑎𝑥) if 𝑓 (𝑔 𝑡) ≥ 𝑓 (𝑔 𝑡−ℎ) for given ℎ and 𝛼, 𝛽 ∈ (0, 1)
Fig. 9. Class diagram of the implementation of the PSO template.
13
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Table 5
Topologies supported by the framework out of the box. The topologies in the second
row are supported through JGrapT [117]. With few exceptions, the topologies are
parameterizable, e.g. for the Ring topology, the generalized version with 𝑘 neighbors
is provided.
Complete (aka GBest, Star, Global, All-to-All), Directed Ring, Global (alias for
Complete, optimized to be more efficient), KClusters, Pyramid, Random, Regular
(with small-world shortcut [100]), Regular Random, Ring (aka LBest), Square (aka
VonNewman)

Directed Scale Free, Generalized Petersen, 𝐺𝑛𝑚 Random, 𝐺𝑛𝑝 Random Bipartite,
Grid, HyperCube, Kleinberg’s Small World, Linear, Planted Partition, Scale-Free
Network, Star (one particle in the center connected to all the others), Wheel,
Windmill

object ParticleSwarmOptimization {
// aliases for types in BaseEvolutionaryMetaheuristic
type State = BaseEvolutionaryMetaheuristic.State
type EvolutionStep =

BaseEvolutionaryMetaheuristic.EvolutionStep

// the evolution step reuses the base evolution and
// uses an strategy specific to PSO
trait Evolution
extends
BaseEvolutionaryMetaheuristic.PopulationEvolution {

self: AlgorithmStep
with PropertiesStorage
with ElementEvaluator
// factory of functions for moving particles
with SwarmMovementStep =>

override
def evolution:RequiredStrategy[EvolutionStep] =
Evolution()

}

// the companion object extends a custom strategy
// factory and overrides the factory method to
// instantiate the evolution step
object Evolution
extends
EvolutionStrategyFactory[EvolutionStep] {
override
def apply()(implicit config:ConfigurationParameters ,

ps:PropertiesStore ,
ff:FitnessFunction ,
fm:ParticleMovementFunctionFactory

):Strategy[EvolutionStep] = {...}
}

// the template extends the base algorithm with PSO
// strategies and overrides the hook methods
case class Algorithm(

implicit override val config:ConfigurationParameters)
extends
BaseEvolutionaryMetaheuristic.Algorithm
// strategies to initialize and update PSO parameters
with ParameterInitializationAndUpdate
with Evolution
// strategies to initialize velocities
with VelocityInitialization
with SwarmMovementStep {

// overridden hook methods of type EvolutionStep
// i.e. a State is received as input and an updated
// State is returned as output
override
def onPopulationGeneration:State = { State => ... }
override
def onEvolutionIterationStart:State = { State => ... }
override
def onEvolutionIterationEnd:State = { State => ... }
override
def onTerminationCondition:State = { State => ... }

}
}

Listing 4: Implementation of the PSO template.
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GBest {
topology {

self = false
shape.name = Global
neighborhood_influence.name = Best

}
}

CustomRing {
topology {

self = true
shape {

name = Custom
neighborhoods {

0: [1, 2, 4],
1: [2, 3, 0],
2: [3, 4, 1],
3: [4, 0, 2],
4: [0, 1, 3]

}
}
neighborhood_influence.name = wdFIPS

}
}

Listing 5: Examples of configurations of social topologies supported
by the framework.

concrete movement function to use and overrides some of the meth-
ods inherited from Individual. Furthermore, in the Particle companion
object, the velocity initialization strategy to be used when creating
particles can be specified via a parameter.

With regard to swarms, they have been modeled as populations
extended with operations to add support to some specific swarm be-
haviors (Fig. 11) and to neighborhoods (Section 4.5). Like Population,
swarms can be in one of two states, grouped – its initial state – or
distributed, which are implemented by extending the corresponding
population state (Section 3.4) with swarm operations, and overriding
them differently in the subclasses. The implementation of swarm states
and parallel models is explained in Section 4.6.

4.5. Topology and neighborhood influence

The PSO template includes a generic representation for social topolo-
gies. It assumes that particles have unique identifiers, and represents a
social topology as a tuple (𝑠𝑒𝑙𝑓 , 𝑠ℎ𝑎𝑝𝑒, 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒), where:

• self, is a logic value to indicate whether particles should be
considered to be part of their neighborhoods.

• shape, is the topology shape that configures the swarm neighbor-
hoods, represented as a DAG (Directed Acyclic Graph) of particle
identifiers [101]. An edge 𝑝𝑖 → 𝑝𝑗 in the graph indicates that
𝑝𝑖 is a neighbor of 𝑝𝑗 and could share information with it. The
topology shapes included out of the box are listed in Table 5. The
framework also supports the configuration of custom topologies
and exporting/importing topologies to/from GraphViz .𝑑𝑜𝑡 files.

• influence, is a function 𝑓 ∶ 𝑖 → 𝐼𝑖 that maps particle identifiers
to the neighborhood influences used in velocity update equations
(Table 4). The framework also provides abstractions to represent
generic models of influence (Fig. 12) that are instantiated through
the implementation of different strategies. To the best of our
knowledge, this is a unique feature not available in other PSO
templates [4,5,93,99,115,116].

An example of the configurations of two social topologies is shown
in listing 5: (i) the GBest topology; and (ii) a custom Ring topology
with a FIPS weighted by distance model of influence for a swarm of
size 𝑁=5, in which the neighborhood of a particle 𝑝𝑖 is defined as
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑝𝑖) = {𝑝𝑖, 𝑝𝑖+1𝑚𝑜𝑑 𝑁, 𝑝𝑖+2𝑚𝑜𝑑 𝑁, 𝑝𝑖−1𝑚𝑜𝑑 𝑁}.

The instantiation of models of influence is supported by two opera-
tions defined in the NeighborhoodOps trait (Fig. 12):
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Fig. 10. Class diagram of the Particle class.
Fig. 11. Class diagram of the Swarm type.
1. neighborhoodInfluence, a generic function builder to instantiate
neighborhood influence functions, i.e. the functions to get the
neighborhood influence used in velocity update equations (Ta-
ble 4). The concrete function to instantiate is configured through
the following arguments: (i) self and topology, the components
defined in the social topology configuration; (ii) collect and
reduce, the strategies used to collect the contribution of each
particle to the neighborhood, and to calculate the influence the
neighborhood has on a particle from the contributions of the
particle and its neighbors. Currently, the framework provides
implementations of these strategies to support all the models
described in [103], i.e. best, FIPS, wFIPS, wdFIPS, Self and wSelf.

2. contribution, a template abstract method called from the im-
plementation of neighborhoodInfluence to collect the information
shared by each particle with its neighborhood using the collect
strategy passed as argument.

The neighborhoodInfluence function builder is called on every swarm
ove to obtain the neighborhood influence function to use in the
pdating of the velocity of particles. This will allow to add support
or dynamic topologies in future releases, although only static topolo-
ies are supported for now. The neighborhoodInfluence implementation
pplies the collect and reduce strategies following the collect-reduce
pproach shown in algorithm 6. Currently, only the distribution of the
ollect strategy is supported in the parallel versions of the algorithm.
Note that in this approach, social topologies and swarms are treated

s independent entities, only related by the particle identifiers. The
ain reasons to have adopted this decision are:

• It is not necessary to store information about the topology either
in the particles or in the swarm itself, which is very convenient
when the topology has to be changed (e.g. when using dynamic
topologies or swarms of varying size), especially if the swarm is
distributed.

• The topology can be stored in the properties store and accessed
only by the strategies requiring it, instead of being passed through
15

all the strategies as part of the evolution state (Section 3.3).
Algorithm 6 Pseudo-code of neighborhoodInfluence.
Inputs: self; topology; collect(); reduce()
Output: the neighborhood influence function
⊳ the contribution of each particle is collected

1: 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 = contribution(collect)
2: for each 𝑖𝑑 in topology do

⊳ neighbors are the predecessors in the DAG
3: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = topology.predecessors(𝑖𝑑)
4: if self then

⊳ the particle 𝑖𝑑 is included in the neighborhood
5: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 𝑖𝑑 ++ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
6: else
7: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
8: end if

⊳ the influence the neighborhood has on the particle is
calculated and stored in a map indexed by 𝑖𝑑

9: 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒[𝑖𝑑] = reduce(contrib(𝑖𝑑), contrib(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑))
10: end for

⊳ returns the function that maps particle 𝑖𝑑𝑠 to neighborhood
influences

11: return 𝑖𝑑 ⇒ 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒[𝑖𝑑]

• Topologies are implemented in an loosely-coupled package that
can be easily reused for other purposes (e.g. to model the migra-
tion topology of cooperative islands).

• Relations between swarms and topologies are not restricted to be
only one-to-one.

4.6. Sequential and parallel PSO instances

To support the instantiation of different sequential and parallel PSO
instances from the PSO template, the same general approach explained
in Section 3.4 was applied to the PSO evolution step. Different in-

stances are supported in its companion object through pattern matching
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Fig. 12. Class diagram of the generic types and functions to represent models of influence.
Fig. 13. Sequence diagram of the sequential and parallel implementations of the PSO evolution step.
n configuration parameters, like in the example of Fig. 7. Fig. 13
shows how this was applied to implement a synchronous sequential
version and various parallel models: (i) two variants of the master–
worker model, one that keeps the swarm distributed between iterations
and distributes the updating and evaluation of particles, and the most
common that distributes only the evaluations; and (ii) an island model.

As it can be seen, with the exception of the island model, all
the implementations are very similar. They only differ on the swarm
state they expect to match and whether they change the swarm state.
This was achieved using with Swarm the same approach used with
Population (Fig. 8), as it is shown in Fig. 14. The states of a swarm
are represented by classes that extend their Population counterparts: (i)
a grouped swarm that stores the particles using a Scala collection; and
(2) a distributed swarm that uses a Spark RDD. Fig. 14 also shows
an example of how the move operation defined in SwarmOps (Fig. 11)
was implemented by delegating the movement to the particles, using
the collection map method in the grouped swarm and the RDD map
16
in the distributed swarm. Note that the actual function used to move
the particles is obtained from a factory that uses the current state of
the swarm to update on the fly the neighborhood influence used in
the velocity update equations and the adaptive strategies involved in
moving the swarm, e.g. the inertial weight adjustment strategies or
LVDM (Table 4). Dynamic topologies will be supported in the same way
in future releases.

With regard to the island model, a non-cooperative version with
support for both homogeneous and heterogeneous islands has been
implemented. The approach followed was to define an abstract oper-
ation evolveIslands in the trait SwarmIslandOps (Fig. 15) that is mixed
in with DistributedSwarm and overridden by its subclasses. The op-
eration evolveIslands regards subswarms as islands that are evolved
independently from the current state, possibly using different evolution
strategies, until a common termination condition is met. It has the
following parameters: (i) the components of the global evolution state
needed to initialize the local states from which islands will evolve;
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Fig. 14. Class diagram of the implementation of the move operation in the grouped and distributed states of a Swarm.
Fig. 15. Class diagram of the implementation of the evolveIslands operation.
(ii) a factory to get the concrete evolution step of each island by ID;
and (iii) a termination condition, common to all islands. Note that
the dependencies on the concrete types of the members of the global
evolution state, prevent evolveIslands from being generally applicable.
It is still a very early implementation that will serve as a basis for the
implementation of a general version, with support also for cooperation
between islands, which is planned for a future release of the framework.

Fig. 15 also shows how evolveIslands was overridden in SparkDis-
tributedSwarm. Basically, each RDD partition is regarded as an island
with unique ID. For each island, the generic evolveUntil function (Fig. 2)
is used to evolve an initial state, which contains the island itself and
the values passed from the global state, using the evolution step that
corresponds to the island ID until the termination condition is fulfilled.
Finally, the evolved island is returned as output and the number of
evaluations of the fitness function updated in the global evolution state
– not shown in the figure –.

An example of how PSO instances with homogeneous and heteroge-
neous islands would be defined in a configuration file is shown in listing
6. The configuration has three parameters: (i) the maximum number
of iterations to evolve the islands locally before returning the control
to the global evolution; (ii) a collection of island configurations and
their amounts; and (iii) a boolean parameter to configure if the amounts
should be regarded as quantities or percentages. The actual number of
islands of each configuration is calculated by the framework depending
on the number of subswarms, i.e. partitions, available at runtime. In
the example, all the subswarms will use the same configuration in the
homogeneous instance, whereas in the heterogeneous one half of the
subswarms will use one configuration and one half the other. Note that
a sequential PSO instance is also configured in the example of listing
6 using exactly the same configuration, i.e. topology and strategies,
17
as for the islands. In fact, the evolution steps used in the islands are
instantiated using the same Sequential constructor as for the sequential
instance (Fig. 13). The same approach will be used to support using
other metaheuristics as island evolution steps in future releases.

5. Experimental evaluation

The results of the experimental evaluation are presented in this
section. The experiments are divided into two groups: a first group
focused on validating the approach, and a second group focused on
profiling the parallel implementations to remove inefficiencies and im-
prove their performance. Due to the space limitations, only a summary
of the results is reported here. Configuration files, logs and detailed
analysis of the results are available in a companion repository [118].

5.1. Validation of the approach

In order to validate the genericity and correctness of the approach,
the same experiments as in [103] were reproduced using the sequential
version of the PSO algorithm implemented in the framework. Only
experiments with symmetrical initialization were considered, and a
MacBook Pro M1 Pro with 10-core CPU and 16 GB RAM was used
to carry out the experiments. The same methodology described in
that paper was followed to evaluate the performance, iterations to
criteria and proportion reaching criteria of six models of neighborhood
influence (i.e. Best, FIPS, wFIPS, wdFIPS, Self, and wSelf) combined
with five topologies (i.e. Square, Ring, 4-clusters, Pyramid and All),
all of them except 4-clusters are used in two different configurations,
with and without including the target particle in the neighborhood.
The results of the experiment were obtained by combining the stan-
dardized individual results of five benchmark functions (i.e. Sphere,
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# define some topologies (details omitted)
topologies {

0: topology { ... },
1: topology { ... }

}
# define some strategies (details omitted)
strategies {

0: strategies { ... },
1: strategies { ... }

}
# define some configurations reusing previous definitions
configs {

0: ${topologies.0} ${strategies.0},
1: ${topologies.1} ${strategies.1},

}
# a sequential PSO
algorithm {

name = ParticleSwarm
implementation.name = Sequential
implementation.conf { ${configs.0} }

}
# a PSO with homogeneous islands
algorithm {

name = ParticleSwarm
implementation {

name = Islands
local_iterations = 10
conf.as_percentage = true
conf.islands = [

{ amount = 100, conf = ${configs.0} }
]

}
}
# a PSO with heterogeneous islands
algorithm {

name = ParticleSwarm
implementation {

name = Islands
local_iterations = 10
conf.as_percentage = true
conf.islands = [

{ amount = 50, conf = ${configs.0} }
{ amount = 50, conf = ${configs.1} }

]
}

}

isting 6: Example of the configuration of PSO instances. Only the
arts that are relevant for the example are shown.

astrigin, Griewank – in two sizes –, Rosenbrock and Schaffer f6),
ach of which was run 40 times for each combination. When available,
he functions in our own Scala implementation of the Large Scale
lobal Optimization (LGSO) test suite [98], which is integrated in the
ramework, were used. For the rest, ad hoc Scala implementations were
dded to the framework. It is worth noting that all the experiments
ere described and executed from a single configuration written in the
eclarative format provided by the framework, which demonstrates its
xpressiveness.
The first series of experiments were performed using the same pa-

ameters for the test functions reported in [103], which are reproduced
n Table 6. For the PSO parameters, since the values used are not
eported in [103], we have used the values shown in Table 7. Although
ll the experiments run successfully, demonstrating the genericity of the
roposal, the results were quite different to those reported in [103] for
ll the combinations evaluated.
The standardized results for the performance, i.e. best function re-

ult after 1,000 iterations, are shown in Table 8. In the table, the names
f the configurations without the target particle are prefixed with an
‘U’’, e.g. USquare, URing. The fully connected topologies, All and UAll,
ot the best or near best results in all models except for the Best model,
or which they got the worst result. The Best model obtained results
lightly below the mean for the rest of topologies. The FIPS variants
btained results far above the mean in most combinations, with the
xception of the fully connected topologies. The Self variants, where
18
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Table 6
Test functions used in the validation experiments and their parameters. In the Search
Space and VTR (Value To Reach) columns, values on the left are from the first series
of experiments and values on the right from the second.
Function Dimension Search Space VTR

Sphere 30 ±100 ±5.12 0.01 0.05
Rastrigin 30 ±5.12 ±5.12 100 0.05
Griewank 10, 30 ±600 ±600 0.05 0.05
Rosenbrock 30 ±30 ±10 100 0.05
Schaffer f6 2 ±100 ±100 0.00001 0.05

the previous best of the particle is weighted by half, show the most
homogeneous behavior, obtaining results well below the mean in all
the topologies evaluated.

The proportion of experiments reaching criteria, i.e. the proportion
of runs that found the VTR (Value To Reach) within 10,000 iterations,
is shown in Table 9. In general, the ratios of success are well below
those reported in [103]. The best results were obtained by the wdFIPS
model with a 99.6% ratio for the fully connected topologies, and the
other FIPS variants with ratios higher than 91% for the UAll topology.
But the ratios of the FIPS variants with the other topologies are lower
than 29%. Except for the fully connected topologies, the Self variants
performed best in all other cases, with ratios above 80% for the URing
topology. The worst results were obtained by the Best model, being in
all cases below 3.8%.

In view of the differences in results, and given that the values
of the PSO parameters are not reported in [103] or whether any
strategies were used to improve the performance of the algorithm, we
decided to conduct a second series of experiments, this time using
the test function parameters from [119] which are shown in Table 6,
and the PSO parameters and strategies shown in Table 7. The results
are shown in Tables 10 and 11. Reducing the search space of some
unctions, randomly initializing velocities, and limiting the velocities
nd positions of the particles, improved the performance of the Best and
IPS variants compared to the first series of experiments, except for the
ully connected topologies which are slightly worse in almost all cases.
he Self variants show the opposite behavior, performing much worse
han in the first series of experiments in all the topologies. Similar
ehavior is observed for the ratio of success, where Best improved in
ll cases and the FIPS variants in all but the fully connected topologies.
he Self variants obtained worse ratios, falling by about 30%–40% in
lmost all cases.
Although the results of the second series of experiments show more

imilarities with those of [103], they are worse in general. To further
alidate our approach and confirm that the differences might be due to
ifferences in the PSO parameters and not to bugs in our code or to an
ncorrect analysis of the experimental data, we performed a third set
f experiments to compare the results of our proposal with those of the
SO implementation of ECJ, a well-known and mature MOF.
The first series of experiments was repeated with the combinations

upported by ECJ, i.e. the Best model of influence with the Ring – with
egrees 1 and 4 –, Random – with degree 4 – and All topologies, all
f them in two configurations, with and without the target particle in
he neighborhood, and the same benchmark functions, except Schaffer
6. Table 12 shows the comparison of the performance results using a
wo-sample Kolmogorov–Smirnov test. The null hypothesis is rejected
t significance level 𝛼 = 0.043 in only one of the 40 combinations
ested. The ratio of success results were compared in the same way,
ith the null hypothesis being rejected at the same level of significance
n only two combinations. The similarity between the results of our
pproach and ECJ can also be seen in Table 13, which shows the results
f the standardized performance and ratio of success for the topologies
valuated.
The validation by comparison with ECJ was completed with a

econd series of experiments using the Standard 2007 velocity update
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Table 7
Parameters and strategies used in the validation experiments. The Constriction Factor variant of the Velocity Update equation
was used with the parameters proposed in [111]. In the framework, the expanded form of the equation is used for the Self
and wSelf models of influence and the condensed form for the rest.

Experiment 1 Experiment 2

Velocity Update Constriction Factor (𝜒 = 0.72984, 𝑐1 = 𝑐2 = 2.05)
Condensed Constriction Factor (𝜒 = 0.72984, 𝑐𝑚𝑎𝑥 = 4.1)

Velocity Initialization Zero Bounded (𝑘: 0.5)
Velocity Clamping None Bounded
Velocity Limit Initialization None Factor (𝑘: 0.05)
Movement Bound None Standard 2007
Table 8
Standardized performance of the first series of experiments. Negative values are below the mean, the more negative the better, while positive values are above. In bold are the
best results for each model of neighborhood influence.

Square Ring 4-Clusters Pyramid All USquare URing UPyramid UAll

Best −0.057 −0.110 −0.017 −0.049 1.057 −0.087 −0.149 −0.148 0.415
FIPS 0.683 0.971 0.050 −0.130 −0.657 0.955 1.017 0.479 −0.637
wFIPS 0.808 0.988 0.297 0.112 −0.674 0.976 1.021 0.620 −0.666
wdFIPS 0.948 0.965 0.755 0.478 −0.719 0.951 0.962 0.534 −0.723
Self −0.637 −0.610 −0.611 −0.676 −0.656 −0.609 −0.555 −0.623 −0.663
wSelf −0.638 −0.590 −0.639 −0.619 −0.643 −0.594 −0.569 −0.610 −0.675
Table 9
Proportion of the first series of experiments reaching the VTR within 10,000 iterations. In bold are the best results for each model of neighborhood influence.

Square Ring 4-Clusters Pyramid All USquare URing UPyramid UAll

Best 0.017 0.021 0.029 0.008 0.008 0.038 0.029 0.008 0.017
FIPS 0.167 0.167 0.217 0.283 0.663 0.167 0.167 0.167 0.917
wFIPS 0.167 0.167 0.167 0.167 0.625 0.167 0.167 0.167 0.917
wdFIPS 0.167 0.167 0.167 0.167 0.996 0.167 0.167 0.167 0.996
Self 0.417 0.546 0.479 0.475 0.375 0.571 0.854 0.446 0.383
wSelf 0.300 0.458 0.379 0.400 0.296 0.633 0.804 0.388 0.354
Table 10
Standardized performance of the second series of experiments.

Square Ring 4-Clusters Pyramid All USquare URing UPyramid UAll

Best −0.302 −0.341 −0.196 −0.302 1.586 −0.328 −0.372 −0.321 0.517
FIPS −0.196 0.184 −0.172 −0.221 −0.499 −0.210 0.014 −0.232 −0.628
wFIPS −0.156 0.234 −0.094 −0.184 −0.474 −0.256 0.089 −0.247 −0.585
wdFIPS −0.205 0.003 −0.144 −0.214 −0.746 −0.246 0.018 −0.258 −0.711
Self 0.430 0.193 0.635 0.581 0.550 −0.355 −0.241 −0.114 0.357
wSelf 0.740 0.327 1.219 0.857 0.769 −0.276 −0.186 −0.013 0.720
Table 11
Proportion of the second series of experiments reaching the VTR within 10,000 iterations.

Square Ring 4-Clusters Pyramid All USquare URing UPyramid UAll

Best 0.229 0.275 0.179 0.208 0.167 0.258 0.304 0.242 0.167
FIPS 0.333 0.333 0.333 0.333 0.496 0.333 0.333 0.333 0.663
wFIPS 0.333 0.333 0.333 0.333 0.413 0.333 0.333 0.333 0.663
wdFIPS 0.333 0.333 0.333 0.333 0.667 0.333 0.333 0.333 0.663
Self 0.254 0.300 0.246 0.233 0.192 0.383 0.663 0.296 0.208
wSelf 0.208 0.263 0.179 0.196 0.179 0.313 0.642 0.238 0.200
Table 12
Statistics and p-values of the two-sample Kolmogorov–Smirnov test used to compare the performance results with those of ECJ. In bold, the configurations where the null hypotheses
is rejected at significance level 𝛼 = 0.043.

Ring Ring4 All Rand4 URing URing4 UAll URand4
Sphere D-stat 0.10 0.18 0.23 0.13 0.15 0.15 0.13 0.10

p-value 0.983 0.531 0.231 0.893 0.724 0.724 0.893 0.983

Rastrigin D-stat 0.20 0.18 0.18 0.15 0.18 0.13 0.33 0.15
p-value 0.361 0.531 0.531 0.724 0.531 0.893 0.022 0.724

Griewank10 D-stat 0.10 0.15 0.15 0.25 0.15 0.20 0.18 0.13
p-value 0.983 0.724 0.724 0.139 0.724 0.361 0.531 0.893

Griewank30 D-stat 0.10 0.30 0.18 0.25 0.25 0.20 0.25 0.10
p-value 0.983 0.043 0.531 0.139 0.139 0.361 0.139 0.983

Rosenbrock D-stat 0.18 0.20 0.15 0.30 0.20 0.30 0.15 0.15
p-value 0.531 0.361 0.723 0.043 0.361 0.043 0.724 0.724
19



Swarm and Evolutionary Computation 85 (2024) 101483X.C. Pardo et al.

p
s
r
p
a
r
i
j

w
t
p
s

Table 13
Standardized performance and ratio of success of our approach (PSO[T] ) and ECJ for the topologies evaluated. When available, results from [103] are also provided (Mendes
row). Note that these are the only ones that include Schaffer f6.

Ring Ring4 All Rand4 URing URing4 UAll URand4
PSO[T] 0.043 −0.449 −0.424 −0.208 0.529 0.171 −0.025 0.452
ECJ −0.002 −0.316 −0.481 −0.276 0.479 0.086 −0.023 0.444
Mendes −0.307 −0.317 −0.316 −0.330

PSO[T] 0.045 0.015 0.04 0.0 0.02 0.02 0.015 0.0
ECJ 0.04 0.05 0.03 0.005 0.01 0.015 0.005 0.0
Mendes 0.913 0.754 0.908 0.754
Table 14
Configuration of the PSO instances used in the performance experiments. For the strategies not listed None was
used.
Strategy Configuration

Velocity Initialization Zero
Velocity Update Standard 2007
Velocity Limit Initialization Constant
Velocity Limit Update LVDM
Termination condition number of generations or objective value or swarm stagnation
)
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equation and the ECJ default PSO parameters (i.e. 𝑤 = 0.7, 𝑐1 = 𝑐2 =
0.4). The null hypothesis was rejected in 3 of the 80 combinations tested
at significance level 𝛼 = 0.043, showing once again the similarity of the
results. It is worth noting that thanks to the experiments performed in
this comparison, several bugs were detected in the PSO implementation
of ECJ [120] and a pull request with the fix was contributed to the ECJ
project.

5.2. Performance of the parallel implementations

A second group of experiments was conducted focusing on profiling
the parallel implementations to detect and eliminate inefficiencies and
improve their performance. The main goal of these experiments was to
minimize the number of Spark jobs launched in each iteration of the
algorithm, thus avoiding the overhead of unnecessary jobs. The PSO
instances used in the experiments were configured with the strategies
shown in Table 14. Only information relevant to the discussion is
shown in the table. The configuration was selected to test the worst-
case scenario, i.e. the one requiring the launch of the largest number
of Spark jobs per iteration.

The first series of experiments were focused on analyzing the run-
time behavior of each of the three parallel implementations provided
by the framework (Section 4.6), and were carried out in the same com-
puter of Section 5.1, using a Spark cluster deployed on the single-node
standalone Kubernetes cluster included as part of Docker Desktop. The
cluster was configured with 6 CPUs, 8 GB RAM, and 1 GB of swap space,
and the official Apache Spark image (apache/spark:latest, v3.4.1
pulled from Docker Hub, and Docker Desktop v4.21.1 (engine: 24.0.2)
with Kubernetes v1.27.2 were used.

The logical flow of an iteration, obtained from the analysis of the
runtime behavior, is shown in Figs. 16 to 18 for each of the parallel im-
lementations. Spark jobs are shown as dotted boxes in the figures. The
implest case is the Master–Worker implementation in Fig. 16, which
equires launching only one Spark job per iteration to distribute the
articles using a Spark RDD, evaluate them via a map transformation,
nd collect them again. In this version of the Master–Worker model, the
est of the iteration logic is executed in the driver (i.e. the main process
n Spark terminology) and does not require launching any other Spark
ob.
An alternative implementation of the Master–Worker parallel model,

hich keeps the swarm distributed between iterations and distributes
he execution of part of the iteration logic to Spark executors (i.e. worker
rocesses in Spark terminology), is shown in Fig. 17. In this variant,
even Spark jobs are launched per iteration:
20
• When an objective value is configured in the termination condi-
tion, a job is launched by a min action to get the best solution
found in the last iteration and check if the objective value was
reached.

• To log the state of the evolution at the default logging level, two
jobs are launched by min actions to get the best solution found
in the last iteration and the historical best solution found so far.
The number of jobs launched could vary depending on the logging
level configured.

• To gather the particle contribution to the neighborhood influence
(Section 4.5), a job is launched by a collect action.

• To update the state and parameters at the end of the iteration,
three jobs are launched by min and count actions. They basically
get the best solution and swarm size, and update the number of
evaluations of the objective function performed and the informa-
tion stored by the LDVM strategy and the stagnation detection
condition. The number of jobs launched depends on the strategies
and conditions configured. Note that the move and evaluation of
the swarm is performed by two map transformations in the first
job launched.

The logical flow of the island-based parallel implementation is
hown in Fig. 18. In this implementation, every partition of the swarm
DD represents an island with its own configuration. With all the
slands configured with the configuration in Table 14, the number of
obs launched per iteration is 6+𝑁 , being 𝑁 the number of islands. The
ain differences with the Master–Worker implementation in Fig. 17 are
he following:

• The evolution of islands for a configured number of iterations,
which includes updating the neighborhood influence and moving
and evaluating the island, is executed as part of the same job
launched by a min action.

• A job per island launched by a min action is required to update
the information stored by the LDVM strategy. The total number
of jobs launched depends on the configuration of each island.

As it can be seen, most of the jobs are launched to access swarm
roperties that remain unchanged until the iteration ends and the
warm is updated, like the best solution or the swarm size. Although
park RDDs are immutable, and executing actions like min or count
everal times will yield the same result each time, Spark does not
mplement an optimization and launches a job on each action call. In
he parallel implementations of Figs. 17 and 18, the number oj jobs was
educed to two per iteration by implementing two optimizations in the
ramework:
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Fig. 16. Logical flow of an iteration of the Master–Worker implementation that distributes only the evaluation of particles.
Fig. 17. Logical flow of an iteration of the Master–Worker implementation that keeps the swarm distributed between iterations and executes part of the iteration logic on Spark
executors.
Fig. 18. Logical flow of an iteration of the island-based implementation.
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• A RDD wrapper with caching was implemented to store the
distributed swarms. The first time an action is called, a job is
launched and the result is stored and returned on subsequent calls
without launching additional jobs.

• Some properties like, for example, the historical best solution,
which can be calculated from other properties, are updated and
stored in the properties storage (Section 3.3) at the end of each
iteration, instead of being obtained by calling an action.

To evaluate the impact of these optimizations, a second series of
xperiments was conducted to compare the time per iteration of the
ptimized and non-optimized versions of the parallel implementations.
he experiments were run on Spark clusters (Spark v3.2.4, Hadoop
ith YARN v2.10.2) dynamically deployed with BDEv [121] (v3.8) on
partition of our compute cluster Pluton [122], which groups 15 nodes
owered by two octa-core Intel Xeon E5-2660 CPUs with 64 GB of RAM
21

nd connected by a 1GbE network. t
The parameters and objective function shown in Table 15 were
sed in the experiments. They were chosen to evaluate the impact
f optimization on LSGO problems while keeping the computation-to-
verhead ratio of Spark jobs as low as possible. The reason is that our
ptimization is focused on reducing the number of jobs per iteration, so
ncreasing the computation performed by Spark jobs will increase the
xecution time by the same ratio in both optimized and non-optimized
ersions, which is of no value for their comparison. Using the lowest
omputation-to-overhead ratio allows us to estimate an upper bound
n the expected improvement. All parallel versions were run using
ll available vCores (threads) on eight worker nodes. In addition, the
sland-based versions were also run on four worker nodes to get a first
nsight into the scalability of the optimized version. The population
s divided into a number of partitions equal to the total number of
Cores available, so that each Spark job schedules as many tasks as

here are vCores available. Furthermore, the partitions are configured
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Fig. 19. Distribution of times per iteration of the optimized and non-optimized versions of the parallel implementations. Non-optimized versions are marked with an asterisk.
Outliers correspond to the initial iterations that, in Spark, are the most time consuming [18].
Table 15
Parameters used to evaluate the time per iteration of the parallel implementations.
Parameter Master–Worker Islands

Worker nodes (total vCores) 8(256) 4(128) 8(256)
RDD partitions/tasks per job 256 128 256
Population (particles per partition) 256(1) 640(5) 1280(5)
Island local iterations n/a 1 1

Objective function Sphere (dim=1000, search space=±100, VTR=0.01)
Number of generations 21 (initial plus 20 iterations)
Table 16
Average (avg) and standard deviation (std) of the times per iteration of the non-optimized and optimized versions of the parallel
implementations, and percentage of improvement of the optimized versions. MWeo is the Master–Worker variant of Fig. 16 (eo=evaluation
only), and MWme is the Master–Worker variant of Fig. 17 (me=move&evaluation).
Implementation #partitions avg(std) non-opt. avg(std) opt. %improvement

MWeo 256 0.2057(0.040) 0.2048(0.027) 0.43%
MWme 256 8.2909(0.235) 2.6319(0.105) 68.26%
Islands 128 40.5012(0.712) 0.7746(0.064) 98.09%

256 154.3621(2.654) 1.3656(0.103) 99.12%
to have one particle per partition in the Master–Worker versions and
five particles per partition in the island-based versions for the reason
explained above.

For each configuration, five independent runs of 20 iterations each
were performed, for a total of 100 iterations per configuration. Table 16
nd Fig. 19 show the average, standard deviation, and box plots of the
istribution of times per iteration of the optimized and non-optimized
arallel implementations, as well as the percentage of improvement
f the optimized versions. The results in Table 16 show that for the
Master–Worker implementations, the optimized MWme version has
an average improvement of about 68% over the non-optimized one
because the number of jobs per iteration has been reduced from seven
to two, while the optimized MWeo version obtains similar results to
the non-optimized one because the number of jobs per iteration has
not been reduced despite the optimizations. As for the island-based
implementation, the optimized version outperforms the non-optimized
one by more than 98% in the two configurations tested. The reason for
such good results is that the number of jobs per iteration was reduced
from 134 and 262 to two, respectively. Furthermore, changing the
number of jobs per iteration from a linear dependence on the number
of islands to a constant also improves the scalability of the optimized
version, as shown in Fig. 19(b), which is of paramount importance for
LSGO problems. Doubling the number of islands increases the average
time per iteration by a factor of 3.8 in the non-optimized version, but
only by a factor of 1.7 in the optimized one. The reason is that while
the number of jobs per iteration is almost doubled in the non-optimized
22

version, it remains constant and equal to two in the optimized one, and
the time per iteration only increases due to the overhead of scheduling
more tasks per job.

To conclude this section, we would like to comment on the im-
plications of RDD caching when implementing parallel stochastic al-
gorithms, such as population-based metaheuristics, in Spark. RDD is
the basic abstraction used in Spark to represent partitioned, read-only,
fault-tolerant collections of records that are distributed across multiple
machines. RDDs are created from data in stable storage or by trans-
forming other RDDs (e.g., map, filter or join). These transformations are
pipelined to form a lineage that is computed lazily when an action is
called to obtain a result (e.g., count, min or collect ). Computing RDDs
from their lineages provides fault tolerance in case any RDD partition
is lost, but when lineages start to be huge and the same RDDs are
recomputed multiple times, as in iterative algorithms, performance can
degrade significantly. To avoid recomputing lineages again and again,
RDDs can be reused by caching them in memory. But special care
must be taken with lineage computation and caching when dealing
with stochastic algorithms. Repeatedly recomputing a transformation
that uses randomness is not deterministic and can lead to incorrect
results. In the parallel implementations of Figs. 17 and 18, determinism
between iterations is guaranteed by caching the swarm RDD (shown
as dark shaded rectangles in the figures) after the swarm has been
evaluated at each iteration. Subsequent action calls will reuse the
cached RDD without recomputing its lineage. Even with this approach,
the lineage could still be recomputed in the event of an executor failure
if the cached RDDs are lost. To overcome this problem, it is planned to
tolerate executor failures in future versions of the framework through

replication and checkpointing of RDDs.
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6. Conclusions

The current status of a framework to support the development
of distributed population-based metaheuristics and their application
to the global optimization of large-scale problems in Spark clusters
is presented in this paper. The framework provides a reduced set
of abstractions to represent the general structure of population-based
metaheuristics as templates from which different variants of algorithms
can be instantiated through implementation of strategies. Strategies can
be reused between metaheuristics, enforcing code reusability.

To validate the approach, a template for Particle Swarm Opti-
mization (PSO) is implemented as a proof of concept applying the
general abstractions provided by the framework. The template includes
strategies to instantiate different variants of the PSO algorithm that
can be run on Spark clusters selecting one of the distributed execution
models provided, and a generic representation for social topologies,
with a long list of configurable topologies supported out of the box
and also support for custom topologies. To the best of the authors’
knowledge there is no other implementation of a PSO template that
supports all these features together.

An initial experimental evaluation of the framework was conducted
using two groups of experiments: a first group focused on validating
the genericity and correctness of the approach by comparison of the
results with other proposals, and a second group focused on profiling
the distributed execution models implemented to remove inefficiencies
and improve their performance.

Due to the early stage of development, the framework has some
limitations, for example: (i) the set of abstractions defined focuses
on canonical distributed population-based metaheuristics, approaches
such as hybridization, cooperation, or decomposition are not yet sup-
ported; (ii) only single continuous LSGO problems are addressed, and
other types of large-scale problems (e.g. multi-objective, combinatorial)
are not yet supported; (iii) the number of strategies implemented
in the PSO template is still small, and only static topologies and
non-cooperative heterogeneous islands are currently supported.

As future work, we plan to evaluate the parallel performance of the
distributed execution models implemented and extend the framework
by adding support for cooperative islands, dynamic topologies and
other population-based metaheuristic templates.
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