
Computer Networks 242 (2024) 110259

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A privacy-preserving key transmission protocol to distribute QRNG keys
using zk-SNARKs
David Soler a,∗, Carlos Dafonte a, Manuel Fernández-Veiga b, Ana Fernández Vilas b, Francisco
J. Nóvoa a

a CITIC, Universidade da Coruña, A Coruña, Spain
b atlanTTic, Universidade de Vigo, Vigo, Spain

A R T I C L E I N F O

Keywords:
QRNG
Key transmission
Zk-SNARK
Communication protocol
Privacy-preserving authentication
NFC

A B S T R A C T

High-entropy random numbers are an essential part of cryptography, and Quantum Random Number Gener-
ators (QRNG) are an emergent technology that can provide high-quality keys for cryptographic algorithms
but unfortunately are currently difficult to access. Existing Entropy-as-a-Service solutions require users to trust
the central authority distributing the key material, which is not desirable in a high-privacy environment. In
this paper, we present a novel key transmission protocol that allows users to obtain cryptographic material
generated by a QRNG in such a way that the server is unable to identify which user is receiving each key. This is
achieved with the inclusion of Zero Knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARK),
a cryptographic primitive that allow users to prove knowledge of some value without needing to reveal it.
The security analysis of the protocol proves that it satisfies the properties of Anonymity, Unforgeability and
Confidentiality, as defined in this document. We also provide an implementation of the protocol demonstrating
its functionality and performance, using NFC as the transmission channel for the QRNG key.
1. Introduction

Random numbers have always been a staple in cryptography. Every
cryptographic algorithm, from symmetric encryption like AES to asym-
metric encryption like RSA, requires random numbers as key material
or initialisation parameters. The most common sources of randomness
for cryptographic purposes are Pseudo-Random Number Generators
(PRNG), which are deterministic processes that are initialised from a
specific seed. Furthermore, PRNGs can contain vulnerabilities in their
implementations [1,2] that make them vulnerable to attacks. Thus,
PRNGs usually produce low-entropy key material, which can compro-
mise the entire cryptographic scheme: no matter how theoretically
secure an encryption algorithm is, it could be easily cracked if an
attacker manages to obtain the secret key by exploiting its insecure gen-
eration. This is not only a theoretical issue: low-entropy key generation
has been used as an entrypoint to break confidentiality in well-known
cryptosystems [3–5].

Quantum Random Number Generators (QRNG) [6–8] are a different
type of Random Number Generators that make use of the intrinsically
unpredictable behaviour of quantum particles as their source of en-
tropy. Because of this, the key material they generate is of higher
quality than that generated by a PRNG, and its use could enhance
the security of current cryptographic algorithms. Unfortunately, the

∗ Corresponding author.
E-mail address: david.soler@udc.es (D. Soler).

technology is not yet fully developed and QRNGs are an expensive
asset, so these devices cannot be widely distributed and end users have
very limited access to them. In a context that may require a high level of
privacy, such as private communications, users will benefit from having
access to cryptographic keys with high entropy, such that it is harder for
attackers to guess the key they have used. Furthermore, providing easy
access to this key material could encourage users to take their privacy
seriously and improve their overall communication security.

The objective of this work is to provide a method for end users to
obtain higher-quality cryptographic material by defining a key trans-
mission protocol in which a server with access to the QRNG distributes
random keys in a secure manner to users that request them. As part of
the process, the server will require clients to authenticate themselves
before providing the QRNG key material.

However, existing Entropy-as-a-Service solutions [9] require users
to trust its key distribution server, since this server can trace which
keys it has provided to each user. A malicious or compromised server
could use the keys it has transmitted to decrypt users’ communications
or even impersonate them. Indeed, the requirement to trust the server
is a common concern in key distribution protocols. This work aims
to provide a solution to that problem, designing a key transmission
vailable online 21 February 2024
389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.comnet.2024.110259
Received 16 October 2023; Received in revised form 29 January 2024; Accepted 1
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

6 February 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:david.soler@udc.es
https://doi.org/10.1016/j.comnet.2024.110259
https://doi.org/10.1016/j.comnet.2024.110259
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110259&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Networks 242 (2024) 110259D. Soler et al.

r
t
S
t
d
p

protocol that seeks a balance between requiring authentication (i.e., re-
questing private information from users so that access is restricted to
those who can prove their identity) and protecting the users’ privacy.
This requirement is achieved with the inclusion of Zero Knowledge Suc-
cinct Non-interactive Arguments of Knowledge (zk-SNARK) as proofs
of authentication, a cryptographic primitive that allows users to prove
that they know some value without needing to reveal it, such that any
verifier could be convinced of that fact.

Our protocol is divided in two main phases: in the first phase, a
user performs authentication and in the second phase the user requests
the QRNG key by presenting a zk-SNARK proof. The inclusion of
zk-SNARKs allows us to clearly decouple the two phases, such that
presenting the zk-SNARK proof in the second phase does not reveal any
information (not even to the server) about the credentials used in the
first phase. Thus, users can prove that they have previously authenti-
cated themselves, in such a way that the server could not distinguish
the user from any other user that has ever performed authentication.
This prevents the key distribution server from associating a key to a
specific user, which would allow the server to decrypt any message
that uses this key. Our protocol also provides protection against replay
attacks: if an attacker tries to reuse another user’s zk-SNARK proof, the
server will detect the attempt and abort the execution.

Since random numbers are required in all widely used cryptographic
algorithms, the QRNG-generated values distributed by the protocol
could be useful in a wide range of applications. For example, scenarios
where users need to establish communication channels with a high
level of confidentiality could employ the random numbers as high-
quality key material for symmetric encryption. Another application is in
multifactor authentication: possession of a random number generated
by this protocol also proves that its owner has successfully performed
authentication, therefore a server could require users to execute this
protocol and present the QRNG-generated value to provide access.

In summary, our work presents the following contributions:

1. A Key Transmission Protocol for the distribution of QRNG keys.
The protocol requires two distinct interactions between clients
and server: one for authentication and another for receiving the
QRNG key.

2. A privacy-preserving method of authentication for the key Trans-
mission Protocol. The authentication is defined in such a way
that it is impossible for the server to track who is receiving each
key, thus preventing the server from spying on clients’ commu-
nications that use these keys. This allows users to execute the
protocol even if they do not trust the server generating the keys.
The protocol meets the security requirements of Anonymity,
Unforgeability and Confidentiality, as defined in this document.
We remark that the Unforgeability property also prevents replay
attacks, in which an attacker tries to present another user’s proof
as its own.

3. An implementation of the proposed Key Transmission Protocol.
The implementation simulates a real use case, in which the
server is located in some specific location users have to attend
to. Part of the communication is performed through NFC and
the key is stored in the users’ mobile phone. Two different
zk-SNARK libraries are employed for proof generation and val-
idation, and the server uses two QRNGs for key generation.
The time complexity of the protocol is estimated, measuring
the proof generation time for different parameters, the NFC
transmission time and the key generation rate for both QRNGs.

The rest of the document is organised as follows: Section 2 will
eview related works and compare them with our contribution. Sec-
ion 3 will introduce the required technical background to the reader.
ection 4 explains in detail all steps involved in the execution of
he protocol, as well as the entities that participate in it. Section 5
iscusses the security properties of the protocol. Section 6 analyses the
2

roof-of-concept implementation of all entities involved in the protocol,
and in Section 7 the performance of the implemented applications is
tested. Finally, Section 8 will conclude this document and discuss future
improvements.

2. Related work

Many of the recent improvements in sources of entropy have fo-
cused on Distributed Randomness Beacons (DRB) [10,11]. In these
schemes, a group of users can generate a public random value that can
be verified by all participants and other parties, ensuring that no user
could have introduced bias in the calculation. While verifiable public
randomness is useful in multiple scenarios, there is still the need for
sources of entropy that distribute the generated random numbers in a
private manner.

There exist multiple services that provide high entropy randomness
on-demand, such as random.org [12]. NIST has designed an architecture
for the generation and distribution of random numbers [9], which
requires clients to present an authentication token. In these schemes
the server knows which client is receiving each random values, and
thus any cryptographic material that is generated through them. This
represents a privacy concern for clients, which may not trust the server
that provides the source of entropy.

The goal of authentication usually comes into conflict with the
privacy of the users: the authentication server may require more in-
formation than the client is willing to give. Zero Knowledge Proofs are
a family of methods by which a prover can prove to a verifier that he
knows some private information without needing to reveal it. Their use
in authentication protocols allow users to prove their identity without
revealing sensitive information about themselves. In Non-interactive
variants of Zero Knowledge Proofs, the prover and the verifier do not
need to directly establish communication: instead, the prover publishes
a proof that can be verified later by any other entity.

Non-interactive Zero-Knowledge authentication [13] is achieved
in [14] by requiring authorised nodes to solve a hard problem (in this
case, graph isomorphism), which users from outside the network would
not be able to solve. Likewise, [15] also uses graph isomorphism as
authentication mechanism, using a Merkle Tree as a commitment to
turn the authentication into non-interactive. Both of these protocols
assume a list of clients capable of solving this hard problem, making
it difficult to add new authorised clients to the system.

The authors of [16] define a scheme in which users belonging
to certain trust domains can authenticate each other and establish
communication sessions. A method for registering new users is defined,
but the defence against replay attacks is weak, since it uses timestamps:
it does not protect against replays that happen in short span of time.

The scheme defined in [17] allows educational institutions to sub-
mit a learner’s diploma into a public blockchain. A custom zero-
knowledge proof is employed in multiple occasions, such as protecting
the learner’s identity or proving the grades of the learner. The protocol
does not provide any direct protection against replay attacks, but
replaying a proof is not sufficient to impersonate a legitimate learner:
an attacker would also need to know that learner’s secret key.

Among NIZK algorithms, zk-SNARKs are a popular alternative that
can also be used in authentication protocols. The authors of [18] pro-
pose an authentication protocol for healthcare environments in which
a set of pre-registered clients authenticate themselves with a zk-SNARK
validated with a Smart Contract with the objective of establishing
a secure communication channel. In [19], a certificate authority is
inserted into the scheme to validate users’ parameters, which they can
later provide proof of. However, it presents no defence against attackers
that could intercept another user’s proof and later present it as their
own. In [20], the focus is defining a system that can provide Linka-
bility and Traceability to identify malicious users, while protecting the
privacy of honest users. Since the authors orient their work to a voting
application, the list of authorised users is predefined, and cannot be

changed.



Computer Networks 242 (2024) 110259D. Soler et al.

u
i
p
a
h

t
n
f
a

3

w
t
w
t
S

v
t
o

a
(
o
t

Table 1
Comparison between other works that use non-interactive zero-knowledge authentication and our proposed protocol.
Scheme Purpose Authentication method Client registration External infrastructure Replay protection

[14] Authentication Isomorphism No No No
[15] Authentication Isomorphism No No No
[16] Key agreement Discrete logarithm Yes No Timestamp
[17] E-learning records Zero knowledge proof Yes Yes (Blockchain) Secret key
[20] Voting zk-SNARK No Yes (Blockchain) Yes
[19] Identity management zk-SNARK Yes Yes (Blockchain) No
[18] Key agreement zk-SNARK No Yes (Ethereum) Yes
Ours Key transmission zk-SNARK/Merkle Tree Yes No Yes
The concept of Commitments and Nullifiers, which are extensively
sed in this work, are introduced in [21]. As in the proposed protocol,
n ZCash users can create a Commitment when they earn the right to
erform an action and they must publish a Nullifier to consume it,
ccompanied by a zk-SNARK verifying the relationship between these
ashes.

Table 1 compares the protocol we propose with the works men-
ioned in this Section. As shown, our protocol is capable of introducing
ew users dynamically into the system, does not require external in-
rastructure outside the control of the scheme, and provides protection
gainst replay attacks.

. Background

To achieve our privacy-preserving Key Transmission Protocol, we
ill need to decouple the Authentication and Key Request steps, such

hat the server will not be able to link clients performing the latter
ith the credentials they used in the former. To that end, we employ

he cryptographic primitive zk-SNARK, which is formally defined in
ection 3.1.

We use zk-SNARKs in this work to prove membership to a set of
alid users. To speed up zk-SNARK proof generation, the aforemen-
ioned set is structured as a Merkle Tree, in which proving membership
nly takes 𝑙𝑜𝑔2(𝑁) steps where 𝑁 is the total number of users. Finally,

we employ assymetric cryptography to securely transmit the QRNG key
to the user in the last step of the protocol.

3.1. zk-SNARKs

Zero Knowledge Succinct Non-Interactive Arguments of Knowledge
(zk-SNARKs) are a subset of non-interactive zero-knowledge proofs. A
zk-SNARK is built from a relation 𝑅 between a public Statement 𝑥
nd a private Witness 𝑤. If the relation between 𝑤 and 𝑥 holds, then
𝑥,𝑤) ∈ 𝑅. A security parameter 𝜆 can be derived from the description
f 𝑅. Formally, a zk-SNARK scheme 𝛱 for a relation 𝑅 is composed of
he triplet (𝖦𝖾𝗇, 𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂𝖿𝗒), defined as follows:

• 𝖲𝖾𝗍𝗎𝗉(𝑅) → (𝑝𝑘, 𝑣𝑘): Takes a relation and outputs the Common
Reference Key, which is divided into the Proving Key 𝑝𝑘 and the
Verification Key 𝑣𝑘.

• 𝖯𝗋𝗈𝗏𝖾(𝑝𝑘, 𝑥,𝑤) → 𝜋: From 𝑝𝑘, a witness 𝑤 and a statement 𝑥, a
proof 𝜋 is generated.

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘, 𝑥, 𝜋) → 𝐴𝑐𝑐𝑒𝑝𝑡∕𝑅𝑒𝑗𝑒𝑐𝑡: From 𝑣𝑘, a proof 𝜋 and the
corresponding statement 𝑥, outputs 𝐴𝑐𝑐𝑒𝑝𝑡 or 𝑅𝑒𝑗𝑒𝑐𝑡. In the con-
text of this work, a valid proof refers to any (𝑥𝑣, 𝜋𝑣) such that
𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘, 𝑥𝑣, 𝜋𝑣) = 𝐴𝑐𝑐𝑒𝑝𝑡.

A zk-SNARK scheme must also satisfy the following requirements
[22]:

• Completeness. The probability

Pr
⎡

⎢

⎢

⎣

(𝑝𝑘, 𝑣𝑘) ← 𝖦𝖾𝗇(𝑅)
𝜋 ← 𝖯𝗋𝗈𝗏𝖾(𝑝𝑘, 𝑥,𝑤)

(𝑥,𝑤) ∈ 𝑅
∶ 𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘, 𝑥, 𝜋) = 𝑅𝑒𝑗𝑒𝑐𝑡

⎤

⎥

⎥

⎦

is negligible. Intuitively, this means that an honest prover is able
3

to convince a verifier that (𝑥,𝑤) ∈ 𝑅.
• Knowledge Soundness. For every efficient adversary 𝐴, there
exists an efficient extractor 𝐸𝑥𝑡𝐴 with access to the internal state
of 𝐴 such that the probability

Pr
⎡

⎢

⎢

⎣

((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥) ← 𝖦𝖾𝗇(𝑅)
(𝑥, 𝜋) ← 𝖠(𝑅, 𝑎𝑢𝑥, (𝑝𝑘, 𝑣𝑘))
𝑤 ← 𝐸𝑥𝑡𝐴(𝑅, 𝑎𝑢𝑥, (𝑝𝑘, 𝑣𝑘))

∶ (𝑥,𝑤) ∉ 𝑅
∧𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘, 𝑥, 𝜋) = 𝐴𝑐𝑐𝑒𝑝𝑡

⎤

⎥

⎥

⎦

is negligible, where 𝑎𝑢𝑥 is an auxiliary input produced by 𝖦𝖾𝗇.
Intuitively, this means that dishonest provers could not generate
a valid proof if they do not know 𝑤.

• Zero-knowledge. For every adversary A acting as a black box and
(𝑥,𝑤) ∈ 𝑅, there exists a simulator 𝖲𝗂𝗆((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥, 𝑥) such that
the following equality holds:

Pr
[

((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥) ← 𝖦𝖾𝗇(𝑅)
𝜋 ← 𝖯𝗋𝗈𝗏𝖾(𝑝𝑘, 𝑥,𝑤)

∶ 𝖠((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥, 𝑥, 𝜋) = 1
]

≈

Pr
[

((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥) ← 𝖦𝖾𝗇(𝑅)
𝜋 ← 𝖲𝗂𝗆((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥, 𝑥)

∶ 𝖠((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥, 𝑥, 𝜋) = 1
]

where 𝑎𝑢𝑥 is an auxiliary input produced by 𝖦𝖾𝗇. Intuitively, this
means that an attacker cannot find out anything about a witness
𝑤 from a proof 𝜋, a statement 𝑥 and a key pair (𝑝𝑘, 𝑣𝑘).

• Weak Simulation-Extractability. For every efficient adversary 𝐴
with access to an oracle 𝑂, there exists an efficient extractor 𝐸𝑥𝑡𝐴
with access to the internal state of 𝐴 such that the probability

Pr
⎡

⎢

⎢

⎣

((𝑝𝑘, 𝑣𝑘), 𝑎𝑢𝑥) ← 𝖦𝖾𝗇(𝑅)
(𝑥, 𝜋) ← 𝐴𝑂(𝑎𝑢𝑥)(𝑅, 𝑎𝑢𝑥, (𝑝𝑘, 𝑣𝑘))

𝑤 ← 𝐸𝑥𝑡𝐴(𝑅, 𝑎𝑢𝑥, (𝑝𝑘, 𝑣𝑘))
∶

𝑥 ∉ 𝑄
∧(𝑥,𝑤) ∉ 𝑅

∧𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘, 𝑥, 𝜋) = 𝐴𝑐𝑐𝑒𝑝𝑡

⎤

⎥

⎥

⎦

is negligible, where 𝑎𝑢𝑥 is an auxiliary input produced by 𝖦𝖾𝗇 and
Q is the list of 𝑥𝑖 requested to the oracle. This means that 𝐴 cannot
generate a valid proof for a statement that was not obtained from
the oracle. Note that there is a stronger notion of Simulation-
Extractability that requires both the statement 𝑥 and the proof 𝜋
not to be included in 𝑄. However, for this work we only require
the weak version of Simulation-Extractability.

• Succinctness. The proof size is polynomially bounded by 𝜆. The
execution time of 𝖵𝖾𝗋𝗂𝖿𝗒 is bounded linearly by the size of 𝑥 and
polynomially by 𝜆.

In practice, zk-SNARK schemes can be built by different crypto-
graphic techniques. The most popular designs, including Groth16 [23]
(which we will use in this work) involves the transformation of a
computation into an arithmetic circuit. The performance of a zk-SNARK
scheme, specially during setup and proof generation, heavily depends
on the number of constraints of this circuit [24], which are determined
by the computation that is to be verified.

3.2. Merkle Tree

Merkle Trees [25] are a data structure in the form of a binary tree.
Each element is identified as ℎ𝑖,𝑗 , where 𝑖 is the level of the tree and
𝑗 the position inside said level. A Merkle Tree of depth 𝑛 contains at
most 𝑙 = 2𝑛 leaf nodes ℎ𝑛,𝑗 containing a hash, and intermediate nodes

take the value ℎ𝑘,𝑗 = 𝐻(ℎ𝑘+1,𝑚 ∥ℎ𝑘+1,𝑚+1), where ∥ is the concatenation



Computer Networks 242 (2024) 110259D. Soler et al.

o
v
M
a
T
T
m

operator, 𝐻 is a hash function and 𝑚 = 2𝑗. The node ℎ0,0 is called 𝑟𝑜𝑜𝑡,
and its value is influenced by every other node in the Tree.

The main advantage of Merkle Trees is that checking if an element
𝑒 exists inside the list of leaf nodes is only (log 𝑙), while the same
peration for a list would be (𝑙). This is achieved by providing a
alidation list {ℎ𝑛−1,𝑘𝑛−1 , ℎ𝑛−2,𝑘𝑛−2 ,… , ℎ1,𝑘1} and the root ℎ0,0 of the
erkle Tree. If it is possible to reconstruct the provided root from 𝐻(𝑒)

nd the validation list, then 𝑒 is proven to be inside the Merkle Tree.
his method requires the hash function 𝐻 used to construct the Merkle
ree to be collision-resistant [26]: otherwise, it could be possible for
alicious users to prove that a fake element 𝑒𝑓 is inside the Merkle

Tree when it is not.
For the scope of this work, the following operations are defined for

Merkle Trees:

1. 𝖤𝗆𝗉𝗍𝗒𝖳𝗋𝖾𝖾(𝑛) → 𝑇 : Initialises an empty Merkle Tree of depth 𝑛,
with all of its leaf nodes set to 𝐻(0).

2. 𝖠𝖽𝖽𝖫𝖾𝖺𝖿 (𝑇 , ℎ) → 𝑇 ′: Takes a Merkle Tree 𝑇 and a hash ℎ and
returns a modified tree, in which the leftmost 𝐻(0) is substi-
tuted by ℎ. The intermediate and root nodes are also updated
accordingly.

3. 𝖦𝖾𝗍𝖱𝗈𝗈𝗍(𝑇 ) → 𝑅: Takes a Merkle Tree 𝑇 and returns the root ℎ0,0.
4. 𝖦𝖾𝗍𝖨𝗇𝖽𝖾𝗑𝖮𝖿 (𝑇 , ℎ) → 𝑖𝑛𝑑𝑒𝑥: Takes a Merkle Tree 𝑇 and a hash ℎ

and returns 𝑖 such that ℎ𝑛,𝑖 = ℎ for some ℎ𝑛,𝑖 in the Tree.
5. 𝖵𝖺𝗅𝗂𝖽𝖺𝗍𝗂𝗈𝗇𝖫𝗂𝗌𝗍(𝑇 , 𝑖) → 𝑉 𝑎𝑙 = {ℎ𝑛−1,𝑘𝑛−1 , ℎ𝑛−2,𝑘𝑛−2 ,… , ℎ1,𝑘1}: Takes

a Merkle Tree 𝑇 and an index 𝑖 and returns the validation list
required to validate the leaf ℎ𝑛,𝑖.

6. 𝖨𝗌𝖫𝖾𝖺𝖿𝖮𝖿𝖳𝗋𝖾𝖾(ℎ, 𝑖, 𝑉 𝑎𝑙, 𝑅) → 𝑡𝑟𝑢𝑒∕𝑓𝑎𝑙𝑠𝑒: Takes a hash ℎ, its index
𝑖, a validation list 𝑉 𝑎𝑙 = {ℎ𝑛−1,𝑘𝑛−1 , ℎ𝑛−2,𝑘𝑛−2 ,… , ℎ1,𝑘1} and a root
𝑅 and outputs 𝑡𝑟𝑢𝑒 if ℎ is the leaf with index 𝑖 of the tree with
root = 𝑅, and 𝑓𝑎𝑙𝑠𝑒 otherwise.

3.3. Key Encapsulation Mechanism

A Key Encapsulation Mechanism (KEM) [27,28] is a method for
distributing key material between two parties employing asymmetric
cryptography. The sender uses the receiver’s public key to encrypt some
input key material such that only the receiver can decrypt it. Both
parties must agree on the asymmetric encryption algorithm that will
be used for the encapsulation. In Hybrid Public Key Encryption [29],
the key material is later passed through a Key Derivation Function to
obtain a symmetric key.

A KEM is composed by the following operations:

• 𝖪𝖾𝗒𝖦𝖾𝗇(𝜆) → (𝑝𝑘, 𝑠𝑘): Takes a security parameter 𝜆 and generates
a symmetric key pair.

• 𝖤𝗇𝖼𝖺𝗉(𝑖𝑘𝑚, 𝑝𝑘) → 𝑐: Encrypts some input key material 𝑖𝑘𝑚 with a
public key 𝑝𝑘.

• 𝖣𝖾𝖼𝖺𝗉(𝑐, 𝑠𝑘) → 𝑘𝑚: Decrypts a ciphertext with a secret key 𝑠𝑘 to
obtain the key material.

4. Privacy-preserving key transmission protocol

4.1. Outline

The protocol involves two different interactions between Users and
the Server: the Authentication and the Key Request. The main contribu-
tion of our protocol is the decoupling between the authentication and
the key request, which is achieved through the use of zk-SNARKs: while
requesting a key, Users must prove that they have previously performed
authentication.

During the Authentication, Users must present valid credentials that
certify their identity, such as a digital certificate. If those credentials are
correct, they are allowed to publish a Commitment, which the Server
4

includes in a structure of valid Commitments (which, for efficiency
reasons, is a Merkle Tree). Thus, a Commitment identifies a specific
User, because is published alongside authentication information. It also
represents the User’s right to obtain a QRNG key in later steps.

Users must generate a Nullifier, which is a value that is crypto-
graphically related to their Commitment: they are generated from the
same inputs, but only the User that has created both knows that
they are related. They also generate a zk-SNARK proof that certifies
the relationship between the Commitment and Nullifier, but without
revealing the former. The proof also certifies that the Commitment is
inside the structure of valid Commitments.

To perform the Key Request, Users send the aforementioned Nulli-
fier and zk-SNARK proof to the Server, which validates those values. If
the proof is valid, the Server (1) knows that there exists a Commitment
related to this specific Nullifier inside the structure of valid Commit-
ments, but (2) does not know which of all valid Commitments it is. We
remark that (1) proves that the User has performed the Authentication
exchange, while (2) ensures that neither the Server or any other entity
can know the identity of the User. Finally, the Server stores the Nullifier
to prevent replay attacks: any other Key Request that contains the same
Nullifier will be rejected.

4.2. Architecture

In this protocol, there are three main entities:

• User (U): executes the protocol and starts the communication for
both Steps. In the Authentication Step, Users must provide their
certificate and generate a Commitment. Then, they generate a
Nullifier and a zk-SNARK linking it to the Commitment.

• Authentication Server (AS): receives authentication requests from
Users. When a User’s certificate is successfully validated, the AS
inserts the provided Commitment into the Commitment Merkle
Tree and updates the required nodes and root. The AS must also
provide the Merkle Tree to anyone that requests it.

• Proof Validation Server (PVS): receives zk-SNARKs from Users and
validates them. The PVS stores the list of all published Nullifiers,
so it rejects any proof that is accompanied by a Nullifier that has
already been published. The PVS requires information about the
Merkle Tree to validate zk-SNARKs, so it must communicate with
the AS to obtain this data structure. It is the only entity in the
protocol that can access the QRNG, which it uses to generate key
material to Users that present valid zk-SNARKs.

The AS and PVS are logical entities, so they can be implemented
either as one or two different programmes. All information hosted by
the AS and the PVS (namely, the Commitment Merkle Tree and the
Nullifier List) is exposed so that Users can freely access it without
compromising the security of the protocol.

Fig. 1 shows a diagram of the interaction between the User, Authen-
tication Server and Proof Validation Server, as sketched in 4.1.

4.3. Protocol definition

The protocol requires the selection of a hash function 𝐻 , a zk-
SNARK scheme ZK = (ZK.Setup, ZK.Prove, ZK.Verify), a Merkle Tree
scheme M = (M.EmptyTree, M.AddLeaf, M.GetRoot, M.GetIndexOf,
M.ValidationList,M.IsLeafOfTree) and a KEM K = (K.KeyGen, K.Encap,
K.Decap). Table 2 introduces the notations of the elements that take
part in the protocol.

Initial setup. Before the execution of the protocol, some parameters
need to be initialised. The operation executed in this initial step is:

• 𝖲𝖾𝗋𝗏𝖾𝗋𝖲𝖾𝗍𝗎𝗉(𝑅, 𝑛) → ((𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠), 𝑇 , 𝑇𝑜𝑙𝑑 , 𝐿𝑁 ): The keys and data
structures that will be used during the execution of the proto-
col are initialised. The zk-SNARK scheme is initialised from its

relation 𝑅, and an empty Merkle Tree of depth 𝑛 is created.



Computer Networks 242 (2024) 110259D. Soler et al.
Fig. 1. Diagram of the proposed protocol.
Table 2
List of notations of the proposed scheme.

Name Description

𝑐𝑟𝑠 Common reference string of zk-SNARK
𝑝𝑘𝑐𝑟𝑠 Proving key of zk-SNARK
𝑣𝑘𝑐𝑟𝑠 Verification key of zk-SNARK
𝑇 Commitment Merkle Tree
𝑇𝑜𝑙𝑑 List of previous roots of 𝑇
𝐿𝑁 List of already published Nullifiers
𝑐𝑒𝑟𝑡 User certificate
𝑐𝑘 Private key of 𝑐𝑒𝑟𝑡

Algorithm 1 Initial setup operations
function ServerSetup(𝑅, 𝑛)

𝑐𝑟𝑠 ← 𝖹𝖪.𝖲𝖾𝗍𝗎𝗉(𝑅)
𝑇 ← 𝖬.𝖢𝗋𝖾𝖺𝗍𝖾𝖤𝗆𝗉𝗍𝗒𝖳𝗋𝖾𝖾(𝑛)
𝑇𝑜𝑙𝑑 ← ∅
𝐿𝑁 ← ∅
return 𝑐𝑟𝑠, 𝑇 , 𝑇𝑜𝑙𝑑 , 𝐿𝑁

end function

The relation that the zk-SNARK scheme is initialised with is the
following:

𝑅 =

⎧

⎪

⎨

⎪

⎩

(𝑥,𝑤) =
((𝑁, 𝑟𝑜𝑜𝑡), (𝜌, 𝑝𝑘, 𝑠𝑘, 𝐶, 𝑖𝐶 , 𝑉 𝑎𝑙))

∶
𝐶 = 𝐻(𝑠𝑘 ∥ 𝜌),
𝑁 = 𝐻(𝑝𝑘 ∥ 𝜌),
𝖬.𝖨𝗌𝖫𝖾𝖺𝖿𝖮𝖿𝖳𝗋𝖾𝖾(𝐶, 𝑖𝐶 , 𝑉 𝑎𝑙, 𝑟𝑜𝑜𝑡)

⎫

⎪

⎬

⎪

⎭

(1)

Intuitively, it proves that the Commitment and Nullifier are gen-
erated from a key pair (𝑝𝑘, 𝑠𝑘) and a secret value 𝜌, which is only
known by the party that created both hashes. It also proves that the
Commitment is inside a Merkle Tree with root 𝑟𝑜𝑜𝑡. This same relation
is shown in Fig. 2.

Step 1: Authentication. To perform the first Step of the protocol, an
User 𝑈 must first create a note, which contains a secret value and a key
pair. Then, she must authenticate herself to the AS. If she is successful,
the AS will add 𝐶𝑈 to 𝑇 . The Authentication Step involves the execution
of the following operations (as shown in Algorithm 2):

• 𝖴𝗌𝖾𝗋𝖨𝗇𝗂𝗍(𝜆) → 𝑛𝑜𝑡𝑒: 𝑈 creates a 𝑛𝑜𝑡𝑒𝑈 containing a secret value
𝜌𝑈 and an asymmetric encryption key pair (𝑝𝑘𝑈 , 𝑠𝑘𝑈 ). She then
stores it in a secure manner. The size of these values depends on
the security parameter 𝜆.
5

Algorithm 2 Authentication Step operations
function UserInit(𝜆)

𝜌
R
← {0, 1}𝜆

(𝑝𝑘, 𝑠𝑘) ← 𝖪.𝖪𝖾𝗒𝖦𝖾𝗇(𝜆)
𝑛𝑜𝑡𝑒 ← (𝜌, 𝑝𝑘, 𝑠𝑘)

end function
function Auth(ck, note)

(𝜌, 𝑝𝑘, 𝑠𝑘) ← 𝑛𝑜𝑡𝑒
𝐶 ← 𝐻(𝑠𝑘 ‖ 𝜌)
𝜎 ← 𝖲𝗂𝗀𝗇(𝐶, 𝑐𝑘)
return 𝑛𝑜𝑡𝑒, 𝐶, 𝜎

end function
function Register(𝑐𝑒𝑟𝑡, 𝐶, 𝜎, 𝑇 , 𝑇𝑜𝑙𝑑)

𝑏 ← 𝖵𝖾𝗋𝗂𝖿𝗒𝖲𝗂𝗀𝗇(𝑐𝑒𝑟𝑡, 𝐶, 𝜎)
if 𝑏 = 𝑡𝑟𝑢𝑒 then

𝑟𝑜𝑜𝑡 ← 𝖬.𝖦𝖾𝗍𝖱𝗈𝗈𝗍(𝖳)
𝑇𝑜𝑙𝑑 ← 𝑇𝑜𝑙𝑑 + 𝑟𝑜𝑜𝑡
𝖬.𝖠𝖽𝖽𝖫𝖾𝖺𝖿 (𝑇 , 𝐶)

end if
return 𝑏, 𝑇 , 𝑇𝑜𝑙𝑑

end function

• 𝖠𝗎𝗍𝗁(𝑐𝑒𝑟𝑡, 𝑐𝑘, 𝑛𝑜𝑡𝑒) → (𝐶, 𝜎𝐶 ): 𝑈 uses 𝑛𝑜𝑡𝑒𝑈 to generate a Commit-
ment 𝐶𝑈 = 𝐻(𝑝𝑘𝑈 ∥ 𝜌). where ‘‘∥’’ is the concatenation operator.
Then, she signs 𝐶𝑈 with her certificate’s private key 𝑐𝑘𝑈 .

• 𝖱𝖾𝗀𝗂𝗌𝗍𝖾𝗋(𝑐𝑒𝑟𝑡, 𝐶, 𝜎𝐶 , 𝑇 , 𝑇𝑜𝑙𝑑 ) → (𝑡𝑟𝑢𝑒∕𝑓𝑎𝑙𝑠𝑒, 𝑇 , 𝑇𝑜𝑙𝑑 ): The AS checks
the validity of the certificate 𝑐𝑒𝑟𝑡𝑈 presented by 𝑈 . Then, it
verifies the signature 𝜎𝑈 with 𝑐𝑒𝑟𝑡𝑈 ’s public key. If it is valid, the
AS inserts 𝐶𝑈 in the Merkle Tree 𝑇 .

We remark that while the authentication method of the protocol
we present involves the use of certificates, the Authentication Step is
flexible enough to allow for other types of authentication or attestation.
Different AS could be implemented that request other information from
𝑈 (e.g. passwords, biometrics, . . . ), as long as they insert 𝐶𝑈 in 𝑇 after
a successful authentication.

Step 2: Proof generation. After a successful authentication, 𝑈 ’s Com-
mitment 𝐶𝑈 is stored in 𝑇 . In this Step, 𝑈 proves that she knows some
Commitment inside 𝑇 by generating a zk-SNARK proof. To this end,
𝑈 must first download a copy of the Merkle Tree from the AS. 𝑈
can then use the Tree and 𝑛𝑜𝑡𝑒𝑈 to form the zk-SNARK Witness 𝑤 =
(𝜌𝑈 , 𝑝𝑘𝑈 , 𝑠𝑘𝑈 , 𝐶𝑈 , 𝑖𝐶 , 𝑉 𝑎𝑙𝑈 ), which is needed to create the zk-SNARK
proof. The following operation is executed, as shown in Algorithm 3:



Computer Networks 242 (2024) 110259D. Soler et al.
Fig. 2. Diagram of the relationship between Commitments and Nullifiers.
Algorithm 3 Proof Generation Step operations
function CreateProof(𝑛𝑜𝑡𝑒, 𝑇 , 𝑝𝑘𝑐𝑟𝑠)

(𝜌, 𝑝𝑘, 𝑠𝑘) ← 𝑛𝑜𝑡𝑒
𝐶 ← 𝐻(𝑠𝑘 ‖ 𝜌)
𝑁 ← 𝐻(𝑝𝑘 ‖ 𝜌)
𝑟𝑜𝑜𝑡 ← 𝖬.𝖦𝖾𝗍𝖱𝗈𝗈𝗍(𝑇 )
𝑖𝐶 ← 𝖬.𝖦𝖾𝗍𝖨𝗇𝖽𝖾𝗑𝖮𝖿 (𝑇 , 𝐶)
𝑉 𝑎𝑙 ← 𝖬.𝖵𝖺𝗅𝗂𝖽𝖺𝗍𝗂𝗈𝗇𝖫𝗂𝗌𝗍(𝑇 , 𝑖𝐶 )
𝑥 ← (𝑁, 𝑟𝑜𝑜𝑡)
𝑤 ← (𝜌, 𝑝𝑘, 𝑠𝑘, 𝐶, 𝑖𝐶 , 𝑉 𝑎𝑙)
𝜋 ← 𝖯𝗋𝗈𝗏𝖾(𝑝𝑘𝑐𝑟𝑠, 𝑥, 𝑤)
return 𝜋, 𝑥

end function

• 𝖢𝗋𝖾𝖺𝗍𝖾𝖯𝗋𝗈𝗈𝖿 (𝑛𝑜𝑡𝑒, 𝑇 , 𝑝𝑘𝑐𝑟𝑠) → (𝜋, 𝑥): 𝑈 recalculates her Commit-
ment 𝐶𝑈 and generates the Nullifier 𝑁𝑈 , both of them from the
values inside 𝑛𝑜𝑡𝑒𝑈 . Then, she uses the zk-SNARK scheme to cre-
ate a proof 𝜋𝑈 that proves that 𝐶𝑈 is inside 𝑇 (without revealing
which element it is) and that 𝐶𝑈 and 𝑁𝑈 were generated from
the same 𝑛𝑜𝑡𝑒.

Step 3: Key Request . In this final Step, 𝑈 provides proof that she
has successfully performed Step 1 to the PVS, which is the only entity
in the scheme with access to the QRNG. The message from 𝑈 to the
PVS includes 𝜋𝑈 and the Statement 𝑥 = (𝑁𝑈 , 𝑟𝑜𝑜𝑡). If the information
provided by 𝑈 is successfully validated, the PVS will reply to 𝑈 with
key material generated by the QRNG.

The operations performed by 𝑈 and the PVS the Key Request Step
are the following (shown in detail in Algorithm 4):

• 𝖵𝖾𝗋𝗂𝖿𝗒𝖯𝗋𝗈𝗈𝖿 (𝜋, 𝑥, 𝑇 , 𝑇𝑜𝑙𝑑 , 𝐿𝑁 , 𝑣𝑘𝑐𝑟𝑠) → (𝑡𝑟𝑢𝑒∕𝑓𝑎𝑙𝑠𝑒, 𝐿𝑁 ): The PVS
verifies the zk-SNARK proof 𝜋𝑈 generated by 𝑈 in the previous
phase. It also checks that the root 𝑟𝑜𝑜𝑡𝑈 that is part of the zk-
SNARK statement 𝑥𝑈 corresponds with the root of the current
Merkle Tree or any of its past versions and that the Nullifier 𝑁𝑈
has not been presented yet. If all checks are successful, 𝑁𝑈 is
included in a list of ‘‘spent Nullifiers’’, such that it cannot be used
again.

• 𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖪𝖾𝗒(𝑡, 𝑝𝑘) → 𝑒𝑛𝑐: The PVS generates 𝑡 bytes of key material
with its QRNG and then encrypts it with 𝑈 ’s public key 𝑝𝑘.
6

Algorithm 4 Key Request Step operations
function VerifyProof(𝜋, 𝑥, 𝑇 , 𝐿𝑁 , 𝑇𝑜𝑙𝑑 , 𝑣𝑘𝑐𝑟𝑠)

(𝑁, 𝑟𝑜𝑜𝑡) ← 𝑥
𝑖𝑠𝑅𝑜𝑜𝑡𝑉 𝑎𝑙𝑖𝑑 ← (𝑟𝑜𝑜𝑡 = 𝖬.𝖦𝖾𝗍𝖱𝗈𝗈𝗍(𝑇 ) ∨ 𝑟𝑜𝑜𝑡 ∈ 𝑇𝑜𝑙𝑑 )
𝑖𝑠𝑁𝑢𝑙𝑙𝑖𝑓 𝑖𝑒𝑟𝑉 𝑎𝑙𝑖𝑑 ← (𝑁 ∉ 𝐿𝑁 )
𝑖𝑠𝑃 𝑟𝑜𝑜𝑓𝑉 𝑎𝑙𝑖𝑑 ← 𝖹𝖪.𝖵𝖾𝗋𝗂𝖿𝗒(𝑣𝑘𝑐𝑟𝑠, 𝜋, 𝑥)
if 𝑖𝑠𝑅𝑜𝑜𝑡𝑉 𝑎𝑙𝑖𝑑 ∧ 𝑖𝑠𝑁𝑢𝑙𝑙𝑖𝑓 𝑖𝑒𝑟𝑉 𝑎𝑙𝑖𝑑 ∧ 𝑖𝑠𝑃 𝑟𝑜𝑜𝑓𝑉 𝑎𝑙𝑖𝑑 then

𝐿𝑁 ← 𝐿𝑁 +𝑁
return (𝑡𝑟𝑢𝑒, 𝐿𝑁 )

end if
return 𝑓𝑎𝑙𝑠𝑒, 𝐿𝑁 )

end function
function DeliverKey(𝑡, 𝑝𝑘)

𝑘 ← 𝖦𝖾𝗇𝖾𝗋𝖺𝗍𝖾𝖰𝖱𝖭𝖦𝖬𝖺𝗍𝖾𝗋𝗂𝖺𝗅(𝑡)
𝑒𝑛𝑐 ← 𝖪.𝖤𝗇𝖼𝖺𝗉(𝑘, 𝑝𝑘)
return 𝑒𝑛𝑐

end function

5. Security

In this Section we will analyse the security of our privacy-preserving
key transmission protocol. We informally formulate the following secu-
rity requirements that the protocol must meet:

• Anonymity: it is impossible to link a User performing the Key
Request Step to the credentials used in the Authentication Step.

• Unforgeability: it is impossible for an attacker to successfully per-
form the Key Request Step without having previously performed
the Authentication Step.

• Confidentiality: the only party that can read the QRNG key cre-
ated by the PVS is the User that requested it.

The properties of Anonymity and Unforgeability are common in
protocols that employ zk-SNARKs (or other Zero Knowledge Proofs) as
authentication mechanism [17,18,20]. We also require the property of
Confidentiality because of the inclusion of a Key Encapsulation Mecha-
nism in our protocol. Our definition of Confidentiality is similar to the
KEM’s property of ‘‘One Way under Chosen Plaintext Attack’’ [27] but
applied to the environment of our protocol.



Computer Networks 242 (2024) 110259D. Soler et al.

T
S
p

P

5.1. Anonymity

We will define Anonymity as a game between a Challenger 𝐶 and
Adversary 𝐴. In this game, 𝐶 will create a pair of Commitments (𝐶0, 𝐶1)
and choose one of them to create a Nullifier 𝑁𝑏 and proof 𝜋𝑏. 𝐴’s
objective is to guess which Commitment was used to generate (𝑁𝑏, 𝜋𝑏).
We will consider that the scheme provides Anonymity if 𝐴’s strategy
in choosing 𝑏 is no better than a random guess. We remark that 𝐴
is allowed to execute 𝖲𝖾𝗋𝗏𝖾𝗋𝖲𝖾𝗍𝗎𝗉, as the Anonymity requirement also
protects Users from the AS and the PVS.

Anonymity is defined as the following game:

1. 𝐴 executes 𝖲𝖾𝗋𝗏𝖾𝗋𝖲𝖾𝗍𝗎𝗉(𝑅, 𝑛) to generate ((𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠), 𝑇0, 𝑇𝑜𝑙𝑑 ,
𝐿𝑁 ). Then, 𝐴 sends (𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠) to 𝐶.

2. 𝐶 executes twice the following steps (𝑏 ∈ {0, 1}):

(a) 𝖴𝗌𝖾𝗋𝖨𝗇𝗂𝗍(𝜆) to obtain 𝑛𝑜𝑡𝑒𝑏.
(b) From 𝑛𝑜𝑡𝑒𝑏, generate the Commitment 𝐶𝑏.
(c) 𝖬.𝖠𝖽𝖽𝖫𝖾𝖺𝖿 (𝑇𝑘, 𝐶𝑘) to obtain 𝑇𝑘+1.

3. 𝐶 randomly chooses 𝑏 ∈ {0, 1} and executes 𝖢𝗋𝖾𝖺𝗍𝖾𝖯𝗋𝗈𝗈𝖿 (𝑛𝑜𝑡𝑒𝑏, 𝑇2,
𝑝𝑘𝑐𝑟𝑠) to obtain (𝜋𝑏, (𝑁𝑏, 𝑟𝑜𝑜𝑡)). 𝐶 sends ((𝐶0, 𝐶1), 𝑁𝑏, 𝜋𝑏, 𝑟𝑜𝑜𝑡) to 𝐴.

4. 𝐴 outputs 𝑏′ ∈ {0, 1}.

𝐴 wins the game if 𝑏′ = 𝑏.
We define 𝐴’s advantage in breaking Anonymity as

𝐴𝑑𝑣𝐴𝑛𝑜𝑛𝐴 (𝜆) =
|

|

|

|

Pr[𝐴 𝑤𝑖𝑛𝑠 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒] − 1
2
|

|

|

|

. (2)

Definition 5.1. The scheme provides Anonymity if for all efficient
adversary 𝐴, 𝐴𝑑𝑣𝐴𝑛𝑜𝑛𝐴 (𝜆) is negligible.

heorem 1. If the hash function H is a one-way function, and the zk-
NARK scheme satisfies the Zero-Knowledge property, the proposed system
rovides Anonymity.

roof. We create a series of games from Game0 to Game2.

• Game0 is a real game where the adversary, 𝐴, tries breaking
Anonymity in real attack scenarios.

• Game1 is the same as Game0, but the hash function 𝐻 is replaced
by a random oracle. Since 𝐻 is preimage-resistant, Game1 is
indistinguishable from Game0. This means that 𝐴 cannot obtain
𝑛𝑜𝑡𝑒𝑏 from 𝑁𝑏 or (𝐶0, 𝐶1).

• Game2 is the same as Game1, but 𝜋𝑏 is changed to a simu-
lated 𝜋′

𝑏 instead of being generated by a real 𝑤𝑏. Due to the
Zero-Knowledge property of the zk-SNARK, 𝜋𝑏 and 𝜋′

𝑏 are indis-
tinguishable and the probability of 𝐴 winning Game 2 is the same
as winning Game 1.

In Game2, none of the information available to 𝐴 reveals anything
about 𝑛𝑜𝑡𝑒𝑏: the hash functions are not reversible and the zk-SNARK
does not leak any information about its witness. Thus, 𝐴 cannot know
if 𝑁𝑏 was generated from the same Note as 𝐶0 or 𝐶1 and 𝐴’s probability
of correctly guessing 𝑏 is no better than a random guess. Because of this,
the proposed system meets the Anonymity requirement. □

5.2. Unforgeability

We will define Unforgeability as a game between Challenger 𝐶
and Adversary 𝐴. In this game, 𝐴 will try to generate a proof 𝜋𝐴
without knowing the 𝑛𝑜𝑡𝑒 from which any of the Commitments in the
Merkle Tree were generated. We will consider that the system provides
Unforgeability if the probability of 𝜋𝐴 being a valid proof is negligible.
7

Unforgeability is defined as the following game:
1. 𝐶 runs 𝖲𝖾𝗋𝗏𝖾𝗋𝖲𝖾𝗍𝗎𝗉(𝑅, 𝑛) to generate ((𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠), 𝑇0, 𝑇𝑜𝑙𝑑 , 𝐿𝑁 ). 𝐶
then executes 𝑛 times:

(a) 𝖴𝗌𝖾𝗋𝖨𝗇𝗂𝗍(𝜆) to obtain 𝑛𝑜𝑡𝑒𝑘.
(b) From 𝑛𝑜𝑡𝑒𝑘, generate the Commitment 𝐶𝑘.
(c) 𝑇𝑜𝑙𝑑 ← 𝑇𝑜𝑙𝑑 +𝖬.𝖦𝖾𝗍𝖱𝗈𝗈𝗍(𝑇𝑘).
(d) 𝖬.𝖠𝖽𝖽𝖫𝖾𝖺𝖿 (𝑇𝑘, 𝐶𝑘) to obtain 𝑇𝑘+1.

2. 𝐶 sends (𝑇𝑛, 𝑇𝑜𝑙𝑑 , 𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠) to 𝐴.
3. 𝐴 can execute any number of proof generation queries, which are

defined as:

(a) 𝐴 chooses any 𝑙 ≤ 𝑛 and sends it to 𝐶.
(b) 𝐶 uses 𝑛𝑜𝑡𝑒𝑙 to execute 𝖢𝗋𝖾𝖺𝗍𝖾𝖯𝗋𝗈𝗈𝖿 (𝑛𝑜𝑡𝑒𝑙 , 𝑇𝑛, 𝑝𝑘𝑐𝑟𝑠) to gen-

erate (𝜋𝑙 , (𝑁𝑙 , 𝑟𝑜𝑜𝑡)). 𝐶 sends (𝜋𝑙 , 𝑁𝑙 , 𝑟𝑜𝑜𝑡) to 𝐴.

4. 𝐴 generates (𝜋𝐴, 𝑁𝐴, 𝑟𝑜𝑜𝑡𝐴).

𝐴 wins if 𝖵𝖾𝗋𝗂𝖿𝗒𝖯𝗋𝗈𝗈𝖿 (𝜋𝐴, (𝑁𝐴, 𝑟𝑜𝑜𝑡𝐴), 𝑇𝑛, 𝑇𝑜𝑙𝑑 , 𝑁0,… , 𝑁𝑙 , 𝑣𝑘𝑐𝑟𝑠) outputs
𝑡𝑟𝑢𝑒.

We define 𝐴’s advantage in breaking Unforgeability as

𝐴𝑑𝑣𝑈𝑛𝑓
𝐴 (𝜆) = Pr[𝐴 𝑤𝑖𝑛𝑠 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒]. (3)

Definition 5.2. The scheme provides Unforgeability if for all efficient
adversary 𝐴, 𝐴𝑑𝑣𝑈𝑛𝑓

𝐴 (𝜆) is negligible.

Theorem 2. If the hash function H is a one-way function, and the
zk-SNARK scheme satisfies the Knowledge Soundness and Weak Simulation-
Extractability properties, the proposed system provides Unforgeability.

Proof. We create a series of games from Game0 to Game5.

• Game0 is a real game where the adversary, 𝐴, tries breaking
Unforgeability in real attack scenarios.

• Game1 is the same as Game0, but the hash function 𝐻 is replaced
by a random oracle. Since 𝐻 is preimage-resistant, Game1 is
indistinguishable from Game0. This means that 𝐴 cannot obtain
any value inside 𝑛𝑜𝑡𝑒𝑘 from any of the 𝐶𝑘 in 𝑇𝑛.

• Game2 is the same as Game1, but 𝐴 forges a fake Merkle Tree
𝑇𝑓 which includes a fake Commitment 𝐶𝑓 . Since 𝐻 is a random
oracle, the root of 𝑇𝑓 will be different than any 𝑇𝑘’s root because
their leaves are different. Thus, Condition (2) is not met and 𝐴
does not gain any advantage: Game2 is indistinguishable from
Game1.

• Game3 is the same as Game2, but 𝐴 creates a Fake Commitment
𝐶𝑓 and forges a fake validation list 𝑉 𝑎𝑙𝑓 leading to the root of any
𝑇𝑘. From this, 𝐴 will generate a proof 𝜋𝑓 . This requires finding a
collision, in which two different values have the same hash (the
root of 𝑇𝑘). Since 𝐻 is a random oracle, it will be impossible to
find a collision that would falsely verify that 𝐶𝑓 is in 𝑇𝑘. Thus,
the relation described in Eq. (1) will not hold and the Knowledge
Soundness property of the zk-SNARK scheme will ensure that
Condition (3) is not met. Thus, Game3 is indistinguishable from
Game2.

• Game4 is the same as Game3, but 𝐴 is able to generate a zk-
SNARK 𝜋𝐴 without knowing any of the values in the witness
𝑤𝐴 = (𝜌𝐴, 𝑝𝑘𝐴, 𝑠𝑘𝐴, 𝐶𝐴, 𝑖𝐶 , 𝑉 𝑎𝑙𝐶 ). Due to the Knowledge Sound-
ness property of the zk-SNARK, Condition (3) will not be met with
overwhelming probability. Therefore, Game4 does not increase
𝐴’s probability of winning over Game3.

• Game5 is the same as Game4, but 𝐴 is able to forge a fake
proof 𝜋𝑓 by modifying a zk-SNARK 𝜋𝑙 received during Step 4 of
the attack game (i.e. if the zk-SNARK scheme is vulnerable to

malleability attacks [24]). There are two possibilities in this case:



Computer Networks 242 (2024) 110259D. Soler et al.

𝐴

T
s
m
p

P

– 𝐴 presents (𝜋𝑓 , 𝑁𝑙), that is, 𝐴 does not modify the Nullifier.
In this case, 𝐴 fails because of Condition (1).

– 𝐴 modifies 𝑁𝑙 into a different 𝑁𝑓 . Due to the Weak
Simulation-Extractability property of the zk-SNARK scheme,
the output of 𝖵𝖾𝗋𝗂𝖿𝗒 will be 𝑅𝑒𝑗𝑒𝑐𝑡, since it is assumed
to be impossible to generate a valid proof for a modified
statement. Thus, 𝐴 fails because of Condition (3).

In both cases, the probability of 𝐴 winning Game5 is the same as
winning Game4.

In Game5, the probability achieving any of the conditions required
to break the Unforgeability requirement is negligible. Since Game0 and
Game5 are indistinguishable from each other, the proposed protocol
meets the Unforgeability requirement. □

5.3. Confidentiality

We will define Confidentiality as a game between Challenger 𝐶 and
Adversary 𝐴. In this game, 𝐶 will generate a Commitment and Nullifier
pair from a 𝑛𝑜𝑡𝑒, and an encrypted QRNG key using the public key in
said 𝑛𝑜𝑡𝑒. We will consider that the system provides Confidentiality if
𝐴’s strategy in finding the QRNG key is no better than a random guess.

Confidentiality is defined as the following game:

1. 𝐴 executes 𝖲𝖾𝗋𝗏𝖾𝗋𝖲𝖾𝗍𝗎𝗉(𝑅, 𝑛) to generate ((𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠), 𝑇0, 𝑇𝑜𝑙𝑑 ,
𝐿𝑁 ). Then, 𝐴 sends (𝑝𝑘𝑐𝑟𝑠, 𝑣𝑘𝑐𝑟𝑠) to 𝐶.

2. 𝐶 executes the following steps:

(a) 𝖴𝗌𝖾𝗋𝖨𝗇𝗂𝗍(𝜆) to obtain 𝑛𝑜𝑡𝑒 = (𝜌, 𝑝𝑘, 𝑠𝑘).
(b) From 𝑛𝑜𝑡𝑒, generate the Commitment 𝐶.
(c) 𝖬.𝖠𝖽𝖽𝖫𝖾𝖺𝖿 (𝑇0, 𝐶) to obtain 𝑇1.
(d) 𝖢𝗋𝖾𝖺𝗍𝖾𝖯𝗋𝗈𝗈𝖿 (𝑛𝑜𝑡𝑒, 𝑇1, 𝑝𝑘𝑐𝑟𝑠) to obtain (𝜋, (𝑁, 𝑟𝑜𝑜𝑡))
(e) 𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖪𝖾𝗒(𝑡, 𝑝𝑘) to generate 𝑒𝑛𝑐.

3. 𝐶 sends (𝐶,𝑁, 𝜋, 𝑝𝑘, 𝑡, 𝑒𝑛𝑐) to 𝐴.
4. 𝐴 outputs 𝑦.

wins if 𝑦 = 𝐾.𝐷𝑒𝑐𝑎𝑝(𝑒𝑛𝑐, 𝑠𝑘).
We define 𝐴’s advantage in breaking Confidentiality as

𝐴𝑑𝑣𝐶𝑜𝑛𝑓
𝐴 (𝜆, 𝑡) =

|

|

|

|

Pr[𝐴 𝑤𝑖𝑛𝑠 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒 − 1
2𝑡
]
|

|

|

|

. (4)

Definition 5.3. The scheme provides Confidentiality if for all efficient
adversary 𝐴, 𝐴𝑑𝑣𝐶𝑜𝑛𝑓

𝐴 (𝜆, 𝑡) is negligible.

heorem 3. If the hash function H is a one-way function, the zk-SNARK
cheme satisfies the Zero-Knowledge property and the Key Encapsulation
echanism is a one-way trapdoor function scheme, the proposed system
rovides Confidentiality.

roof. We create a series of games from Game0 to Game3.

• Game0 is a real game where the adversary, 𝐴, tries breaking
Confidentiality in real attack scenarios.

• Game1 is the same as Game0, but the hash function 𝐻 is replaced
by a random oracle. Since 𝐻 is preimage-resistant, Game1 is
indistinguishable from Game0. This means that 𝐴 cannot obtain
𝑠𝑘 from 𝑁 or 𝐶.

• Game2 is the same as Game1, but 𝜋 is changed to a simu-
lated 𝜋′ instead of being generated by a real 𝑤. Due to the
Zero-Knowledge property of the zk-SNARK, 𝜋 and 𝜋′ are indis-
tinguishable and the probability of 𝐴 winning Game2 is the same
as winning Game1. Since 𝜋′ was not generated by a real 𝑤, it is
impossible to obtain 𝑠𝑘 from 𝜋′. Thus, none of the values received
by 𝐴 reveal anything about 𝑠𝑘.

• Game3 is the same as Game2, but the Key Encapsulation Method’
𝖤𝗇𝖼𝖺𝗉 function is replaced by a random oracle. Since in Game2 𝐴
does not know the trapdoor 𝑠𝑘, Game3 is indistinguishable from
8

Game2.
In Game3, the value 𝑒𝑛𝑐 received by 𝐴 is random and not related
to the QRNG-generated key 𝑦. Since Game3 is indistinguishable from
Game0, the proposed system meets the Confidentiality requirement. □

6. Implementation

We provide an implementation of our protocol to demonstrate its
applicability. We represent a real use case in which the QRNG keys
are transmitted through NFC to the User’s mobile device, such that
these keys could be used to securely encrypt the User’s information
inside their phone. Our implementation is composed of the following
elements:

• Three Java programmes representing the User, Authentication
Server and Proof Validation Server. Both servers are located in the
same machine, and have local access to their shared files. The AS
is a REST API implemented with Spring Boot. Since the servers do
not need to keep any information private, the AS allows Users to
request any of its data structures: Merkle Tree, Nullifier List and
the list of old Merkle Roots.

• A library tasked with the implementation of the zk-SNARK
scheme, including circuit definition and proof generation and
validation.

• A QRNG device for the generation of the key material.
• An NFC tunnel for the communication between the User and the

PVS. To this end, we have implemented an Android App that
employs the User code and acts as an NFC Smart Card. The PVS
has access to an ACR 122U USB NFC Reader to receive requests
from Users.

6.1. zk-SNARKs

All operations related to zk-SNARK generation and validation in this
work have been implemented with two different libraries: libsnark [30]
and the ZoKrates toolbox [31], which will be referred as zk-SNARK
backends. Both of these libraries require defining the statements that
the zk-SNARK should prove, which in this protocol correspond to the
statements that were specified in Section 4.

Both zk-SNARK backends require a similar process for the defini-
tion of the zk-SNARK scheme. First, the relation 𝑅 (in this case, the
relation shown in Eq. (1)) must be codified in the zk-SNARK backend’s
specific language. Then, this code is compiled and an arithmetic circuit
representing the calculation is generated. For both zk-SNARK backends,
Users can interact with the compiled programme through the command
line. Once compiled, the Common Reference String (CRS) can be gen-
erated from the arithmetic circuit. The CRS is composed of the Proving
Key and the Verification Key. To execute 𝖵𝖾𝗋𝗂𝖿𝗒, Users must provide
both the Statement 𝑥 = (𝑟𝑜𝑜𝑡,𝑁) and the Witness 𝑤 = (𝜌, 𝑝𝑘, 𝑠𝑘, 𝐶, 𝑖𝐶 ,
𝑉 𝑎𝑙). To 𝖵𝖾𝗋𝗂𝖿𝗒 a proof 𝜋, only the Statement is required.

We have chosen Groth16 [23] as the zk-SNARK scheme, since
it achieves the fastest proof generation and validation times [24].
Moreover, it satisfies all properties mentioned in Section 3.1 [32]. We
remark that the proposed protocol only requires the notion of Weak
Simulation-Extractability to provide Unforgeability.

Since both zk-SNARK backends require knowing the number of pa-
rameters in compilation time, the Commitment Merkle Tree must be of
fixed depth, limiting the maximum number of possible Commitments.
The impact of this restriction will be studied in Section 7.1.

6.2. QRNG

For this work, two different QRNGs have been employed:

• IDQuantique’s ‘‘Quantis QNRG USB’’ : This device is accessible
via an USB interface, and its manufacturers provide an API for
multiple programming languages. Its key generation rate is about
4 Mb/s.



Computer Networks 242 (2024) 110259D. Soler et al.
Fig. 3. Sequence diagram of the NFC tunnel.

• Centro de Supercomputación de Galicia’s (CESGA) QRNG module:
This supercomputer has a native QRNG infrastructure that can
generate keys at 400 Mb/s. A remote SSH connection is required
to gain access to this high-rate source, which introduces an over-
head for establishing the connection and transmitting the key
material.

6.3. NFC tunnel

Near Field Communication (NFC) [33–36] is a technology that al-
lows wireless communication between two physically adjacent devices:
an active Reader (which must always initiate the communication) and a
passive Smart Card (which can only respond to the Reader’s messages).
NFC messages are encapsulated in Application Protocol Data Units
(APDUs).

NFC is considered more secure than other wireless communication
technologies such as Bluetooth because of its very small area of trans-
mission (which prevents eavesdroppers from capturing APDUs) and its
fast setup phase. Most mobile devices currently support NFC, with the
capability of simulating a Smart Card and dynamically creating APDUs
to respond to NFC readers. This makes NFC a very comfortable way
to distribute key material to users, as it can be stored in their mobile
device.

In our implementation, all communication between Users and the
PVS in Step 3 is performed through NFC. The PVS’ NFC reader interacts
with 𝑈 ’s mobile device, which contains an App that can execute our
protocol. Since the reader must always initiate the communication, an
specific scheme is required for transmitting the zk-SNARK proof from
the User to the PVS, which is shown in 3.

The PVS must first make sure that 𝑈 ’s mobile device contains
9

the corresponding App. If correct, the PVS asks for the length of the
Table 3
Parameters of the simulation environment.

Parameter Value

Operating system Windows 10
CPU Intel Core i7-10700
Clock speed 2.90 GHz
Memory 32 GB

zk-SNARK tool ZoKrates 0.8.3; libsnark
zk-SNARK scheme Groth16
Programming language Java 17 (User, AS, PVS); ZoKrates, C++ (zk-SNARKs)
Hash function SHA-256
KEM RSA-OAEP

message to be sent, and then performs as many requests as needed to
receive the complete proof. The proof will be divided into segments
to account for the small size of APDUs, which is usually limited to
255 bytes. The PVS then checks if the proof is valid and sends the
QRNG if correct or an error otherwise. Finally, the PVS sends an ‘‘End
Transmission’’ message to signal that both agents can free the employed
resources.

7. Experimental results

In this Section we analyse the performance of the implementation
introduced in the previous Section. All of the following tests have been
executed in a simulation environment, whose properties are shown in
Table 3.

7.1. Proof generation

We will measure how proof generation time is influenced by the
depth of the Merkle Tree. This value determines the maximum amount
of Commitments it can store. However, increasing this value also
increases the amount of hashes during the execution of 𝖬.𝖨𝗌𝖫𝖾𝖺𝖿𝖮𝖿𝖳𝗋𝖾𝖾.
As mentioned in Section 5, the efficiency of proof generation is heavily
dependent on the number of constraints of the arithmetic circuit. The
function 𝖬.𝖨𝗌𝖫𝖾𝖺𝖿𝖮𝖿𝖳𝗋𝖾𝖾 is part of the relation 𝑅 shown in Eq. (1), so
increasing the depth of the Merkle Tree will negatively impact the proof
generation time.

Fig. 4 shows the influence of the Merkle Tree depth proof generation
time. Validation time has been omitted as it remained constant around
30 ms. The influence of the Merkle Tree depth has been tested for both
zk-SNARK backends, of which libsnark achieves lower proof generation
times. ZoKrates starts performing noticeably worse when Merkle Tree
depth becomes 19 or higher. While Tree size (i.e., the amount of
Commitments that can be stored) increases exponentially with depth,
proof generation time increases only linearly.

7.2. Key transmission

The Key Request Step can be divided into four different actions:
transmission of the zk-SNARK proof from 𝑈 to the PVS, proof vali-
dation, QRNG key generation and the transmission of the QRNG key
from the PVS to 𝑈 . Since proof size and validation time are constant
according to the definition of zk-SNARKs, only QRNG key generation
and transmission are variable.

We measured the total duration of the Key Request Step for differ-
ent requested key sizes. Results are shown in Fig. 5: when key sizes
are small, most of the time is spent transmitting the zk-SNARK and
performing validation. As keys grow in size, key transmission becomes
an important factor, as NFC has a relatively small transmission rate.
When requesting keys of 4096 bytes in size, around 60 per cent of time
is spent on transmitting the QRNG key over NFC.

Key generation time is also influenced by requested key size. Quan-
tis’ QRNG and CESGA’s QRNG are compared in Fig. 6. CESGA’s time has
been divided into two categories: ‘‘Generation’’ and ‘‘SSH’’. The latter



Computer Networks 242 (2024) 110259

10

D. Soler et al.

Fig. 4. Proof generation times for different Merkle Tree depths.

Fig. 5. Key Request Step time, with QRNG key transmission being also shown for comparison.

Fig. 6. Key generation time for both QRNGs.



Computer Networks 242 (2024) 110259D. Soler et al.
corresponds to the time spent in establishing a remote connection with
the QRNG and transmitting the generated key material back to the PVS.

For small key sizes, Quantis performs better than CESGA, because
most of CESGA’s time is spent in establishing a remote SSH connec-
tion. CESGA’s higher key generation rate becomes noticeable when
requested key size increases, and SSH tunnel establishing time becomes
less relevant. SSH time also includes transmitting the key from CESGA’s
QRNG to the PVS, so it starts to increase when requesting large amounts
of key material.

We remark that zk-SNARK proof generation, which represents the
most expensive computational workload of our protocol, is performed
offline by the Users and thus can be executed by any number of them
at the same time. The AS and PVS can handle a large amount of
concurrent Users: as shown in Figs. 5 and 6, the time costs of the
Authentication and Key Request Steps are negligible compared to that
of the Proof Generation Step.

8. Conclusion and future work

This work has presented a privacy-preserving key transmission pro-
tocol for QRNG-generated cryptographic material, in which zk-SNARKs
are employed to ensure that the server is oblivious of the authenticated
Users requesting each key. Consequently, users do not have to trust
the servers to obtain secure keys. The protocol could be employed
to provide high-entropy key material to end users, which they could
plug into their communications protocol stack or their applications,
but we emphasise that the protocol is totally agnostic of the source
used to generate the keys. For instance, we can envision our solution
as a component in a QKD metropolitan network. In this architecture,
a predefined number of nodes are connected through QKD channels
such that any pair of points can securely establish a shared secret be-
tween them. Since access to these QKD nodes could be very restricted,
and effectively only available for high-security entities or application
domains, the QKD keys would have to be distributed outside the
quantum-enabled domain in an anonymous and protected form to
extend the reach of QKD. To that end, an algorithmic solution like the
one proposed in this paper can be useful.

We provide formal security proofs to the properties of Anonymity,
Unforgeability and Confidentiality. Thus, we have proven that perform-
ing the Key Request Step does not reveal any information about which
credentials were used in the Authentication Step, it is not possible to
create a valid proof without first performing the Authentication Step,
and only the User that performed the Key Request Step can access the
QRNG key. Our implementation of the proposed protocol demonstrates
its applicability to a real use case, in which the QRNG-generated
keys are directly deployed to the Users’ mobile phone through NFC
using a custom method for transmitting arbitrary data encapsulated in
APDUs We have implemented the zk-SNARK generation and validation
operations with two different libraries and measure their performance
under different circumstances. We plan to further develop our proof-
of-concept Android Application to provide real functionality for the
QRNG-generated key material.

CRediT authorship contribution statement

David Soler: Conceptualization, Formal analysis, Investigation, Soft-
ware, Writing – original draft. Carlos Dafonte: Conceptualization,
Supervision, Writing – review & editing. Manuel Fernández-Veiga:
Conceptualization, Supervision, Writing – review & editing. Ana Fer-
nández Vilas: Conceptualization, Supervision, Writing – review &
editing. Francisco J. Nóvoa: Conceptualization, Supervision, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
11
Data availability

No data was used for the research described in the article.

Acknowledgements

The work is funded by the Plan Complementario de Comunicaciones
Cuánticas, Spanish Ministry of Science and Innovation(MICINN), Plan
de Recuperación NextGeneration, European Union (PRTR-C17.I1, CITIC
Ref. [305].2022), and Regional Government of Galicia (Agencia Gallega
de Innovación, GAIN, CITIC Ref. [306].2022) D.S. acknowledges sup-
port from Xunta de Galicia and the European Union (European Social
Fund - ESF) scholarship [ED481A-2023-219].

This work is part of the project TED2021-130369B-C31 and
TED2021-130492B-C21 funded by MCIN/AEI/
10.13039/501100011033 and by ‘‘ERDF A way of making Europe’’.

This work has been developed thanks to the access granted by the
Centro de Supercomputación de Galicia to the infrastructure based in
quantum technologies. This infrastructure was financed by the Euro-
pean Union, through the FONDO EUROPEO DE DESENVOLVEMENTO
REXIONAL (FEDER), as part of the Union’s response to the COVID-19
pandemic.

References

[1] K. Bhattacharjee, S. Das, A search for good pseudo-random number generators:
Survey and empirical studies, Comput. Sci. Rev. 45 (C) (2022) http://dx.doi.org/
10.1016/j.cosrev.2022.100471.

[2] A. Saini, A. Tsokanos, R. Kirner, Quantum randomness in cryptography—a survey
of cryptosystems, RNG-based ciphers, and QRNGs, Information 13 (8) (2022)
358, http://dx.doi.org/10.3390/info13080358.

[3] N. Heninger, Z. Durumeric, E. Wustrow, J. Halderman, Mining your Ps and Qs:
detection of widespread weak keys in network devices, in: 21st USENIX Security
Symposium (USENIX Security 12), 2012, pp. 35–35.

[4] D. Antonioli, N.O. Tippenhauer, K.B. Rasmussen, The KNOB is broken: Exploiting
low entropy in the encryption key negotiation of bluetooth BR/EDR, in: 28th
USENIX Security Symp. (USENIX Security 19), Santa Clara, CA, 2019, pp.
1047–1061.

[5] D. Kaplan, S. Kedmi, R. Hay, A. Dayan, Attacking the Linux PRNG on android:
Weaknesses in seeding of entropic pools and low boot-time entropy, in: Proc. of
the 8th USENIX Conference on Offensive Technologies, WOOT’14, USA, 2014,
p. 14.

[6] D. Hurley-Smith, J. Hernandez-Castro, Quantum leap and crash: Searching and
finding bias in quantum random number generators, ACM Trans. Priv. Secur. 23
(3) (2020) 1–25, http://dx.doi.org/10.1145/3398726.

[7] M. Stipčević, Quantum random number generators and their use in cryptography,
in: 2011 Proceedings of the 34th International Convention MIPRO, 2011, pp.
1474–1479.

[8] M.M. Jacak, P. Jóźwiak, J. Niemczuk, J.E. Jacak, Quantum generators of random
numbers, Sci. Rep. 11 (1) (2021) 16108, http://dx.doi.org/10.1038/s41598-021-
95388-7.

[9] A. Vassilev, R. Staples, Entropy as a service: Unlocking cryptography’s full
potential, Computer 49 (9) (2016) 98–102, http://dx.doi.org/10.1109/MC.2016.
275.

[10] A. Kavousi, Z. Wang, P. Jovanovic, Sok: Public Randomness, Paper 2023/1121,
Cryptology ePrint Archive, 2023, URL https://eprint.iacr.org/2023/1121.

[11] M. Raikwar, D. Gligoroski, Sok: Decentralized randomness beacon protocols, in:
Australasian Conference on Information Security and Privacy, Springer, 2022,
pp. 420–446.

[12] M. Haahr, Random. Org: True Random Number Service, School of Computer
Science and Statistics, Trinity College, Dublin, Ireland, 2010, Website (http:
//www.random.org). Accessed 10 (2010).

[13] M. Agal, K.P. Kishan, R. Shashidhar, S.S. Vantmuri, P. Honnavalli, Non-
interactive zero-knowledge proof based authentication, in: 2021 IEEE Mysore
Sub Section International Conference (MysuruCon), 2021, pp. 837–843, http:
//dx.doi.org/10.1109/MysuruCon52639.2021.9641514.

[14] F. Martín-Fernández, P. Caballero-Gil, C. Caballero-Gil, Authentication based on
non-interactive zero-knowledge proofs for the internet of things, Sensors 16 (1)
(2016) http://dx.doi.org/10.3390/s16010075.

[15] M. Walshe, G. Epiphaniou, H. Al-Khateeb, M. Hammoudeh, V. Katos, A. De-
hghantanha, Non-interactive zero knowledge proofs for the authentication of IoT
devices in reduced connectivity environments, Ad Hoc Netw. 95 (2019) 101988,
http://dx.doi.org/10.1016/j.adhoc.2019.101988.

[16] S. Liu, L. Chen, H. Yu, S. Gao, H. Fang, BP-AKAA: Blockchain-enforced privacy-
preserving authentication and key agreement and access control for iiot, J. Inf.
Secur. Appl. 73 (2023) 103443, http://dx.doi.org/10.1016/j.jisa.2023.103443.

http://dx.doi.org/10.1016/j.cosrev.2022.100471
http://dx.doi.org/10.1016/j.cosrev.2022.100471
http://dx.doi.org/10.1016/j.cosrev.2022.100471
http://dx.doi.org/10.3390/info13080358
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb5
http://dx.doi.org/10.1145/3398726
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb7
http://dx.doi.org/10.1038/s41598-021-95388-7
http://dx.doi.org/10.1038/s41598-021-95388-7
http://dx.doi.org/10.1038/s41598-021-95388-7
http://dx.doi.org/10.1109/MC.2016.275
http://dx.doi.org/10.1109/MC.2016.275
http://dx.doi.org/10.1109/MC.2016.275
https://eprint.iacr.org/2023/1121
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb11
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb11
http://www.random.org
http://www.random.org
http://www.random.org
http://dx.doi.org/10.1109/MysuruCon52639.2021.9641514
http://dx.doi.org/10.1109/MysuruCon52639.2021.9641514
http://dx.doi.org/10.1109/MysuruCon52639.2021.9641514
http://dx.doi.org/10.3390/s16010075
http://dx.doi.org/10.1016/j.adhoc.2019.101988
http://dx.doi.org/10.1016/j.jisa.2023.103443


Computer Networks 242 (2024) 110259D. Soler et al.
[17] H. An, J. Chen, Elearnchain: A privacy-preserving consortium blockchain system
for e-learning educational records, J. Inf. Secur. Appl. 63 (2021) 103013, http:
//dx.doi.org/10.1016/j.jisa.2021.103013.

[18] D.A. Luong, J.H. Park, Privacy-preserving blockchain-based healthcare system for
iot devices using zk-snark, IEEE Access 10 (2022) 55739–55752, http://dx.doi.
org/10.1109/ACCESS.2022.3177211.

[19] J. Lee, J.Y. Hwang, J. Choi, H. Oh, J. Kim, Sims : Self sovereign identity
management system with preserving privacy in blockchain, iacr cryptol, ePrint
Arch. 2019 (2019) 1241.

[20] P. Li, J. Lai, Y. Wu, Event-oriented linkable and traceable anonymous authen-
tication and its application to voting, J. Inf. Secur. Appl. 60 (2021) 102865,
http://dx.doi.org/10.1016/j.jisa.2021.102865.

[21] D. Hopwood, S. Bowe, T. Hornby, N. Wilcox, Zcash Protocol Specification, vol.
4, GitHub, San Francisco, CA, USA, 2016, p. 220.

[22] H. Ko, I. Lee, S. Lee, J. Kim, H. Oh, Efficient Verifiable Image Redacting
Based on Zk-Snarks, Paper 2020/1579, Cryptology ePrint Archive, 2020, http:
//dx.doi.org/10.1145/3433210.3453110.

[23] J. Groth, On the size of pairing-based non-interactive arguments, in: M. Fischlin,
J.-S. Coron (Eds.), Advances in Cryptology – EUROCRYPT 2016, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016, pp. 305–326.

[24] K. Baghery, Z. Pindado, C. Ràfols, Simulation extractable versions of groth’s zk-
snark revisited, in: S. Krenn, H. Shulman, S. Vaudenay (Eds.), Cryptology and
Network Security, 2020, pp. 453–461.

[25] R.C. Merkle, A digital signature based on a conventional encryption function,
in: C. Pomerance (Ed.), Advances in Cryptology — CRYPTO ’87, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1988, pp. 369–378.

[26] C. Coronado, On the security and the efficiency of the Merkle signature scheme,
IACR cryptol, ePrint Arch. 2005 (2005) 192.

[27] M. Campagna, A. Petcher, Security of Hybrid Key Encapsulation, Paper
2020/1364, Cryptology ePrint Archive, 2020.

[28] R. Barnes, K. Bhargavan, B. Lipp, C. Wood, Hybrid public key encryption, RFC
9180, RFC editor, 2022.

[29] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, D. Riepel, Analysing the Hpke
Standard, Paper 2020/1499, Cryptology ePrint Archive, 2020, http://dx.doi.org/
10.1007/978-3-030-77870-5_4.
12
[30] S. Lab, Libsnark: a C++ library for zk-SNARK proofs, 2020, https://github.com/
scipr-lab/libsnark.

[31] J. Eberhardt, S. Tai, Zokrates - scalable privacy-preserving off-chain computa-
tions, in: 2018 IEEE International Conference on Internet of Things (IThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
2018, pp. 1084–1091, http://dx.doi.org/10.1109/Cybermatics_2018.2018.00199.

[32] K. Baghery, M. Kohlweiss, J. Siim, M. Volkhov, Another Look At Extraction and
Randomization of Groth’s Zk-Snark, Paper 2020/811, Cryptology ePrint Archive,
2020.

[33] V. Coskun, B. Ozdenizci Kose, K. Ok, A survey on near field communication
(NFC) technology, Wirel. Pers. Commun. 71 (2013) http://dx.doi.org/10.1007/
s11277-012-0935-5.

[34] E. Haselsteiner, K. Breitfuss, Security in Near Field Communication (NFC),
Workshop on RFID Security, 2006.

[35] G. Madlmayr, J. Langer, C. Kantner, J. Scharinger, NFC devices: Security and
privacy, in: 2008 Third International Conference on Availability, Reliability and
Security, 2008, pp. 642–647, http://dx.doi.org/10.1109/ARES.2008.105.

[36] M.M. Mahinderjit Singh, K. Adzman, R. Hassan, Near field communication (NFC)
technology security vulnerabilities and countermeasures, Int. J. Eng. Technol. 7
(2018) 298–305, http://dx.doi.org/10.14419/ijet.v7i4.31.23384.

David Soler received his B.S degree in Computer Engineer-
ing in University of Santiago de Compostela, Galicia, Spain
and his M.S degree in Cybersecurity in University of A
Coruna in 2021 and 2023, respectively. He is currently a
Ph.D student in University of A Coruna. His main interests
include cybersecurity, applied cryptography, and network
communications.

http://dx.doi.org/10.1016/j.jisa.2021.103013
http://dx.doi.org/10.1016/j.jisa.2021.103013
http://dx.doi.org/10.1016/j.jisa.2021.103013
http://dx.doi.org/10.1109/ACCESS.2022.3177211
http://dx.doi.org/10.1109/ACCESS.2022.3177211
http://dx.doi.org/10.1109/ACCESS.2022.3177211
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb19
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb19
http://dx.doi.org/10.1016/j.jisa.2021.102865
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb21
http://dx.doi.org/10.1145/3433210.3453110
http://dx.doi.org/10.1145/3433210.3453110
http://dx.doi.org/10.1145/3433210.3453110
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb24
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb25
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb26
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb27
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb28
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb28
http://dx.doi.org/10.1007/978-3-030-77870-5_4
http://dx.doi.org/10.1007/978-3-030-77870-5_4
http://dx.doi.org/10.1007/978-3-030-77870-5_4
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00199
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb32
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb32
http://dx.doi.org/10.1007/s11277-012-0935-5
http://dx.doi.org/10.1007/s11277-012-0935-5
http://dx.doi.org/10.1007/s11277-012-0935-5
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb34
http://refhub.elsevier.com/S1389-1286(24)00091-4/sb34
http://dx.doi.org/10.1109/ARES.2008.105
http://dx.doi.org/10.14419/ijet.v7i4.31.23384

	A privacy-preserving key transmission protocol to distribute QRNG keys using zk-SNARKs
	Introduction
	Related Work
	Background
	zk-SNARKs
	Merkle Tree
	Key Encapsulation Mechanism

	Privacy-Preserving Key Transmission Protocol
	Outline
	Architecture
	Protocol Definition

	Security
	Anonymity
	Unforgeability
	Confidentiality

	Implementation
	zk-SNARKs
	QRNG
	NFC Tunnel

	Experimental results
	Proof Generation
	Key Transmission

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


