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Abstract

A unifying formulation for nonlinear solid mechanics and Finite Element
Analysis

The finite element method is a well-known technology that allows to obtain an
approximation to the real structural behaviour of a continuum solid media subjected
to external forces. Its use is widely extended in civil engineering and many other fields,
such as naval or aerospace engineering.

This formulation can be derived under the linear or the nonlinear analysis frame-
work. If the displacements and their corresponding gradients are assumed to be small,
the analysis is considerably simplified, and it turns out to be carried out under the as-
sumptions of the linear theory. However, if the displacements and/or the displacement
gradients become large, the nonlinear analysis arises.

As both analyses are based on different assumptions, they lead to completely dif-
ferent structural responses. And the accuracy of the results depends on the precision
of the assumptions made. That is, if the structure does not experiment small displace-
ments or small displacement gradients, the linear analysis leads to unacceptable results
that significantly differ from the real behaviour.

Before running a structural simulation, the engineer has to decide, based on its
experience and intuition, if the linear assumptions are correct. If the real structural
response does not verify the linear assumptions, the linear analysis must be discarded
and a nonlinear one should be carried out in order to obtain accurate results.

Therefore, the assumptions made about the magnitude of both the displacements
and the displacement gradients are quite important, since they define the theoretical
framework of the structural analysis. The implications of each assumption have to
be clearly defined. Most references in the existing literature do not clearly identify
the implications of these assumptions. Therefore, one of the main aims of this work
is to clearly identify them and to properly define both the linear and the nonlinear
mathematical models that governs the structural behaviour according to each analysis.

To accomplish this goal, a unifying formulation of both the linear and nonlinear solid
mechanics complete and detailed is proposed. This formulation allows to completely
describe and understand the deformation that an elastic solid experiments over time. A
novel, simple, and clear nomenclature is proposed, in order to properly state the solid



mechanics principles and the strictly necessary equations that describe this deformation
process.

Once the mathematical models are well-posed, the finite element method can be
applied. A complete original derivation in both linear and nonlinear theory is presented.
The linear one is also performed in order to compare this well-known derivation with
the nonlinear version.

One of the main differences between both formulations lies in the application of the
external forces. In general, the linear formulation leads to a linear behaviour, whereas
the nonlinear one drives to a nonlinear one. As long as the response is linear, the
total load can be applied in only one step, and the load superposition principle usually
applied in linear theory holds. However, this principles can no longer be applied when
dealing with a nonlinear behaviour. If the response is nonlinear, a given load state has
multiple possible solutions. Therefore, the total load can not be applied in only one
step, and the load history has to be taken into account to reach the correct solution.
To overcome these inconveniences, the external loads are usually applied according to
an incremental loading process.

This incremental strategy is actually a suitable procedure, since the structural re-
sponse corresponding to each load step has to be solved iteratively. This procedure
needs to start iterating from a close approximation to the solution. If the incremental
loads are small enough, the result of the previous load step can be adopted to start the
iterative procedure, and the convergence should be guaranteed.

Many reference textbooks and research papers address the derivation of the nonlin-
ear finite element formulations. Nevertheless, there is no consensus about a common
nomenclature and notation. Moreover, the hypotheses made along these derivations
are no clearly specified or are not even stated. Therefore, to completely comprehend
the underlying physics and the essence of the proposed algorithms, a detailed overview
which clarifies this knowledge becomes necessary.

In this thesis, a great effort is made to clearly identify the intermediate hypothe-
ses, and extensively analyse the origin and composition of the matrices that arise in
nonlinear analysis. A detailed guideline that facilitates the deep comprehension of this
powerful technology is proposed. This work states a unifying, clear and complete for-
mulation for the nonlinear analysis field, so the extension of some research lines that
have been carried out in linear theory until now becomes possible.



Resumen

Una formulación unificadora para la mecánica de sólidos no lineal y el análi-
sis por el Método de los Elementos Finitos

El método de los elementos finitos es una tecnoloǵıa bien conocida que permite
obtener una aproximación al comportamiento estructural real de un medio sólido con-
tinuo sometido a fuerzas externas. Su uso está ampliamente extendido en ingenieŕıa
civil y en muchos otros campos, como la ingenieŕıa naval o la aeronáutica.

Esta formulación puede obtenerse bajo el marco de los análisis lineal o no lineal.
Si se supone que los desplazamientos y sus correspondientes gradientes son pequeños,
el análisis se simplifica considerablemente, y resulta realizarse bajo los supuestos de la
teoŕıa lineal. Sin embargo, si los desplazamientos y/o los gradientes de los desplaza-
mientos se consideran grandes, surge el análisis no lineal.

Como ambos análisis se basan en supuestos diferentes, conducen a respuestas es-
tructurales completamente distintas. Y la exactitud de los resultados depende de la
precisión de las hipótesis realizadas. Es decir, si la estructura no experimenta pequeños
desplazamientos o pequeños gradientes de desplazamiento, el análisis lineal conduce a
resultados inaceptables que difieren significativamente del comportamiento real.

Antes de llevar a cabo una simulación estructural, el ingeniero tiene que decidir,
basándose en su experiencia e intuición, si los supuestos lineales son correctos. Si la
respuesta estructural real no verifica las hipótesis lineales, hay que descartar el análisis
lineal y realizar uno no lineal para obtener resultados precisos.

Por lo tanto, las hipótesis adoptadas acerca de la magnitud tanto de los desplaza-
mientos como de los gradientes de los desplazamientos son muy importantes, ya que
definen el marco teórico del análisis estructural. Es necesario definir claramente las
implicaciones de cada supuesto. En la literatura existente, la mayoŕıa de las referen-
cias no identifica claramente las implicaciones de estos supuestos. Por lo tanto, uno de
los principales objetivos de este trabajo es identificarlas claramente y definir adecua-
damente los modelos matemáticos lineales y no lineales que rigen el comportamiento
estructural asociado a cada análisis.

Para lograr este objetivo, se propone una formulación unificadora de la mecánica
de sólidos lineal y no lineal completa y detallada. Esta formulación permite describir
y comprender completamente la deformación que experimenta un sólido elástico a lo
largo del tiempo. Se propone una nomenclatura novedosa, sencilla y clara para enunciar



adecuadamente los principios de la mecánica de sólidos y las ecuaciones estrictamente
necesarias que describen este proceso de deformación.

Una vez que los modelos matemáticos están bien planteados, se puede aplicar el
método de los elementos finitos. Se presenta una obtención original completa tanto en
teoŕıa lineal como no lineal. Se presenta también el desarrollo lineal para compararlo
con su versión no lineal.

Una de las principales diferencias entre ambas formulaciones radica en la forma de
aplicar las fuerzas externas. En general, la formulación lineal conduce a un comporta-
miento lineal, mientras que la no lineal conduce a uno no lineal. Mientras la respuesta
sea lineal, la carga total puede aplicarse en un solo paso, y el principio de superposición
de cargas de la teoŕıa lineal puede aplicarse adecuadamente. Sin embargo, este principio
ya no se puede aplicar cuando se trata con un comportamiento no lineal. Si la respuesta
es no lineal, un estado de carga dado tiene múltiples soluciones posibles. Por lo tanto, la
carga total no puede aplicarse en un solo paso, y hay que tener en cuenta el historial de
carga para obtener la solución correcta. Para solventar estos inconvenientes, las cargas
externas suelen aplicarse según un proceso de carga incremental.

Esta estrategia incremental es en realidad un procedimiento adecuado, ya que la
respuesta estructural correspondiente a cada paso de carga debe resolverse de forma
iterativa. Este procedimiento necesita empezar a iterar desde una aproximación cercana
a la solución. Si las cargas incrementales son lo suficientemente pequeñas, el resultado
del paso de carga anterior puede adoptarse para iniciar el procedimiento iterativo, y la
convergencia debeŕıa estar garantizada.

Numerosos libros de texto de referencia y trabajos de investigación abordan la ob-
tención de las formulaciones de elementos finitos no lineales. Sin embargo, no existe
consenso sobre una nomenclatura y notación comunes. Además, las hipótesis formula-
das a lo largo de estos desarrollos no se especifican claramente o ni siquiera se enuncian.
Por lo tanto, para comprender completamente la f́ısica subyacente y la esencia de los
algoritmos propuestos, se hace necesaria una visión más detallada que lo aclare.

En esta tesis se hace un gran esfuerzo por identificar claramente las hipótesis inter-
medias y analizar ampliamente el origen y la composición de las matrices que surgen en
el análisis no lineal. Se elabora una gúıa detallada que facilita el aprendizaje profundo
de esta potente tecnoloǵıa. Este trabajo plantea una formulación unificadora, clara y
completa en el campo del análisis no lineal, para que la extensión de algunas ĺıneas de
investigación que hasta ahora se han llevado a cabo en teoŕıa lineal sea posible.



Resumo

Unha formulación unificadora para a mecánica de sólidos non lineal e a
análise polo Método dos Elementos Finitos

O método dos elementos finitos é unha tecnolox́ıa ben coñecida que permite obter
unha aproximación ao comportamento estrutural real dun medio sólido continuo so-
metido a forzas externas. O seu uso está amplamente estendido en enxeñeŕıa civil e en
moitos outros campos, como a enxeñeŕıa naval ou a aeronáutica.

Esta formulación pode baixo o marco das análises lineal ou non lineal. Se se supón
que os desprazamentos e os seus correspondentes gradientes son pequenos, a análise
simplif́ıcase considerablemente, e resulta realizarse baixo os supostos da teoŕıa lineal.
Con todo, se os desprazamentos e/o os gradientes dos desprazamentos se consideran
grandes, xorde a análise non lineal.

Como as dúas análises baséanse en supostos diferentes, conducen a respostas es-
truturais completamente distintas. E a exactitude dos resultados depende da precisión
das hipóteses realizadas. É dicir, se a estrutura non experimenta pequenos despraza-
mentos ou pequenos gradientes de desprazamento, a análise lineal conduce a resultados
inaceptables que difiren de forma significativa do comportamento real.

Antes de levar a cabo unha simulación estrutural, o enxeñeiro ten que decidir,
baseándose na súa experiencia e intuición, se os supostos lineais son correctos. Se a
resposta estrutural real non verifica as hipóteses lineais, hai que descartar a análise
lineal e realizar unha non lineal para obter resultados precisos.

Por tanto, as hipóteses adoptadas acerca da magnitude tanto dos desprazamentos
como dos gradientes dos desprazamentos son moi importantes, xa que definen o marco
teórico da análise estrutural. É necesario definir claramente as implicacións de cada
suposto. Na literatura existente, a maioŕıa das referencias non identifica claramente
as implicacións destes supostos. Por tanto, un dos principais obxectivos deste traballo
é identificalas claramente e definir adecuadamente os modelos matemáticos lineais e
non lineais que rexen o comportamento estrutural asociado a cada análise.

Para lograr este obxectivo, proponse unha formulación unificadora da mecánica de
sólidos lineal e non lineal completa e detallada. Esta formulación permite describir e
comprender completamente a deformación que experimenta un sólido elástico ao longo
do tempo. Proponse unha nomenclatura nova, sinxela e clara para enunciar adecuada-



mente os principios da mecánica de sólidos e as ecuacións estritamente necesarias que
describen este proceso de deformación.

Unha vez que os modelos matemáticos están ben expostos, pódese aplicar o método
dos elementos finitos. Preséntase unha obtención orixinal completa tanto en teoŕıa
lineal como non lineal. Preséntase tamén o caso lineal para comparalo coa versión non
lineal.

Unha das principais diferenzas entre ámbalas formulacións radica na forma de apli-
car as forzas externas. En xeral, a formulación lineal conduce a un comportamento
lineal, mentres que a non lineal conduce a unha resposta non lineal. Mentres a resposta
sexa lineal, a carga total pode aplicarse nun só paso, e mantense o principio de super-
posición de cargas que adoita aplicarse na teoŕıa lineal. Con todo, este principio non
pode aplicarse cando se trata cun comportamento non lineal. Se a resposta é non lineal,
un estado de carga dado ten múltiples solucións posibles. Por tanto, a carga total non
pode aplicarse nun só paso, e hai que ter en conta o historial de carga para chegar á so-
lución correcta. Para superar estes inconvenientes, as cargas externas adoitan aplicarse
segundo un proceso de carga incremental.

Esta estratexia incremental é en realidade un procedemento adecuado, xa que a res-
posta estrutural correspondente a cada paso de carga debe resolverse de forma iterativa.
Este procedemento necesita empezar a iterar desde unha aproximación próxima á solu-
ción. Se as cargas incrementais son o suficientemente pequenas, o resultado do paso de
carga anterior pode adoptarse para iniciar o procedemento iterativo, e a converxencia
debeŕıa estar garantida.

Numerosos libros de texto de referencia e traballos de investigación abordan a ob-
tención das formulacións de elementos finitos non lineais. Con todo, non existe consenso
sobre unha nomenclatura e notación comúns. Ademais, as hipóteses formuladas ao lon-
go destas derivacións non se especifican claramente ou nin sequera se enuncian. Por
tanto, para comprender completamente a f́ısica subxacente e a esencia dos algoritmos
propostos, faise necesaria unha visión detallada que os aclare.

Nesta tese faise un grande esforzo por identificar claramente as hipóteses intermedias
e analizar amplamente a orixe e a composición das matrices que xorden na análise
non lineal. Proponse unha gúıa detallada que facilita a aprendizaxe profunda desta
potente tecnolox́ıa. Este traballo expón unha formulación unificadora, clara e completa
no campo da análise non lineal, para que a extensión dalgunhas liñas de investigación
que ata o de agora se levaron a cabo en teoŕıa lineal sexa posible.
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Chapter 1
Deformation of a solid media

subjected to external forces

1.1. Introduction

Mechanics is the science that studies the behaviour of solids and fluids subjected
to external forces. Computational Mechanics is the discipline of Mechanics that deals
with the use of methods and computational resources to characterize, simulate, and
predict physical phenomena and engineering systems governed by the principles of
Mechanics [Oden et al., 2003].

This work is focused on the analysis of solids subjected to external forces. The
branch of Mechanics which focuses on this particular problem is the so-called Solid
Mechanics. Once the equations that govern the solid behaviour are defined, numerical
and computational methods have to be applied in order to obtain the displacement
field experimented by the solid, as well as its corresponding strain and stress fields.

In this chapter, the study of the motion of a given particle that belongs to the initial
configuration, and the definition of the geometric transformation experimented by a
vector that links two close particles, are proposed. The resulting equations define the
solid motion, as well as the change of volume, orientation, and shape experimented by
the solid due to the application of the external forces. These are the most important
equations to characterize the solid behaviour and establish the basic principles of the
Lagrangian approach.

A novel, clear and simple nomenclature is defined. Furthermore, the strictly nec-
essary magnitudes and equations are proposed in order to reach a nonlinear solid me-
chanics formulation complete and detailed that describes the deformation process.
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Chapter 1. Deformation of a solid media subjected to external forces

1.2. Magnitude description

There are two different options to define magnitudes, depending on the variables
adopted to define them.

On the one hand, they can be defined depending on the reference domain. This is
the so-called Lagrangian description, and it is the description usually adopted in Solid
Mechanics. As the initial configuration is well-known, it is quite straightforward to
refer all magnitudes to the initial configuration.

On the other hand, the deformed configuration can be adopted as the reference one
and magnitudes can be defined depending on this domain. This is an Eulerian point
of view, and this description is usually adopted in Fluid Dynamics. This approach is
not convenient in Solid Mechanics, as the deformed domain an unknown.

1.2.1. Lagrangian description

Let’s consider a specific magnitude ψ, that can be a scalar, vector, or tensor magni-
tude. As mentioned before, the Lagrangian description adopts the initial configuration
as the reference one. Thus, the magnitudes are defined depending on the initial position
vector of each particle (figure 1.1). If the problem is a dynamic one, the magnitudes
also depend on time.

Figure 1.1. Initial position vector of a given particle.

Therefore, the Lagrangian description of a generic magnitude turns out to be:

ψ −→ ψL (r0, t) (1.1)

For instance, let’s consider that the studied magnitude is the displacement field.
Its Lagrangian description defines the displacement vector that experiment each one
of the particles whose initial position is defined by the vector r0, at a specific instant
of time t.

u = uL (r0, t) (1.2)
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1.3. Deformation vector

This is the description usually adopted in Solid Mechanics, since the initial domain
is known. And the main goal is to compute the displacement, strain and stress fields
depending on this reference domain.

1.2.2. Eulerian description

The second option is to describe magnitudes with respect to the deformed configu-
ration. That is, they are defined depending on the vector that defines the position of a
particle at a given instant of time t (figure 1.2). Moreover, they also depend on time,
if a dynamic problem is faced.

Figure 1.2. Position vector of a given particle at a specific instant of time.

Thus, a given magnitude can be defined according to its Eulerian description as:

ψ −→ ψE (r, t) (1.3)

1.3. Deformation vector

The vector that defines the position of a particle at a specific instant of time, whose
initial position is defined by the vector r0, can be defined by the following Lagrangian
function:

r = rL (r0, t) (1.4)

The previous vector is the so-called deformation vector. It can be decomposed as
the sum of the initial position vector, plus the displacement vector that the particle
experiments at time t (figure 1.3).The displacement vector can also be interpreted as
the relative position of a given particle with respect to its reference position.

rL (r0, t) = r0 + uL (r0, t) (1.5)
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Figure 1.3. Initial position, displacement, and deformation vector of a given particle at
a specific instant of time.

The domain occupied by a body at a given instant of time is known as the material
domain. Symbolically, it can be mathematically expressed as the result of applying the
Lagrangian function defined in (1.4) to the whole reference domain.

Ω (t) = rL (Ω0, t) (1.6)

1.4. Velocity vector

The time derivative of the deformation vector (1.4) turns out to be the velocity
vector of the particle that was located at the position defined by r0 at time t = 0.

aL (r0, t) = ∂rL

∂t
(1.7)

Furthermore, if the definition of the deformation vector (1.5) is taken into account,
the velocity vector becomes the time derivative of the displacement vector, since the
initial position vector does not depend on time.

aL (r0, t) = ∂

∂t

(
r0 + uL

)
= ∂uL

∂t
(1.8)

1.5. Deformation gradient tensor

As stated in section 1.3, the deformation vector depends on the initial position
vector of a given particle, as well as on time. Hence, it is possible to compute the
derivative of the deformation vector with respect to the initial position vector. This
derivative is the so-called deformation gradient tensor.

F L = ∂rL

∂r0
(1.9)
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1.6. Displacement gradient tensor

If the definition of the deformation vector (1.5) is taken into account, the deforma-
tion gradient tensor turns out to be the sum of two tensors: the unit tensor and the
derivative of the displacement vector with respect to the reference position vector.

F L = ∂

∂r0

(
r0 + uL

)
= I + ∂uL

∂r0
(1.10)

1.6. Displacement gradient tensor

The second term that composes the deformation gradient tensor (1.10) is the so-
called displacement gradient tensor. As it will be proved later on, this tensor contains
the required information to properly define the displacement, strain, and stress fields
of a continuous solid media subjected to external forces.

JL = ∂uL

∂r0
(1.11)

Consequently, the deformation gradient tensor (1.10), written by means of the dis-
placement gradient tensor, becomes:

F L = I + JL (1.12)

1.7. Time derivative of the deformation gradient tensor

As the deformation gradient tensor (1.9) depends on time, as well as on the reference
domain, its time derivative can be computed.

∂F L

∂t
= ∂

∂t

(
∂rL

∂r0

)
(1.13)

The order of the derivatives can be exchanged, which allows the definition of the
time derivative by means of the velocity vector (1.7).

∂F L

∂t
= ∂

∂r0

(
∂rL

∂t

)
= ∂aL

∂r0
(1.14)

Therefore, it can be concluded that the time derivative of the deformation gradient
tensor is equivalent to the velocity gradient tensor.

1.8. Lagrangian and Eulerian descriptions equivalence

If necessary, the Eulerian description of a given magnitude (1.3) can be switched
to its equivalent Lagrangian one (1.1). The equivalence between both descriptions is
obtained by replacing the deformation vector (1.4) into the Eulerian description of the
corresponding magnitude.

ψL (r0, t) = ψE (r, t)
∣∣∣
r=rL(r0,t)

(1.15)
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1.9. Magnitude derivatives

Once the equivalence between both descriptions (1.15) is outlined, the derivatives
of a given magnitude defined according to its Lagrangian description can be computed.
These derivatives are properly defined by applying the chain rule, as shown in the
following subsections.

1.9.1. Time derivative

If the equivalence between both descriptions (1.15) is taken into account, and the
chain rule is applied, the time derivative of a given magnitude defined according to its
Lagrangian description can be computed as:

∂ψL

∂t
= ∂ψE

∂t

∣∣∣∣
r=rL(r0,t)

+ ∂ψE

∂r

∣∣∣∣
r=rL(r0,t)

∂rL

∂t
(1.16)

In the above equation, the velocity vector (1.7) appears. Thus, it can be rewritten
as:

∂ψL

∂t
= ∂ψE

∂t

∣∣∣∣
r=rL(r0,t)

+ ∂ψE

∂r

∣∣∣∣
r=rL(r0,t)

aL (1.17)

According to equation (1.15), the Lagrangian description of the velocity vector can
be expressed by means of its Eulerian description. Consequently, the above derivative
becomes:

∂ψL

∂t
=
(
∂ψE

∂t
+ ∂ψE

∂r
aE

)∣∣∣∣
r=rL(r0,t)

(1.18)

1.9.2. Derivative with respect to the reference position vector

The derivative of a given magnitude, defined according to its Lagrangian description,
can also be computed with respect to the reference position vector.

∂ψL

∂r0
= ∂ψE

∂r

∣∣∣∣
r=rL(r0,t)

∂rL

∂r0
⇐⇒ ∂ψE

∂r

∣∣∣∣
r=rL(r0,t)

= ∂ψL

∂r0

[
∂rL

∂r0

]−1

(1.19)

The deformation gradient tensor (1.9) appears in the above equation. Hence, it can
be rewritten as:

∂ψL

∂r0
= ∂ψE

∂r

∣∣∣∣
r=rL(r0,t)

F L ⇐⇒ ∂ψE

∂r

∣∣∣∣
r=rL(r0,t)

= ∂ψL

∂r0
F L

−1 (1.20)

As it will be explained later on, the deformation gradient tensor has to be invertible
by definition. Thus, the inverse that appears in (1.20) exists and can be computed.
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1.10. Relative deformation vector

1.10. Relative deformation vector

The relative deformation vector is the vector that links two material points that
belong to the deformed domain at a specific instant of time (figure 1.4). This vector
can be obtained as the difference between the two deformation vectors that define the
position of both particles in the deformed configuration.

δr = rL (r0 + δr0, t) − rL (r0, t) (1.21)

Figure 1.4. Relative deformation vector of a given particle at a specific instant of time.

The main aim is to obtain an equation that defines the relative deformation vector
depending on the vector that links these two particles in the reference configuration.
This objective is attained, if the first term of equation (1.21) is replaced by the following
Taylor series expansion about the vector r0.

rL (r0 + δr0, t) = rL (r0, t) + ∂rL

∂r0
(r0, t) δr0 + O

(
∥δr0∥2

)
(1.22)

The substitution of the above series expansion into (1.21) leads to the equation that
defines the relative deformation vector over time. This equation defines the geometric
transformation that suffers a material vector defined in the reference configuration
along the deformation process.

δr =F L δr0 + O
(
∥δr0∥2

)
F L = ∂rL

∂r0
= I + JL

JL = ∂uL

∂r0

(1.23)

From the result obtained in (1.23), it can be concluded that the displacement gra-
dient tensor (1.11) is the one that contains the information related to the change of
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Chapter 1. Deformation of a solid media subjected to external forces

volume, orientation, and shape of the solid. This information is required to properly
define the displacement, strain, and stress fields of a continuous solid media subjected
to external forces.

1.11. Determinant of the deformation gradient tensor

As proved in (1.23), the deformation gradient tensor rules the geometric variation
of a material vector.

δr = F L δr0 + O
(
∥δr0∥2

)
(1.24)

Let’s assume that the two material points linked by the material vector are initially
very close. This assumption implies that the norm of the original material vector is
much smaller than one, and the last term of the above equation can be neglected.
Thus, the material vector at a given instant of time can be approximately computed
as:

∥δr0∥ ≪ 1 =⇒ δr ≈ F L δr0 (1.25)

It is also required that the determinant of the deformation gradient tensor is non-
equal to zero, so the inverse of the deformation gradient tensor exists and can be
computed.

FL = det
(
F L

)
̸= 0 =⇒ ∃F L

−1 (1.26)

If the above condition holds, equation (1.25) can be inverted, and the equation that
defines the original material vector by means of the deformed one is obtained.

δr0 ≈ F L
−1 δr (1.27)

Furthermore, the determinant of the deformation gradient tensor also allows to
obtain the evolution of a differential volume over time as:

dΩ = FL dΩ0 (1.28)

The above equation will be demonstrated in the next section. According to (1.28),
the determinant of the deformation gradient tensor can be interpreted as the proportion
that represents a specific differential volume at a given instant of time, with respect to
the original one.

FL = dΩ
dΩ0

(1.29)

Since the equation (1.29) only involves volumes, which are positive magnitudes, it
can be concluded that the determinant of the deformation gradient tensor has to be
greater than zero.

FL = det
(
F L

)
> 0 (1.30)

8



1.12. Volume variation

1.12. Volume variation

Let’s consider a material vector that links two material points that belong to the
initial reference configuration.

δr0 =


δr0,1

δr0,2

δr0,3

 (1.31)

Figure 1.5. Differential volume variation.

On the one hand, the components of the above vector define the following material
vectors, that are oriented according to the directions defined by the coordinate axes.

δr0,1 = δr0,1 e1 = δr0,1


1
0
0

 =


δr0,1

0
0


δr0,2 = δr0,2 e2 = δr0,2


0
1
0

 =


0

δr0,2

0


δr0,3 = δr0,3 e3 = δr0,3


0
0
1

 =


0
0

δr0,3



(1.32)

The volume of the parallelepiped composed by the above material vectors is:

dΩ0 = δr0,1 δr0,2 δr0,3 (1.33)

9



Chapter 1. Deformation of a solid media subjected to external forces

On the other hand, these vectors can be defined on the deformed domain. The
deformation gradient tensor is the one that transforms the initial material vectors to
the deformed configuration.

δri = F L δr0,i i = 1, 2, 3 (1.34)

And the components of the deformation gradient tensor are:

F L =

F11 F12 F13

F21 F22 F23

F31 F32 F33

 (1.35)

Furthermore, the computation of the triple product (A.1.7) between the deformed
material vectors leads to the volume of the parallelepiped that they compose.

dΩ =
(
δr1 ∧ δr2

)
· δr3

=
[(
F L δr0,1

)
∧
(
F L δr0,2

)]
·
(
F L δr0,3

)
=

F L


1
0
0

 ∧ F L


0
1
0


 · F L


0
0
1


(δr0,1 δr0,2 δr0,3

)

=


F11

F21

F31

 ∧


F12

F22

F32


 ·


F13

F23

F33


 dΩ0

= det

F11 F12 F13

F21 F22 F23

F31 F32 F33

 dΩ0

= det (F L) dΩ0

= FL dΩ0

(1.36)

According to the above result, it can be concluded that the determinant of the
deformation gradient tensor defines the proportion that represents the final differential
volume with respect to the initial one.

dΩ = FL dΩ0 ⇐⇒ FL = dΩ
dΩ0

(1.37)

1.12.1. Novel derivation

An alternative derivation of the above equation can be proposed if the result ob-
tained in appendix D is recalled. In this appendix, a hyper-parallelepiped was defined
by a set of vectors that compose a given basis. As these vectors make up a basis, the
definition of its corresponding metric tensor can be carried out, as well as the com-
putation of its determinant. Under these assumptions, it has been proven that the
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1.12. Volume variation

square root of this determinant turns out to be equivalent to the hyper-volume of the
hyper-parallelepiped.

In this subsection, let’s consider a n-dimensional space where a basis composed by n
linearly independent vectors is defined. The vectors that compose this primal basis,
and the tensor E that contains these vectors arranged in columns, are:{

e⃗i

}
i=1,...,n

−→ E =
[
e⃗1 · · · e⃗n

]
(1.38)

Let’s also consider two different material vectors that belong to the initial material
domain. Their definition with respect to the previous basis is:

δr⃗0 = e⃗i δr0
i

δs⃗0 = e⃗i δs0
i

}
⇐⇒

δr⃗0 = E δr0 with δr0 =
{
δr0

i
}

i=1,...,n

δs⃗0 = E δs0 with δs0 =
{
δs0

i
}

i=1,...,n

(1.39)

Where δr0
i and δs0

i are their contravariant components.
On the one hand, the scalar product between the above material vectors turns out

to be defined by means of the metric tensor G as:

δr⃗0 · δs⃗0 = δr⃗0
T δs⃗0

=
(
E δr0

)T(
E δs0

)
= δr0

T
(
ETE

)︸ ︷︷ ︸
G

δs0

= δr0
TG δs0

(1.40)

If the vectors that define the primal basis are considered to compose an infinitesimal
parallelepiped embedded into the reference material domain, its corresponding differ-
ential volume dΩ0 can be computed by means of the previous metric tensor. According
to the result obtained in appendix D, this volume can be defined as:

dΩ0 =
√

det
(
G
)

with G = ETE (1.41)

On the other hand, the geometric transformation experimented by the material
vectors (1.39) is ruled by the deformation gradient tensor F L. Thus, their definition
at a given instant of time turn out to be:

δr⃗ = e⃗i δr
i

δri = F i

j δr0
j

}
⇐⇒

{
δr⃗0 = E δr

δr = F L δr0 =
{
δri
}

i=1,...,n

δs⃗ = e⃗i δs
i

δsi = F i

j δs0
j

}
⇐⇒

{
δs⃗0 = E δs

δs = F L δs0 =
{
δsi
}

i=1,...,n

(1.42)

Where F i
j are the contravariant-covariant components of the deformation gradient

tensor, defined with respect to the primal basis {e⃗i}i=1,...,n and its corresponding dual
one {e⃗j}j=1,...,n.

F L
≈

=
(
e⃗i ⊗ e⃗j

)
F i

j =⇒ F L =
[
F i

j

]
i=1,...,n
j=1,...,n

(1.43)

11



Chapter 1. Deformation of a solid media subjected to external forces

The deformed material vectors (1.42) can be rewritten as:

δr⃗ = e⃗i

(
F i

j δr0
j
)

=
(
e⃗i F

i

j

)
δr0

j

= e⃗ ′
j δr0

j

 ⇐⇒


δr⃗0 = E

(
F L δr0

)
=
(
EF L

)
δr0

= E ′ δr0

δs⃗ = e⃗i

(
F i

j δs0
j
)

=
(
e⃗i F

i

j

)
δs0

j

= e⃗ ′
j δs0

j

 ⇐⇒


δs⃗0 = E

(
F L δs0

)
=
(
EF L

)
δs0

= E ′ δs0

(1.44)

According to the previous definitions, the deformed material vectors can be ex-
pressed in terms of the components of their undeformed definition stated in (1.39). To
obtain so, the following basis has to be taken as the reference one:

e⃗ ′
j = e⃗i F

i

j ⇐⇒ E ′ = EF L (1.45)

And the scalar product between the deformed material vectors is then defined by
means of the metric tensor corresponding to the previous basis.

δr⃗ · δs⃗ = δr⃗T δs⃗

=
(
E ′ δr0

)T(
E ′ δs0

)
= δr0

T

((
E ′
)T
E ′
)

︸ ︷︷ ︸
G ′

δs0

= δr0
TG ′ δs0

(1.46)

The metric tensor G ′ allows to calculate the volume of the parallelepiped after the
deformation process. Its corresponding volume becomes dΩ and can be computed as:

G ′ =
(
E ′
)T
E ′

=
(
EF L

)T(
EF L

)
= F L

T
(
ETE

)︸ ︷︷ ︸
G

F L

= F L
TGF L


=⇒ dΩ =

√
det
(
G ′
)

=
√

det
(
F L

TGF L

)
(1.47)

Note that, if an orthonormal reference basis is adopted, G becomes the second order
unit tensor I, and the definition of G ′ becomes equivalent to the right Cauchy-Green
tensor ML presented in 4.18.

Finally, the initial differential volume (1.41) and its corresponding deformed con-
figuration (1.47) lead to the definition of the volumetric expansion coefficient, as:

dΩ
dΩ0

=

√
det
(
F L

TGF L

)
det
(
G
) = det

(
F L

)
= FL (1.48)

Therefore, it can be concluded that the determinant of the deformation gradient
tensor can be interpreted as the proportion that represents the deformed differential
volume with respect to its corresponding initial volume.
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1.13. Area variation

1.13. Area variation

Figure 1.6. Differential area variation.

On the one hand, a vector that represents the initial differential area is defined. This
vector depends on the normal unit vector, and its norm turns out to be equivalent to
the initial area.

dΓ0 = dΓ0 n0

∥n0∥ = 1

}
=⇒ ∥dΓ0∥ = ∥dΓ0 n0∥ = dΓ0∥n0∥ = dΓ0 (1.49)

The scalar product between the above vector and a given material vector leads to
the volume of the initial parallelepiped (figure 1.6).

δr0 · dΓ0 = ∥δr0∥ ∥dΓ0∥ cos (α)
= dΓ0 ∥δr0∥ cos (α)︸ ︷︷ ︸

h

= dΓ0 × h = dΩ0
(1.50)

On the other hand, the same magnitudes can be defined in the deformed configu-
ration. Hence, the deformed area vector is:

dΓ = dΓn
∥n∥ = 1

}
=⇒ ∥dΓ∥ = ∥dΓn∥ = dΓ ∥n∥ = dΓ (1.51)
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Chapter 1. Deformation of a solid media subjected to external forces

And the scalar product between the deformed material vector and the deformed
area vector defines the volume of the parallelepiped they compose.

δr · dΓ = ∥δr∥ ∥dΓ∥ cos (β)
= dΓ ∥δr∥ cos (β)︸ ︷︷ ︸

g

= dΓ × g = dΩ (1.52)

If the previous results are substituted into the equation that defines the determinant
of the deformation gradient tensor (1.37), the determinant becomes:

FL = dΩ
dΩ0

= δrT dΓ
δr0

T dΓ0
(1.53)

Moreover, the substitution of the equation that defines the variation of a material
vector over time (1.23) into the above equation, leads to the following result.

FL

(
δr0

TdΓ0

)
= δrTdΓ

=
(
F L δr0

)T
dΓ

= δr0
TF L

TdΓ =⇒ FL dΓ0 = F L
T dΓ

(1.54)

According to the above result, the equation that defines the variation of a differential
area over time turns out to be:

dΓ = FL F L
−T dΓ0 (1.55)

1.14. Change of the integration domain

The determinant of the deformation gradient tensor (FL) states the relationship
between a differential volume at a given instant of time (dΩ) and the initial one (dΩ0).

If equation (1.28) is taken into account, the differential volume at a given instant
of time can be defined depending on the primal one. This equation allows to rewrite
an integral expressed over the unknown deformed domain, as an integral defined over
the initial configuration. This is a useful mathematical tool, since it allows integrating
over a domain that is well-known. In fact, this is the basis of the Lagrangian finite
element formulation.

Let’s consider the following integral expression defined over the deformed domain.

C =
∫∫∫

Ω(t)
ψE (r, t) dΩ (1.56)

To transform this integral and get an equivalent one defined over the reference do-
main, the change of variable (1.4) has to be applied to the integrand, and the differential
volume has to be substituted by the equation defined in (1.28).

C =
∫∫∫

Ω0

ψE (r, t)
∣∣∣
r=rL(r0,t)

FL dΩ0 =
∫∫∫

Ω0

ψL (r0, t)FL dΩ0 (1.57)
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1.15. Time derivative of the determinant of the deformation gradient tensor

1.15. Time derivative of the determinant of the deformation
gradient tensor

In this section, the definition of the time derivative of the deformation gradient
tensor is stated. This result will be needed later on in this work.

The expression of the derivative of a determinant stated in (A.111) is recalled, such
that:

∂FL

∂t
= FL Tr

(
∂F L

∂t
F L

−1

)
(1.58)

In the above equation, the time derivative of the deformation gradient tensor ap-
pears. This derivative was already obtained in (1.14). Hence, the substitution of this
result into (1.58) leads to the following result:

∂FL

∂t
= FL Tr

(
∂aL

∂r0
F L

−1

)
(1.59)

According to the result obtained in (1.20), the matrix whose trace is computed
in (1.59) can be replaced by the following term.

1
FL

∂FL

∂t
= Tr

(
∂aE

∂r

∣∣∣∣
r=rL(r0,t)

)
(1.60)

Moreover, the trace of the velocity gradient tensor turns out to be equivalent to the
divergence, as demonstrated in (B.21). Thus, the time derivative of the determinant
can be finally computed as:

1
FL

∂FL

∂t
= div (aE)

∣∣∣
r=rL(r0,t)

(1.61)

1.16. Overview and conclusions

In this chapter, the motion of a continuous solid media subjected to external forces is
studied. As stated before, the Lagrangian approach is adopted. That is, all magnitudes
are defined with respect to the initial reference configuration, which is well-known.

Two main equations were obtained: the equation that defines the motion of a given
material particle and the equation that describes the geometric transformation of a
specific material vector over time. These equations are important since they describe
the solid motion, as well as the change of volume, orientation, and shape that the solid
experiments due to the external applied forces.

On the one hand, the deformation vector (rL) is the one that describes the solid
motion. This vector describes the position of a material particle over time by means
of its initial position (r0) and the displacement vector (uL).

On the other hand, the geometric transformation experimented by a material vector
turns out to depend on the deformation gradient tensor (F L), which, in turn, can be
defined by means of the displacement gradient tensor (JL). According to this result,
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Chapter 1. Deformation of a solid media subjected to external forces

it can be concluded that the displacement gradient tensor is the one that contains the
required information to define the change of volume, orientation, and shape experi-
mented by the solid. This information is required to properly define the displacement
field that the solid undergoes, as well as its corresponding strain and stress fields.

Another main aim of this chapter was to define a novel, simple, and clear nomen-
clature, as well as to manipulate the strictly necessary magnitudes and equations to
describe the deformation process. The final goal is to reach a nonlinear solid mechanics
formulation complete and detailed, so a novel subsequent derivation of the nonlinear
finite element formulation can be performed.
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Chapter 2
Balance equations

2.1. Introduction

To solve a Solid Mechanics problem, the first step is to derive the equations that
govern the dynamic equilibrium, as well as the equation that rules the value of the
media density over time.

On the one hand, the linear momentum and the angular momentum balance equa-
tions govern the dynamic equilibrium of forces and torques, respectively. Consequently,
they compose the equations that state the dynamic equilibrium of a continuous solid
media subjected to external forces. Both equations have to be fulfilled to properly
represent the structural behaviour of a solid at equilibrium.

On the other hand, the mass balance equation is the one that governs the value of
the density field along the deformation process. As a first approach, the assumption
that there are mass sources is adopted. However, dealing with this type of sources is
not usual in Solid Mechanics. In further chapters, the mass sources will be neglected,
so the hypothesis of mass conservation will be adopted.

2.2. Mass balance

Let’s consider that the equation that defines the time variation of a given magni-
tude M is studied. In this section, the magnitude is the mass. The density of the
media is defined by the variable ρ, and the variable φ represents a mass source per unit
volume per unit time.

Both the density and the mass source can be expressed according to their La-
grangian (section 1.2.1) or Eulerian descriptions (section 1.2.2).
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Chapter 2. Balance equations

Lagrangian Eulerian
Density ρL (r0, t) ρE (r, t)

Mass source φL (r0, t) φE (r, t)

Table 2.1. Lagrangian and Eulerian descriptions of the density and mass source.

2.2.1. Mass time variation

The mass contained in a particular differential volume of a given deformed solid
domain can be computed by means of the media density as:

dM = ρE dΩ (2.1)

The mass of the whole material domain can be obtained as the sum of the mass
contained in all the differential volumes that compose the domain. That is, the mass
defined in (2.1) has to be integrated over the whole domain.

M =
∫∫∫

Ω(t)
ρE dΩ (2.2)

This integral is defined over an unknown domain. However, it can be equivalently
defined over the initial configuration, which is well-known. To do so, the methodology
for changing the integration domain presented in section 1.14 is applied.

M =
∫∫∫

Ω(t)
ρE dΩ =

∫∫∫
Ω0

ρL FL dΩ0 (2.3)

On the other hand, the mass time variation depends on the mass source per unit
volume per unit time. So, the time variation of the mass contained in the differential
volume calculated in (2.1) turns out to depend on the mass source and can be expressed
as:

∂ (dM)
∂t

= φE dΩ (2.4)

If the above variation is integrated over the entire domain, the variation of the mass
contained in the whole material domain is obtained.

∂M

∂t
=
∫∫∫

Ω(t)
φE dΩ (2.5)

Finally, the integration domain can be changed from the unknown deformed one to
the initial configuration. The methodology stated in section (1.14) is again applied.
So,

∂M

∂t
=
∫∫∫

Ω(t)
φE dΩ =

∫∫∫
Ω0

φL FL dΩ0 (2.6)

The above mass time variation allows to obtain the Lagrangian integral form of the
mass balance equation.
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2.3. Linear momentum balance

2.2.2. Lagrangian integral form of the mass balance equation

The Lagrangian integral form of the equation that governs the mass time variation
can be obtained by combining equations (2.3) and (2.6).

∂

∂t

(∫∫∫
Ω0

ρL FL dΩ0

)
=
∫∫∫

Ω0

φL FL dΩ0 (2.7)

From this Lagrangian integral form, the obtention of an equivalent differential form
is straightforward, if the derivative is taken inside the integral and then the localization
theorem is applied.

2.2.3. Lagrangian differential form of the mass balance equation

The differential form of the equation that rules the mass time variation in a given
material domain can be obtained from the previous integral form (2.7). As the reference
domain does not depend on time, the time derivative can be taken inside the integral.∫∫∫

Ω0

[
∂

∂t

(
ρL FL

)
− φL FL

]
dΩ0 = 0 (2.8)

And the application of the localization theorem (section C.2.1) leads to its corre-
sponding differential form.

∂

∂t

(
ρL FL

)
− φL FL = 0 ∀r0 ∈

◦

Ω0 , ∀t (2.9)

The above equation can be alternatively rewritten as follows:

∂ρL

∂t
+ ρL

1
FL

∂FL

∂t
= φL ∀r0 ∈

◦

Ω0 , ∀t (2.10)

2.3. Linear momentum balance

In this section, the equation which defines the linear momentum time variation is
derived.

Let’s consider a solid media subjected to external forces. The density of the media
is defined by the variable ρ, and the external forces per unit mass are represented by
the vector b. Moreover, the existence of a mass source per unit volume per unit time φ
is considered, and the vector v represents its corresponding velocity. The resulting
stress field is defined by the Cauchy stress tensor σ (section 3.3).

All these magnitudes can be expressed according to their Lagrangian (section 1.2.1)
or Eulerian descriptions (section 1.2.2).

2.3.1. Linear momentum time variation

The product between mass and velocity defines the linear momentum. So, the linear
momentum corresponding to a given differential volume that belongs to a material
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Chapter 2. Balance equations

Lagrangian Eulerian
Density ρL (r0, t) ρE (r, t)

External volumetric force bL (r0, t) bE (r, t)
Mass source φL (r0, t) φE (r, t)

Mass source velocity vL (r0, t) vE (r, t)
Stress field σL (r0, t) σE (r, t)

Table 2.2. Lagrangian and Eulerian descriptions of the density, external volumetric force,
mass source, mass source velocity and stress field.

domain is:
dp = aE ρE dΩ (2.11)

The integration of the above magnitude over the whole material domain leads to
the linear momentum of the entire solid:

p =
∫∫∫

Ω(t)
aE ρE dΩ (2.12)

The above integral is defined over the deformed material domain, which is unknown.
Nevertheless, it can be defined over the initial one if the methodology exposed in
section (1.14) is applied. Consequently,

p =
∫∫∫

Ω(t)
aE ρE dΩ =

∫∫∫
Ω0

aL ρL FL dΩ0 (2.13)

According to Newton’s second law, forces are considered as sources of linear mo-
mentum. Thus, the time variation of the linear momentum depends on the applied
forces, as well as on the mass source that has an associated velocity field.

Besides the forces per unit volume, it is common to deal with forces per unit area
applied on the solid surface. These forces are applied on the solid boundary and are
represented by the stress vector. According to the result obtained in (3.34), the stress
vector can be defined by means of the Cauchy stress tensor and the normal vector
perpendicular to the domain surface as:

tE = σE
Tn (2.14)

Thus, if the effect of the applied forces and the mass source are taken into account,
the time variation of the linear momentum turns out to be:

∂p

∂t
=
∫∫∫

Ω

(
bE ρE + vE φE

)
dΩ +

∫∫
Γ=∂Ω

tE dΓ (2.15)

The second term of the above equation can be expressed as an integral over the
interior of the material domain. According to the divergence theorem stated in (B.44),
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2.3. Linear momentum balance

this term can be rewritten as:∫∫
Γ=∂Ω

tE dΓ =
∫∫

Γ=∂Ω
σE

Tn dΓ =
∫∫∫

Ω
div
(
σE

T
)
dΩ (2.16)

Hence, the time variation of the linear momentum (2.15) can be defined as the
following integral over the material domain:

∂p

∂t
=
∫∫∫

Ω(t)

[
bE ρE + vE φE + div

(
σE

T
)]
dΩ (2.17)

Furthermore, the equivalent integral defined over the reference domain can be stated
by taking into account the change of the integration domain exposed in section 1.14
as:

∂p

∂t
=
∫∫∫

Ω0

[
bL ρL + vL φL + div

(
σE

T
)∣∣∣

r=rL(r0,t)

]
FL dΩ0 (2.18)

The above time variation allows to derive the Lagrangian integral form of the linear
momentum balance equation.

2.3.2. Lagrangian integral form of the linear momentum balance
equation

The combination of equations (2.13) and (2.18) leads to the integral equation that
defines the time variation of the linear momentum:

∂

∂t

(∫∫∫
Ω0

aL ρL FL dΩ0

)
=
∫∫∫

Ω0

[
bL ρL + vL φL + div

(
σE

T
)∣∣∣

r=rL(r0,t)

]
FL dΩ0

(2.19)
As the reference domain does not depend on time, the time derivative can be taken

inside the integral. Thus,∫∫∫
Ω0

∂

∂t

(
aL ρL FL

)
dΩ0 =

∫∫∫
Ω0

[
bL ρL + vL φL + div

(
σE

T
)∣∣∣

r=rL(r0,t)

]
FL dΩ0

(2.20)
And the application of the localization theorem to the above Lagrangian integral

form leads to its equivalent differential form.

2.3.3. Lagrangian differential form of the linear momentum
balance equation

The differential form of the equation that defines the time variation of the linear mo-
mentum can be obtained by applying the localization theorem (C.2.1) to the previous
integral form (2.20).

∂

∂t

(
aL ρL FL

)
=
[
bL ρL + vL φL + div

(
σE

T
)∣∣∣

r=rL(r0,t)

]
FL ∀r0 ∈

◦

Ω0 , ∀t

(2.21)
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Chapter 2. Balance equations

The above equation can be alternatively written as:

∂

∂t

(
aL ρL

)
+ aL ρL

1
FL

∂FL

∂t
= bL ρL + vL φL + div

(
σE

T
)∣∣∣

r=rL(r0,t)
∀r0 ∈

◦

Ω0 , ∀t

(2.22)
The above equation is composed by magnitudes defined according to their La-

grangian description. Nevertheless, as shown in the following subsection, it can be
manipulated to obtain an equivalent form which involves magnitudes expressed ac-
cording to their Eulerian description.

2.3.4. Eulerian differential form of the linear momentum balance
equation

On the one hand, the left-hand side of the Lagrangian differential equation (2.22)
can be rewritten by means of the equivalent Eulerian magnitudes. To do so, the
time derivative of a Lagrangian magnitude can be replaced by its equivalent Eulerian
expression obtained in (1.18). Moreover, the time derivative of the determinant of the
deformation gradient tensor was calculated in (1.61).

∂

∂t

(
aL ρL

)
+aL ρL

1
FL

∂FL

∂t
=
[
∂

∂t

(
aE ρE

)
+ ∂

∂r

(
aE ρE

)
aE +

(
aE ρE

)
div
(
aE

)] ∣∣∣∣∣
r=rL(r0,t)

(2.23)
On the other hand, its right-hand side can be rewritten if the equivalence between

both descriptions (1.15) is applied.

bL ρL + vL φL + div
(
σE

T
)∣∣∣

r=rL(r0,t)
=
[
bE ρE + vE φE + div

(
σE

T
)]∣∣∣∣

r=rL(r0,t)
(2.24)

Thus, the Eulerian differential form of the equation that defines the linear momen-
tum balance is:

∂

∂t

(
aE ρE

)
+ ∂

∂r

(
aE ρE

)
aE +

(
aE ρE

)
div (aE) = bE ρE + vE φE + div

(
σE

T
)

(2.25)

To rewrite this equation, the divergence of the following tensor field is computed.
It can be computed according to the result obtained in (B.37).

div
((
aE ρE

)
aE

T

)
= ∂

∂r

(
aE ρE

)
aE +

(
aE ρE

)
div
(
aE

)
(2.26)

The above result appears in (2.25). Therefore, the Eulerian differential form of the
linear momentum balance equation can be finally expressed as:

∂

∂t

(
aE ρE

)
+ div

(
− σE

T +
(
aE ρE

)
aE

T

)
= bE ρE + vE φE ∀r ∈

◦

Ω , ∀t (2.27)
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2.4. Angular momentum balance

2.3.5. Eulerian integral form of the linear momentum balance
equation

Since the equivalent integral form of the above differential one will be also required,
its derivation is presented in this subsection.

The linear momentum of the entire solid at a given instant of time was defined
in (2.12) as:

p =
∫∫∫

Ω(t)
aE ρE dΩ (2.28)

And its corresponding time derivative was defined in (2.17) as:

∂p

∂t
=
∫∫∫

Ω(t)

[
bE ρE + vE φE + div

(
σE

T
)]
dΩ (2.29)

Therefore, the combination of the previous equations leads to the Eulerian integral
form of the linear momentum balance equation.

∂

∂t

(∫∫∫
Ω(t)

aE ρE dΩ
)

=
∫∫∫

Ω(t)

[
bE ρE + vE φE + div

(
σE

T
)]
dΩ (2.30)

2.4. Angular momentum balance

The third magnitude whose time variation is studied is the angular momentum.
The same problem as the one exposed in section 2.3 is considered, and the magnitudes
involved were already summed up in table 2.2.

2.4.1. Angular momentum time variation

The vector product between the position vector and the linear momentum defines
the angular momentum. The linear momentum corresponding to a differential volume
that belongs to a given material domain was defined in (2.11). Thus, its corresponding
angular momentum at a given instant of time turns out to be:

dL0 = r ∧ dp = r ∧
(
aE ρE dΩ

)
=
(
r ∧ aE ρE

)
dΩ (2.31)

The integration of the above magnitude over the material domain leads to the
angular momentum of the entire solid:

L0 =
∫∫∫

Ω(t)

(
r ∧ aE ρE

)
dΩ (2.32)

Since the angular momentum depends on the linear momentum, the time variation
of the angular momentum depends on the sources of linear momentum. As stated
before, the external applied forces are sources of linear momentum. Therefore, the
volumetric and surface loads, as well as the mass source that has an associated velocity
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Chapter 2. Balance equations

field, turn out to be sources of angular momentum. And the time variation can be
finally defined as:

∂L0

∂t
=
∫∫∫

Ω
r ∧

(
bE ρE + vE φE

)
dΩ +

∫∫
Γ=∂Ω

r ∧ tE dΓ (2.33)

Once the angular momentum (2.32) and its corresponding time variation (2.33) are
defined, the Eulerian integral form is straightforward to obtain.

2.4.2. Eulerian integral form of the angular momentum balance
equation

The Eulerian integral form of the equation that defines the time variation of the
angular momentum can be obtained by combining equations (2.32) and (2.33).

∂

∂t

[∫∫∫
Ω

(
r ∧ aE ρE

)
dΩ
]

=
∫∫∫

Ω
r ∧

(
bE ρE + vE φE

)
dΩ +

∫∫
Γ=∂Ω

r ∧ tE dΓ (2.34)

2.5. Overview and conclusions

Along this chapter, the equations that state the balance of mass, linear momentum
and angular momentum were derived. The balance equations of these three magnitudes
rule the structural behaviour of a continuous solid media subjected to external loads.

On the one hand, the mass balance equation is the equation that governs the value
of the density field over time. The variation of the media density is caused by the mass
sources and the volume variation along the deformation process. As a first approach,
the existence of mass sources is considered. However, later on in this work, they will
be no longer considered, and the assumption that the mass conservation is fulfilled will
be adopted.

On the other hand, the linear momentum balance equation turns out to be the
equation that governs the dynamic equilibrium of forces. The time variation of the
linear momentum is caused by the external applied forces, as well as by the velocity
field of the mass source. The angular momentum balance equation, in turn, is the one
that rules the dynamic equilibrium of torques. As the angular momentum is defined
by means of the linear momentum, its time variation is originated by the same causes
that produce the linear momentum variation.

As shown along this chapter, once the time variation of a given magnitude (mass,
linear momentum or angular momentum) is defined, its corresponding balance equation
written according to its integral form is straightforward to obtain. And the manipu-
lation of this integral form leads to its equivalent differential form. Moreover, the La-
grangian or the Eulerian versions of these balance equations can be derived, depending
on the magnitude description adopted.
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Chapter 3
Stress field

3.1. Introduction

When facing a continuous solid media subjected to external forces, the main aim
is to obtain the displacement field experimented by the solid. As this displacement
field originates internal stresses, the definition of the stress field becomes crucial to
completely define and interpret the solid structural behaviour.

To characterize this stress field, the first step is to properly define the stress vector
acting at a given material particle that belongs to the deformed configuration. As it is
a stress magnitude, its definition has to lead to a force per unit area.

Once this basic definition is proposed, the Cauchy stress vector can be derived.
This equation defines the stress vector by means of the Cauchy stress tensor, whose
components turn out to be the components of the stress vectors defined with respect
to the planes that are perpendicular to the Cartesian axis. That is, the Cauchy stress
tensor represents the stress field experimented by the solid, defined as internal forces
per unit area in the deformed configuration.

From the classical Cauchy’s definition, other alternative stress vectors can be de-
rived. These alternative definitions lead to other stress tensors, that hold useful prop-
erties to analyse solids which experiment large displacements.

3.2. Stress vector

Let’s consider the deformed domain of a solid media subjected to external forces
at a given instant of time. A plane defined by its normal vector n cut this domain,
and the area dΓ corresponding to a specific material point that belongs to this plane
is defined according to figure 3.1.

At this specific material point, the traction force df caused by the other part of the
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Chapter 3. Stress field

Figure 3.1. Stress vector at a given material point of the deformed domain.

solid on this area is considered. And its corresponding stress vector is defined as:

tE (r, t,n) = dfE

dΓ (3.1)

According to this definition, the stress vector is a traction force per unit area, and
it depends on the material point and time. Moreover, it also depends on the normal
vector that defines the plane, since the direction of the traction force depends on the
plane taken into account.

Furthermore, according to the Newton’s third law, the stress vectors acting at a
specific material point on opposite sides of a given plane have the same modulus and
orientation, but opposite senses (figure 3.1).

tE (r, t,−n) = −tE (r, t,n) (3.2)

3.3. Cauchy stress tensor

A tetrahedron is now defined in the deformed domain. Three of its faces are oriented
according to the Cartesian planes. The fourth one is defined by an arbitrary plane,
whose orientation is defined by its perpendicular unit vector n. The area of this face
is S, and the area of the other ones are Si (figure 3.2).

According to Newton’s second law, forces are sources of linear momentum. Thus,
the linear momentum balance in the tetrahedron is defined as stated below.

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

=
∫∫∫

V

bE ρE dΩ +
∫∫

S

tE dΓ −
3∑

i=1

∫∫
Si

tE,i dΓ (3.3)
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3.3. Cauchy stress tensor

Figure 3.2. Stress vectors on the faces of a tetrahedron.

To manipulate the left-hand side of the above equation, the integration domain can
be changed. That is, the change of variable (1.4) is applied to the integrand, and the
differential volume is substituted by the equation defined in (1.28). The derivative can
now be taken inside the integral, since the reference domain does not depend on time.

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

= ∂

∂t

[∫∫∫
V0

(
aL ρL

)
FL dΩ0

]
=
∫∫∫

V0

∂

∂t

(
aL ρL FL

)
dΩ0

=
∫∫∫

V0

[
∂

∂t

(
aL ρL

)
FL +

(
aL ρL

)∂FL

∂t

]
dΩ0

(3.4)

In the above equation, the time derivative of a given magnitude defined by its
Lagrangian description (1.18) can be substituted, as well as the equation that defines
the time derivative of the deformation gradient tensor (1.61). Furthermore, the change
of variable is undone, so the integral is again referred to the deformed domain.

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

=

=
∫∫∫

V0

[
∂
(
aE ρE

)
∂t

+
∂
(
aE ρE

)
∂r

aE +
(
aE ρE

)
div
(
aE

)]∣∣∣∣∣
r=rL(r0,t)

FL dΩ0

=
∫∫∫

V

[
∂
(
aE ρE

)
∂t

+
∂
(
aE ρE

)
∂r

aE +
(
aE ρE

)
div
(
aE

)]
dΩ

(3.5)
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But, if the result obtained in (B.37) is taken into account:

∂
(
aE ρE

)
∂r

aE +
(
aE ρE

)
div
(
aE

)
= div

((
aE ρE

)
aE

T

)
(3.6)

Thus, the time variation of the linear momentum can be rewritten as follows.

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

=
∫∫∫

V

[
∂aE

∂t
ρE + aE

∂ρE

∂t
+ div

((
aE ρE

)
aE

T

)]
dΩ (3.7)

The time derivative of the density field is now computed. The time variation of
its Lagrangian description can be obtained from equation (2.10). If no mass sources
are considered, and the time derivative of the deformation gradient tensor (1.61) is
substituted into this equation, the time derivative of the density field becomes:

∂ρL

∂t
= −ρL

1
FL

∂FL

∂t
= −

[
ρE div

(
aE

)]∣∣∣∣
r=rL(r0,t)

(3.8)

This derivative can also be computed according to the equation (1.18) as:

∂ρL

∂t
=
(
∂ρE

∂t
+ ∂ρE

∂r
aE

) ∣∣∣∣∣
r=rL(r0,t)

(3.9)

Hence, if equations (3.8) and (3.9) are compared, the time derivative of the Eulerian
density field turns out to be:

∂ρE

∂t
= −ρE div

(
aE

)
− ∂ρE

∂r
aE (3.10)

The substitution of the above time derivative into the variation of the linear mo-
mentum (3.7) leads to:

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

=

=
∫∫∫

V

[
∂aE

∂t
ρE −

(
aE ρE

)
div
(
aE

)
− aE

∂ρE

∂r
aE + div

((
aE ρE

)
aE

T

)]
dΩ

(3.11)

Moreover, according to the divergence computed (B.19), the gradient of the follow-
ing vector field turns out to be:

∂
(
aE ρE

)
∂r

= aE
∂ρE

∂r
+ ρE

∂aE

∂r
⇐⇒ aE

∂ρE

∂r
=
∂
(
aE ρE

)
∂r

− ρE
∂aE

∂r
(3.12)

So, if the above result is taken into account, equation (3.11) becomes:

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

=

=
∫∫∫

V

[
∂aE

∂t
ρE −

(
aE ρE

)
div
(
aE

)
−
∂
(
aE ρE

)
∂r

aE + ∂aE

∂r

(
aE ρE

)
+ div

((
aE ρE

)
aE

T

)]
dΩ

(3.13)
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But, if equation (3.6) is recalled, the above equation is reduced to:

∂

∂t

[∫∫∫
V

(
aE ρE

)
dΩ
]

=
∫∫∫

V

[(
∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

]
dΩ (3.14)

Therefore, the balance of linear momentum in the tetrahedron can be expressed as:∫∫∫
V

[(
∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

]
dΩ =

∫∫∫
V

bE ρE dΩ +
∫∫

S

tE dΓ −
3∑

i=1

∫∫
Si

tE,i dΓ

(3.15)
The left-hand side of the above equation represents the time variation of the linear

momentum in the tetrahedron volume, and the right-hand side gathers the sources of
linear momentum (volumetric and surface forces).

If the mean value theorem is applied, the previous balance equation can be rewritten
as follows: [(

∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

]∗

V =
(
bE ρE

)∗
V + tE

∗S −
3∑

i=1
tE,i

∗Si (3.16)

Where:[(
∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

]∗

=
[(

∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

] ∣∣∣∣∣
r=r∗

r∗ ∈ V(
bE ρE

)∗ = bE (rV
∗, t) ρE (rV

∗, t) rV
∗ ∈ V

tE
∗ = tE (rS

∗, t,n) rS
∗ ∈ S

−tE,i
∗ = tE,i

(
rSi

∗, t,−ei

)
rSi

∗ ∈ Si

(3.17)

On the other hand, the volume of the tetrahedron can be defined by means of its
height h (figure 3.2).

V = 1
3 S h (3.18)

To manipulate the area of each face, a unit vector that is perpendicular to each one
of them is defined. Their modulus is forced to be equivalent to the area of each face.

S = S n =⇒ ∥S∥ = S ∥n∥ = S

Si = −Si ei =⇒ ∥Si∥ = Si ∥−ei∥ = Si

(3.19)

According to figure 3.3, surfaces S1 and S are triangular. So, their corresponding
area is given by one-half the base times the height of the surface.

S1 = 1
2 ABOC

S = 1
2 ABCD

(3.20)
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Figure 3.3. Identification of the tetrahedron faces, and relation between the height of
the triangular surfaces S1 and S.

The height of the triangular surface S1 can be calculated by means of the height of
the triangular surface S, as:

OC = CD cos (α1)

= CD
(

∥e1∥ ∥n∥ cos (α1)
)

= CD (e1 · n)

(3.21)

Where α1 is the angle between n and e1.
The substitution of the above height into the definition of the area S1 exposed

in (3.20) leads to:
S1 = 1

2 ABOC

= 1
2 AB

(
CD (e1 · n)

)
=
(1

2 ABCD
)

(e1 · n)

= S (e1 · n)

(3.22)

An analogous result can be obtained by analysing the other triangular surfaces S2

and S3.
S2 = S (e2 · n)
S3 = S (e3 · n)

(3.23)

Therefore, the area of the faces that are parallel to the coordinate planes can be
calculated as:

Si = S
(
ei · n

)
i = 1, 2, 3 (3.24)

If the tetrahedron volume (3.18) and the area of its faces (3.24) are now substituted
into (3.16), the balance equation becomes:

1
3

[(
∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

]∗

h = 1
3
(
bE ρE

)∗
h+ tE

∗ −
3∑

i=1
tE,i

∗(ei · n
)

(3.25)
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3.3. Cauchy stress tensor

Let’s now consider that the tetrahedron height tends to zero. If this happens, the
stress vectors that appear in the above equation can be replaced by the following ones.

lim
h→0

(
− t∗E,i

)
= lim

h→0
tE,i

(
rSi

∗, t,−ei

)
= −tE,i (r, t, ei) i = 1, 2, 3

lim
h→0

tE
∗ = lim

h→0
tE (rS

∗, t,n) = tE (r, t,n)
(3.26)

And the terms that depend on the tetrahedron height tend to zero:

lim
h→0

[
1
3
(
bE ρE

)∗
h

]
= 0 (3.27)

lim
h→0

{
1
3

[(
∂aE

∂t
+ ∂aE

∂r
aE

)
ρE

]∗

h

}
= 0 (3.28)

Thus, equation (3.25) is reduced to:

tE (r, t,n) =
3∑

i=1
tE,i (r, t, ei)

(
ei · n

)
(3.29)

On the other hand, the stress vector corresponding to a plane which is perpendicular
to a given unit vector can be defined as follows:

tE,i (r, t, ei) =
3∑

k=1
σikek (3.30)

The component σik represents the force per unit area, oriented according to the
direction k, that act on the plane whose normal vector is ei (figure 3.4). And the
substitution of the above stress vector into equation (3.29) leads to:

tE (r, t,n) =
3∑

i=1

( 3∑
k=1

σik ek

)(
ei · n

)
=

3∑
i=1

3∑
k=1

σik ek

(
ei · n

)
(3.31)

The vector of each addend can be equivalently expressed as the tensor product

ek

(
ei · n

)
=
(
ek ⊗ ei

)
n (3.32)

Therefore, the stress vector acting on the basis of the tetrahedron can be finally
defined as:

tE (r, t,n) =
[ 3∑

k=1

3∑
i=1

(
ek ⊗ ei

)
σik

]
n (3.33)

The previous summation defines a tensor with respect to the Cartesian basis. Its
components σik are the components of the stress vectors defined in (3.30). This is the
so-called Cauchy stress tensor, and it represents the stress field experimented by the
solid, defined as internal forces per unit area in the deformed configuration.
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Chapter 3. Stress field

Figure 3.4. Stress vectors on the faces of a cube.

Equation (3.33) is also known as the Cauchy stress vector. It provides the value of
the traction force per unit area, depending on the Cauchy stress tensor and the normal
vector corresponding to the plane where the stress vector is defined.

tE =

σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33


n1

n2

n3

 = σE
T n (3.34)

It will be demonstrated later on that the stress tensor has to be symmetric, if the
conservation of angular momentum is fulfilled (8.35). Hence, the Cauchy stress vector
can also be defined as:

tE (r, t,n) = σE (r, t) n (3.35)

If the change of variable (1.4) is applied to the above equation, the Lagrangian
description of the stress vector is obtained.

tE

∣∣∣
r=rL(r0,t)

=
(
σE n

)∣∣∣
r=rL(r0,t)

⇐⇒ tL (r0, t,n) = σL (r0, t) n (3.36)

3.3.1. Effect of a rotation

Let’s consider that the stress field experimented by a solid media subjected to
external loads at a given load step t is known. The next load step t + ∆t consists in
applying a rotation to the solid. As stated in the previous section, the stress vectors
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3.4. First Piola-Kirchhoff stress tensor

corresponding to both load steps are defined as:

t t

L = σ t

L nt

t t+∆t

L = σ t+∆t

L nt+∆t

(3.37)

Moreover, the stress vector corresponding to the current load step turns out to be
the result of rotating the previous stress vector. The rotation tensor applied has to be
an orthogonal tensor, as proved in section A.13.

t t+∆t

L = RL t
t

L

= RL

(
σ t

L nt

)
=
(
RL σ

t

L

)
nt

(3.38)

And the normal vector can be also obtained by rotating the previous one.

nt+∆t = RL nt ⇐⇒ nt = RL
Tnt+∆t (3.39)

The substitution of the normal vector corresponding to the load step t obtained in
the above equation into (3.38), leads to:

t t+∆t

L =
(
RL σ

t

L

)
nt

=
(
RL σ

t

L

)(
RL

Tnt+∆t

)
=
(
RL σ

t

LRL
T
)︸ ︷︷ ︸

σ t+∆t
L

nt+∆t

(3.40)

Therefore, the Cauchy stress tensor corresponding to the rotated configuration can
be computed by means of the previous stress tensor as:

σ t+∆t

L = RL σ
t

LRL
T (3.41)

3.4. First Piola-Kirchhoff stress tensor

As stated before, the differential force acting on a given material point of the de-
formed configuration can be obtained by means of the stress vector and the differential
area where the force is applied. If the stress vector (3.36) is substituted into this
definition, and the equation is reorganized, the differential force becomes:

dfL (r0, t,n) = tL (r0, t,n) dΓ
=
(
σL n

)
dΓ

= σL

(
dΓn

)
= σL dΓ

(3.42)

The equation that defines the deformed differential area by means of the initial
one (1.55) can be substituted into the above equation. This substitution leads to the
following result.

dfL = σL

(
FL F L

−T dΓ0

)
(3.43)
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Chapter 3. Stress field

Figure 3.5. Cauchy stress tensor and first Piola-Kirchhoff stress tensor.

The definition of the first Piola-Kirchhoff stress tensor arises by reorganizing the
above equation. This tensor allows to calculate the differential force that acts on the
deformed configuration, by means of the initial differential area. That is, it represents
the traction force acting on the deformed domain, referred to the undeformed area.

dfL = σL

(
FL F L

−T dΓ0

)
=
(
FL σL F L

−T

)
dΓ0

= P L dΓ0

(3.44)

According to its definition, the first Piola-Kirchhoff stress tensor turns out to be
non-symmetric.

P L = FL σL F L
−T =⇒

P L
T =

(
FL σL F L

−T

)T

= FL F L
−1 σL

T ̸= P L

(3.45)

This stress tensor allows to define an alternative stress vector (t0,L), that represents
the differential force acting on the deformed configuration (dfL) per unit initial differ-
ential area (dΓ0). The subscript 0 is added to indicate that the stress vector is referred
to the initial reference configuration, which is well-known.

dfL = P L dΓ0

= P L

(
dΓ0 n0

)
=
(
P L n0

)
dΓ0

= t0,L dΓ0

 =⇒ t0,L = P L n0 = dfL

dΓ0
(3.46)

34



3.5. Second Piola-Kirchhoff stress tensor

3.5. Second Piola-Kirchhoff stress tensor

The product between the inverse of the deformation gradient tensor and the differ-
ential force defined in (3.43) leads to the definition of the second Piola-Kirchhoff stress
tensor.

df ′
L = F L

−1 dfL

= F L
−1

[
σL

(
FL F L

−T dΓ0

)]
= FL

(
F L

−1 σL F L
−T

)
dΓ0

= SL dΓ0

(3.47)

Thus, the second Piola-Kirchhoff stress tensor is defined as:

SL = FL

(
F L

−1 σL F L
−T

)
(3.48)

Figure 3.6. Cauchy stress tensor and second Piola-Kirchhoff stress tensor.

This tensor allows to calculate the modified differential force defined in (3.47) by
means of the initial differential area. This modified differential force has no physical
interpretation. Nevertheless, it allows to obtain an alternative stress tensor, which
turns out to be work conjugate with the Green-Lagrange strain tensor (section 7.6.2).
Two tensor magnitudes are work-conjugate, if the computation of their double dot
product leads to the work per unit volume developed by the internal forces during the
deformation process.

This stress tensor is symmetric. This property leads to symmetric stiffness matrices,
as it will be proved later on. To prove this symmetry, the symmetry of the Cauchy
stress tensor, which will be demonstrated later on in section 8.4, is also taken into
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account.

SL = FL

(
F L

−1 σL F L
−T

)
=⇒

SL
T = FL

(
F L

−1 σL F L
−T

)T

= FL

(
F L

−1 σL F L
−T

)
= SL

(3.49)

Moreover, it can be equivalently defined by means of the first Piola-Kirchhoff stress
tensor (3.45).

SL = FL

(
F L

−1 σL F L
−T

)
= F L

−1
(
FL σL F L

−T

)
= F L

−1 P L

(3.50)

The second Piola-Kirchhoff stress tensor allows to define another alternative stress
vector (t ′

0,L), that represents the modified differential force acting on the deformed
configuration (df ′

L) per unit initial differential area (dΓ0).

df ′
L = F L

−1 dfL = SL dΓ0

= SL

(
dΓ0 n0

)
=
(
SL n0

)
dΓ0

= t ′
0,L dΓ0

 =⇒ t ′
0,L = SL n0 = df ′

L

dΓ0
(3.51)

3.5.1. Effect of a rotation

Let’s consider that the structural behaviour of a given solid media subjected to a
set of external loads at a specific load step t is known. As stated in section 1.10, the
geometric transformation of a material vector δr0 that belongs to the reference material
domain is ruled by the deformation gradient tensor.

δrt = F t

L δr0 (3.52)

And the second Piola-Kirchhoff stress tensor corresponding to this deformation
gradient tensor is:

S t

L = F t

L

((
F t

L

)−1
σ t

L

(
F t

L

)−T
)

(3.53)

Let’s also consider that the next load step t + ∆t consists in the application of a
rotation to the solid. The material vector defined in (3.52) is modified by a rotation
tensor as follows:

δrt+∆t = RL δrt

= RL

(
F t

L δr0

)
=
(
RL F

t

L

)︸ ︷︷ ︸
F t+∆t

L

δr0

(3.54)

The above rotation tensor turns out to be an orthogonal tensor and represents a
proper rotation.

RL
−1 = RL

T det
(
RL

)
= 1 (3.55)
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3.5. Second Piola-Kirchhoff stress tensor

After the application of the rotation, the deformation gradient tensor becomes:

F t+∆t

L = RL F
t

L (3.56)

And its corresponding second Piola-Kirchhoff stress tensor turns out to be:

S t+∆t

L = F t+∆t

L

((
F t+∆t

L

)−1
σ t+∆t

L

(
F t+∆t

L

)−T
)

(3.57)

Since the rotation does not produce volume variation, the determinant of the cur-
rent deformation gradient tensor turns out to be equivalent to the determinant of the
previous load step.

F t+∆t

L = det
(
F t+∆t

L

)
= det

(
RL F

t

L

)
= det

(
RL

)
det
(
F t

L

)
= det

(
F t

L

)
= F t

L

(3.58)

If the deformation gradient tensor (3.56) and its corresponding determinant (3.58)
are substituted into (3.57), the second Piola-Kirchhoff stress tensor becomes:

S t+∆t

L = F t

L

((
RL F

t

L

)−1
σ t+∆t

L

(
RL F

t

L

)−T
)

= F t

L

((
F t

L

)−1
RL

T σ t+∆t

L RL

(
F t

L

)−T
) (3.59)

According to the equation (3.41), the Cauchy stress tensor corresponding to the
load step t + ∆t can be defined by means of its definition at the previous load step.
From this equation, the inverse relation can be obtained.

σ t+∆t

L = RL σ
t

LRL
T ⇐⇒ σ t

L = RL
T σ t+∆t

L RL (3.60)

If the above stress tensor is identified in (3.59), and the definition of the second
Piola-Kirchhoff stress tensor corresponding to the load step t (3.53) is recalled, it can
be proven that the second Piola-Kirchhoff stress tensors corresponding to both load
steps are equivalent.

S t+∆t

L = F t

L

((
F t

L

)−1(
RL

Tσ t+∆t

L RL

)(
F t

L

)−T
)

= F t

L

((
F t

L

)−1
σ t

L

(
F t

L

)−T
)

= S t

L

(3.61)

It can be concluded that the second Piola-Kirchhoff stress tensor does not vary if a
rotation is applied to the solid.

37



Chapter 3. Stress field

3.6. Overview and conclusions

The stress vector is defined with respect to a given plane, thus, an infinite number
of stress vectors can be defined at a given material point that belongs to the deformed
configuration. It is defined as the differential traction force acting on the deformed
configuration per unit differential area. Note that this differential traction force de-
pends on the plane taken into account, and that the differential area belongs to this
plane.

According to this definition, the stress vector turns out to be a force per unit area
which depends on the material point and time. Moreover, it also depends on the normal
vector that defines the plane, since the direction of the traction force depends on the
plane taken into account.

The linear momentum balance applied to a tetrahedron that belongs to the deformed
material domain leads to the definition of the Cauchy stress vector (tL). This equation
defines the stress vector as the product between the Cauchy stress tensor (σL) and the
normal unit vector (n) that defines the plane with respect to which the stress vector
is defined.

At a given material point, the Cauchy stress tensor turns out to be composed by
the components of the stress vectors which are defined with respect to the Cartesian
planes. This tensor represents the stress field experimented by the solid, defined as
internal forces per unit area. If a rotation is applied to the deformed domain, the
components of the Cauchy stress tensor are modified.

Alternative stress tensors can be defined, if the reference configuration is modified.
When defining the Cauchy stress vector, the deformed material domain is the reference
configuration. That is, stresses are defined as forces per unit deformed area. However,
if the initial material domain becomes the reference one, the first Piola-Kirchhoff stress
tensor (P L) arises. This stress tensor allows to define a stress vector referred to the
initial material domain, which is well-known. This alternative stress vector is defined
as the differential traction force acting on the deformed configuration per unit initial
differential area. The main disadvantage of this tensor is its non-symmetry, and its use
to represent the stress field is usually rejected since it leads to non-symmetric stiffness
matrices.

If the differential traction force is multiplied by the inverse of the deformation
gradient tensor, the second Piola-Kirchhoff stress tensor (SL) arises. Although this
tensor defines another type of stress vector that has no clear physical interpretation,
it fulfils some interesting and useful properties when a large displacement structural
behaviour is faced. It defines a stress vector that represents a modified differential
traction force (the product between the inverse of the deformation gradient tensor and
the differential traction force) per unit initial differential area. Note that the initial
domain is again adopted as the reference one. The second Piola-Kirchhoff stress tensor
turns out to be symmetric and does not vary if a rotation is applied to a given deformed
domain.
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4.1. Introduction

In order to fully understand the deformation experimented by the solid in the vicin-
ity of a given material particle, the geometric transformation of a material vector is
extensively analysed throughout this chapter.

The equation that rules this geometric variation contains the information that de-
fines the change of volume, orientation, and shape that the solid undergoes. This
information is necessary to properly define the displacement field, as well as its corre-
sponding strain and stress fields.

4.2. Geometric transformation of a material vector

A material vector is a vector that links two material points that belong to a material
domain. This vector experiments a change in its modulus and direction when the
external loads are applied (figure 4.1).

Let consider a material vector δr⃗0 that belongs to the initial configuration. The
expression of this vector with respect to the canonical basis is:

δr⃗0 =
n∑

k=1
ek δr0,k ⇐⇒



δr⃗0 =E
∼
δr0

E
∼

=
[
e1 · · · en

]
δr0 =


δr0,1

...
δr0,n


(4.1)

As the matrixE
∼

is composed by the orthonormal vectors that compose the canonical
basis, this matrix turns out to be the identity matrix. Thus, the matrix expression of
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Figure 4.1. Material vector at a given instant of time.

the above material vector is reduced to:

E
∼

= I =⇒ δr⃗0 = δr0 (4.2)

After the application of the external forces, this vector changes its modulus and
direction, and it becomes:

δr⃗ = δr (4.3)
The above vector is the relative deformation vector defined in section 1.10. As

proved in that section, it is defined by means of the deformation gradient tensor.
Moreover, the deformation gradient tensor depends on the displacement gradient ten-
sor. Thus,

δr =F L δr0 + O
(
∥δr0∥2

)
F L = ∂rL

∂r0
= I + JL

JL = ∂uL

∂r0

(4.4)

That is, the relative deformation vector defines the motion of a solid, in the vicinity
of a given point (figure 4.2). As this vector depends on the deformation gradient tensor,
this tensor is the one that contains the information related to the change of volume,
orientation, and shape of the solid. This information is required to properly define the
displacement, strain, and stress fields of a continuous solid media subjected to external
forces.

4.2.1. Basis rotation

Let consider the geometric transformation of a generic material vector ruled by the
deformation gradient tensor.

δr = F L δr0 (4.5)
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Figure 4.2. Geometric transformation of a material vector at a given instant of time.

This tensor is defined with respect to the canonical basis. If a rotation is now applied
to each one of the unit vectors that compose this basis, a rotated one composed by
orthonormal vectors is obtained. As stated in section A.13, the rotation tensor has to
be orthogonal, since it represents a rotation. Then,

RL
−1 = RL

T (4.6)

And the rotated vectors that compose the new basis are:

e ′
i = RL ei =

r11 · · · r1n

... . . . ...
rn1 · · · rnn

 ei =


r1i

...
rni

 i = 1, . . . , n ⇐⇒

⇐⇒ E
∼

′ =
[
e ′

1 . . . e ′
n

]
=

r11 · · · r1n

... . . . ...
rn1 · · · rnn

 = RL

(4.7)

If this rotated basis is adopted as a reference, the vector components, as well as
the tensor components, change. In this section, the variation of these components is
studied, and their calculation from the previous components expressed with respect to
the canonical basis is obtained.

The reference material vector δr⃗0 and the deformed one δr⃗ are defined with respect
to the rotated basis as:

δr⃗0 = E
∼

′ δr ′
0 = RL δr

′
0

δr⃗ = E
∼

′ δr ′ = RL δr
′

(4.8)

These equations have to be equal to the ones defined in (4.2) and (4.3), since they
define the same vectors. Thus, if both pairs of equations are compared, the equations
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that relate the vector components in both coordinate systems can be obtained.

δr0 = RL δr
′
0

δr = RL δr
′

(4.9)

If the above equations are replaced into the expression that defines the geometric
change of a generic material vector (4.5), the equation that defines the deformation
gradient tensor expressed with respect to the rotated basis is obtained.(

RL δr
′
)︸ ︷︷ ︸

δr

= F L

(
RL δr

′
0

)︸ ︷︷ ︸
δr0

⇐⇒ δr ′ =
(
RL

T F LRL

)
︸ ︷︷ ︸

F ′
L

δr ′
0 (4.10)

So, the equation that defines the deformation gradient tensor expressed with respect
to the rotated basis turns out to be:

F ′
L = RL

TF LRL (4.11)

Where F L is the deformation gradient tensor expressed with respect to the canonical
basis, and RL defines the rotation applied to each one of the canonical axes.

4.3. Polar decomposition of the deformation gradient tensor

According to the polar decomposition theorem [Halmos, 1958], any non-singular
deformation gradient tensor can be decomposed as the product of the following tensors:

∀F L | det
(
F L

)
̸= 0 =⇒ F L = RL

[
I +EL

]
(4.12)

Where RL is the finite rotation tensor, and [I +EL] is the finite strain tensor. More-
over, the tensor EL is the so-called Biot strain tensor [Anand & Govindjee, 2020].

On the one hand, the rotation tensor has to be an orthogonal tensor, as it represents
a rotation (A.13).

RL
T = RL

−1 ⇐⇒

{
RLRL

T = I

RL
TRL = I

(4.13)

From the above property, the determinant of the finite rotation tensor can be de-
duced by applying the determinant operator at both sides of the equation.

RLRL
T = I

RL
TRL = I

}
⇐⇒

(
det
(
RL

))2

= det
(
I
)

= 1 ⇐⇒ det
(
RL

)
= ±1 (4.14)

It can be concluded that the determinant of the rotation tensor has to be equal to
one, as it has to represent a proper rotation. The determinant of an improper rotation
has the opposite sign of a proper rotation [Salomon, 1999]. An improper rotation
can be a reflection, or a rotation followed by a reflection. In this particular case, the
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4.3. Polar decomposition of the deformation gradient tensor

rotation of a material vector is studied. The improper rotation of a material vector has
no physical meaning, so the rotation has to be a proper one.

det
(
RL

)
= 1 (4.15)

On the other hand, the Biot strain tensor is symmetric.

EL
T = EL (4.16)

And the finite strain tensor has to be positive definite.

xT
[
I +EL

]
x > 0 ∀x ̸= 0̄ (4.17)

In the following subsection, the computation of the Biot strain tensor and the finite
rotation tensor is outlined.

4.3.1. Finite strain and finite rotation tensors

The right Cauchy-Green tensor and its properties are presented, in order to compute
the finite strain and rotation tensors. This tensor depends on the deformation gradient
tensor, and it is defined as stated below.

ML = F L
TF L (4.18)

According to this definition, it is straightforward to prove it turns out to be sym-
metric and positive definite.

ML
T =

(
F L

TF L

)T = F L
TF L = ML (4.19)

xTML x = xT
(
F L

TF L

)
x =

(
F L x

)T(
F L x

)
= ∥F L x∥ 2 > 0 ∀x ̸= 0̄ (4.20)

Therefore, in a n-dimensional space, this matrix has n real positive eigenvalues
associated to their corresponding eigenvectors. Furthermore, these eigenvectors are
forced to compose an orthonormal basis.

ML ui = λi ui i = 1, . . . , n
ui

Tuj = δij

(4.21)

The above eigenvalue problem can be rewritten as shown below.

MLU = U Λ


U =

[
u1 · · · un

]
, UT = U−1 , det

(
U
)

= 1

Λ =

λ1 · · · 0
... . . . ...
0 · · · λn

 , Λ positive definite
(4.22)
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The matrix U is composed by the eigenvectors organized into columns. As the
eigenvectors compose an orthonormal basis, this matrix turns out to be orthogonal.
Thus, it can be interpreted as a rotation matrix.

UT U = I ⇐⇒ UT = U−1 (4.23)

Moreover, the sense of the eigenvectors is defined so that they compose a proper
rotation. Hence, its determinant has to be equal to one.

det
(
U
)

= 1 (4.24)

And the matrix Λ is a diagonal matrix composed by the eigenvalues associated to
the previous eigenvectors. Since the eigenvalues are positive, this diagonal matrix is
also positive definite.

xT Λx =
n∑

k=1
λk︸︷︷︸
>0

(xk)2
> 0 ∀x =

{
xk

}
k=1,...,n

̸= 0̄ (4.25)

On the one hand, if the polar decomposition of the deformation gradient ten-
sor (4.12) is substituted into the definition of the right Cauchy-Green tensor (4.18),
the effect of the rotation disappears as the rotation tensor is an orthogonal tensor.

F L
TF L =

(
RL

[
I +EL

] )T(
RL

[
I +EL

] )
=
[
I +EL

]T (
RL

TRL

)︸ ︷︷ ︸
I

[
I +EL

]
=
[
I +EL

]T [
I +EL

]
(4.26)

On the other hand, from equation (4.22), an equivalent definition of the right
Cauchy-Green tensor that depends on its eigenvalues and eigenvectors can be obtained.

F L
TF L = U ΛUT

= U
[
Λ1/2 Λ1/2

]
UT

= UΛ1/2
(
UT U

)︸ ︷︷ ︸
I

Λ1/2UT

=
[
U Λ1/2 UT

] [
U Λ1/2 UT

]
=
[
U Λ1/2 UT

]T [
U Λ1/2 UT

]
(4.27)

If equations (4.26) and (4.27) are now compared, the finite strain tensor can be
defined depending on the eigenvalues and the eigenvectors of the right Cauchy-Green
tensor.

I +EL = U Λ1/2 UT (4.28)
And the Biot strain tensor can be computed as:

EL = U Λ1/2 UT − I
= U

[
Λ1/2 − I

]
UT

(4.29)
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Once the finite strain tensor (4.28) has been defined, the finite rotation tensor can
be computed from the definition of the polar decomposition of the deformation gradient
tensor (4.12).

RL = F L

[
I +EL

]−1

= F L

[
U Λ1/2 UT

]−1

= F LU Λ−1/2 UT

(4.30)

According to the previous results, the polar decomposition of the deformation gra-
dient tensor can be obtained by means of the eigenvalues and eigenvectors of the right
Cauchy-Green tensor. Moreover, this decomposition allows to divide the geometric
variation of a given material vector into two different phases, as stated below.

4.3.2. Physical interpretation

As it has already been proved in section 1.10, the deformation gradient tensor rules
the geometric change of a material vector. According to its polar decomposition, this
tensor can be decomposed into the product of a finite strain tensor and a finite rotation
tensor (section 4.3).

δr = F L δr0 =
rotation︷︸︸︷
RL

( [
I +EL

]︸ ︷︷ ︸
strain

δr0

)
(4.31)

Thus, the geometric change of the material vector can be divided into two different
phases. Firstly, the finite strain tensor modifies the modulus and the direction of the
original material vector.

δr1 =
[
I +EL

]
δr0 (4.32)

Then, the finite rotation tensor rotates the previous modified vector. As it is a
rotation, its modulus does not change. It only modifies its direction.

δr = RL δr1 (4.33)

4.3.3. Biot strain tensor

According to the equation (4.29), the Biot strain tensor can be defined as:

EL = U
[
Λ1/2 − I

]
UT = U

ε1 · · · 0
... . . . ...
0 · · · εn

UT (4.34)

The coefficients εi turn out to be the eigenvalues of the Biot strain tensor. They
can be computed depending on the eigenvalues of the right Cauchy-Green tensor (λi)
as shown below.

εi =λi

1/2 − 1 i = 1, . . . , n
λi ∈

(
0,∞

) }
=⇒ εi ∈

(
− 1,∞

)
(4.35)
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Chapter 4. Finite strain field

If equations (4.22) and (4.34) are compared, it can be concluded that the Biot strain
tensor and the right Cauchy-Green tensor have the same eigenvectors.

4.3.4. Determinant of the deformation gradient tensor

The polar decomposition of the deformation gradient tensor (4.12) also allows to
calculate its determinant.

FL = det
(
F L

)
= det

(
RL

[
I +EL

] )
= det

(
RL

)
det
(
I +EL

)
(4.36)

As stated in (4.15), the determinant of the finite rotation tensor is equal to one,
so the determinant of the deformation gradient tensor turns out to be equal to the
determinant of the finite strain tensor.

FL = det
(
RL

)︸ ︷︷ ︸
=1

det
(
I +EL

)
= det

(
I +EL

)
(4.37)

Furthermore, the finite strain tensor can be expressed depending on the eigenvalues
and eigenvectors of the right Cauchy-Green tensor, as obtained in (4.28).

FL = det (I +EL) = det
(
U Λ1/2 UT

)
(4.38)

As the matrix U represents a proper rotation and its determinant is equal to
one (4.24), the computation of the determinant is reduced to:

FL = det
(
U
)

det
(
Λ1/2
)

det
(
UT
)

= det
(
U
)︸ ︷︷ ︸

=1

det
(
Λ1/2
)

det
(
U
)︸ ︷︷ ︸

=1

= det
(
Λ1/2
)

(4.39)

The matrix Λ1/2 is diagonal, so its determinant can be calculated as the product
of its diagonal components. Moreover, if equation (4.35) is taken into account, these
components can be rewritten depending on the eigenvalues of the Biot strain tensor.
So, the determinant of the deformation gradient tensor can be finally computed as
follows:

FL = det
(
Λ1/2
)

=
n∏

i=1
λi

1/2 =
n∏

i=1

(
1 + εi

)
(4.40)

4.4. Finite strain

As the polar decomposition theorem states, the deformation gradient tensor can be
decomposed into the product of a finite rotation and a finite strain tensor (section 4.3).
On the one hand, the rotation tensor is a proper orthogonal tensor, since it represents
a proper rotation (proved in section A.13). On the other hand, the finite strain tensor
is symmetric and positive definite.

F L = RL

[
I +EL

]
(4.41)
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4.4. Finite strain

Where:
RL ≡ Finite rotation tensor

I +EL ≡ Finite strain tensor
EL ≡ Biot strain tensor

Moreover, the geometric variation of a material vector is ruled by the deformation
gradient tensor (1.23). If its polar decomposition is taken into account, the geometric
transformation of a material vector can be expressed as follows.

δr =
rotation︷︸︸︷
RL

( [
I +EL

]︸ ︷︷ ︸
strain

δr0

)
+ O (∥δr0∥2) (4.42)

This implies that, firstly, the material vector suffers the effect of the finite strain
tensor. This tensor modifies its modulus and direction. Then, a finite rotation is
applied to this vector. The rotation only changes its direction, it does not vary its
norm.

4.4.1. Concept of finite strain

If the finite strain tensor is applied to a material vector, it modifies its direction
and modulus. Thus, the finite strain is defined as the following geometric change of a
given material vector.

δrE =
[
I +EL

]
δr0 (4.43)

The tensor EL is the so-called Biot strain tensor, which has to be symmetric.

EL
T = EL (4.44)

Moreover, the finite strain tensor has to be positive definite. Hence, it fulfils the
following property.

xT
[
I +EL

]
x > 0 ∀x ̸= 0̄ (4.45)

As stated in (4.34), the Biot strain tensor can be computed as:

EL = U

ε1 · · · 0
... . . . ...
0 · · · εn

UT (4.46)

Where the coefficients εi that compose the above diagonal matrix are the eigenvalues
of the Biot strain tensor (4.35).

εi ∈
(

− 1,∞
)

(4.47)

And the matrix U is composed by the eigenvectors associated to the previous eigen-
values. If the eigenvectors are forced to compose an orthonormal basis, this matrix
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Chapter 4. Finite strain field

turns out to be orthogonal.
UTU = I

U UT = I

}
⇐⇒ UT = U−1 (4.48)

The previous matrix can also be forced to define a proper rotation, if the sense of
the eigenvectors is properly defined. Thus, its determinant has to be equal to one.

det
(
U
)

= 1 (4.49)

If the results obtained in (4.22) and (4.46) are compared, it can be concluded that
the right Cauchy-Green tensor and the Biot strain tensor have the same eigenvectors.
However, they do not have the same eigenvalues. The relation between both eigenvalues
was stated in (4.35) as:

εi =λi

1/2 − 1 i = 1, . . . , n
λi ∈

(
0,∞

) }
=⇒ εi ∈

(
− 1,∞

)
(4.50)

Where λi are the eigenvalues of the right Cauchy-Green tensor, and εi are the ones
corresponding to the Biot strain tensor.

4.4.2. Basis rotation

Let assume that the initial reference basis is the canonical one. If a rotation is
applied to this basis, and the rotated basis is adopted as the new reference, the vector
and tensor components vary. Therefore, this variation has to be defined.

δrE =
[
I +EL

]
δr0 −→ δr ′

E =
[
I +E ′

L

]
δr ′

0 (4.51)

The equations that define the canonical vector components by means of the com-
ponents expressed with respect to the rotated basis were already defined in (4.9).
Therefore, the equations that relate both components are:

δr0 = RL δr
′
0

δrE = RL δr
′
E

(4.52)

The substitution of the above equations into the equation that defines the finite
strain tensor applied to a material vector (4.43) leads to its definition with respect to
the rotated basis.

(
RL δr

′
E

)︸ ︷︷ ︸
δrE

=
[
I +EL

] (
RL δr

′
0

)︸ ︷︷ ︸
δr0

⇐⇒

δr ′
E =

(
RL

T
[
I +EL

]
RL

)
δr ′

0

=
[
I +RL

TELRL

]︸ ︷︷ ︸
I+E ′

L

δr ′
0

(4.53)

Hence, the finite strain tensor expressed with respect to the rotated basis turns out
to be:

I +E ′
L = I +RL

TELRL (4.54)
And the Biot strain tensor:

E ′
L = RL

TELRL (4.55)
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4.5. Alternative polar decomposition

4.4.3. Biot strain tensor diagonalization

According to the definition of the Biot strain tensor stated in (4.34), the following
equation that defines its diagonalization can be obtained.ε1 · · · 0

... . . . ...
0 · · · εn

 = UTELU (4.56)

Moreover, the equation that defines the components of the Biot strain tensor with
respect to a rotated basis was obtained in (4.55). If both equations are compared, it
can be concluded that the rotation defined by RL = U diagonalizes the Biot strain
tensor.

E ′
L = RL

TELRL = UTELU =

ε1 · · · 0
... . . . ...
0 · · · εn

 (4.57)

The coefficients εi are the eigenvalues of the Biot strain tensor, and the columns of
the matrix U are their corresponding eigenvectors.

Thus, if the finite strain that experiments a material vector is expressed with respect
to this rotated basis, the finite strain tensor turns out to be diagonal.

δr ′
E =

[
I +E ′

L

]
δr ′

0 =

1 + ε1 · · · 0
... . . . ...
0 · · · 1 + εn

 δr ′
0 (4.58)

The axes defined by this basis are also known as principal axes. And the coefficients
that compose the diagonalized Biot strain tensor are the elongation factors that are
applied to the material vector components along each one of them.

εi ∈
(

− 1,∞
)

=⇒ (1 + εi) ∈
(
0,∞

)
(4.59)

4.5. Alternative polar decomposition

The polar decomposition of the deformation gradient tensor can alternatively be
rewritten as:

F L = RL

[
I +EL

]
= RL

(
1

n
√
FL

[
I +EL

])(
n
√
FL

[
I
])

= RLDLHL (4.60)

Where n is the dimension of the space where the solid is defined.
This alternative polar decomposition divides the finite strain tensor into the product

of two different tensors.
I +EL =DLHL

DL = 1
n
√
FL

[
I +EL

]
HL = n

√
FL

[
I
] (4.61)
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Chapter 4. Finite strain field

These two tensors are extensively analysed in the following sections.

4.5.1. Inflation tensor (isotropic strain tensor)

On the one hand, the tensor HL is diagonal, and its determinant turns out to be
equivalent to the determinant of the deformation gradient tensor.

det
(
HL

)
= det

(
n
√
FL

[
I
] )

= FL (4.62)

This result indicates that this tensor is the one involved with the change of volume.
It is the so-called inflation tensor or isotropic strain tensor. Since its determinant is
equivalent to the determinant of the deformation gradient tensor, it can be concluded
that the inflation tensor rules the volume variation in the vicinity of a given point.

4.5.2. Distortion tensor (isochoric strain tensor)

On the other hand, the tensor DL can be rewritten as shown below.

DL = 1
n
√
FL

[
I +EL

]
= I + 1

n
√
FL

[
I +EL

]
− I

= I + 1
n
√
FL

[
EL +

(
1 − n

√
FL

)
I
] (4.63)

Its determinant can be derived from the computation of the determinant of the
deformation gradient tensor.

FL = det
(
F L

)
= det

(
RLDLHL

)
= det

(
RL

)
det
(
DL

)
det
(
HL

)
(4.64)

The determinant of the rotation tensor has to be equal to one, as it represents
a proper rotation. If the result obtained in (4.62) is also taken into account, the
determinant of the tensor DL can be derived.

FL = det
(
RL

)
det
(
DL

)
det
(
HL

)
det
(
RL

)
= 1

det
(
HL

)
= FL

 =⇒ det
(
DL

)
= 1 (4.65)

The above result indicates that this tensor does not produce volume variation.
Hence, it has to be related to a distortion process. This tensor is the so-called distortion
tensor or isochoric strain tensor, and it is defined as:

DL = I+ED,L

ED,L = 1
n
√
FL

[
EL +

(
1 − n

√
FL

)
I
] (4.66)

Where ED,L is the deviatoric strain tensor.

50



4.6. Green-Lagrange strain tensor

4.5.3. Physical interpretation

If this alternative polar decomposition is taken into account, the geometric trans-
formation of a given material vector (4.31) becomes:

δr = RL︸︷︷︸
rotation

( distortion︷︸︸︷
DL

(
HL︸︷︷︸

inflation

δr0

))
+ O

(
∥δr0∥2

)
(4.67)

Where:
RL ≡ Finite rotation tensor
DL ≡ Distortion tensor (isochoric strain tensor)
HL ≡ Inflation tensor (isotropic strain tensor)

Let’s consider that an infinitesimal parallelepiped is defined at a given material
point, whose reference position is defined by the position vector r0. Its faces are parallel
to the coordinate planes composed by the principal axes. Under these assumptions,
the parallelepiped experiments the sequence of geometric changes stated below.

The first geometric transformation that it experiments is the inflation. It is
caused by the inflation tensor HL, and it is the only one that implies a volume
variation.

The distortion is the second transformation that the parallelepiped experiments.
The volume remains constant, and the tensor DL is the one that governs this
process.

Finally, the rotation produced by the finite rotation tensor RL is applied. This
rotation orientates the parallelepiped according to the deformed configuration.

Figure 4.3 shows the initial position of an infinitesimal parallelepiped in the reference
configuration, and its configuration at a given instant of time t.

Furthermore, figure 4.4 shows the whole geometric transformation that the paral-
lelepiped experiments, decomposed in the following phases: inflation, distortion, and
rotation.

If this entire process is known, the change of shape, volume, and orientation experi-
mented by a solid after the application of the external loads can be entirely understood
and defined. This information is necessary to properly define the displacement field,
and its corresponding strain and stress fields.

4.6. Green-Lagrange strain tensor

The definition of the Green-Lagrange strain tensor arises when the difference be-
tween the square of the norm of a given material vector at a given instant of time t
and the square of the norm of the undeformed material vector is computed.
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Chapter 4. Finite strain field

Figure 4.3. Parallelepiped geometric transformation at a given instant of time.

INFLATION
(isotropic strain)

DISTORTION
(isochoric strain)

ROTATION

Figure 4.4. Alternative polar decomposition applied to the parallelepiped geometric
transformation.

4.6.1. Definition in terms of the deformation gradient tensor

On the one hand, the square of the norm of the initial infinitesimal material vector
is:

∥δr0∥2 = δr0
T δr0 (4.68)

On the other hand, as stated in (1.23), the deformation gradient tensor governs the
geometric transformation of this material vector. Thus, the material vector at a given
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4.6. Green-Lagrange strain tensor

instant of time is defined as:
δr = F L δr0 (4.69)

And the square of its norm can be computed as shown below.

∥δr∥2 = δrT δr

=
(
F L δr0

)T(
F L δr0

)
= δr0

T
(
F L

TF L

)
δr0

(4.70)

Therefore, the difference between (4.70) and (4.68) turns out to be:

∥δr∥2 − ∥δr0∥2 = δr0
T
(
F L

TF L

)
δr0 − δr0

T δr0

= δr0
T
(
F L

TF L − I
)
δr0

= 2 δr0
T

[
1
2

(
F L

TF L − I
)]
δr0

= 2 δr0
TEG,L δr0

(4.71)

The definition of the Green-Lagrange strain tensor arises in the above equation. Its
definition by means of the deformation gradient tensor is:

EG,L = 1
2

(
F L

TF L − I
)

(4.72)

4.6.2. Definition in terms of the displacement gradient tensor

If the definition of the deformation gradient tensor presented in (1.12) is recalled,
the Green-Lagrange strain tensor can be defined in terms of the displacement gradient
tensor.

EG,L = 1
2

(
F L

TF L − I
)

= 1
2

[(
I + JL

)T(
I + JL

)
− I

]
= 1

2

(
JL + JL

T + JL
T JL

)
= 1

2

[
∂uL

∂r0
+
(
∂uL

∂r0

)T

+
(
∂uL

∂r0

)T
∂uL

∂r0

]
(4.73)

The components of the above tensor are defined as:

EG,L =
[
Eij

]
j=1,...,n
i=1,...,n

Eij = 1
2

(
∂ui

∂r0,j

+ ∂uj

∂r0,i

+
n∑

k=1

∂uk

∂r0,i

∂uk

∂r0,j

)
(4.74)

Moreover, the tensor defined in (4.73) can be rewritten in terms of the infinitesimal
strain tensor (5.45), which is introduced in the following chapter.

EG,L = 1
2

(
JL + JL

T + JL
TJL

)
= 1

2

(
JL + JL

T

)
+ 1

2JL
TJL

= EL + O
(
∥JL∥2

) (4.75)
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If the displacement gradients are small, the Green-Lagrange strain tensor turns out
to be equivalent to the infinitesimal strain tensor.

∥JL∥ ≪ ∥I∥ =⇒ EG,L = EL + O
(
∥JL∥2

)
≈ EL (4.76)

4.6.3. Definition in terms of the Biot strain tensor

The polar decomposition of the deformation gradient tensor (4.12) can be substi-
tuted into the definition obtained in (4.72). It is recalled that the finite rotation tensor
is an orthogonal tensor (4.13), and the Biot strain tensor is a symmetric one (4.16).

EG,L = 1
2

(
F L

TF L − I
)

= 1
2

[(
RL

[
I +EL

] )T(
RL

[
I +EL

] )
− I

]
= 1

2

( [
I +EL

]T

RL
TRL︸ ︷︷ ︸
I

[
I +EL

]
− I

)
= EL + 1

2 EL
2

= EL + O
(
∥EL∥2

)
(4.77)

This substitution allows to define the Green-Lagrange strain tensor by means of
the Biot strain tensor. As shown in the above equation, the effect of the rotation is
neglected, and the strain tensor only takes into account the effect of the Biot strain
tensor. This tensor is the one that governs the variation of the norm of a given material
vector, since the rotation does not modify its modulus.

It should be noted that, the Green-Lagrange strain tensor turns out to be equivalent
to the Biot strain tensor if the strain field is infinitesimal.

∥EL∥ ≪ ∥I∥ =⇒ EG,L = EL + O
(
∥EL∥2

)
≈ EL (4.78)

4.6.4. Effect of a rotation

Let’s consider a solid subjected to a set of external loads at a given load step t.
The geometric transformation of a given material vector is ruled by the deformation
gradient tensor, which defines the Green-Lagrange strain tensor corresponding to this
load step.

δrt = F t

L δr0 =⇒ E t

G,L = 1
2

[(
F t

L

)T(
F t

L

)
− I

]
(4.79)

If the next load step t + ∆t is a solid rotation, the material vector is rotated by a
rotation tensor as shown below.

δrt+∆t = RL δrt

= RL

(
F t

L δr0

)
=
(
RL F

t

L

)︸ ︷︷ ︸
F t+∆t

L

δr0

(4.80)
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Thus, the deformation gradient tensor of the current load step is:

F t+∆t

L = RL F
t

L (4.81)

And its corresponding Green-Lagrange strain tensor turns out to be equivalent to
the previous one.

E t+∆t

G,L = 1
2

[(
F t+∆t

L

)T(
F t+∆t

L

)
− I

]
= 1

2

[(
F t

L

)T
RL

TRL︸ ︷︷ ︸
I

(
F t

L

)
− I

]
= 1

2

[(
F t

L

)T(
F t

L

)
− I

]
= E t

G,L

(4.82)

Therefore, it can be concluded that the Green-Lagrange strain tensor does not vary
if a rotation is applied to the solid. However, this tensor does vary if its corresponding
displacement field is modified. This variation is analysed in the following subsections.

4.6.5. Green-Lagrange strain tensor variation

The Green-Lagrange strain tensor, corresponding to a given displacement field, is
defined as shown below.

uL =⇒ JL = ∂uL

∂r0

=⇒ rL = r0 + uL

=⇒ F L = ∂rL

∂r0
= I + JL

=⇒ EG,L = 1
2

(
F L

TF L − I
)

(4.83)

Let’s consider that the above displacement field is modified by adding a compatible
variation. Let’s also assume that the gradients of the displacement field variation are
small. Under these assumptions, the Green-Lagrange strain tensor corresponding to

55



Chapter 4. Finite strain field

the modified displacement field is computed as follows.

u ′
L = uL + δuL∥∥∥∥∂δuL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒

=⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂δuL

∂r0
= JL + δJL

=⇒ r ′
L = r0 + u ′

L = r0 +
(
uL + δuL

)
=
(
r0 + uL

)︸ ︷︷ ︸
rL

+δuL

=⇒ F ′
L = ∂r ′

L

∂r0
= ∂rL

∂r0
+ ∂δuL

∂r0
= F L + δF L︸︷︷︸

δJL

=⇒

E ′
G,L = 1

2

[(
F ′

L

)T(
F ′

L

)
− I

]
= 1

2

[(
F L + δF L

)T(
F L + δF L

)
− I

]
= 1

2

(
F L

TF L + F L
T δF L + δF L

TF L + δF L
T δF L − I

)
= 1

2

(
F L

TF L − I
)

+ 1
2

(
δJL

TF L + F L
T δJL + δJL

T δJL︸ ︷︷ ︸
≈0

)
= EG,L + δEG,L

(4.84)

Where EG,L is the Green-Lagrange strain tensor corresponding to the original dis-
placement field, and δEG,L represents its variation. Hence, the Green-Lagrange strain
tensor variation turns out to be:

δEG,L = 1
2

(
δJL

TF L + F L
T δJL

)
(4.85)

If the definition of the deformation gradient tensor presented in (1.12) is substituted
into the above equation, the Green-Lagrange strain tensor variation can be rewritten
as:

δEG,L = 1
2

(
δJL

TF L + F L
T δJL

)
= 1

2

[
δJL

T
(
I + JL

)
+
(
I + JL

)T
δJL

]
= 1

2

(
δJL + δJL

T + δJL
TJL + JL

T δJL

) (4.86)

Furthermore, according to equation (1.20), the variation of the displacement gradi-
ent tensor can be expressed as:

δJL = ∂δuL

∂r0
= ∂δuE

∂r

∣∣∣∣
r=rL(r0,t)

F L (4.87)
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If the above definition is taken into account, the Green-Lagrange strain tensor
variation obtained in (4.85) becomes:

δEG,L = 1
2

(
δJL

TF L + F L
T δJL

)
= 1

2

[(
∂δuE

∂r

∣∣∣∣
r=rL(r0,t)

F L

)T

F L + F L
T

(
∂δuE

∂r

∣∣∣∣
r=rL(r0,t)

F L

)]

= F L
T 1

2

[
∂δuE

∂r
+
(
∂δuE

∂r

)T] ∣∣∣∣∣
r=rL(r0,t)

F L

(4.88)

Thus, it can be concluded that:

δEG,L = F L
T 1

2

[
∂δuE

∂r
+
(
∂δuE

∂r

)T] ∣∣∣∣∣
r=rL(r0,t)

F L ⇐⇒

⇐⇒ 1
2

[
∂δuE

∂r
+
(
∂δuE

∂r

)T] ∣∣∣∣∣
r=rL(r0,t)

= F L
−T δEG,L F L

−1

(4.89)

The above equation is essential to derive the Total Lagrangian finite element for-
mulation. It allows to transform integral equations that are defined over the unknown
deformed domain, into equations that are defined with respect to the initial reference
configuration, which is well-known.

4.6.6. Green-Lagrange strain tensor increment

In the previous section, a variation (δuL) was applied to the displacement field.
Let’s now consider that the displacement field is again modified by adding a compatible
increment (∆uL), instead of a variation.

In nonlinear analysis, an iterative method has to be applied at each load step to
obtain its corresponding displacement field. This increment represents the correction
that the iterative method will apply at each step of the procedure, in order to reach
convergence.

Let also assume that the gradients of the displacement field increment are small.
Under these assumptions, the Green-Lagrange strain tensor corresponding to the mod-
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ified displacement field becomes:

u ′
L = uL + ∆uL∥∥∥∥∂∆uL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒

=⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂∆uL

∂r0
= JL + ∆JL

=⇒ r ′
L = r0 + u ′

L = r0 +
(
uL + ∆uL

)
=
(
r0 + uL

)︸ ︷︷ ︸
rL

+∆uL

=⇒ F ′
L = ∂r ′

L

∂r0
= ∂rL

∂r0
+ ∂∆uL

∂r0
= F L + ∆F L︸ ︷︷ ︸

∆JL

=⇒

E ′
G,L = 1

2

[(
F ′

L

)T(
F ′

L

)
− I

]
= 1

2

[(
F L + ∆F L

)T(
F L + ∆F L

)
− I

]
= 1

2

(
F L

TF L + F L
T ∆F L + ∆F L

TF L + ∆F L
T ∆F L − I

)
= 1

2

(
F L

TF L − I
)

+ 1
2

(
∆JL

TF L + F L
T ∆JL + ∆JL

T ∆JL︸ ︷︷ ︸
≈0

)
= EG,L + ∆EG,L

(4.90)

Where EG,L is the Green-Lagrange strain tensor corresponding to the original dis-
placement field, and ∆EG,L represents its increment. Therefore, the Green-Lagrange
strain tensor increment turns out to be:

∆EG,L = 1
2

(
∆JL

TF L + F L
T ∆JL

)
(4.91)

Moreover, the above tensor can be rewritten if the definition of the deformation
gradient tensor stated in (1.12) is taken into account, as:

∆EG,L = 1
2

(
∆JL

TF L + F L
T ∆JL

)
= 1

2

[
∆JL

T
(
I + JL

)
+
(
I + JL

)T ∆JL

]
= 1

2

(
∆JL + ∆JL

T + ∆JL
TJL + JL

T ∆JL

) (4.92)

On the other hand, according to equation (1.20), the increment of the displacement
gradient tensor can be expressed as:

∆JL = ∂∆uL

∂r0
= ∂∆uE

∂r

∣∣∣∣
r=rL(r0,t)

F L (4.93)
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The substitution of the above equation into the definition of the Green-Lagrange
strain tensor increment (4.91) leads to the following equivalent definition.

∆EG,L = 1
2

(
∆JL

TF L + F L
T ∆JL

)
= F L

T 1
2

[
∂∆uE

∂r
+
(
∂∆uE

∂r

)T] ∣∣∣∣∣
r=rL(r0,t)

F L

(4.94)

The increment applied in (4.90) can also be applied to a displacement field composed
by the original one (uL) plus a given variation (δuL). The increment experimented by
the Green-Lagrange strain tensor corresponding to this particular displacement field is
analysed below.

4.6.7. Increment of the Green-Lagrange strain tensor variation

The Green-Lagrange strain tensor corresponding to a given displacement field can
be computed by means of the displacement gradient tensor as:

uL =⇒ JL = ∂uL

∂r0

=⇒ EG,L = 1
2

(
JL + JL

T + JL
TJL

) (4.95)

Let’s consider that a compatible variation is applied to the above displacement
field, whose gradients are small. The Green-Lagrange strain tensor corresponding to
this modified displacement field becomes:

u ′
L = uL + δuL∥∥∥∥∂δuL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒

=⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂δuL

∂r0
= JL + δJL

=⇒

E ′
G,L = 1

2

[(
JL + δJL

)
+
(
JL + δJL

)T +
(
JL + δJL

)T(
JL + δJL

)]
≈ 1

2

(
JL + JL

T + JL
TJL

)
+ 1

2

(
δJL + δJL

T + δJL
TJL + JL

T δJL

)
= EG,L + δEG,L

(4.96)
Where EG,L is the Green-Lagrange strain tensor corresponding to the original dis-

placement field, and δEG,L represents its variation. Therefore, the Green-Lagrange
strain tensor variation is defined as:

δEG,L = 1
2

(
δJL + δJL

T + δJL
TJL + JL

T δJL

)
(4.97)

Let’s now consider that an increment is applied to the previous displacement field,
whose gradients are small, too. Under these assumptions, the computation of the
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Green-Lagrange strain tensor is presented below.

u
′′
L = uL + ∆uL + δuL∥∥∥∂δuL

∂r0

∥∥∥≪ ∥I∥∥∥∥∂∆uL

∂r0

∥∥∥≪ ∥I∥

 =⇒

=⇒ J
′′
L =

∂u ′′
L

∂r0
=

∂uL

∂r0
+

∂∆uL

∂r0
+

∂δuL

∂r0
= JL + ∆JL + δJL

=⇒

E
′′
G,L =

1
2

[
J

′′
L +

(
J

′′
L

)T
+
(

J
′′
L

)T
J

′′
L

]
=

1
2

[(
JL + ∆JL + δJL

)
+
(

JL + ∆JL + δJL
)T

+
(

JL + ∆JL + δJL
)T(

JL + ∆JL + δJL
)]

=
1
2

(
JL + ∆JL + δJL + JL

T + ∆JL
T + δJL

T + JL
T

JL + JL
T ∆JL + JL

T
δJL+

+ ∆JL
T

JL + ∆JL
T ∆JL︸ ︷︷ ︸

≈0

+∆JL
T

δJL + δJL
T

JL + δJL
T ∆JL + δJL

T
δJL︸ ︷︷ ︸

≈0

)
≈

1
2

(
JL + JL

T + JL
T

JL
)

+
1
2

(
δJL + δJL

T + δJL
T

JL + JL
T

δJL
)

+

+
1
2

(
∆JL + ∆JL

T + ∆JL
T

JL + JL
T ∆JL

)
+

1
2

(
δJL

T ∆JL + ∆JL
T

δJL
)

= EG,L + δEG,L + ∆EG,L + ∆
(

δEG,L
)

(4.98)

Where EG,L is the Green-Lagrange strain tensor corresponding to the original dis-
placement field, δEG,L and ∆EG,L symbolize its variation and increment, and ∆

(
δEG,L

)
represents the increment experimented by the Green-Lagrange strain tensor variation.
Therefore, the Green-Lagrange strain tensor can be decomposed as the sum of the
following tensors:

E ′′
G,L = EG,L + δEG,L + ∆EG,L + ∆

(
δEG,L

)
(4.99)

Where:
EG,L = 1

2

(
JL + JL

T + JL
TJL

)
δEG,L = 1

2

(
δJL + δJL

T + δJL
TJL + JL

T δJL

)
∆EG,L = 1

2

(
∆JL + ∆JL

T + ∆JL
TJL + JL

T ∆JL

)
∆
(
δEG,L

)
= 1

2

(
δJL

T ∆JL + ∆JL
T δJL

)
(4.100)

Therefore, the increment of the Green-Lagrange strain tensor variation is finally
defined as:

∆
(
δEG,L

)
= 1

2

(
δJL

T ∆JL + ∆JL
T δJL

)
(4.101)

Once the Green-Lagrange strain tensor, as well as its variation and increment, are
completely defined, it is convenient to propose their equivalent vectorial forms. When
deriving a finite element formulation, manipulating their vectorial expressions is more
convenient than operating with their tensor definitions.
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4.6. Green-Lagrange strain tensor

4.6.8. Vectorial form of the Green-Lagrange strain tensor

If the Voigt notation (section A.14) is applied, an equivalent vectorial form of the
Green-Lagrange strain tensor can be defined.

EG,L =

E11 E12 E13

E12 E22 E23

E13 E23 E33

 =⇒ ĒG,L =



E11

E22

E33

2E12

2E13

2E23


(4.102)

The components of the Green-Lagrange strain tensor were defined in (4.74). Thus,
its corresponding vectorial form is:

ĒG,L =



E11

E22

E33

2E12

2E13

2E23


=



∂u1

∂r0,1

∂u2

∂r0,2

∂u3

∂r0,3

∂u1

∂r0,2
+ ∂u2

∂r0,1

∂u1

∂r0,3
+ ∂u3

∂r0,1

∂u2

∂r0,3
+ ∂u3

∂r0,2



+



1
2

[(
∂u1

∂r0,1

)2

+
(
∂u2

∂r0,1

)2

+
(
∂u3

∂r0,1

)2]
1
2

[(
∂u1

∂r0,2

)2

+
(
∂u2

∂r0,2

)2

+
(
∂u3

∂r0,2

)2]
1
2

[(
∂u1

∂r0,3

)2

+
(
∂u2

∂r0,3

)2

+
(
∂u3

∂r0,3

)2]
∂u1

∂r0,1

∂u1

∂r0,2
+ ∂u2

∂r0,1

∂u2

∂r0,2
+ ∂u3

∂r0,1

∂u3

∂r0,2

∂u1

∂r0,1

∂u1

∂r0,3
+ ∂u2

∂r0,1

∂u2

∂r0,3
+ ∂u3

∂r0,1

∂u3

∂r0,3

∂u1

∂r0,2

∂u1

∂r0,3
+ ∂u2

∂r0,2

∂u2

∂r0,3
+ ∂u3

∂r0,2

∂u3

∂r0,3


(4.103)

The first term of the above vector turns out to be the vectorial form of the infinites-
imal strain tensor (5.69). And the second one depends on the square of the norm of the
displacement gradient tensor. Thus, the vectorial form of the Green-Lagrange strain
tensor can be equivalently defined as follows.

ĒG,L = ĒL + O
(
∥JL∥2

)
(4.104)

If the gradients of the displacement field are small, the second term can be neglected.
Hence, it can be stated that the vectorial forms of the Green-Lagrange strain tensor
and the infinitesimal strain tensor are equivalent.

∥JL∥ ≪ ∥I∥ =⇒ ĒG,L = ĒL + O
(
∥JL∥2

)
≈ ĒL (4.105)

In order to rewrite both terms of the vector defined in (4.103), a vectorial form of
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the displacement gradient tensor is also defined.

JL =



∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3

 =⇒ J̄L =



∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3



(4.106)

The vectorial form of the infinitesimal strain tensor can be now defined in terms of
the above vector as:

ĒL =



∂u1

∂r0,1

∂u2

∂r0,2

∂u3

∂r0,3

∂u1

∂r0,2
+ ∂u2

∂r0,1

∂u1

∂r0,3
+ ∂u3

∂r0,1

∂u2

∂r0,3
+ ∂u3

∂r0,2



=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3



= AC J̄L

(4.107)
The second term can also be expressed by means of the vectorial form of the dis-
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placement gradient tensor.

1
2



∂u1

∂r0,1
0 0 ∂u2

∂r0,1
0 0 ∂u3

∂r0,1
0 0

0 ∂u1

∂r0,2
0 0 ∂u2

∂r0,2
0 0 ∂u3

∂r0,2
0

0 0 ∂u1

∂r0,3
0 0 ∂u2

∂r0,3
0 0 ∂u3

∂r0,3

∂u1

∂r0,2

∂u1

∂r0,1
0 ∂u2

∂r0,2

∂u2

∂r0,1
0 ∂u3

∂r0,2

∂u3

∂r0,1
0

∂u1

∂r0,3
0 ∂u1

∂r0,1

∂u2

∂r0,3
0 ∂u2

∂r0,1

∂u3

∂r0,3
0 ∂u3

∂r0,1

0 ∂u1

∂r0,3

∂u1

∂r0,2
0 ∂u2

∂r0,3

∂u2

∂r0,2
0 ∂u3

∂r0,3

∂u3

∂r0,2





∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3



= 1
2A
(
JL

)
J̄L

(4.108)
Therefore, if the previous terms are taken into account, the vectorial form of the

Green-Lagrange strain tensor becomes:

ĒG,L =
(
AC + 1

2A
(
JL

))
J̄L (4.109)

Where the matrices AC and A are defined in (4.107) and (4.108) respectively. The
matrix AC is constant, while A turns out to depend on the displacement gradient
tensor, that is, it depends on the displacement field.

4.6.9. Vectorial form of the Green-Lagrange strain tensor variation

As proved in the previous section, the vectorial form of the Green-Lagrange strain
tensor corresponding to a given displacement field is computed as follows.

uL =⇒ JL = ∂uL

∂r0

=⇒ ĒG,L =
(
AC + 1

2A
(
JL

))
J̄L

(4.110)

If the displacement field is now modified by adding a compatible variation, the
computation of its corresponding Green-Lagrange strain tensor, expressed according
to its vectorial form, is shown below. The gradients of the displacement field variation
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are again assumed to be small.

u ′
L = uL + δuL∥∥∥∂δuL

∂r0

∥∥∥≪ ∥I∥

 =⇒

=⇒ J ′
L =

∂u ′
L

∂r0
=

∂uL

∂r0
+

∂δuL

∂r0
= JL + δJL

=⇒

Ē
′
G,L =

(
AC +

1
2
A
(
J ′

L

))
J̄

′
L

=
(
AC +

1
2
A
(
JL + δJL

))(
J̄L + δJ̄L

)
= AC J̄L +AC δJ̄L +

1
2
A
(
JL + δJL

)
J̄L +
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= ĒG,L + δĒG,L

(4.111)

Where ĒG,L is the vectorial form of the Green-Lagrange strain tensor corresponding
to the original displacement field, and δĒG,L represents its variation. Therefore, the
vectorial form of the Green-Lagrange strain tensor variation turns out to be:

δĒG,L =
(
AC +A

(
JL

))
δJ̄L (4.112)

4.6.10. Vectorial form of the Green-Lagrange strain tensor
increment

Let’s consider that the displacement field is again modified by adding a compatible
increment (∆uL), instead of a variation (δuL). It is also assumed that the gradients
of the displacement field increment are small.

In nonlinear analysis, an iterative method has to be applied at each load step to
obtain its corresponding displacement field. This increment represents the correction
that the iterative method will apply at each step of the procedure, in order to reach
convergence.

Under these assumptions, the vectorial form of the Green-Lagrange strain tensor
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corresponding to the modified displacement field becomes:

u ′
L = uL + ∆uL∥∥∥∂∆uL

∂r0
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(4.113)
Where ĒG,L is the vectorial form of the Green-Lagrange strain tensor corresponding

to the original displacement field, and ∆ĒG,L represents its increment. Consequently,
the vectorial form of the Green-Lagrange strain tensor increment turns out to be:

∆ĒG,L =
(
AC +A

(
JL

))
∆J̄L (4.114)

4.7. Incremental loading process

When dealing with a nonlinear analysis, the total load can not be applied in only
one step, since a given load state has multiple possible solutions. This implies that the
order in which the external loads are applied has to be taken into account. Otherwise,
a structural behaviour that does not correspond to the real one may be obtained.

Furthermore, the equations to be solved compose a nonlinear system of equations.
So, an iterative procedure is usually applied to obtain the structural response. This
procedure is iterative and needs to start from a close approximation to the solution.
To circumvent this inconvenience, an incremental loading process is usually adopted.
That is, the total load is applied in a series of small load steps. In figure 4.5, the
material domains that corresponds to two consecutive load steps are represented.

4.7.1. Total approach

On the one hand, the total approach is adopted if all magnitudes are referred to
the initial reference configuration Ω0. That is, the magnitudes are defined according
to their Lagrangian description.
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Chapter 4. Finite strain field

Figure 4.5. Deformation, displacement, and material vectors of a given particle, corre-
sponding to two consecutive load steps.

Let’s consider two consecutive load steps. The load step t has already been solved,
thus, the main aim is to compute the displacement field that defines the unknown
material domain Ωt+∆t.

The deformation vectors that define the position of a given material particle, whose
initial position is defined by the vector r0, are defined below.

rt = r t

L (r0) = r0 + u t

L (r0)
rt+∆t = r t+∆t

L (r0) = r0 + u t+∆t

L (r0)
(4.115)

Their corresponding deformation gradient tensors are defined as follows.

F t

L = dr t
L

dr0
= I + du t

L

dr0
= I + J t

L

F t+∆t

L = dr t+∆t
L

dr0
= I + du t+∆t

L

dr0
= I + J t+∆t

L

(4.116)

And the displacement gradient tensors are:

J t

L = du t
L

dr0

J t+∆t

L = du t+∆t
L

dr0

(4.117)

Furthermore, the displacement field corresponding to the current load step t + ∆t
can be defined by means of the displacement field of the previous load step, by adding
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a given increment (figure 4.5).

u t+∆t

L (r0) = u t

L (r0) + ∆u t

t (rt)
∣∣∣
rt=r t

L(r0)

= u t

L (r0) + ∆u t

L (r0)
(4.118)

If the above definition is taken into account, the deformation vector of the current
load step can be equivalently defined by means of the deformation vector of the previous
one.

r t+∆t

L (r0) = r0 + u t+∆t

L (r0)

= r0 +
[
u t

L (r0) + ∆u t

L (r0)
]

=
[
r0 + u t

L (r0)
]

+ ∆u t

L (r0)

= r t

L (r0) + ∆u t

L (r0)

(4.119)

According to the above definition, its corresponding deformation gradient tensor
becomes:

F t+∆t

L = dr t+∆t
L

dr0
= dr t

L

dr0
+ d∆u t

L

dr0
= F t

L + ∆F t

L (4.120)

And the displacement gradient tensor turns out to be:

J t+∆t

L = du t+∆t
L

dr0
= du t

L

dr0
+ d∆u t

L

dr0
= J t

L + ∆J t

L (4.121)

If equations (4.120) and (4.121) are compared, it can be concluded that the incre-
ment of the deformation gradient tensor and the increment of the displacement gradient
tensor are equivalent.

∆F t

L = ∆J t

L = d∆u t
L

dr0
(4.122)

Once the deformation vector and the displacement vectors of the current load step
are defined, as well as their corresponding gradient tensors, the increment experimented
by the Green-Lagrange stain tensor between consecutive load steps can be analysed.

4.7.2. Total incremental Green-Lagrange strain tensor

The incremental Green-Lagrange strain tensor is defined as the difference between
the strain tensors corresponding to two consecutive load steps.

∆E t

G,L = E t+∆t

G,L −E t

G,L (4.123)

The Green-Lagrange strain tensor corresponding to the load step t is defined as:

E t

G,L = 1
2

[
du t

L

dr0
+
(
du t

L

dr0

)T

+
(
du t

L

dr0

)T
du t

L

dr0

]
(4.124)

And the one corresponding to the following load step is:

E t

G,L = 1
2

[
du t+∆t

L

dr0
+
(
du t+∆t

L

dr0

)T

+
(
du t+∆t

L

dr0

)T
du t+∆t

L

dr0

]
(4.125)
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Therefore, the difference between the last two tensors defines the increment of the
Green-Lagrange strain tensor.

∆E t

G,L =1
2

[
du t+∆t

L

dr0
+
(
du t+∆t

L

dr0

)T

+
(
du t+∆t

L

dr0

)T
du t+∆t

L

dr0

]
−1

2

[
du t

L

dr0
+
(
du t

L

dr0

)T

+
(
du t

L

dr0

)T
du t

L

dr0

] (4.126)

In addition, the displacement field is defined as stated in (4.118).

u t+∆t

L (r0) = u t

L (r0) + ∆u t

L (r0) (4.127)

If the above definition is taken into account, the increment of the Green-Lagrange
strain tensor is reduced to:

∆E t

G,L = 1
2

[
d∆u t

L

dr0
+
(
d∆u t

L

dr0

)T

+
(
du t

L

dr0

)T
d∆u t

L

dr0
+
(
d∆u t

L

dr0

)T
du t

L

dr0
+
(
d∆u t

L

dr0

)T
d∆u t

L

dr0

]
(4.128)

And the components of the above tensor are defined as follows:

∆E t

G,L =
[
∆Eij

]
j=1,...,n
i=1,...,n

∆Eij = 1
2

(
d∆ui

dr0,j

+ d∆uj

dr0,i

+
n∑

k=1

duk

dr0,i

d∆uk

dr0,j

+
n∑

k=1

d∆uk

dr0,i

duk

dr0,j

+
n∑

k=1

d∆uk

dr0,i

d∆uk

dr0,j

)
(4.129)

Moreover, they can be separated into two different components:

∆Eij = ∆EL

ij + ∆EN

ij (4.130)

Where ∆E L
ij is composed by the terms that are linear with respect to the increment of

the displacement field. The first two addends define the increment of the infinitesimal
strain tensor ∆Eij (5.66), and the last ones depend on the displacement field of the
previous load step.

∆EL

ij = 1
2

(
d∆ui

dr0,j

+ d∆uj

dr0,i

)
︸ ︷︷ ︸

∆E
ij

+1
2

n∑
k=1

(
duk

dr0,i

d∆uk

dr0,j

+ d∆uk

dr0,i

duk

dr0,j

)
(4.131)

And ∆E N
ij contains the terms that are nonlinear with respect to the increment of the

displacement field.

∆EN

ij = 1
2

n∑
k=1

d∆uk

dr0,i

d∆uk

dr0,j

(4.132)

Note that the definition of this incremental strain tensor can also be obtained by
computing the difference between the square of the norm of a given material vector at
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two consecutive load steps.

∥δrt+∆t∥2 − ∥δrt∥2 =
(

∥δrt+∆t∥2 − ∥δr0∥2
)

−
(

∥δrt∥2 − ∥δr0∥2
)

= 2 δr0
TE t+∆t

G,L δr0 − 2 δr0
TE t

G,L δr0

= 2 δr0
T

(
E t+∆t

G,L −E t

G,L

)
δr0

= 2 δr0
T ∆E t

G,L δr0

(4.133)

4.7.3. Updated approach

The second option is to adopt the updated approach instead of the total one. Ac-
cording to this updated point of view, the last computed material domain becomes the
new reference configuration.

Let’s consider dealing with the load step t+ ∆t, and the configuration Ωt becomes
the reference domain. Under these assumptions, the deformation vector that defines
the position of a given material particle that belongs to the unknown material domain
turns out to be:

r t+∆t = r t+∆t

t (rt) = rt + ∆u t

t (rt) (4.134)

The material vector that corresponds to the current load step can be obtained by
means of the one that belongs to the reference configuration, as stated below.

δrt+∆t = r t+∆t

t (rt + δrt) − r t+∆t

t (rt)

=
[
r t+∆t

t (rt) + dr t+∆t
t

drt

(rt) δrt + O
(
∥δrt∥2

)]
− r t+∆t

t (rt)

= dr t+∆t
t

drt

δrt + O
(
∥δrt∥2

) (4.135)

Therefore, the tensor that rules this geometric transformation turns out to be:

dr t+∆t
t

drt

= d

drt

(
rt + ∆u t

t

)
= I + d∆u t

t

drt

(4.136)

4.7.4. Updated incremental Green-Lagrange strain tensor

To obtain the updated incremental Green-Lagrange strain tensor, the difference
between the square of the norm of a given infinitesimal material vector that corresponds
to two consecutive load steps is computed, as exposed in (4.133).

∥δrt+∆t∥2 − ∥δrt∥2 = δrt+∆t
T δrt+∆t − δrt

T δrt (4.137)

However, the updated approach is now adopted instead of the total one. That is,
the last computed material domain becomes the reference configuration, instead of the
initial one.
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The definition of the current material vector by means of the previous one was
defined in (4.135) and (4.136).

δrt+∆t = dr t+∆t
t

drt

δrt =
(
I + d∆u t

t

drt

)
δrt (4.138)

Thus, equation (4.137) becomes:

∥δrt+∆t∥2 − ∥δrt∥2 = δrt+∆t
T δrt+∆t − δrt

T δrt

= δrt
T

(
dr t+∆t

t

drt

)T
dr t+∆t

t

drt

δrt − δrt
T δrt

= δrt
T
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dr t+∆t

t

drt

)T
dr t+∆t

t

drt

− I
]
δrt

= δrt
T
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I + d∆u t

t

drt

)T (
I + d∆u t

t

drt

)
− I

]
δrt

= 2 δrt
T 1

2

[
d∆u t

t

drt

+
(
d∆u t

t

drt

)T

+
(
d∆u t

t

drt

)T
d∆u t

t

drt

]
δrt

= 2 δrt
T ∆E t

G,t δrt

(4.139)

And the updated incremental Green-Lagrange strain tensor turns out to be:

∆E t

G,t = 1
2

[
d∆u t

t

drt

+
(
d∆u t

t

drt

)T

+
(
d∆u t

t

drt

)T
d∆u t

t

drt

]
(4.140)

And the components of the above tensor can be defined as:

∆E t

G,t =
[
∆Eij

]
j=1,...,n
i=1,...,n

∆Eij = 1
2

(
d∆ui

drt,j

+ d∆uj

drt,i

+
n∑

k=1

d∆uk

drt,i

d∆uk

drt,j

) (4.141)

Moreover, they can be separated into two different components.

∆Eij =∆EL

ij + ∆EN

ij

∆EL

ij = 1
2

(
d∆ui

drt,j

+ d∆uj

drt,i

)
∆EN

ij = 1
2

n∑
k=1

d∆uk

drt,i

d∆uk

drt,j

(4.142)

The first one is composed by the terms that are linear with respect to the increment
of the displacement field. And the second one contains the term which is nonlinear
with respect to the increment of the displacement field.
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4.8. Overview and conclusions

In order to understand the deformation that a solid experiments in the vicinity of a
given material particle, the geometric transformation of a material vector is analysed
in detail throughout this chapter. This transformation turns out to be governed by
the deformation gradient tensor (F L), which, in turn, depends on the displacement
gradient tensor (JL). Therefore, it can be concluded that the displacement gradient
tensor contains the necessary information to define the change of volume, orientation,
and shape that the solid undergoes. This information is required to properly define
the displacement, strain, and stress fields.

The polar decomposition of the deformation gradient tensor leads to a clearer phys-
ical interpretation of the geometric transformation undergone by the material vector.
It allows to decompose the deformation gradient tensor as the product between the
finite rotation tensor (RL) and the finite strain tensor ([I +EL]), where EL is the
Biot strain tensor. Firstly, the finite strain tensor modifies the modulus and direction
of the material vector, by means of a pure stretch transformation. Then, the finite
rotation tensor rotates the previous modified material vector to orientate it according
to the deformed geometry.

An alternative polar decomposition can also be considered. This decomposition
divides the finite strain tensor as the product between the inflation tensor (HL) and
the distortion tensor (DL). The inflation tensor rules the change of volume in the
vicinity of a given material particle, whereas the distortion tensor is the one that
governs the distortion process without volume variation.

Another tensor that fulfils interesting properties is the Green-Lagrange strain ten-
sor (EG,L). This tensor arises when the difference between the square of the norm of a
given material vector at a given instant of time and the square of the norm of its initial
geometry is computed. The Green-Lagrange strain tensor does not vary if a rotation
is applied to the solid. This is an important property when dealing with a solid that
behaves with large displacements and/or large displacement gradients, since a rigid
rotation does not produce a variation of the strain field. In addition, this tensor turns
out to be work conjugate with the second Piola-Kirchhoff stress tensor, which is also
invariant when rigid rotations are applied. Thus, their double dot product leads to the
work per unit volume developed by the internal forces during the deformation process.
These tensors are a suitable pair of magnitudes to represent the strain and stress fields
when carrying out a nonlinear analysis. Consequently, a constitutive equation that
relate both magnitudes has to be defined.

On the other hand, the incremental loading process usually adopted in nonlinear
analysis is presented. Since a given load state has multiple possible solutions, the total
load can not be applied in only one step, and the load history has to be taken into
account to reach the correct structural response. Furthermore, the nonlinear equations
that govern the structural behaviour are usually solved by an iterative procedure, which
needs to start from a close approximation to the solution. The incremental loading
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process allows starting from a close approximation, as well as to take into account the
load history.

Finally, two analysis approaches can be adopted, depending on the material domain
taken as the reference configuration. The total approach references all magnitudes to
the initial configuration during the entire incremental loading process, whereas the up-
dated one updates the reference domain at each load step. That is, the material domain
computed at the previous load step becomes the reference one at each incremental step.
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5.1. Introduction

In the previous chapters, the geometric transformation suffered by a material vec-
tor was not considered to be infinitesimal. Along this one, infinitesimal geometric
transformations are considered. It should be noted that this consideration does not
imply that the solid behaves with small displacements. Although the material vectors
experiment an infinitesimal geometric transformation, the solid may experience large
displacements.

The mathematical condition that allows to state that a geometric transformation
is infinitesimal is derived, as well as the particular polar decomposition that can be
applied in this specific case. The polar decomposition of the deformation gradient
tensor is simpler to obtain, since solving an eigenvalue problem is not yet required.
Therefore, the structural analysis is simplified and computational advantages arise.

5.2. Geometric transformation of a material vector

As proved in section 1.10, the definition of a material vector at a given instant of
time t can be obtained by calculating the difference between the deformation vector
corresponding to two close material particles (figure 5.1).

δr = rL (r0 + δr0, t) − rL (r0, t)

=
[
rL (r0, t) + ∂rL

∂r0
(r0, t) δr0 + O

(
∥δr0∥2

)]
− rL (r0, t)

= ∂rL

∂r0
(r0, t) δr0 + O

(
∥δr0∥2

) (5.1)

Therefore, it can be concluded that the deformation gradient tensor rules the geo-
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Figure 5.1. Geometric transformation of a material vector at a given instant of time.

metric transformation of a given material vector over time.

δr =F L δr0 + O
(
∥δr0∥2

)
F L = ∂rL

∂r0
= I + JL

JL = ∂uL

∂r0

(5.2)

If the norm of the undeformed material vector is much lower than one, the second
term can be neglected, and the above equation is reduced to:

∥δr0∥ ≪ 1 =⇒
δr ≈ F L δr0

=
[
I + JL

]
δr0

= δr0 + JL δr0

(5.3)

5.2.1. Infinitesimal geometric transformation

According to the result obtained in (5.3), if the norm of the initial material vector is
much lower than one, its geometric transformation is defined by adding another vector
that depends on the displacement gradient tensor to the original one.

δr ≈ δr0 + JL δr0 (5.4)

This geometric transformation is considered to be infinitesimal when the norm of
the vector added to the original material vector is much lower than the norm of the
original one. If this condition holds, it can be assumed that the norm of the material
vector does not vary.

∥JL δr0∥ ≪ ∥δr0∥ ∀δr0 ̸= 0̄ =⇒ ∥δr∥ ≈ ∥δr0∥ (5.5)
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The above inequality can be equivalently rewritten as:

∥JL δr0∥
∥δr0∥

≪ 1 ∀δr0 ̸= 0̄ (5.6)

As condition (5.6) has to be fulfilled for all non-null vectors, it can also be stated
that:

max
δr0 ̸=0̄

∥JL δr0∥
∥δr0∥

≪ 1 (5.7)

If the definition of the norm of a second order tensor exposed in section (A.2.2)
is taken into account, the left-hand side of the previous inequality turns out to be
the norm of the displacement gradient tensor. Moreover, the right-hand side can be
interpreted as the norm of the second order unit tensor.

∥JL∥ ≪ ∥I∥ (5.8)

Therefore, if the norm of the displacement gradient tensor is much lower than
the norm of the unit tensor, the geometric transformation can be considered as an
infinitesimal one. If this condition is fulfilled, it usually said that the displacements
gradients are small.

Nevertheless, this condition does not imply that the displacement experimented by
each material particle is small. In real practice, it is common dealing with structures
that experiment large displacements and small displacement gradients. This structural
behaviour is illustrated in the next section with a simple example.

5.2.2. Large displacements and small displacement gradients

In figure 5.2, a structure that experiments large displacements and small displace-
ment gradients is presented. The structure is composed by an articulated rod, whose
vertical displacement is allowed. The displacements applied to its nodes fulfil the fol-
lowing conditions:

|a| ̸≪ L0 ⇐⇒
∣∣∣∣ aL0

∣∣∣∣ ̸≪ 1

|αL0| ≪ L0 ⇐⇒ |α| ≪ 1
(5.9)

If the coordinate axes shown in figure 5.2 are adopted, the position vector of a
material particle that belongs to the reference configuration is:

r0 =
{
r0,1

0

}
(5.10)

And the displacement field is defined as:

uL (r0) =
{
u1

u2

}
=
{

0
a+ α r0,1

}
(5.11)
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Figure 5.2. Single articulated rod with prescribed vertical displacements at its nodes.

Its corresponding displacement gradient tensor turns out to be:

JL = duL

dr0
=


∂u1

∂r0,1

∂u1

∂r0,2

∂u2

∂r0,1

∂u2

∂r0,2

 =
[

0 0
α 0

]
(5.12)

On the other hand, the components of a given material vector defined in the initial
domain are:

δr0 =
{
δr0,1

0

}
(5.13)

And the norm of the displacement gradient tensor defined in (5.12) is:

∥JL∥ = ∥JL δr0∥
∥δr0∥

= |α δr0,1|
|δr0,1|

= |α| ≪ 1 ⇐⇒ ∥JL∥ ≪ ∥I∥ (5.14)

Therefore, under the assumptions presented in (5.9), the displacement gradients are
small, and the displacements are large if they are compared to the initial length of the
rod.

∥uL (r0)∥
L0

= |a+ α r0,1|
L0

=
∣∣∣∣ aL0

∣∣∣∣︸︷︷︸
̸≪1

+
∣∣∣∣α r0,1

L0

∣∣∣∣︸ ︷︷ ︸
≪1

̸≪ 1 (5.15)

Furthermore, if it assumed that a = 0, the displacements become small. In this
particular case, both the displacements and the displacement gradients turn out to be
small.
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5.3. Approximate polar decomposition of the deformation gradient tensor

5.3. Approximate polar decomposition of the deformation
gradient tensor

As stated in (5.3), the geometric transformation of an infinitesimal material vector
is ruled by the deformation gradient tensor. Moreover, this tensor can be expressed in
terms of the displacement gradient tensor.

δr = F L δr0 =
[
I + JL

]
δr0 (5.16)

Let’s consider that the above geometric transformation is infinitesimal. That is, the
norm of the displacement gradient tensor fulfils condition (5.8):

∥JL∥ ≪ ∥I∥ where

∥JL∥ = max
δr0 ̸=0̄

∥JL δr0∥
∥δr0∥

∥I∥ = 1
(5.17)

If the above condition is fulfilled, the deformation gradient tensor can be accurately
decomposed according to the following approximate polar decomposition.

F L ≈ FL = RL

[
I + EL

]
(5.18)

The above tensors are defined by means of the displacement gradient tensor, as:

RL ≈ RL = I + WL

WL = 1
2

(
JL − JL

T

)
EL ≈ EL = 1

2

(
JL + JL

T

) (5.19)

The tensor RL is the infinitesimal rotation tensor, and EL is the so-called infinites-
imal strain tensor. Both tensors depend on the displacement gradient tensor, which
verifies condition (5.17). Hence, they also verify that their norm is much lower than
the norm of the unit tensor. This implies that these tensors represent infinitesimal
geometric transformations.

∥WL∥ = O
(
∥JL∥

)
≪ ∥I∥

∥EL∥ = O
(
∥JL∥

)
≪ ∥I∥

(5.20)

5.3.1. Demonstration

On the one hand, the computation of the approximate polar decomposition pre-
sented in the previous section leads to:

RL

[
I + EL

]
=
[
I + 1

2

(
JL − JL

T

)] [
I + 1

2

(
JL + JL

T

)]
= I + JL + O

(
∥JL∥2

)
= F L + O

(
∥JL∥2

) (5.21)
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Chapter 5. Infinitesimal strain field

Thus, if the displacement gradients are small, the second term can be neglected,
and the deformation gradient tensor is accurately approximated.

∥JL∥ ≪ |I∥ =⇒ RL

[
I + EL

]
≈ F L (5.22)

On the other hand, the infinitesimal rotation tensor orthogonality has to be checked.

RL RL
T =

[
I + 1

2

(
JL − JL

T

)] [
I + 1

2

(
JL

T − JL

)]
= I + O

(
∥JL∥2

)
RL

T RL =
[
I + 1

2

(
JL

T − JL

)] [
I + 1

2

(
JL − JL

T

)]
= I + O

(
∥JL∥2

) (5.23)

If the displacement gradients are small, the infinitesimal rotation tensor does repre-
sent a rotation, since it approximately fulfils the condition obtained in section (A.13).

∥JL∥ ≪ ∥I∥ =⇒

{
RL RL

T ≈ 1
RL

T RL ≈ 1

}
⇐⇒ RL

−1 ≈ RL
T (5.24)

Furthermore, the infinitesimal strain tensor EL is symmetric.

EL
T = 1

2

(
JL + JL

T

)T

= EL (5.25)

And the tensor [I + EL] is positive definite. These conditions are required according
to the polar decomposition stated in section 4.3.

xT
[
I + EL

]
x = xTx+ xT EL x = ∥x∥2

(
1 + O

(
∥EL∥

))
︸ ︷︷ ︸

>0

> 0 ∀x ̸= 0̄ (5.26)

Therefore, it can be concluded that the approximate polar decomposition can be
applied with accurate results, if the displacement gradient tensor fulfils the condition
defined in (5.17). That is, if the displacement gradients are small, the polar decompo-
sition can be defined by means of the displacement gradient tensor. This implies that
solving an eigenvalue problem is not required to obtain the polar decomposition, as
stated in section (4.3).

5.3.2. Physical interpretation

The polar decomposition decomposes the deformation gradient tensor as the prod-
uct of a rotation and a strain tensor.

Moreover, if the geometrical transformation of a material vector is infinitesimal, the
polar decomposition can be obtained with less computational effort by applying the
approximate polar decomposition. Thus, the infinitesimal geometric transformation of
a given material vector turns out to be:

δr ≈ FL δr0 =
inf. rotation︷︸︸︷

RL

( [
I + EL

]︸ ︷︷ ︸
inf. strain

δr0

)
(5.27)
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5.3. Approximate polar decomposition of the deformation gradient tensor

Where:
RL ≡ Infinitesimal rotation tensor
EL ≡ Infinitesimal strain tensor

Firstly, the infinitesimal strain tensor modifies the norm and the direction of the
material vector. Then, the infinitesimal rotation tensor applies an infinitesimal rotation
to the previous modified vector. Both tensors apply an infinitesimal change to the
material vectors, as proved in (5.20).

5.3.3. Infinitesimal strain tensor

The eigenvalues of the infinitesimal strain tensor and their corresponding eigenvec-
tors verify the following equations:

EL vi = ϵi vi i = 1, . . . , n
vi

Tvi = δij

(5.28)

In the above equation, the eigenvectors are considered to compose an orthonormal
basis. These equations can be equivalently rewritten in matrix notation, as shown
below.

EL U = U E ⋆

UT U = I
(5.29)

Where E ⋆ is a diagonal matrix composed by the eigenvalues of the infinitesimal
strain tensor.

E ⋆ =

ϵ1 · · · 0
... . . . ...
0 · · · ϵn

 (5.30)

Since the infinitesimal strain tensor represents an infinitesimal geometric transfor-
mation, the absolute value of its eigenvalues verify the following condition.

∥EL∥ = O
(
∥JL∥

)
≪ ∥I∥ =⇒ |ϵi| ≪ 1 i = 1, . . . , n (5.31)

And U is composed by its corresponding eigenvectors arranged in columns. As it is
an orthogonal matrix, it represents a rotation. Moreover, the sense of the eigenvectors
are properly defined to define a proper rotation.

U =
[
v1 · · · vn

]
=⇒

{
UT = U−1

det
(
U
)

= 1
(5.32)

According to (5.29), it can be concluded that the infinitesimal strain tensor can be
defined as:

EL = U E ⋆ UT = U

ϵ1 · · · 0
... . . . ...
0 · · · ϵn

UT where
{

UT = U−1 , det
(
U
)

= 1
|ϵi| ≪ 1 i = 1, . . . , n

(5.33)
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5.3.4. Determinant of the deformation gradient tensor

The approximate polar decomposition (5.18) can be applied to obtain the determi-
nant of the deformation gradient tensor that rules the infinitesimal geometric transfor-
mation of a given material vector.

FL ≈ FL = det
(
FL

)
= det

(
RL

[
I + EL

] )
= det

(
RL

)
det
(
I + EL

)
(5.34)

On the one hand, the determinant of the infinitesimal rotation tensor can be ob-
tained by applying the determinant operator to both sides of the equation (5.24).

RL RL
T ≈ I

RL
T RL ≈ I

}
⇐⇒

(
det
(
RL

))2

≈ det
(
I
)

= 1 ⇐⇒ det
(
RL

)
≈ ±1 (5.35)

If the geometric transformation of the material vector has physical sense, the in-
finitesimal rotation tensor has to represent a proper rotation. Thus, it can be concluded
that the determinant of the infinitesimal rotation tensor has to be equal to one.

det
(
RL

)
≈ 1 (5.36)

On the other hand, the definition of the infinitesimal strain tensor (5.33) can be
applied to calculate the determinant of the infinitesimal strain.

det
(
I + EL

)
= det

(
I + U E ⋆ UT

)
= det

(
U
[
I + E ⋆

]
UT

)
= det

(
U
)

det
(
I + E ⋆

)
det
(
UT
)

= det
(
U
)

det
(
I + E ⋆

)
det
(
U
)

(5.37)

Moreover, the determinant of the tensor U was defined in (5.32) by taking into
account that it represents a proper rotation. Therefore, the above equation is reduced
to:

det
(
I + EL

)
= det

(
I + E ⋆

)
=

n∏
i=1

(
1 + ϵi

)
(5.38)

As stated in (5.33), the absolute value of the infinitesimal strain tensor eigenvalues
is much lower than one. Thus, the above product can be approximated as:

det
(
I + EL

)
=

n∏
i=1

(
1 + ϵi

)
≈ 1 +

n∑
i=1

ϵi = 1 + Tr
(
E ⋆
)

(5.39)

If equation (5.33) is recalled, the tensor E ⋆ can be equivalently rewritten by means
of the infinitesimal strain tensor. Hence, the above equation becomes:

det
(
I + EL

)
= 1 + Tr

(
E ⋆
)

= 1 + Tr
(
UT EL U

)
= 1 + Tr

(
EL U UT︸ ︷︷ ︸

=I

)
= 1 + Tr

(
EL

)
(5.40)
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5.4. Infinitesimal strain

Thus, if the results obtained in (5.36) and (5.40) are substituted into (5.34), the
determinant of the deformation gradient tensor can be approximately computed as:

FL ≈ 1 + Tr
(
EL

)
(5.41)

Where: ∣∣Tr
(
EL

)∣∣ =
∣∣∣∣∣

n∑
i=1

ϵi

∣∣∣∣∣ ≪ 1 (5.42)

5.4. Infinitesimal strain

As stated in section 5.2.1, the geometric transformation of a material vector is
considered infinitesimal if the norm of the displacement gradient tensor verifies the
following condition.

∥JL∥ ≪ ∥I∥ (5.43)

If the above condition is fulfilled, the approximate polar decomposition can be accu-
rately applied to the deformation gradient tensor (section 5.3). That is, the deformation
gradient tensor is decomposed as the product between the infinitesimal rotation tensor
and the infinitesimal strain.

F L ≈ FL = RL

[
I + EL

]
(5.44)

Both the infinitesimal rotation tensor RL and the infinitesimal strain tensor EL are
defined by means of the displacement gradient tensor, as shown below.

RL ≈ RL = I + WL

WL = 1
2

(
JL − JL

T

)
EL ≈ EL = 1

2

(
JL + JL

T

) (5.45)

Since both tensors depend on the displacement gradient tensor, and this tensor
verifies condition (5.43), they also represent an infinitesimal geometric transformation.
That is, they also verify that their norm is much lower than the norm of the unit tensor.
Thus,

∥WL∥ = O
(
∥JL∥

)
≪ ∥I∥

∥EL∥ = O
(
∥JL∥

)
≪ ∥I∥

(5.46)

Under these assumptions, the infinitesimal rotation tensor produces a proper in-
finitesimal rotation, as stated in (5.24), and the infinitesimal strain tensor is a sym-
metric tensor. Moreover, the tensor [I + EL] that rules the infinitesimal strain turns
out to be positive definite, as proved in (5.26). That is:

RL
−1 ≈ RL

T det
(
RL

)
≈ 1

EL
T = EL xT

[
I + EL

]
x > 0 ∀x ̸= 0̄

(5.47)
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Chapter 5. Infinitesimal strain field

To sum up, if the norm of the displacement tensor is much lower than the norm
of the unit tensor, the approximate polar decomposition can be accurately applied to
the deformation gradient tensor. And the geometric transformation of a given material
vector becomes:

δr ≈
inf. rotation︷︸︸︷

RL

( [
I + EL

]︸ ︷︷ ︸
inf. strain

δr0

)
+ O

(
|δr0∥2

)
(5.48)

According to this approximate decomposition, the material vector firstly suffers an
infinitesimal strain transformation. Then, an infinitesimal rotation is applied to the
previous deformed material vector.

5.4.1. Concept of infinitesimal strain

Let’s consider that an infinitesimal strain is applied to a given material vector. This
infinitesimal geometric change is defined as:

δrE =
[
I + EL

]
δr0 (5.49)

Where EL is the so-called infinitesimal strain tensor (5.19), which is defined in terms
of the displacement gradient tensor as:

EL = 1
2

(
JL + JL

T

)
(5.50)

According to the above definition, the infinitesimal strain tensor turns out to be
symmetric. Thus,

EL
T = 1

2

(
JL + JL

T

)T

= EL (5.51)

Since the infinitesimal strain tensor depends on the displacement gradient tensor,
this tensor represents an infinitesimal geometric change.

∥JL∥ ≪ ∥I∥ =⇒ ∥EL∥ = O
(
∥JL∥

)
≪ ∥I∥ (5.52)

In addition, the tensor [I + EL] has to be positive definite. Thus, it verifies that:

xT
[
I + EL

]
x = xTx+ xT EL x = ∥x∥2

(
1 + O

(
∥EL∥

))
︸ ︷︷ ︸

>0

> 0 ∀x ̸= 0̄ (5.53)

On the other hand, the infinitesimal strain tensor was defined in (5.33), as:

EL = U

ϵ1 · · · 0
... . . . ...
0 · · · ϵn

UT (5.54)

Where the coefficients εi, that compose the diagonal tensor, are the infinitesimal strain
tensor eigenvalues. As the geometric change is infinitesimal, these coefficients verify
that:

|ϵi| ≪ 1 i = 1, . . . , n (5.55)
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5.4. Infinitesimal strain

And the tensor U is composed by the eigenvectors corresponding to the previous
eigenvalues, arranged in columns. These eigenvectors can be forced to compose an
orthogonal basis, and their sense can be adequately defined, so that they represent a
proper rotation. Thus, it verifies that:

U =
[
v1 · · · vn

]
=⇒

{
UT = U−1

det
(
U
)

= 1
(5.56)

5.4.2. Infinitesimal strain tensor diagonalization

According to equation (5.33), the equation that defines the infinitesimal strain ten-
sor diagonalization turns out to be:ϵ1 · · · 0

... . . . ...
0 · · · ϵn

 = UT EL U (5.57)

To obtain the components of the infinitesimal strain tensor with respect to a ro-
tated basis, the result obtained in (4.55) can be recalled. So, the components of the
infinitesimal strain tensor with respect to the rotated basis are:

E ′
L = RL

T EL RL (5.58)

The comparison of equations (5.57) and (5.58) allows to conclude that the rotation
defined by RL = U diagonalizes the infinitesimal strain tensor.

E ′
L = RL

T EL RL = UT EL U =

ϵ1 · · · 0
... . . . ...
0 · · · ϵn

 (5.59)

The coefficients ϵi are the eigenvalues of the infinitesimal strain tensor, and U is
composed by their corresponding eigenvectors, arranged in columns. These eigenvectors
are defined, so they compose an orthonormal basis and a proper rotation.

Therefore, the infinitesimal strain experimented by a material vector, expressed
with respect to this rotated basis, turns out to be diagonal.

δr ′ =
[
I + E ′

L

]
δr ′

0 =

1 + ϵ1 · · · 0
... . . . ...
0 · · · 1 + ϵn

 δr ′
0 (5.60)

The axes defined by the eigenvectors are also known as principal axes. And the
coefficients that compose the diagonalized infinitesimal strain tensor are the elongation
factors that are applied to the material vector components along each one of them.
These factors verify that:

|ϵi| ≪ 1 =⇒ 1 + ϵi ≈ 1 i = 1, . . . , n (5.61)
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5.5. Infinitesimal strain tensor

As stated in (5.19), the infinitesimal strain tensor of a given displacement field is
defined by means of its corresponding displacement gradient tensor, as:

uL =⇒ JL = ∂uL

∂r0

=⇒ EL = 1
2

(
JL + JL

T

) (5.62)

5.5.1. Infinitesimal strain tensor variation

Let’s consider the modification of the displacement field defined in the previous
section by adding a compatible variation. Let’s also assume that the gradients of
the displacement field variation are small. Under these assumptions, the infinitesimal
strain tensor corresponding to the modified displacement field turns out to be:

u ′
L = uL + δuL∥∥∥∥∂δuL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂δuL

∂r0
= JL + δJL

=⇒

E ′
L = 1

2

[
J ′

L +
(
J ′

L

)T
]

= 1
2

[(
JL + δJL

)
+
(
JL + δJL

)T
]

= 1
2

(
JL + JL

T

)
+ 1

2

(
δJL + δJL

T

)
= EL + δEL

(5.63)

Where EL is the infinitesimal strain tensor corresponding to the original displace-
ment field, and δEL represents its variation. Thus, the infinitesimal strain tensor
variation turns out to be defined in terms of the displacement gradient tensor variation
as follows.

δEL = 1
2

(
δJL + δJL

T

)
(5.64)

5.5.2. Infinitesimal strain tensor increment

In the previous section, a compatible variation (δu) was applied to the displacement
field. Let’s consider that the displacement field is again modified by adding a compat-
ible increment (∆u), instead of a variation. It is also assumed that the gradients of
the displacement field increment are small. Under these assumptions, the infinitesimal
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strain tensor corresponding to the modified displacement field becomes:

u ′
L = uL + ∆uL∥∥∥∥∂∆uL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂∆uL

∂r0
= JL + ∆JL

=⇒

E ′
L = 1

2

[
J ′

L +
(
J ′

L

)T
]

= 1
2

[(
JL + ∆JL

)
+
(
JL + ∆JL

)T
]

= 1
2

(
JL + JL

T

)
+ 1

2

(
∆JL + ∆JL

T

)
= EL + ∆EL

(5.65)

Where EL is the infinitesimal strain tensor corresponding to the original displace-
ment field, and ∆EL represents its increment. Hence, the infinitesimal strain tensor
increment turns out to be defined as:

∆EL = 1
2

(
∆JL + ∆JL

T

)
(5.66)

5.6. Vectorial form of the infinitesimal strain tensor

The infinitesimal strain tensor was defined by means of the displacement gradient
tensor in (5.19) as shown below.

EL = 1
2

(
JL + JL

T

)
JL = ∂uL

∂r0
=



∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3

 (5.67)

And its components turn out to be:

EL =



∂u1

∂r0,1

1
2

(
∂u1

∂r0,2
+ ∂u2

∂r0,1

)
1
2

(
∂u1

∂r0,3
+ ∂u3

∂r0,1

)
1
2

(
∂u1

∂r0,2
+ ∂u2

∂r0,1

)
∂u2

∂r0,2

1
2

(
∂u2

∂r0,3
+ ∂u3

∂r0,2

)
1
2

(
∂u1

∂r0,3
+ ∂u3

∂r0,1

)
1
2

(
∂u2

∂r0,3
+ ∂u3

∂r0,2

)
∂u3

∂r0,3


(5.68)

If the Voigt notation (section A.14) is applied, an equivalent vectorial form can be
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adopted to handle the infinitesimal strain tensor as:

EL =

E11 E12 E13

E12 E22 E23

E13 E23 E33

 =⇒ ĒL =



E11

E22

E33

2 E12

2 E13

2 E23


=



∂u1

∂r0,1

∂u2

∂r0,2

∂u3

∂r0,3

∂u1

∂r0,2
+ ∂u2

∂r0,1

∂u1

∂r0,3
+ ∂u3

∂r0,1

∂u2

∂r0,3
+ ∂u3

∂r0,2



(5.69)

The above vector con be rewritten in terms of the vectorial form of the displacement
gradient tensor defined in (4.106).

ĒL =



∂u1

∂r0,1

∂u2

∂r0,2

∂u3

∂r0,3

∂u1

∂r0,2
+ ∂u2

∂r0,1

∂u1

∂r0,3
+ ∂u3

∂r0,1

∂u2

∂r0,3
+ ∂u3

∂r0,2



=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3



= AC J̄L (5.70)

Furthermore, the vectorial form of the displacement gradient tensor can be ex-
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pressed by means of a differential operator as follows.

J̄L =



∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3



=



∂

∂r0,1
0 0

∂

∂r0,2
0 0

∂

∂r0,3
0 0

0 ∂

∂r0,1
0

0 ∂

∂r0,2
0

0 ∂

∂r0,3
0

0 0 ∂

∂r0,1

0 0 ∂

∂r0,2

0 0 ∂

∂r0,3




u1

u2

u3

 = ∂0 uL (5.71)

Therefore, the vectorial form of the infinitesimal strain tensor (5.70) can be equiv-
alently defined as:

ĒL = AC J̄L

J̄L = ∂0 uL

}
=⇒

ĒL = AC

(
∂0 uL

)
=
(
AC ∂0

)
uL

= L0 uL

(5.72)

Where:

L0 = AC ∂0 =



∂

∂r0,1
0 0

0 ∂

∂r0,2
0

0 0 ∂

∂r0,3

∂

∂r0,2

∂

∂r0,1
0

∂

∂r0,3
0 ∂

∂r0,1

0 ∂

∂r0,3

∂

∂r0,2



(5.73)
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5.6.1. Vectorial form of the infinitesimal strain tensor variation

Definition in terms of the displacement field variation

The vectorial form of the infinitesimal strain tensor corresponding to a given dis-
placement field was defined in (5.72) as:

ĒL = L0 uL (5.74)

Let’s consider that the displacement field is modified, by adding a compatible varia-
tion. Let’s also assume that the gradients of the displacement field variation are small.
Under these assumptions, the vectorial form corresponding to the modified displace-
ment field turns out to be:

u ′
L = uL + δuL∥∥∥∥∂δuL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒

Ē ′

L = L0 u
′
L

= L0

(
uL + δuL

)
= L0 uL +L0 δuL

= ĒL + δĒL

(5.75)

Where ĒL is the vectorial form of the infinitesimal strain tensor corresponding to
the original displacement field, and δĒL represents its variation. Thus, the vectorial
form of the infinitesimal strain tensor variation is:

δĒL = L0 δuL (5.76)

Definition in terms of the displacement gradient tensor variation

The vectorial form of the infinitesimal strain tensor was equivalently defined in (5.70)
by means of the vectorial form of the displacement gradient tensor variation, as:

ĒL = AC J̄L (5.77)

If the displacement field variation defined in the previous section is applied, the vec-
torial form of the infinitesimal strain tensor corresponding to the modified displacement
field becomes:

u ′
L = uL + δuL∥∥∥∥∂δuL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂δuL

∂r0
= JL + δJL

=⇒ J̄
′

L = J̄L + δJ̄L

=⇒

Ē ′

L = AC J̄
′

L

= AC

(
J̄L + δJ̄L

)
= AC J̄L +AC δJ̄L

= ĒL + δĒL

(5.78)
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Where ĒL is the vectorial form of the infinitesimal strain tensor corresponding to the
original displacement field, and δĒL represents its variation. Therefore, the vectorial
form of the infinitesimal strain tensor variation can be equivalently defined by means
of the displacement gradient tensor variation as:

δĒL = AC δJ̄L (5.79)

5.6.2. Vectorial form of the infinitesimal strain tensor increment

Definition in terms of the displacement field increment

Let’s consider that the displacement field is modified by adding a compatible incre-
ment (∆uL), instead of a variation (δuL). Let’s also assume that the gradients of the
displacement field increment are small. Under these assumptions, the vectorial form of
the infinitesimal strain tensor (5.72) are:

u ′
L = uL + ∆uL∥∥∥∥∂∆uL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒

Ē ′

L = L0 u
′
L

= L0

(
uL + ∆uL

)
= L0 uL +L0 ∆uL

= ĒL + ∆ĒL

(5.80)

Where ĒL is the vectorial form of the infinitesimal strain tensor corresponding to
the original displacement field, and ∆ĒL represents its increment. Hence, the vectorial
form of the infinitesimal strain tensor increment turns out to be:

∆ĒL = L0 ∆uL (5.81)

Definition in terms of the displacement gradient tensor increment

If the vector definition of the infinitesimal strain tensor presented in (5.70) is re-
called, the above vector can be equivalently defined in terms of the vectorial form of
the displacement gradient tensor increment. According to this definition, the vectorial
form of the infinitesimal strain tensor corresponding to the modified displacement field
becomes:

u ′
L = uL + ∆uL∥∥∥∥∂∆uL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂∆uL

∂r0
= JL + ∆JL

=⇒ J̄
′

L = J̄L + ∆J̄L

=⇒

Ē ′

L = AC J̄
′

L

= AC

(
J̄L + ∆J̄L

)
= AC J̄L +AC ∆J̄L

= ĒL + ∆ĒL

(5.82)
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Where ĒL is the vectorial form of the infinitesimal strain tensor corresponding to
the original displacement field, and ∆ĒL represents its increment. Consequently, the
vectorial form of the infinitesimal strain tensor increment can de equivalently defined
as:

∆ĒL = AC ∆J̄L (5.83)

5.7. Alternative approximate polar decomposition

The approximate polar decomposition of the deformation gradient tensor stated in
section (5.3) can alternatively be rewritten as:

F L ≈ FL = RL

[
I + EL

]
= RL

(
1

n
√

FL

[
I + EL

])(
n
√

FL

[
I
])

= RL DL HL (5.84)

This alternative polar decomposition divides the infinitesimal strain into the product
of two different tensors:

I + EL =DL HL

DL = 1
n
√

FL

[
I + EL

]
HL = n

√
FL

[
I
] (5.85)

Where HL is the infinitesimal inflation tensor, and DL is the infinitesimal distortion
tensor. These two tensors are extensively analysed in the following sections.

5.7.1. Infinitesimal inflation tensor (infinitesimal isotropic strain
tensor)

On the one hand, the tensor HL is diagonal, and its determinant turns out to be
approximately equal to the determinant of the deformation gradient tensor.

det
(
HL

)
= det

(
n
√

FL

[
I
] )

= FL ≈ FL (5.86)

The value of its determinant indicates that this tensor is the one involved with
the change of volume. It is the so-called infinitesimal inflation tensor or infinitesimal
isotropic strain tensor. Since its determinant is approximately equal to the determinant
of the deformation gradient tensor, this tensor rules the volume change in the vicinity
of a given point.

According to the result obtained in (5.41), the determinant of the approximate
deformation gradient tensor is:

FL ≈ 1 + Tr
(
EL

)
(5.87)

Thus, the infinitesimal inflation tensor defined in (5.85) can be rewritten as:

HL ≈
(

1 + Tr
(
EL

))1/n [
I
]

(5.88)
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Moreover, the coefficients that compose the diagonal of the above tensor can be
expressed by its Taylor series expansion, as shown below.

f
(

Tr
(
EL

))
=
(

1 + Tr
(
EL

))1/n

= f (0) + f ′ (0) Tr
(
EL

)
+ O

(∣∣Tr
(
EL

)∣∣2) (5.89)

In (5.42) it has been proved that the absolute value of the infinitesimal strain tensor
trace is much lower than one. Therefore, the above series expansion is reduced to:

∣∣Tr
(
EL

)∣∣ ≪ 1 =⇒
(

1 + Tr (EL)
)1/n

≈ f (0) + f ′ (0) Tr
(
EL

)
(5.90)

So, the diagonal components can be approximately computed as:(
1 + Tr

(
EL

))1/n

≈ 1 + 1
n

Tr
(
EL

)
(5.91)

And the infinitesimal inflation tensor (5.88) can be finally defined as:

HL ≈
(

1 + 1
n

Tr
(
EL

)) [
I
]

(5.92)

This tensor governs the volume variation in the vicinity of a given material particle,
whereas the one that rules the distortion process without volume variation is presented
below.

5.7.2. Infinitesimal distortion tensor (infinitesimal isochoric strain
tensor)

On the other hand, the tensor DL can be rewritten as follows:

DL = 1
n
√

FL

[
I + EL

]
= I + 1

n
√

FL

[
I + EL

]
− I

= I + 1
n
√

FL

[
EL +

(
1 − n

√
FL

)
I
] (5.93)

If the alternative polar decomposition stated in (5.84) is applied, the determinant
of the deformation gradient tensor becomes:

FL ≈ FL = det
(
FL

)
= det

(
RL DL HL

)
= det

(
RL

)
det
(
DL

)
det
(
HL

)
(5.94)

The determinant of the infinitesimal rotation tensor has to be approximately equal
to one, as it represents a proper rotation (5.36). Furthermore, the determinant of
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the tensor HL has already been obtained in (5.86). So, it can be concluded that the
determinant of the tensor DL has to be equal to one.

FL = det
(
RL

)
det
(
DL

)
det
(
HL

)
det
(
RL

)
≈ 1

det
(
HL

)
≈ FL

 =⇒ det
(
DL

)
≈ 1 (5.95)

The value of its determinant indicates that this tensor rules a geometric change
without volume variation, hence, it is related with a distortion process. It is the so-
called infinitesimal distortion tensor or infinitesimal isochoric strain tensor, and it is
defined as shown below.

DL = I + 1
n
√

FL

[
EL +

(
1 − n

√
FL

)
I
]

(5.96)

This definition of the infinitesimal distortion tensor can be simplified. To do so, the
result obtained in (5.91) is recalled:

FL
1/n =

(
1 + Tr

(
EL

))1/n

≈ 1 + 1
n

Tr
(
EL

)
since

∣∣Tr
(
EL

)∣∣ ≪ 1 (5.97)

And its inverse turns out to be:

FL
− 1/n = 1

FL
1/n

≈ 1

1 + 1
n

Tr
(
EL

) =
1 − 1

n
Tr
(
EL

)
1 − 1

n2
Tr2

(
EL

)
︸ ︷︷ ︸

≈0

≈ 1 − 1
n

Tr
(
EL

)
(5.98)

Thus, if the coefficients stated in (5.97) and (5.98) are substituted into the equation
that defines the infinitesimal distortion tensor (5.96), an equivalent definition can be
obtained:

DL = I + 1
n
√

FL

[
EL +

(
1 − n

√
FL

)
I
]

≈ I +
(

1 − 1
n

Tr
(
EL

)) [
EL − 1

n
Tr
(
EL

)
I
]

≈ I +
(

EL − 1
n

Tr
(
EL

)
I
) (5.99)

In addition, it can be equivalently rewritten in terms of the infinitesimal deviatoric
strain tensor as:

DL = I+ED,L

ED,L = EL − 1
n

Tr
(
EL

)
I

(5.100)

Where ED,L is the infinitesimal deviatoric strain tensor.
The alternative polar decomposition presented in the previous sections allows to

obtain a clearer physical interpretation of the geometric transformation that occurs in
the vicinity of each material particle.
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5.7.3. Physical interpretation

If this alternative infinitesimal polar decomposition is applied to the deformation
gradient tensor, the infinitesimal geometric change of a material vector can be expressed
as follows:

δr ≈ RL︸︷︷︸
inf. rotation

( inf. distortion︷︸︸︷
DL

(
HL︸︷︷︸

inf. inflation

δr0

))
+ O

(
∥δr0∥2

)
(5.101)

Where:

RL ≡ Infinitesimal rotation tensor
DL ≡ Infinitesimal distortion tensor (infinitesimal isochoric strain tensor)
HL ≡ Infinitesimal inflation tensor (infinitesimal isotropic strain tensor)

Let’s consider the definition of an infinitesimal parallelepiped at a given material
point, whose reference position is defined by the position vector r0. Let’s also consider
that its faces are parallel to the coordinate planes composed by the principal axes. The
geometric changes that the parallelepiped experiments are:

The infinitesimal inflation caused by the infinitesimal inflation tensor HL. This
is the only transformation that involves a volume variation, and it is the first
geometric change.

The infinitesimal distortion, produced by the distortion tensor DL. As it is a
distortion process, the volume of the parallelepiped remains constant.

And finally, the infinitesimal rotation produced by the infinitesimal rotation ten-
sor RL. This rotation orientates the parallelepiped according to the deformed
configuration.

Figure 5.3 shows the initial location of an infinitesimal parallelepiped on the refer-
ence configuration, and its configuration at a given instant of time t.

Furthermore, figure 5.4 shows the whole geometric transformation that experiments
the infinitesimal parallelepiped, decomposed in an inflation, followed by a distortion
and a rotation.

If this entire process is known, the change of shape, volume, and orientation experi-
mented by a solid after the application of the external loads can be entirely understood
and defined. This information is necessary to properly define the displacement field,
and its corresponding strain and stress fields. So, the polar decomposition of the de-
formation gradient tensor is a powerful tool to analyse solids, when they are assumed
to experiment large displacements.
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Figure 5.3. Parallelepiped infinitesimal geometric transformation at a given instant of
time.

INFINITESIMAL 
INFLATION
(infinitesimal

isotropic strain)

INFINITESIMAL 
DISTORTION
(infinitesimal 

isochoric strain)

INFINITESIMAL 
ROTATION

Figure 5.4. Alternative approximate polar decomposition applied to the parallelepiped
infinitesimal geometric transformation.

5.8. Overview and conclusions

This chapter is focused on the infinitesimal geometric transformation of a material
vector. Its geometric variation turns out to be infinitesimal if the displacement gradi-
ents are small. Note that a structure that behaves with small displacement gradients
may undergo large displacements. Thus, it can be concluded that a structural response
with small displacement gradients does not imply a small displacement behaviour.

If the displacement gradients are small, the approximate polar decomposition can
be accurately applied to decompose the deformation gradient tensor. This decomposi-
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tion defines the deformation gradient tensor as the product between the infinitesimal
rotation tensor (RL) and the infinitesimal strain ([I + EL]), where EL is the infinites-
imal strain tensor. Both tensors turn out to be defined by means of the displacement
gradient tensor. Therefore, if the displacement gradients are small, there is no need
to solve an eigenvalue problem to obtain the polar decomposition of the deformation
gradient tensor. This is a major advantage, since less computational effort is required.

The polar decomposition clarifies the physical interpretation of the geometric trans-
formation suffered by the material vector. Firstly, the infinitesimal strain modifies the
modulus and direction of the material vector by means of a pure infinitesimal stretch
transformation. Then, the infinitesimal rotation tensor rotates the previous modified
material vector to orientate it according to the deformed geometry. Both effects turn
out to be infinitesimal geometric transformations.

Furthermore, an alternative polar decomposition can equivalently be stated. This
decomposition divides the infinitesimal strain effect into an infinitesimal inflation, fol-
lowed by an infinitesimal distortion. The inflation is ruled by the infinitesimal inflation
tensor (HL), which causes a volume variation in the vicinity of a given material particle.
Whereas, the distortion effect is governed by the infinitesimal distortion tensor (DL),
which produces a distortion without volume variation.

The polar decomposition of the deformation gradient tensor is a powerful tool to
analyse solids that experiment large displacements and/or large displacement gradi-
ents. If the displacement gradients are small, the structural analysis is simplified and
the polar decomposition can be directly obtained by means of the displacement field
gradients.
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Chapter 6
Incremental approach

6.1. Introduction

The geometric transformation of a material vector between t = 0 and a given instant
of time t was extensively analysed in the previous chapters. Whether this geometric
variation is finite or infinitesimal, the deformation gradient tensor is the one that
governs the time evolution of a given material vector.

However, this chapter focuses on the incremental geometric transformation exper-
imented by a material vector between two consecutive infinitesimal time steps. The
equation that defines this incremental geometric transformation, as well as the polar
decomposition of the tensor that governs this geometric transformation, are derived.

6.2. Incremental approach

As proved in section 1.10, the deformation gradient tensor rules the geometric trans-
formation experimented by a material vector between t = 0 and a given instant of
time t.

δr0︸︷︷︸
(t = 0)

−→ δrt︸︷︷︸
(instant t)

= F L δr0 + O
(
∥δr0∥2

)
(6.1)

An incremental approach is now adopted (figure 6.1). The equation that defines
the geometric transformation of a given material vector between two consecutive in-
finitesimal time steps turns out to be:

δrt︸︷︷︸
(instant t)

−→ δrt+dt︸ ︷︷ ︸
(instant t + dt)

= δrt + ∂δr

∂t
dt+ O

(
dt2
)

≈ δrt + ∂δr

∂t
dt

(6.2)
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Figure 6.1. Geometric transformation of a material vector between two consecutive
infinitesimal time steps.

According to the result obtained in (6.2), the time variation of the material vector
has to be defined in order to obtain the equation that defines its incremental geometric
change. The derivation of equation (6.1) with respect to time leads to:

∂δr

∂t
= ∂F L

∂t
δr0 + O

(
∥δr0∥2

)
(6.3)

As stated in (1.26), the deformation gradient tensor is invertible. Consequently, the
inverse geometric transformation can be defined as follows.

δr0 = F L
−1 δr + O

(
∥δr0∥2

)
(6.4)

On the other hand, the deformed material vector depends on the initial one. Thus,
it can be easily seen that:

δr = F L δr0 + O
(
∥r0∥2

)
=⇒ O

(
∥δr∥2

)
= O

(
∥δr0∥2

)
(6.5)

Therefore, if equation (6.4) is now substituted into (6.3), and the property stated
in (6.5) is taken into account, the time variation of the material vector becomes:

∂δr

∂t
=
[
∂F L

∂t
F L

−1

]
δr + O

(
∥δr∥2

)
(6.6)

And the incremental geometric transformation of the material vector (6.2) can be
finally rewritten by means of the velocity gradient tensor lL as:

δrt+dt =
[
I + lL dt

]
δrt + O

(
∥δrt∥2

)
with lL = ∂F L

∂t
F L

−1 (6.7)
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6.2.1. Velocity gradient tensor

As stated in the previous section, the tensor that defines the incremental geometric
transformation of a material vector is the velocity gradient tensor. The substitution of
the time derivative of the deformation gradient tensor (1.14) into the definition of the
velocity gradient tensor (6.7) leads to:

lL (r0, t) = ∂F L

∂t
F L

−1

= ∂aL

∂r0
F L

−1
(6.8)

According to (1.20), the above equation can be equivalently rewritten as:

lL (r0, t) = ∂aL

∂r0
F L

−1 = ∂aE

∂r

∣∣∣∣
r=rL(r0,t)

= lE (r, t)
∣∣∣
r=rL(r0,t)

(6.9)

The previous result proves that the tensor that defines the incremental geometric
transformation turns out to be the gradient tensor of the Eulerian velocity vector.
Consequently, this tensor is usually called as the velocity gradient tensor.

6.2.2. Infinitesimal geometric transformation

As equation (6.7) states, the incremental geometric transformation of a material
vector depends on the velocity gradient tensor.

δrt+dt =
[
I + lL dt

]
δrt + O

(
∥δrt∥2

)
= δrt +

[
lL dt

]
δrt + O

(
∥δrt∥2

) (6.10)

According to the above result, it can be concluded that the incremental transforma-
tion is an infinitesimal one, since the norm of the vector added to the original material
vector is much smaller than the norm of the original one.∥∥ [lL dt] δr∥∥ ≪ ∥δr∥ ⇐⇒

∥∥ [lL dt] δr∥∥
∥δr∥

≪ 1 ∀δr ̸= 0̄ (6.11)

Since the above inequality has to be fulfilled for all non-null material vectors, it can
also be stated that:

max
δr ̸=0̄

∥∥ [lL dt] δr∥∥
∥δr∥

≪ 1 (6.12)

According to the norm of a second order tensor stated in (A.49), the left-hand side of
the previous inequality turns out to be the norm of the tensor that rules the incremental
geometric transformation. On the other hand, the right-hand side is the norm of the
second order unit tensor (A.50). Consequently, the condition that indicates that the
incremental transformation is an infinitesimal one can be alternatively rewritten as:

∥lL dt∥ ≪ ∥I∥ where


∥∥lL dt∥∥ = max

δr ̸=0̄

∥∥ [lL dt] δr∥∥∥∥δr∥∥
∥I∥ = 1

(6.13)
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Chapter 6. Incremental approach

In the incremental approach, the velocity gradient tensor is the one that contains
the information related to the change of volume, orientation, and shape between two
consecutive infinitesimal time steps. This information is required to properly define
the structural behaviour.

6.3. Polar decomposition of the tensor that rules the
incremental approach

As the incremental approach defines an infinitesimal geometric transformation, the
approximate polar decomposition stated in section (5.3) can be applied. According to
this decomposition, the tensor can be decomposed as:[

I + lL dt
]

=
[
I +wL dt

] [
I + eL dt

]
, (6.14)

where:
wL = 1

2

(
lL − lLT

)
≡ spin tensor,

eL = 1
2

(
lL + lLT

)
≡ strain-rate tensor.

(6.15)

If the second order infinitesimals are neglected, the above decomposition can be
verified.[

I +wL dt
] [
I + eL dt

]
=
[
I + 1

2

(
lL − lLT

)
dt
] [
I + 1

2

(
lL + lLT

)
dt
]

≈ I + 1
2

(
lL + lLT

)
dt+ 1

2

(
lL − lLT

)
dt

= I + lL dt

(6.16)

On the one hand, the tensor that defines the incremental rotation is the spin tensor.
This tensor fulfils the condition to define an infinitesimal geometric transformation,
since it is multiplied by dt.

∥wL dt∥ ≪ ∥I∥ (6.17)

According to its definition, the incremental rotation tensor turns out to be skew-
symmetric. (

wL dt
)T = 1

2

(
lL − lLT

)T

dt = −wL dt (6.18)

Since it is a skew-symmetric tensor, and its components are infinitesimal, this tensor
turns out to represent an infinitesimal rotation [Oliver & Agelet, 2002]. Furthermore,
it has to be orthogonal to properly represent a rotation (section A.13). To prove it,
the second order infinitesimal are again neglected.[
I +wL dt

]T [
I +wL dt

]
≈ I[

I +wL dt
] [
I +wL dt

]T ≈ I

}
⇐⇒

[
I +wL dt

]−1 ≈
[
I +wL dt

]T (6.19)
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6.3. Polar decomposition of the tensor that rules the incremental approach

On the other hand, the strain-rate tensor has to be symmetric.(
eL dt

)T = 1
2

(
lL + lLT

)T

dt = eL dt (6.20)

And the tensor [I + eL dt] has to be positive definite, since this tensor represents the
incremental strain that the material vector experiments.

xT
[
I + eL dt

]
x = xTx+ xT

(
eL dt

)
x = ∥x∥2 +

(
xTeL x

)
dt > 0 ∀x ̸= 0̄ (6.21)

To sum up, if the infinitesimal polar decomposition is taken into account, the in-
cremental geometric transformation of a material vector can be expressed as shown
below.

δrt+dt =
[
I +wL dt

]︸ ︷︷ ︸
incr. rotation

( incr. strain︷ ︸︸ ︷[
I + eL dt

]
δrt

)
+ O

(
∥δrt∥2

)
(6.22)

Firstly, the incremental strain tensor modifies the modulus and direction of the ma-
terial vector corresponding to a given instant of time t. Then, the incremental rotation
tensor rotates the previous modified vector, to properly orientate it according to the
deformed geometry corresponding to the instant t+dt. Both geometric transformation
turn out to be infinitesimal.

6.3.1. Determinant of the tensor that rules the incremental
approach

As obtained in (6.7), the geometric transformation of a material vector between two
consecutive infinitesimal time steps is defined by the velocity gradient tensor.

δrt+dt =
[
I + lL dt

]
δrt (6.23)

The computation of the determinant of the tensor that rules the above geomet-
ric transformation is analogous to the one calculated in the infinitesimal case (5.41),
writing (lL dt) instead of EL.

det
(
I + lL dt

)
≈ 1 + Tr

(
lL dt

)
= 1 + Tr

(
lL
)
dt

(6.24)

In addition, if the definition of the strain-rate tensor in terms of the velocity gradient
tensor (6.15) is taken into account, it can be concluded that the trace of the strain-rate
tensor is equivalent to the trace of the velocity gradient tensor.

eL = 1
2

(
lL + lLT

)
=⇒ Tr

(
eL

)
= Tr

(
lL
)

(6.25)

Therefore, the determinant (6.24) can be computed by means of the strain-rate
tensor as:

det
(
I + lL dt

)
≈ 1 + Tr

(
lL
)
dt

= 1 + Tr
(
eL

)
dt

(6.26)
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6.3.2. Alternative polar decomposition

An alternative polar decomposition of the tensor that defines the incremental ge-
ometric transformation can be stated, by separating the incremental strain into the
product of an incremental distortion and an incremental inflation.

The equations that define these tensors can be obtained from (5.92) and (5.99).
These equations define the infinitesimal distortion tensor DL and the infinitesimal
inflation tensor HL, by means of the infinitesimal strain tensor EL. The incremental
version of these tensors is obtained by writing (eL dt) instead of EL.

I + lL dt =
[
I +wL dt

] [
I + eL dt

]
=
[
I +wL dt

] [
I +

(
eL − 1

n
Tr
(
eL

)
I

)
dt

] [(
1 + 1

n
Tr
(
eL

)
dt

)
I

]
,

(6.27)

where:
I +wL dt ≡ incremental rotation tensor,

I +
(
eL − 1

n
Tr
(
eL

)
I

)
dt ≡ incremental distortion tensor,(

1 + 1
n

Tr
(
eL

)
dt

)
I ≡ incremental inflation tensor.

(6.28)

Moreover, the incremental distortion tensor can be rewritten by means of the in-
cremental deviatoric strain tensor (eD,L) as:

I + eD,L dt with eD,L = eL − 1
n

Tr
(
eL

)
I (6.29)

Thus, the relative motion of the media in the vicinity of a given point can be
expressed as follows:

δrt+dt =
[
I +wL dt

]︸ ︷︷ ︸
incr. rotation

( incr. distortion︷ ︸︸ ︷[
I + eD,L dt

]([(
1 + 1

n
Tr
(
eL

)
dt

)
I

]
︸ ︷︷ ︸

incr. inflation

δrt

))
+ O

(
∥δrt∥2

)
(6.30)

Let’s consider that a parallelepiped is defined at a specific material point, whose
position at a given instant of time t is defined by the position vector rt. Its faces are
oriented according to the directions defined by the main axes (figure 6.2).

The first geometric transformation that the parallelepiped experiments is the
incremental inflation, ruled by the incremental inflation tensor. This is the only
geometric transformation that involves a volume variation.

The second one is the incremental distortion, governed by the incremental dis-
tortion tensor. As it is a distortion process, the volume of the parallelepiped
remains constant.
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6.4. Overview and conclusions

Finally, an incremental rotation produced by the spin tensor is applied. This
rotation orientates the parallelepiped according to the deformed configuration
corresponding to time t+ dt.

Figure 6.2 illustrates the definition of a parallelepiped at a given instant of time t,
and the incremental geometric transformation that it suffers after an infinitesimal time
step.

Figure 6.2. Parallelepiped incremental geometric transformation experimented between
two consecutive infinitesimal time steps.

And figure 6.3 shows the decomposition of the whole incremental geometric trans-
formation. That is, the inflation, distortion, and rotation that the initial volume ex-
periments.

If this entire process is known, the change of shape, volume, and orientation that a
solid experiments between two consecutive infinitesimal time steps can be entirely un-
derstood and defined. This information is necessary to properly define the displacement
field, and its corresponding strain and stress fields.

6.4. Overview and conclusions

Up to now, the geometric transformation experimented by a given material vector
between t = 0 and t was extensively analysed. Whether the variation is finite or
infinitesimal, both geometric changes turn out to be ruled by the deformation gradient
tensor. The polar decomposition allows to define the deformation gradient tensor as
the product between a rotation tensor and a strain tensor.
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INCREMENTAL 
INFLATION
(incremental

isotropic strain)

INCREMENTAL 
DISTORTION
(incremental

isochoric strain)

INCREMENTAL 
ROTATION

Figure 6.3. Alternative polar decomposition applied to the parallelepiped incremental
geometric transformation.

Nevertheless, this chapter adopts an incremental approach, focused on the incre-
mental geometric transformation between two consecutive infinitesimal time steps. The
geometric transformation experimented by a given material vector between t and t+dt

turns out to be ruled by the velocity gradient tensor. As this geometric variation is
infinitesimal, the approximate polar decomposition can be accurately applied to decom-
pose the tensor that governs this incremental geometric transformation. According to
the approximate decomposition, this tensor can be defined as the product between an
incremental rotation and an incremental strain.

Furthermore, the incremental strain can be equivalently defined as an incremental
inflation followed by an incremental distortion. The incremental inflation rules the
incremental volume variation in the vicinity of a given material point, whereas the
incremental distortion does not imply volume variation.

This incremental approach can be extended to describe the incremental loading
process, usually carried out in nonlinear analysis. When dealing with an incremental
loading procedure, the time variable t becomes a variable which indicates the current
load step. If the incremental load is small enough at each step of the loading process,
the incremental geometric transformation of a given material vector is governed by the
formulation presented in this chapter.
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Chapter 7
Constitutive equations

7.1. Introduction

In structural analysis, the equation that states the relation between the strain field
and its corresponding stress field is the so-called constitutive equation. As this work
analyses the structural behaviour of elastic solids, this chapter focuses on the definition
of the constitutive equation both in linear and nonlinear elasticity theory.

7.2. Elastic solids

As proved in section 1.10, the geometric variation of a material vector over time is
ruled by the deformation gradient tensor. Moreover, the deformation gradient tensor
can be expressed by means of the displacement gradient tensor as:

δr =F L δr0 + O
(
∥δr0∥2

)
F L = ∂rL

∂r0
= I + JL

JL = ∂uL

∂r0

(7.1)

This implies that the deformation gradient tensor governs the motion of a solid
in the vicinity of a given point. This tensor is the one that contains the information
related to the change of volume, orientation, and shape experimented by the solid. This
information is required to properly define the displacement, strain, and stress fields of
a continuous solid media subjected to external forces.

Furthermore, as stated in section 4.3, the polar decomposition theorem allows to
decompose the deformation gradient tensor as the product between a finite rotation
tensor and a finite strain tensor.

δr = RL

( [
I +EL

]
δr0︸ ︷︷ ︸

δr1

)
+ O

(
∥δr0∥2

)
(7.2)
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Consequently, the geometric change of a material vector can be divided into two
phases:

Firstly, the finite strain tensor modifies the direction and modulus of the material
vector.

δr1 =
[
I +EL

]
δr0 (7.3)

Finally, the finite rotation tensor applies a finite rotation to the material vector
obtained in the previous step. As it is a rotation, its modulus does not vary. The
material vector only experiments a variation in its direction.

δr = RL δr1 ∥δr∥ = ∥δr1∥ (7.4)

The first step is the only one that generates internal stresses, since the second one
produces a finite rotation. The finite rotation tensor is the one in charge of properly
orientating the previous modified material vector, according to the deformed configu-
ration.

Therefore, the polar decomposition allows to state that, both the finite strain tensor
and the finite rotation tensor are the ones that define the stress field.

σL = σL

(
F L

)
F L = RL

[
I +EL

]} =⇒ σL = σL

(
RL , EL

)
(7.5)

In elasticity theory, the stress tensor is considered to depend only on the value of
the deformation gradient tensor at a given instant of time. That is, it does not depend
on its previous values. Thus, if a set of external loads are applied, and then the solid
is unloaded, it will recover its initial configuration.

7.3. Nonlinear elasticity

To define the stress tensor in nonlinear elasticity theory, the polar decomposition
of the deformation gradient tensor (section 4.3) is recalled.

F L = RL

[
I +EL

]
(7.6)

In equation (7.3) it has been proved that the finite strain tensor is the one that
modifies the modulus and direction of the material vector. Thus, firstly, the stress field
is defined depending on the Biot strain tensor.

σ ′
L = Ψ

(
EL

)
(7.7)

The stress tensor has to be symmetric, if the conservation of angular momentum is
fulfilled (proved in section 8.4). Thus, the above tensor verifies that:

ΨT = Ψ (7.8)
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7.4. Linear elasticity: infinitesimal strain field

Once the preliminary stress tensor (7.7) is defined, its corresponding stress vector
can be computed. This vector is associated with a specific plane, defined by its normal
vector n ′. Hence, according to the stress vector definition stated in (3.36), the stress
vector turns out to be:

t ′
L = σ ′

L n
′

σ ′
L = Ψ

(
EL

)} =⇒ t ′
L = Ψ

(
EL

)
n ′ (7.9)

If the rotation defined by the finite rotation tensor is now applied to the above
vector, the stress vector orientated according to the deformed configuration is obtained.

tL = RL t
′
L (7.10)

In case a finite rotation is applied to the stress vector, the normal vector that defines
its corresponding plane also suffers a rotation. The following rotated normal vector
defines the plane associated with the rotated stress vector.

n = RL n
′ (7.11)

From equations (7.10) and (7.11), the preliminaries stress vector (t ′
L) and normal

vector (n ′) can be defined by means of their rotated definitions. The orthogonality
of the finite rotation tensor (4.13) is recalled, as it represents a rotation. Thus, the
substitution of these vectors into (7.9) leads to definition of the rotated stress tensor.

t ′
L = Ψ

(
EL

)
n ′

t ′
L = RL

T tL

n ′ = RL
Tn

 =⇒ RL
T tL︸ ︷︷ ︸

t ′
L

= Ψ
(
EL

)
RL

Tn︸ ︷︷ ︸
n ′

⇐⇒ tL =
(
RL Ψ

(
EL

)
RL

T

)
︸ ︷︷ ︸

σL

n

(7.12)
In the above equation, the stress tensor (σL) oriented according to the deformed

configuration is defined as:
σL = RL Ψ

(
EL

)
RL

T (7.13)

According to the above result, it can be concluded that the stress field does depend
on the Biot strain tensor and the finite rotation tensor, as stated before in (7.5). In
structural analysis, the equation that describes the relation between the stress field
and the strain field is usually known as the constitutive equation. Therefore, the above
equation defines the constitutive equation.

If the strain field turns out to be infinitesimal, the definition of the tensor Ψ that
defines the above constitutive equation is simplified. This particular case is extensively
analysed in the following section.

7.4. Linear elasticity: infinitesimal strain field

To consider that the strain field is infinitesimal is the main assumption adopted in
linear elasticity. As stated in section 5.4.1, the strain tensor is considered to produce an
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infinitesimal geometric transformation to the material vector, if the Biot strain tensor
fulfils the following condition:

∥EL∥ ≪ ∥I∥ (7.14)

If the above condition holds, the first geometric change of the material vector de-
scribed in (7.3) is reduced to:

δr1 =
[
I +EL

]
δr0 = δr0+EL δr0

∥EL δr0∥ ≪ ∥δr0∥

}
=⇒ δr1 ≈ δr0 (7.15)

This particular case simplifies the definition of the tensor Ψ that defines the consti-
tutive equation presented in (7.13), since this tensor can be linearized in terms of the
Biot strain tensor. This will be proved later on in this chapter.

Moreover, it should be noted that, the fulfilment of the condition (7.14) does not
imply neither small displacements nor small displacement gradients. That is, some
structures may experiment large displacements and/or large displacement gradients,
but their corresponding strain field is infinitesimal. These structural responses are
exemplified in the following subsections.

7.4.1. Large displacements and infinitesimal strain field

The single articulated rod with prescribed displacements at its nodes (section 5.2.2)
is again analysed (figure 7.1).

Figure 7.1. Single articulated rod with prescribed displacements at its nodes.

If the prescribed node displacements fulfil the conditions exposed in (5.9), the dis-
placements that experiments the structure are large, and its displacement gradients
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are small. These conditions are:

|a| ̸≪ L0 ⇐⇒
∣∣∣∣ aL0

∣∣∣∣ ̸≪ 1

|αL0| ≪ L0 ⇐⇒ |α| ≪ 1
(7.16)

Since the displacement gradients are small, the infinitesimal strain tensor presented
in (5.19) accurately approximates the strain field. Its definition depends on the dis-
placement gradient tensor. So, if the definition of the displacement gradient tensor
presented in (5.12) is taken into account, the infinitesimal strain tensor turns out to
be:

∥JL∥ ≪ ∥I∥ =⇒ EL ≈ 1
2

(
JL + JL

T

)
= 1

2

[
0 α

α 0

]
where |α| ≪ 1 (7.17)

And the norm of the above tensor is:

∥EL∥ = ∥EL δr0∥
∥δr0∥

=
1
2
∣∣α δr0,1

∣∣
|δr0,1|

= |α|
2 ≪ 1 (7.18)

According to the above result, it can be concluded that the norm of the strain tensor
is much lower than one. Therefore, the strain tensor fulfils the condition to produce an
infinitesimal geometric transformation (presented in section 5.2.1) when it is applied
to a given material vector.

∥EL∥ ≪ ∥I∥ (7.19)

This example illustrates that an infinitesimal strain field does not imply an infinites-
imal displacement field. Furthermore, it does not necessarily imply small displacement
gradients, as exemplified in the following subsection.

7.4.2. Large displacement gradients and infinitesimal strain field

Let’s consider a simply supported beam subjected to an external point load applied
at the centre of the beam (figure 7.2).

After the application of the external load, a rotation is applied around one of the
beam supports. Let’s consider that the direction of the load is also modified by the
rotation, and the angle of rotation is large enough, so it can be stated that:

|α| ̸≪ 1 (7.20)

The case without the rigid rotation is firstly studied. If the behaviour of the beam
verifies the linear analysis assumptions, its displacements and displacement gradients
are small. Since the displacements gradients are small, the strain field can be ap-
proximated by the infinitesimal strain tensor. Thus, the strain field turns out to be
infinitesimal.

Then, a rigid rotation is applied to this deformed configuration. The displacements
and the displacement gradients become large, but the strain field remains infinitesimal.
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Figure 7.2. Rotation applied to a simply supported beam subjected to an external
vertical point load.

This case illustrates that an infinitesimal strain field does not imply necessarily small
displacement gradients.

To prove that the displacements and the displacement gradients become large when
the rotation is applied, the modulus of the displacement vector and the norm of its
corresponding gradient tensor are computed.

On the one hand, the position vector of a material point that belongs to the reference
configuration is defined as:

r0 =
{
r0,1

0

}
(7.21)

The displacement that this particle experiments can be calculated depending on the
rotation angle as shown below.

uL (r0) =
{

−
(
r0,1 − r0,1 cosα

)
r0,1 sinα

}
=
{
r0,1

(
cosα− 1

)
r0,1 sinα

}
(7.22)

And the norm of the displacement vector is:

∥uL∥ =
√
r0,1

2
(

cosα− 1
)2 + r0,1

2 sin2 α (7.23)

On the other hand, the gradient tensor corresponding to the previous displacement
field turns out to be:

JL = duL

dr0
=


∂u1

∂r0,1

∂u1

∂r0,2
∂u2

∂r0,1

∂u2

∂r0,2

 =
[
cosα− 1 0

sinα 0

]
(7.24)

The components of a generic relative deformation vector defined in the reference
configuration are:

δr0 =
{
δr0,1

0

}
(7.25)
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Hence, the norm of the displacement gradient tensor is computed by means of the
rotation angle as follows.

∥JL∥ = ∥JL δr0∥
∥δr0∥

=

√(
cosα− 1

)2
δr0,1

2 + sin2 α δr0,1
2

δr0,1
2 =

√
2
(
1 − cosα

)
(7.26)

According to the results obtained in (7.23) and (7.26), it can be concluded that
both the displacements and the displacement gradients are large, if the rotation angle
fulfils the condition (7.20). As a conclusion:

∥uL∥ =
√
r0,1

2
(

cosα− 1
)2 + r0,1

2 sin2 α ̸≪ 1

∥JL∥ =
√

2
(
1 − cosα

)
̸≪ 1

 if |α| ̸≪ 1 (7.27)

This structural behaviour illustrates that an infinitesimal strain field does not imply
small displacement gradients.

7.4.3. Isotropic medium

Let’s focus now on isotropic mediums, whose mechanical properties do not depend
on the direction taken into account.

To express the components of the tensor Ψ, the usual engineering nomenclature is
adopted. The diagonal components are the normal stresses σ, and the non-diagonal
components are the shear stresses τ .

Ψ
(
EL

)
= σ ′

L =

σ11
′ σ12

′ σ13
′

σ12
′ σ22

′ σ23
′

σ13
′ σ23

′ σ33
′

 =

σ1
′ τ12

′ τ13
′

τ12
′ σ2

′ τ23
′

τ13
′ τ23

′ σ3
′

 (7.28)

The equation that defines the relationship between the above tensor and the Biot
strain tensor is required. The main assumption of the linear elasticity theory is to
consider that the strain field is infinitesimal (condition 7.14). Thus, the strain tensor
can be approximated by the infinitesimal strain tensor that arises from the approximate
polar decomposition exposed in section 5.3 as:

EL ≈ EL = 1
2

(
JL + JL

T

)
(7.29)

In a three-dimensional space, the displacement gradient tensor turns out to be:

JL =



∂u1

∂r0,1

∂u1

∂r0,2

∂u1

∂r0,3

∂u2

∂r0,1

∂u2

∂r0,2

∂u2

∂r0,3

∂u3

∂r0,1

∂u3

∂r0,2

∂u3

∂r0,3

 (7.30)
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Consequently, the Biot strain tensor approximation turns out to be:

EL ≈



∂u1

∂r0,1

1
2

(
∂u1

∂r0,2
+ ∂u2

∂r0,1

)
1
2

(
∂u1

∂r0,3
+ ∂u3

∂r0,1

)
1
2

(
∂u1

∂r0,2
+ ∂u2

∂r0,1

)
∂u2

∂r0,2

1
2

(
∂u2

∂r0,3
+ ∂u3

∂r0,2

)
1
2

(
∂u1

∂r0,3
+ ∂u3

∂r0,1

)
1
2

(
∂u2

∂r0,3
+ ∂u3

∂r0,2

)
∂u3

∂r0,3


(7.31)

For convenience, the components of the above strain tensor are renamed according to
the usual engineering nomenclature. The diagonal components are the normal strains ε,
and the non-diagonal ones are the shear strains γ. Thus, the Biot strain tensor can be
rewritten as:

EL =

E11 E12 E13

E12 E22 E23

E13 E23 E33

 =

 ε1
1
2γ12

1
2γ13

1
2γ12 ε2

1
2γ23

1
2γ13

1
2γ23 ε3

 (7.32)

The components of the above strain tensor are defined below.

Shear stress vs. shear strain

The equation that states the relation between the shear stress (τ) and the shear
strain (γ) is now defined. This equation can be expressed by the Taylor series expansion
about the point of null shear strain as:

τ (γ) = τ (0) + dτ

dγ
(0) γ + O

(
|γ|2
)

(7.33)

If there are no residual stresses, the first term becomes null. Moreover, the last
term can be neglected, if the strain field is infinitesimal. Thus, the series expansion is
reduced to:

τ (γ) =τ (0) + dτ

dγ
(0) γ + O

(
|γ|2
)

τ (0) = 0
O
(
|γ|2
)

≈ 0 if |γ| ≪ 1

 =⇒ τ (γ) ≈ dτ

dγ
(0) γ (7.34)

Therefore, the shear stress can be defined as a linear function of the shear strain.

τ (γ) ≈ Gγ with G = dτ

dγ
(0) (7.35)

Where the constant G defined in the above equation is the so-called shear modulus
in the literature. As the medium is isotropic, this constant does not depend on the
direction. Therefore, if the strain field is infinitesimal, the equation that defines the
shear stress by means of the shear strain is linear, and the constant that defines this
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7.4. Linear elasticity: infinitesimal strain field

linear dependence turns out to be the shear modulus.

τ12 = Gγ12

τ13 = Gγ13

τ23 = Gγ23

(7.36)

Normal stress vs. normal strain

The second equation to define is the relation between the normal stress (σ) and the
normal strain (ε). The Taylor series expansion about the point of null normal strain
that defines this equation is:

σ (ε) = σ (0) + dσ

dε
(0) ε+ O

(
|ε|2
)

(7.37)

It is again considered that there are no residual stresses, so the first term of the
series expansion is zero. Furthermore, as the strain field is infinitesimal, the last term
can be neglected. Thus, the series expansion is reduced to:

σ (ε) =σ (0) + dσ

dε
(0) ε+ O

(
|ε|2
)

σ (0) = 0
O
(
|ε|2
)

≈ 0 if |ε| ≪ 1

 =⇒ σ (ε) = dσ

dε
(0) ε (7.38)

Hence, the normal stress can be defined as a linear function of the normal strain.

σ (ε) ≈ E ε with E = dσ

dε
(0) (7.39)

The relation between both variables is defined by a constant, which is the so-called
Young’s modulus or elastic modulus of the material. It can be concluded that, if the
strain field is infinitesimal, the equation that defines the normal stress by means of the
normal strain can be accurately computed as a linear function, and the constant that
defines this linear dependence turns out to be the Young’s modulus’s of the material.

From equation (7.39), the equation that defines the normal strain by means of the
normal stress turns out to be:

ε ≈ σ

E
(7.40)

So, in a three-dimensional problem, the normal strain corresponding to the normal
stress σ1 turns out to be:

ε1
σ1 = σ1

E
(7.41)

However, the normal stress σ1 also originates a normal strain in the other perpen-
dicular directions (directions 2 and 3). These strains are proportional to the above
normal strain, and have opposite sign. The proportionality constant is the so-called
Poisson’s ratio, which is represented by the symbol ν.

ε2
σ1 = ε3

σ1 = −ν ε1
σ1 = −ν σ1

E
(7.42)

113



Chapter 7. Constitutive equations

The same deduction can be carried out with the remaining normal stresses (σ2

and σ3). The normal strain they cause along each one of the independent directions
are:

σ2 −→

ε2
σ2 = σ2

E

ε1
σ2 = ε3

σ2 = −ν ε2
σ2 = −ν σ2

E

σ3 −→

ε3
σ3 = σ3

E

ε1
σ3 = ε2

σ3 = −ν ε3
σ3 = −ν σ3

E

(7.43)

If the contributions of the three normal stresses are taken into account, the total
strain corresponding to each one of the independent directions can be computed. As
the strain field is infinitesimal, the effect of each normal stress can be superposed:

ε1 = ε1
σ1 + ε1

σ2 + ε1
σ3 = 1

E

[
σ1 − ν

(
σ2 + σ3

)]
ε2 = ε2

σ1 + ε2
σ2 + ε2

σ3 = 1
E

[
σ2 − ν

(
σ1 + σ3

)]
ε3 = ε3

σ1 + ε3
σ2 + ε3

σ3 = 1
E

[
σ3 − ν

(
σ1 + σ2

)] (7.44)

Moreover, equation (7.44) can be rewritten by means of the trace of the stress tensor
as:

ε1 = 1
E

[
σ1

(
1 + ν

)
− ν Tr (σL)

]
ε2 = 1

E

[
σ2

(
1 + ν

)
− ν Tr (σL)

]
ε3 = 1

E

[
σ3

(
1 + ν

)
− ν Tr (σL)

] (7.45)

On the other hand, the sum of the above equations leads to the trace of the strain
tensor.

ε1 + ε2 + ε3 = Tr
(
EL

)
= 1 − 2 ν

E
Tr
(
σL

)
(7.46)

From the above equation, the trace of the stress tensor can be obtained by means
of the trace of the strain tensor.

Tr
(
σL

)
= E

1 − 2 ν Tr
(
EL

)
(7.47)

Equations (7.45) define the normal strains in terms of the normal stresses. From
these equations, the ones that define the inverse relation between both variables can
be obtained as:

σ1 = ν

1 + ν
Tr
(
σL

)
+ E

1 + ν
ε1

σ2 = ν

1 + ν
Tr
(
σL

)
+ E

1 + ν
ε2

σ3 = ν

1 + ν
Tr
(
σL

)
+ E

1 + ν
ε3

(7.48)

114



7.4. Linear elasticity: infinitesimal strain field

And equation (7.47) can be replaced into the previous equations.

σ1 = ν E(
1 + ν

)(
1 − 2 ν

) Tr
(
EL

)
+ E

1 + ν
ε1

σ2 = ν E(
1 + ν

)(
1 − 2 ν

) Tr
(
EL

)
+ E

1 + ν
ε2

σ3 = ν E(
1 + ν

)(
1 − 2 ν

) Tr
(
EL

)
+ E

1 + ν
ε3

(7.49)

These are the so-called Lamé’s equations, which are usually written as:

σ1 = λTr
(
EL

)
+ 2µ ε1

σ2 = λTr
(
EL

)
+ 2µ ε2

σ3 = λTr
(
EL

)
+ 2µ ε3

(7.50)

where λ and µ are the Lamé’s parameters.

λ = ν E(
1 + ν

)(
1 − 2 ν

)
µ = E

2
(
1 + ν

) (7.51)

It can be proved that the shear modulus G can be defined in terms of the Young’s
modulus E and the Poisson’s ratio ν, as follows. This demonstration can be checked
in [Hernández, 2000], among other reference textbooks.

G = E

2
(
1 + ν

) (7.52)

Consequently, the Lamé’s parameter µ turns out to be equivalent to the shear
modulus G.

µ = G = E

2
(
1 + ν

) (7.53)

Once the equations (7.50) that define the normal stresses in terms of the normal
strains are completely defined, the tensor Ψ (7.28) that is involved in the definition
of the stress tensor (7.13) can be obtained by means of the Biot strain tensor. This
mathematical construction leads to the so-called Lamé’s equation, which is presented
below.

Lamé’s equation

The tensor Ψ was defined in (7.28) as:

Ψ
(
EL

)
= σ ′

L =

σ1
′ τ12

′ τ13
′

τ12
′ σ2

′ τ23
′

τ13
′ τ23

′ σ3
′

 (7.54)
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The components of the above tensor can be defined according to the equations
exposed in (7.36) and (7.50). It is also recalled that the shear modulus G is equivalent
to the Lamé’s parameter µ, as stated in (7.53). Thus, the components are defined as
follows.

σ1
′ ≈ λTr

(
EL

)
+ 2µ ε1 τ12

′ ≈ µγ12

σ2
′ ≈ λTr

(
EL

)
+ 2µ ε2 τ13

′ ≈ µγ13

σ3
′ ≈ λTr

(
EL

)
+ 2µ ε3 τ23

′ ≈ µγ23

(7.55)

The above equations can be gathered in tensor notation as:

Ψ
(
EL

)
≈ λTr

(
EL

)1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

I

+2µ

 ε1
1
2γ12

1
2γ13

1
2γ12 ε2

1
2γ23

1
2γ13

1
2γ23 ε3


︸ ︷︷ ︸

EL

(7.56)

Therefore, if the strain field is infinitesimal, that is, if the Biot strain tensor fulfils
condition (7.14), the tensor Ψ that defines the stress tensor (7.13) can be linearized by
means of the Biot strain tensor.

Ψ
(
EL

)
≈ λTr

(
EL

)
I + 2µEL (7.57)

Besides an infinitesimal strain field, the displacement gradients can be small. If both
conditions are fulfilled, the effect of the rotation can be neglected and the definition of
the stress tensor is simplified, as proven in the following section.

7.4.4. Small displacement gradients and infinitesimal strain field

As stated in (5.8), the gradients of the displacements that the solid experiments are
small, if the norm of the displacement gradient tensor verifies the condition:

∥JL∥ ≪ ∥I∥ (7.58)

In addition, the approximate polar decomposition presented in section 5.3 can be
applied to decompose the deformation gradient tensor

F L ≈ RL

[
I + EL

]
, (7.59)

where RL is the infinitesimal rotation tensor, and EL is the infinitesimal strain tensor.
Both of them are defined by means of the displacement gradient tensor.

RL = I + 1
2

(
JL − JL

T

)
︸ ︷︷ ︸

WL

EL = 1
2

(
JL + JL

T

) (7.60)
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7.5. Cauchy stress tensor vs. infinitesimal strain tensor

Since the displacement gradient tensor verifies condition (7.58), the norm of the
above tensors also verify that:

∥WL∥ = O
(
∥JL∥

)
≪ ∥I∥

∥EL∥ = O
(
∥JL∥

)
≪ ∥I∥

(7.61)

If the displacement gradients are small, the tensors involved in the definition of
the stress tensor exposed in (7.13) can be accurately substituted by the infinitesimal
rotation tensor and the infinitesimal strain tensor.

σL = RL Ψ
(
EL

)
RL

T

≈ RL Ψ
(
EL

)
RL

T
(7.62)

Furthermore, as the strain field is infinitesimal (proved in (7.61)), the main linear
elasticity assumption (7.14) is fulfilled. This implies that, if the medium is isotropic,
the tensor Ψ can be approximated by the Lamé’s equation (7.57).

Ψ
(
EL

)
≈ λTr

(
EL

)
I + 2µEL (7.63)

The above tensor and the infinitesimal rotation tensor exposed in (7.60) can now
be substituted into the definition of the stress tensor (7.62):

σL ≈
(
I + WL

)(
λTr

(
EL

)
I + 2µEL

)(
I − WL

)
=
(
λTr

(
EL

)
I + 2µEL

)
+ O

(
∥JL∥2

) (7.64)

Since the displacement gradients are small, the second term can be neglected, and
the above equation is reduced to:

σL ≈ λTr
(
EL

)
I + 2µEL (7.65)

Therefore, the effect of the infinitesimal rotation can be neglected, and the stress
tensor turns out to be defined by means of the infinitesimal strain tensor. This is the
so-called linear elastic constitutive equation.

In the following section, an equivalent definition of the above constitutive equation
is derived, where the relation between the Cauchy stress tensor and the infinitesimal
strain tensor is stated by means of the constitutive tensor.

7.5. Cauchy stress tensor vs. infinitesimal strain tensor

From the result obtained in (7.65), it can be concluded that if the strain field is in-
finitesimal (condition 7.14), and the displacement gradients are small (condition 7.58),
the Cauchy stress tensor can be defined by means of the infinitesimal strain tensor.

∥EL∥ ≪ ∥I∥
∥JL∥ ≪ ∥I∥

}
=⇒ σL = σL

(
EL

)
(7.66)
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7.5.1. Tensor constitutive equation

The above tensor function can be equivalently defined according to the Taylor series
expansion about the point of null infinitesimal strain, as:

σL

(
EL

)
= σL (0) + dσL

dEL
(0) : EL + O

(
∥EL∥2

)
(7.67)

The tensor operation represented by the symbol : turns out to be the double dot
product between a fourth order tensor and the infinitesimal strain tensor. The first
term of the above series is null, if there are no residual stresses, and the last one can
be neglected, as the strain field is infinitesimal. So, the series expansion is reduced to:

σL

(
EL

)
=σL (0) + dσL

dEL
(0) : EL + O

(
∥EL∥2

)
σL (0) = 0
∥EL∥ ≪ ∥I∥ =⇒ O

(
∥EL∥2

)
≈ 0

 =⇒ σL

(
EL

)
≈ dσL

dEL
(0) : EL

(7.68)
Therefore, if the assumptions presented in this section are fulfilled, the constitutive

equation can be defined as:

σL = D4 (0) : EL with D4 (0) = dσL

dEL
(0) , (7.69)

where D4 is a fourth order tensor and is the so-called constitutive tensor. Its compo-
nents are defined as follows.

D4 (0) =
[
Dijkl (0)

]
i=1,2,3
j=1,2,3
k=1,2,3
l=1,2,3

Dijkl (0) =
∂σij

∂Ekl

(0) (7.70)

7.5.2. Fourth order constitutive tensor

According to equation (7.69), the fourth order constitutive tensor turns out to be
the derivative of the Cauchy stress tensor with respect to the infinitesimal strain tensor.

The definition of the Cauchy stress tensor, if the displacement gradients are small
and the strain field is infinitesimal, was obtained in (7.65). Its derivation with respect
to the infinitesimal strain tensor leads to an equivalent definition of the constitutive
tensor.

σL

(
EL

)
= λTr

(
EL

)
I2 + 2µEL =⇒ dσL

dEL
= λ

d

dEL

(
Tr
(
EL

)
I2

)
+ 2µdEL

dEL
(7.71)

The tensor whose derivative is computed in the first term is defined below.

Tr
(
EL

)
I2 =

[
Aij

]
i=1,2,3
j=1,2,3

Aij = δij

3∑
m=1

Emm (7.72)
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7.5. Cauchy stress tensor vs. infinitesimal strain tensor

In this section, the subscript 2 is added to the second order unit tensor to clarify
its order. Later on in this chapter, the fourth order unit tensor appears, so the order
of the unit tensors are indicated to avoid confusion. To compute the derivative of
the above tensor, with respect to the infinitesimal strain tensor, the definition of the
tensor I2 ⊗ I2 exposed in (A.92) is recalled.

d

dEL

(
Tr
(
EL

)
I2

)
=
[
Bijkl

]
i=1,2,3
j=1,2,3
k=1,2,3
l=1,2,3

Bijkl =
∂Aij

∂Ekl

= ∂

∂Ekl

(
δij

3∑
m=1

Emm

)

= δij

∂

∂Ekl

( 3∑
m=1

Emm

)
= δijδkl



=⇒ d

dEL

(
Tr
(
EL

)
I2

)
= I2 ⊗ I2 (7.73)

On the other hand, the derivative involved in the second term turns out to be
equivalent to the fourth order unit tensor I4, defined in (A.88).

dEL

dEL
=
[
Cijkl

]
i=1,2,3
j=1,2,3
k=1,2,3
l=1,2,3

Cijkl =
∂Eij

∂Ekl

= δikδjl


=⇒ dEL

dEL
= I4 (7.74)

So, the substitution of (7.73) and (7.74) into the derivative of the Cauchy stress
tensor (7.71) leads to:

D4 = dσL

dEL
= λ

(
I2 ⊗ I2

)
+ 2µ I4 (7.75)

Since the above tensor is constant, it can be concluded that the fourth order ten-
sor (7.69) turns out to be:

D4 (0) = λ
(
I2 ⊗ I2

)
+ 2µ I4 (7.76)

Therefore, the constitutive equation presented in (7.69) becomes:

σL =
[
λ
(
I2 ⊗ I2

)
+ 2µ I4

]
: EL (7.77)

Furthermore, since the infinitesimal strain tensor is symmetric, the fourth order
unit tensor Ī4 defined in (A.88) leads to the same result as I4 when it is applied to the
infinitesimal strain tensor.

I4 : EL = EL

Ī4 : EL = EL
T = EL

(7.78)
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This implies that the fourth order unit tensor I4 can be replaced by its symmetric
term I sym

4 , defined in (A.94).

I4 : EL = EL = 1
2

(
EL + EL

)
= 1

2

(
I4 : EL + Ī4 : EL

)
= 1

2

(
I4 + Ī4

)
: EL

= I sym
4 : EL

(7.79)

Thus, if the above result is taken into account, the Cauchy stress tensor (7.77)
becomes:

σL =
[
λ
(
I2 ⊗ I2

)
+ 2µ I sym

4

]
: EL (7.80)

And the constitutive equation can be finally defined as:

σL = D4 (0) : EL with D4 (0) = λ
(
I2 ⊗ I2

)
+ 2µ I sym

4 , (7.81)

whereD4 (0) is the constitutive tensor. The components of the tensors I2 ⊗I2 and I sym
4

were defined in (A.92) and (A.95), respectively. If these definitions are taken into
account, the components of the above constitutive tensor can be finally defined as:

D4 (0) =
[
Dijkl (0)

]
i=1,2,3
j=1,2,3
i=1,3,3
j=1,3,3

Dijkl (0) = λ δijδkl + µ
(
δikδjl + δilδjk

)
(7.82)

7.5.3. Vector constitutive equation

The Voigt notation exposed in section A.14 allows to propose the equivalent vector
equation that defines the constitutive equation presented in the previous section.

σL = σL

(
EL

)
=⇒ σ̄L = σ̄L

(
ĒL

)
(7.83)

And the Taylor series expansion of the above vector function, defined about the
point of null infinitesimal strain, turns out to be:

σ̄L

(
ĒL

)
= σ̄L

(
0̄
)

+ dσ̄L

dĒL

(
0̄
)

ĒL + O
(
∥ĒL∥2

)
(7.84)

The above series can be simplified, since the first term is null if there are no residual
stresses, and the last one can be neglected as the strain field is infinitesimal. Thus, the
series expansion is reduced to:

σ̄L

(
ĒL

)
=σ̄L

(
0̄
)

+ dσ̄L

dĒL

(
0̄
)

ĒL + O
(
∥ĒL∥2

)
σ̄L

(
0̄
)

= 0̄
∥ĒL∥ ≪ 1 =⇒ O

(
∥ĒL∥2

)
≈ 0̄

 =⇒ σ̄L

(
ĒL

)
≈ dσ̄L

dĒL

(
0̄
)

ĒL

(7.85)
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Therefore, if the displacement gradients are small, and the infinitesimal strain is
infinitesimal, the constitutive equation can be defined as a linear function of the in-
finitesimal strain field as:

σ̄L = D2

(
0̄
)

ĒL with D2

(
0̄
)

= dσ̄L

dĒL

(
0̄
)

, (7.86)

where D2 is the constitutive tensor. This tensor turns out to be a second order tensor,
if the vector notation is adopted instead of the tensor one. And its components turn
out to be:

D2

(
0̄
)

=
[
Dij

(
0̄
)]

i=1,...,6
j=1,...,6

Dij

(
0̄
)

=
∂σij

∂Ekl

(
0̄
)

(7.87)

7.5.4. Second order constitutive tensor

From the stress tensor defined in (7.65), the components of the second order con-
stitutive tensor can be obtained.

The Voigt notation presented in section A.14 is the one that defines the equivalent
vector expression of the Cauchy stress tensor.

σL =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =

σ1 τ12 τ13

τ12 σ2 τ23

τ13 τ23 σ3

 =⇒ σ̄L =



σ11

σ22

σ33

σ12

σ13

σ23


=



σ1

σ2

σ3

τ12

τ13

τ23


(7.88)

This notation can also be applied to the strain tensor, to obtain its equivalent vector
definition.

EL =

E11 E12 E13

E12 E22 E23

E13 E23 E33

 =

 ε1
1
2γ12

1
2γ13

1
2γ12 ε2

1
2γ23

1
2γ13

1
2γ23 ε3

 =⇒ ĒL =



E11

E22

E33

2 E12

2 E13

2 E23


=



ε1

ε2

ε3

γ12

γ13

γ23


(7.89)

According to the result obtained in (7.55), the components of the vector expression
of the stress tensor are defined by means of the Lamé’s parameters, as shown below.

σ1 = λTr
(
EL

)
+ 2µ ε1 τ12 = µγ12

σ2 = λTr
(
EL

)
+ 2µ ε2 τ13 = µγ13

σ3 = λTr
(
EL

)
+ 2µ ε3 τ23 = µγ23

(7.90)
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Therefore, if the above equations are gathered, the vector expression of the Cauchy
stress tensor can de defined as:

σ1

σ2

σ3

τ12

τ13

τ23


=



2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





ε1

ε2

ε3

γ12

γ13

γ23


(7.91)

The above equation turns out to be equivalent to the one obtained in (7.86). Thus,
the second order tensor that defines the previous linear relation between the vector
expressions of the stress tensor and the strain tensor is the constitutive tensor D2

(
0̄
)
:

D2

(
0̄
)

=



2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(7.92)

The substitution of the Lamé’s parameters (7.51) into the above tensor, allows to
rewrite its components in terms of the Young’s modulus and the Poisson’s ratio.

2µ+ λ = E

1 + ν
+ E ν(

1 − 2 ν
)(

1 + ν
) =

E
(
1 − ν

)(
1 − 2 ν

)(
1 + ν

)
µ = E

2
(
1 + ν

) =
E
(
1 − 2 ν

)
2
(
1 + ν

)(
1 − 2 ν

) =
E
(
0.5 − ν

)(
1 + ν

)(
1 − 2 ν

)
λ = E ν(

1 − 2 ν
)(

1 + ν
)

(7.93)

Consequently, the constitutive tensor is reduced to:

D2

(
0̄
)

= E(
1 + ν

)(
1 − 2 ν

)


1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 0.5 − ν 0 0
0 0 0 0 0.5 − ν 0
0 0 0 0 0 0.5 − ν


(7.94)

To sum up, when dealing with an infinitesimal strain field, and the displacement
gradients are small, the constitutive equation can be directly defined by means of the
infinitesimal strain tensor. And a linear relation between the Cauchy stress tensor and
the infinitesimal strain tensor can be stated by means of the constitutive tensor.
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If these assumptions are not fulfilled, this constitutive equation does not hold any
more, and the Cauchy stress tensor has to be defined by means of the rotation tensor
and the Biot strain tensor, as stated in (7.13). Nevertheless, more suitable tensor
magnitudes can be adopted to define the strain and stress fields, if the solid behaviour
does not fulfil these assumptions. This topic is extensively discussed in the following
section.

7.6. Second Piola-Kirchhoff stress tensor vs. Green-Lagrange
strain tensor

On the one hand, the second Piola-Kirchhoff stress tensor and the Green-Lagrange
strain tensor remain invariant if a rotation is applied to a solid subjected to external
loads. This is demonstrated in sections 3.5.1 and 4.6.4, respectively.

On the other hand, both tensors depend on the deformation gradient tensor, which
does not vary if a translation is applied to the solid. Therefore, it can be concluded
that both tensors also remain constant if a translation is applied to the solid.

Consequently, both the second Piola-Kirchhoff stress tensor and the Green-Lagrange
strain tensor remain invariant if a rigid motion (rotation and/or translation) is applied
to a solid. This is an important property to take into account when a large displacement
analysis is carried out. If the solid experiments large displacements, these tensors can
be applied to properly describe the strain field and its corresponding stress field.

Therefore, a constitutive equation that defines the mathematical relation between
them can be defined.

SL = SL

(
EG,L

)
(7.95)

7.6.1. Incremental tensor constitutive equation

In this section, the equation that defines the second Piola-Kirchhoff stress tensor
increment by means of the Green-Lagrange strain tensor increment is derived. The
increment of the Green-Lagrange strain tensor is originated by an increment of the
displacement field. This equation is essential to develop a nonlinear finite element
analysis, since it will be carried out by an incremental loading procedure.

In figure (7.3), the relation between the second Piola-Kirchhoff stress and the Green-
Lagrange strain, corresponding to a simple one-dimensional case, is represented.

The second Piola-Kirchhoff stress tensor increment, corresponding to a given dis-
placement field increment ∆uL, can be defined as the difference between the second
Piola-Kirchhoff stress tensor corresponding to each one of the displacement fields:

∆SL = SL

(
EG,L

(
uL + ∆uL

))
− SL

(
EG,L

(
uL

))
(7.96)
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Figure 7.3. Second Piola-Kirchhoff stress increment vs. Green-Lagrange strain incre-
ment (one-dimensional case).

The first term of the above difference can be expressed according to the Taylor
series expansion as:

SL

(
EG,L

(
uL+∆uL

))
= SL

(
EG,L

(
uL

))
+ dSL

dEG,L

(
EG,L

(
uL

))
: ∆EG,L+O

(
∥∆EG,L∥2

)
(7.97)

The substitution of the above series expansion into the definition of the second
Piola-Kirchhoff stress tensor increment (7.96) leads to:

∆SL = dSL

dEG,L

(
EG,L

(
uL

))
: ∆EG,L + O

(
∥∆EG,L∥2

)
(7.98)

And if the Green-Lagrange strain increments are considered to be small, it can be
concluded that:

∆SL ≈ dSL

dEG,L

(
EG,L

(
uL

))
: ∆EG,L (7.99)

The Green-Lagrange strain tensor increment was defined in (4.92), and it is the
effect of considering that the displacement field is modified by a displacement field
increment. The gradients of the displacement field increment are assumed to be small,
so the assumption made in (7.99) is fulfilled, and the Green-Lagrange strain increments
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are small.

u ′
L = uL + ∆uL∥∥∥∥∂∆uL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂∆uL

∂r0
= JL + ∆JL

=⇒ ∥∆JL∥ ≪ ∥I∥

=⇒ ∆EG,L = 1
2

(
∆JL + ∆JL

T + ∆JL
TJL + JL

T ∆JL

)
=⇒ ∥∆EG,L∥ ≪ ∥I∥

(7.100)
It can be concluded that, under the above assumption, the second Piola-Kirchhoff

stress tensor increment defined by means of the Green-Lagrange strain tensor increment
turns out to be:

∆SL ≈ C4

(
EG,L

)
: ∆EG,L with C4

(
EG,L

)
= dSL

dEG,L

(
EG,L

)
, (7.101)

where C4 is a fourth order tensor, and is known as the constitutive tensor. It is
composed by 81 components, which are defined as shown below.

C4 =
[
Cijkl

]
i=1,2,3
j=1,2,3
k=1,2,3
l=1,2,3

Cijkl =
∂Sij

∂Ekl

(7.102)

7.6.2. Fourth order constitutive tensor

It is usually established that two tensor magnitudes are conjugate if their double
dot product gives the work per unit volume developed by the internal forces during the
deformation process.

It can be proven that the first Piola-Kirchhoff stress tensor is work conjugate with
the deformation gradient tensor, and the second Piola-Kirchhoff stress tensor turns
out to be work conjugate with the Green-Lagrange strain tensor [De Borst et al., 2012;
Capaldi, 2012; Bonet et al., 2016].

Work conjugacy
Stress tensor Strain tensor

• First P-K stress tensor (P L) • Deformation gradient tensor (F L)
• Second P-K stress tensor (SL) • G-L strain tensor (EG,L)

Table 7.1. Conjugate tensor magnitudes.

As the first Piola-Kirchhoff stress tensor and the deformation gradient tensor are
work conjugate magnitudes (table 7.1), it can be stated that the work per unit volume
developed by the internal stresses during a differential part of the deformation process
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is:
dΨ = P L : dF L (7.103)

If the above magnitude is integrated over the whole deformation process, the work
per unit volume developed by the internal forces during the entire deformation process
is obtained.

Ψ
(
F L

)
=
∫ F L

0
dΨ =

∫ F L

0
P L : dF L (7.104)

According to the above result, it can be concluded that the work per unit volume
depends on the deformation gradient tensor. If its polar decomposition is taken into
account (section 4.3), the deformation gradient tensor can be decomposed as the prod-
uct of the finite rotation tensor and the finite strain tensor. The finite strain tensor
is the tensor that modifies the modulus and direction of a given material vector. And
the finite rotation tensor is the one that rotates the previous material vector.

δr = F L δr0

= RL

[
I +EL

]
δr0

(7.105)

The material vector rotation does not produce work per unit volume, so, the finite
strain tensor is the one that produces it. Therefore, the work per unit volume that the
internal stresses develop over the deformation process only depends on the finite strain
tensor.

Ψ = Ψ
(
I +EL

)
(7.106)

If the polar decomposition of the deformation gradient tensor is substituted into
the definition of the right Cauchy-Green tensor (4.18), the orthogonality of the finite
rotation tensor (4.13) allows to get rid of the effect of the rotation.

ML = F L
TF L

=
[
I +EL

]T

RL
TRL︸ ︷︷ ︸
I

[
I +EL

]
=
[
I +EL

]2

(7.107)

Hence, the finite strain tensor can be defined as the square root of the right Cauchy-
Green tensor.

I +EL = ML
1/2 (7.108)

On the other hand, the Green-Lagrange strain tensor (4.72) can be expressed in
terms of the right Cauchy-Green tensor as:

EG,L = 1
2

(
F L

TF L − I
)

ML = F L
TF L

 =⇒ EG,L = 1
2

(
ML − I

)
(7.109)

From the above equation, the right Cauchy-Green tensor can be obtained in terms
of the Green-Lagrange strain tensor according to:

ML = 2EG,L + I (7.110)
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Therefore, the finite strain tensor defined in (7.108) finally becomes:

I +EL = ML
1/2

ML = 2EG,L + I

}
=⇒ I +EL =

(
2EG,L + I

)1/2

(7.111)

In the above equation, the finite strain tensor is defined by means of the Green-
Lagrange strain tensor. In (7.106) it has been stated that the work per unit volume
developed by the internal forces depends on the finite strain tensor. According to
that, it can be concluded that the work per unit volume finally depends on the Green-
Lagrange strain tensor.

Ψ = Ψ
(
EG,L

)
=⇒ dΨ =

dΨ
(
EG,L

)
dEG,L

: dEG,L (7.112)

Another pair of conjugate magnitudes are the second Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor (table 7.1). Therefore, it can be also stated that:

dΨ = SL : dEG,L (7.113)

If equations (7.112) and (7.113) are compared, an alternative definition of the second
Piola-Kirchhoff stress tensor is obtained as:

dΨ = SL : dEG,L

dΨ =
dΨ
(
EG,L

)
dEG,L

: dEG,L

 =⇒ SL =
dΨ
(
EG,L

)
dEG,L

(7.114)

The substitution of the above second Piola-Kirchhoff stress tensor definition into
the fourth order constitutive tensor obtained in (7.101), leads to:

C4 = dSL

dEG,L

SL =
dΨ
(
EG,L

)
dEG,L

 =⇒ C4 = dSL

dEG,L
= d

dEG,L

(
dΨ
(
EG,L

)
dEG,L

)
(7.115)

Consequently, it can be stated that the constitutive tensor turns out to be the second
derivative of the internal work per unit volume, with respect to the Green-Lagrange
strain tensor.

The first derivative of the internal work per unit volume is the following second
order tensor:

dΨ
(
EG,L

)
dEG,L

=



∂Ψ
∂E11

∂Ψ
∂E12

∂Ψ
∂E13

∂Ψ
∂E12

∂Ψ
∂E22

∂Ψ
∂E23

∂Ψ
∂E13

∂Ψ
∂E23

∂Ψ
∂E33

 =
[
∂Ψ
∂Ekl

]
k=1,2,3
l=1,2,3

(7.116)
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And its second derivative, that defines the constitutive tensor (7.115), is the follow-
ing fourth order tensor.

C4 = d

dEG,L

(
dΨ
(
EG,L

)
dEG,L

)
=
[
Cijkl

]
i=1,2,3
j=1,2,3
k=1,2,3
l=1,2,3

Cijkl = ∂

∂Eij

(
∂Ψ
∂Ekl

)
(7.117)

The fourth order constitutive tensor symmetries are analysed in the following sub-
section. Its symmetries allow to reduce the number of different components, so the
definition of the constitutive tensor is simplified.

7.6.3. Fourth order constitutive tensor symmetries

The components of the constitutive tensor are defined in (7.117). If this definition is
taken into account, it can be proven that the constitutive tensor has major symmetry.

Cijkl = ∂

∂Eij

(
∂Ψ
∂Ejk

)
= ∂

∂Ekl

(
∂Ψ
∂Eij

)
= Cklij (7.118)

This constitutive tensor defines the relation between the second Piola-Kirchhoff
stress tensor increment and the Green-Lagrange strain tensor increment.

∆SL = C4 : ∆EG,L ⇐⇒ ∆Sij =
3∑

k=1

3∑
l=1

Cijkl ∆Ekl (7.119)

Both the Green-Lagrange strain tensor increment and the second Piola-Kirchhoff
stress tensor increment are symmetric. Thus, their components verify the following
conditions: (

∆EG,L

)T = ∆EG,L ⇐⇒ ∆Eji = ∆Eij

∆SL
T = ∆SL ⇐⇒ ∆Sji = ∆Sij

(7.120)

The above conditions allow to prove that the constitutive tensor has minor symme-
tries too.

∆Sji =
3∑

k=1

3∑
l=1

Cjikl ∆Ekl

∆Sij =
3∑

k=1

3∑
l=1

Cijkl ∆Ekl

∆Sij =
3∑

k=1

3∑
l=1

Cijlk ∆Elk


=⇒ Cijkl = Cijlk = Cjikl (7.121)

The fourth order constitutive tensor symmetries turn out to be a major advantage,
since the number of different tensor components is significantly reduced.

In the following section, the incremental constitutive equation is defined according to
its equivalent vector notation. In this particular case, the constitutive tensor becomes
a second order one, and the symmetries proven in this section will be recalled to define
its components.
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7.6.4. Incremental vector constitutive equation

The equation that establishes the relation between their equivalent vector expres-
sions is now derived. That is, the equation that defines the vector expression of the
second Piola-Kirchhoff stress tensor increment by means of the vector expression of the
Green-Lagrange strain tensor increment is defined.

The vector expression of the second Piola-Kirchhoff stress tensor increment, corre-
sponding to a given displacement field increment ∆uL, can be defined as the following
difference.

∆S̄L = S̄L

(
ĒG,L

(
uL + ∆uL

))
− S̄L

(
ĒG,L

(
uL

))
(7.122)

Where the first term of this difference can be expressed according to the Taylor
series expansion as:

S̄L

(
ĒG,L

(
uL +∆uL

))
= S̄L

(
ĒG,L

(
uL

))
+ dS̄L

dĒG,L

(
ĒG,L

(
uL

))
∆ĒG,L +O

(
∥∆ĒG,L∥2

)
(7.123)

The substitution of the above series expansion into the definition of the second
Piola-Kirchhoff stress tensor increment (7.122) leads to:

∆S̄L = dS̄L

dĒG,L

(
ĒG,L

(
uL

))
∆ĒG,L + O

(
∥∆ĒG,L∥2

)
(7.124)

And if the Green-Lagrange strain increments are considered to be small, it can be
concluded that:

∆S̄L ≈ dS̄L

dĒG,L

(
ĒG,L

(
uL

))
∆ĒG,L (7.125)

The vector expression of the Green-Lagrange strain tensor increment was defined
in (4.114), and it is the effect of considering that the displacement field is modified by
a displacement field increment. The gradients of the displacement field increment are
assumed to be small, so the assumption made in (7.125) is fulfilled, and the Green-
Lagrange strain increments are small.

u ′
L = uL + ∆uL∥∥∥∥∂∆uL

∂r0

∥∥∥∥ ≪ ∥I∥

 =⇒ J ′
L = ∂u ′

L

∂r0
= ∂uL

∂r0
+ ∂∆uL

∂r0
= JL + ∆JL

=⇒ J̄
′

L = J̄L + ∆J̄L

=⇒ ∥∆J̄L∥ ≪ 1

=⇒ ∆ĒG,L =
(
AC +AL (JL)

)
∆J̄L

=⇒
∥∥∆ĒG,L

∥∥ ≪ 1

(7.126)

It can be concluded that, under the above assumption, the vector expression of
the second Piola-Kirchhoff stress tensor increment defined by means of the vector
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expression of the Green-Lagrange strain tensor increment turns out to be:

∆S̄L ≈ C2

(
ĒG,L

)
∆ĒG,L with C2

(
ĒG,L

)
= dS̄L

dĒG,L

(
ĒG,L

)
, (7.127)

where C2 is the constitutive tensor. The subscript indicates that, in this particular
case, the constitutive tensor is a second order constitutive tensor. It is composed by 36
components, which are defined as shown below.

C2 =
[
Cij

]
i=1,...,6
j=1,...,6

Cij = ∂Si

∂Ej

(7.128)

7.6.5. Second order constitutive tensor

The Voigt notation (section A.14) is applied to define the vector expression of the
second Piola-Kirchhoff stress tensor.

∆SL =

∆S11 ∆S12 ∆S13

∆S12 ∆S22 ∆S23

∆S13 ∆S23 ∆S33

 =⇒ ∆S̄L =



∆S11

∆S22

∆S33

∆S12

∆S13

∆S23


(7.129)

The same criterion is applied to define the vector expression of the Green-Lagrange
strain tensor.

∆EG,L =

∆E11 ∆E12 ∆E13

∆E12 ∆E22 ∆E23

∆E13 ∆E23 ∆E33

 =⇒ ∆ĒG,L =



∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


(7.130)

The relations between both vectors is defined by means of the constitutive tensor C2,
which is a second order tensor.

∆S11

∆S22

∆S33

∆S12

∆S13

∆S23


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


⇐⇒ ∆S̄L = C2 ∆ĒG,L

(7.131)
The components that compose the vector expression of the second Piola-Kirchhoff

stress tensor can be obtained in its equivalent tensor equation defined in (7.101).

∆SL = C4 : ∆EG,L ⇐⇒ ∆Sij =
3∑

k=1

3∑
l=1

Cijkl ∆Ekl (7.132)
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If the symmetry of the Green-Lagrange strain tensor increment (7.120) and the
minor symmetry of the fourth order constitutive tensor (7.121) are taken into account,
the above components become:

∆Sij =
3∑

k=1

3∑
l=1

Cijkl ∆Ekl

= Cij11 ∆E11 + Cij12 ∆E12 + Cij13 ∆E13 +
+ Cij21 ∆E21 + Cij22 ∆E22 + Cij23 ∆E23 +
+ Cij31 ∆E31 + Cij32 ∆E32 + Cij33 ∆E33

= Cij11 ∆E11 + Cij22 ∆E22 + Cij33 ∆E33 +
+ Cij12

(
2 ∆E12

)
+ Cij13

(
2 ∆E13

)
+ Cij23

(
2 ∆E23

)
(7.133)

That is, the 81 different components of the fourth order constitutive tensor are
reduced to 36 independent components.

∆S11

∆S22

∆S33

∆S12

∆S13

∆S23


=



C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C3311 C3322 C3333 C3312 C3313 C3323

C1211 C1222 C1233 C1212 C1213 C1223

C1311 C1322 C1333 C1312 C1313 C1323

C2311 C2322 C2333 C2312 C2313 C2323





∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


(7.134)

If the major symmetry of the fourth order constitutive tensor (7.118) is now taken
into account, the number of components is finally reduced to 21.

∆S11

∆S22

∆S33

∆S12

∆S13

∆S23


=



C1111 C1122 C1133 C1112 C1113 C1123

C2222 C2233 C2212 C2213 C2223

C3333 C3312 C3313 C3323

C1212 C1213 C1223

sym C1313 C1323

C2323





∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


(7.135)

Therefore, the second order constitutive tensor turns out to be symmetric.

C2
T = C2 ⇐⇒ Cji = Cij (7.136)

And its components defined by means of the fourth order constitutive tensor com-
ponents are:

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66


=



C1111 C1122 C1133 C1112 C1113 C1123

C2222 C2233 C2212 C2213 C2223

C3333 C3312 C3313 C3323

C1212 C1213 C1223

sym C1313 C1323

C2323


(7.137)
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In some particular cases, a linear relation between the second Piola-Kirchhoff stress
tensor and the Green-Lagrange strain tensor can be defined by means of the linear
constitutive tensor. This is a major advantage since the definition of the constitutive
tensor is simplified. Moreover, as the relation between both magnitudes is linear, its
incremental form is straightforward to obtain by means of the linear constitutive tensor.

In the following section, this simple constitutive equation is presented, as well as the
conditions that the structural behaviour has to fulfil to accurately apply this model.

7.7. St. Venant-Kirchhoff constitutive model

One of the simplest models to deal with an elastic material is the St. Venant-
Kirchhoff model [Bathe, 1996; Holzapfel, 2000; Belytschko et al., 2014; Kim, 2014].
For an isotropic material, this model defines the work per unit volume as:

Ψ
(
EG,L

)
= 1

2λTr 2
(
EG,L

)
+ µTr

((
EG,L

)2
)

(7.138)

Where λ and µ are the Lamé’s parameters (7.51), which depend on the Young’s
modulus and the Poisson’s ratio.

λ = ν E(
1 + ν

)(
1 − 2 ν

) µ = E

2
(
1 + ν

) (7.139)

7.7.1. St. Venant-Kirchhoff constitutive equation

According to the result obtained in (7.114), the derivation of this function with
respect to the Green-Lagrange strain tensor leads to the definition of the second Piola-
Kirchhoff stress tensor (SL) as:

SL =
dΨ
(
EG,L

)
dEG,L

= λ Tr
(
EG,L

) d

dEG,L

(
Tr
(
EG,L

))
+ µ

d

dEG,L

(
Tr
((
EG,L

)2
)) (7.140)

Let’s focus now on the first term of the above equation. On the one hand, the trace
of the Green-Lagrange strain tensor is defined as:

EG,L =
[
Eij

]
i=1,...,n
j=1,...,n

=⇒ Tr
(
EG,L

)
=

n∑
k=1

Ekk (7.141)

On the other hand, the derivative of the above trace with respect to the Green-
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7.7. St. Venant-Kirchhoff constitutive model

Lagrange strain tensor turns out to be equivalent to the second order unit tensor.
d

dEG,L

(
Tr
(
EG,L

))
=
[
Aij

]
i=1,...,n
j=1,...,n

Aij = ∂

∂Eij

(
Tr
(
EG,L

))
= ∂

∂Eij

(
n∑

k=1
Ekk

)
= δij


=⇒ d

dEG,L

(
Tr
(
EG,L

))
= I2

(7.142)
In the above equation, the subscript 2 is added to the unit tensor, to indicate that

it is the second order unit tensor. Later on in this section, the fourth order unit tensor
will also show up. Thus, subscripts are added to indicate the order and avoid confusion.

To obtain the second term, the square of the Green-Lagrange strain tensor is defined,
and its trace is computed.(
EG,L

)2 = B =
[
Bij

]
i=1,...,n
j=1,...,n

Bij =
n∑

l=1
EilElj

 =⇒ Tr
(
B
)

=
n∑

k=1
Bkk =

n∑
k=1

n∑
l=1

EklElk (7.143)

And the derivative of the above trace with respect to the Green-Lagrange strain ten-
sor can be calculated, considering the symmetry of the Green-Lagrange strain tensor,
as:

d

dEG

(
Tr
(
B
))

=
[
Cij

]
i=1,...,n
j=1,...,n

Cij = ∂

∂Eij

∑
k,l

EklElk


=
∑
k,l

(
∂Ekl

∂Eij

Elk + Ekl

∂Elk

∂Eij

)
= δkiδljElk + Eklδliδkj

= 2Eji

= 2Eij



=⇒ d

dEG,L

(
Tr
(
B
))

= 2EG,L (7.144)

Moreover, the property of the fourth order unit tensor I4 exposed in (A.90) allows
to rewrite the above equation as:

d

dEG,L

(
Tr
(
B
))

= 2EG,L = 2 I4 : EG,L (7.145)

The substitution of the results obtained in (7.142) and (7.145) into the definition
of the second Piola-Kirchhoff stress tensor (7.140) leads to:

SL = λ Tr
(
EG,L

)
I2 + 2µ I4 : EG,L (7.146)
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Chapter 7. Constitutive equations

The tensor I2 ⊗ I2 presented in (A.92) is another fourth order tensor that fulfils
an interesting property that can be applied to the above equation. If the property
exposed in (A.93) is taken into account, the definition of the second Piola-Kirchhoff
stress tensor becomes:

SL = λ Tr
(
EG,L

)
I2 + 2µ I4 : EG,L

= λ
(
I2 ⊗ I2

)
: EG,L + 2µ I4 : EG,L

=
[
λ
(
I2 ⊗ I2

)
+ 2µ I4

]
: EG,L

(7.147)

Furthermore, since the Green-Lagrange strain tensor is symmetric, the other fourth
order unit tensor Ī4 defined in (A.88) can be equivalently used, and the same result is
obtained.

I4 : EG,L = EG,L

Ī4 : EG,L =
(
EG,L

)T = EG,L

(7.148)

This implies that the fourth order unit tensor I4 can be replaced by its symmetric
term I sym

4 , defined in (A.94).

I4 : EG,L = EG,L = 1
2

(
EG,L +EG,L

)
= 1

2

(
I4 : EG,L + Ī4 : EG,L

)
= 1

2

(
I4 + Ī4

)
: EG,L

= I sym
4 : EG,L

(7.149)

Therefore, the second Piola-Kirchhoff stress tensor (7.147) becomes:

SL =
[
λ
(
I2 ⊗ I2

)
+ 2µ I sym

4

]
: EG,L (7.150)

7.7.2. St. Venant-Kirchhoff constitutive tensor

As proved in the previous section, the constitutive equation can be finally defined
as:

SL = C4 : EG,L with C4 = λ
(
I2 ⊗ I2

)
+ 2µ I sym

4 , (7.151)

where C4 is the constitutive tensor. The components of the tensors I2 ⊗ I2 and I sym
4

were defined in (A.92) and (A.95), respectively. If these definitions are taken into
account, the components of the above constitutive tensor can be finally defined as:

C4 =
[
Cijkl

]
i=1,2,3
j=1,2,3
k=1,3,3
l=1,3,3

Cijkl = λ δijδkl + µ
(
δikδjl + δilδjk

)
(7.152)

This tensor components are constant, and they turn out to be equivalent to the
ones that define the relation between the Cauchy stress tensor and the infinitesimal
strain tensor, exposed in (7.81) and (7.82).

134



7.7. St. Venant-Kirchhoff constitutive model

7.7.3. St. Venant-Kirchhoff model applications

The constitutive equation that defines the second Piola-Kirchhoff stress tensor by
means of the Green-Lagrange strain tensor can be expressed according to the Taylor
series expansion about the point of null Green-Lagrange strains.

SL

(
EG,L

)
= SL (0) + dSL

dEG,L
(0) : EG,L + O

(
∥EG,L∥2

)
(7.153)

The first term of the above series is null if there are no residual stresses, and the
last one can be neglected if the Green-Lagrange strains are small. Thus, the series
expansion is reduced to:

SL

(
EG,L

)
=SL (0) + dSL

dEG,L
(0) : EG,L + O

(
∥EG,L∥2

)
SL (0) = 0
O
(
∥EG,L∥2

)
≈ 0 if ∥EG,L∥ ≪ 1

 =⇒ SL ≈ dSL

dEG,L
(0) : EG,L

(7.154)
If the above assumptions are fulfilled, the constitutive equation can be finally defined

as:
SL = C4 (0) : EG,L with C4 (0) = dSL

dEG,L
(0) , (7.155)

where C4 (0) is the constitutive tensor. When dealing with a one-dimensional problem,
this tensor turns out to be the tangent of the curve represented in figure 7.4, evaluated
at the point of null Green-Lagrange strain. Equation (7.155) represents the linear
approach to a relation which, in general, is nonlinear. This approach is only valid
when the Green-Lagrange strains are small. Nevertheless, the displacements do not
have to be necessarily small, since small Green-Lagrange strains may correspond to
large displacements.

Figure 7.4. Second Piola-Kirchhoff stress vs. Green-Lagrange strain (one-dimensional
case).
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Chapter 7. Constitutive equations

The structure of the St. Venant-Kirchhoff constitutive equation (7.150) is analogous
to the one exposed in (7.155). Hence, it also represents a linear approach to the con-
stitutive relation. Thus, this model can be properly applied when the Green-Lagrange
strains are small.

Furthermore, the St. Venant-Kirchhoff constitutive tensor turns out to be equivalent
to the linear elastic constitutive tensor (7.81). As it will be demonstrated below, the
constitutive tensor can be approximated by the linear elastic one, if the strain field is
infinitesimal.

Let’s consider a given deformation gradient tensor composed by a finite strain ten-
sor. If the strain field is infinitesimal, it can be proven that the second Piola-Kirchhoff
stress tensor (3.48) is equivalent to the Cauchy stress tensor; and the Green-Lagrange
strain tensor (4.77) turns out to be equivalent to the Biot strain tensor.

F L = I +
JL︷︸︸︷
EL

∥EL︸︷︷︸
JL

∥ ≪ ∥I∥

 =⇒ F L ≈ I

=⇒ FL = det
(
F L

)
≈ det

(
I
)

= 1
=⇒ EG,L = EL + O

(
∥EL∥2

)
≈ EL

=⇒ SL = FL

(
F L

−1 σL F L
−T

)
≈ σL

(7.156)

Thus, the St. Venant-Kirchhoff constitutive equation (7.155) is reduced to:

SL︸︷︷︸
≈σL

= C4 (0) : EG,L︸ ︷︷ ︸
≈EL

⇐⇒ σL ≈ C4 (0) : EL (7.157)

If the above equation is compared to the linear elastic constitutive equation (7.69),
it can be concluded that the St. Venant-Kirchhoff constitutive tensor is equivalent to
the linear elastic one.

σL ≈ C4 (0) : EL

σL ≈ D4 (0) : EL

}
=⇒ C4 (0) ≈ D4 (0) (7.158)

Let’s now apply a rigid rotation to the solid. As proved in section 3.5.1, the sec-
ond Piola-Kirchhoff stress tensor does not vary. That is, it remains equivalent to the
Cauchy stress tensor corresponding to the previous deformed configuration. Further-
more, the Green-Lagrange strain tensor also remains constant if a rotation is applied,
as demonstrated in section 4.6.4. And the Cauchy stress tensor is obtained by applying
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7.8. Overview and conclusions

a rotation to the previous one, as shown in section 7.3.

F ′
L = RL

[
I +EL

]
RL

−1 = RL
T

det
(
RL

)
= 1

 =⇒ F ′
L ≈ RL

=⇒ F ′
L = det

(
F ′

L

)
≈ det

(
RL

)
= det

(
I
)

= 1
=⇒ σ ′

L = RL σLRL
T

=⇒ E ′
G,L = EG,L ≈ EL

=⇒ S ′
L = F ′

L

((
F ′

L

)−1
σ ′

L

(
F ′

L

)−T
)

≈ RL
TRL σLRL

T RL = σL

(7.159)
Hence, the St. Venant-Kirchhoff constitutive equation corresponding to this rotated

configuration becomes:

S ′
L︸︷︷︸

≈σL

= C ′
4 (0) : E ′

G,L︸ ︷︷ ︸
≈EL

⇐⇒ σL ≈ C ′
4 (0) : EL (7.160)

The Cauchy stress tensor was equivalently defined according to the linear elastic
constitutive equation in (7.158). So, if the above equation is compared to the linear
elastic one, it can be concluded that the St. Venant-Kirchhoff constitutive tensor it
still equivalent to the linear elastic constitutive tensor.

σL ≈ C ′
4 (0) : EL

σL ≈ D4 (0) : EL

}
=⇒ C ′

4 (0) ≈ D4 (0) (7.161)

According to the previous results, it can be concluded that the constitutive tensor
can be approximated by the linear elastic one if the strain field is infinitesimal. Even if
the displacements and/or the displacement gradients are large, this conclusion holds.

7.8. Overview and conclusions

The structural behaviour of elastic solids is analysed in this work. The value of the
stress field of an elastic solid only depends on the value of the deformation gradient
tensor. If the polar decomposition of the deformation gradient tensor is taken into
account, it can be equivalently stated that the stress tensor depends on both the finite
rotation tensor and the Biot strain tensor. Moreover, the stress tensor does not depend
on the previous values of the deformation gradient tensor. That is, it only depends on
the value of the deformation gradient tensor at a given instant of time. Therefore, if the
external applied loads are removed, the initial configuration is completely recovered.

The definition of the stress tensor is simplified in linear elasticity theory. The main
assumption is to consider an infinitesimal strain field, which does not necessarily imply
neither small displacements nor small displacement gradients. This hypothesis allows
to simplify the definition of the Cauchy stress tensor, since the term that depends on the
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Chapter 7. Constitutive equations

strain field can be linearized by means of the infinitesimal strain tensor. Furthermore,
if the displacement gradients are small, the effect of the infinitesimal rotation can be
neglected, and the Cauchy stress tensor can be finally defined only by means of the
infinitesimal strain tensor. Therefore, the equation that relates both magnitudes can
be linearized, and the tensor that defines this linear relation is the so-called linear
constitutive tensor.

If the assumptions of the linear elasticity are not fulfilled, a proper definition of the
Cauchy stress tensor by means of the rotation tensor and the Biot strain tensor has to
be stated. Nevertheless, more suitable tensor magnitudes can be adopted to define the
strain and stress fields.

Both the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor
remain invariant if a rigid motion (rotation and/or translation) is applied to the solid.
This is an important property to take into account when a large displacement analysis
is carried out. If the solid experiments large displacements, with large or small dis-
placement gradients, these tensors can be adopted to properly describe the strain field
and its corresponding stress field. Therefore, a constitutive equation that defines their
mathematical relation has to be stated.

In order to develop a nonlinear finite element analysis, it is essential to define
the incremental constitutive equation, since the analysis will be carried out by an
incremental loading procedure. Hence, the incremental equation that defines the second
Piola-Kirchhoff stress tensor increment by means of the Green-Lagrange strain tensor
increment is derived in this chapter. Since the gradients of the displacement field
increment between consecutive load steps are assumed to be small, its corresponding
Green-Lagrange strain increment turns out to be small. Thus, the relation between
both tensor magnitudes can be defined as a linear relation by means of the constitutive
tensor.

If the strain field is infinitesimal, even if the displacements and/or the displacement
gradients are large, the relation between the second Piola-Kirchhoff stress tensor and
the Green-Lagrange strain tensor can be accurately approximated as a linear relation
defined by means of the linear constitutive tensor. That is, the same constitutive tensor
that states the linear relation between the Cauchy stress tensor and the infinitesimal
strain tensor defines the relation between the second Piola-Kirchhoff stress tensor and
the Green-Lagrange strain tensor. This is the so-called St. Venant-Kirchhoff constitu-
tive equation, which is one of the simplest constitutive models.
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Chapter 8
Static equilibrium equations

8.1. Introduction

The equations that define the balance of mass, linear momentum and angular mo-
mentum were derived in chapter 2. In this chapter, these magnitudes are considered to
not vary. This assumption leads to the equation that defines the value of the density
field over time, as well as the equations that govern the static equilibrium of forces and
torques.

In Solid Mechanics, it is not common to deal with mass sources. Hence, it is usually
considered that the mass remains constant. The mass conservation allows to obtain
the equation that defines the value of the density field over time. Furthermore, the
imposition of the linear momentum conservation allows to derive the equation that
rules the static equilibrium of forces, whereas the angular momentum conservation
leads to the equation that governs the equilibrium of torques.

8.2. Mass conservation

In Solid Mechanics, it is not usual to deal with mass sources. That is, it is usually
considered that the mass is conserved and there is no mass variation. If there are no
mass sources, the variable φL that represent the mass source per unit time per unit
volume becomes null.

φL = 0 (8.1)

Under this assumption, the differential equation that defines the mass balance pre-
sented in (2.9) is reduced to:

∂

∂t

(
ρL FL

)
= 0 ∀r0 ∈

◦

Ω0 , ∀t . (8.2)

Where ρL is the Lagrangian description of the density, and FL is the determinant of
the deformation gradient tensor.
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The above differential equation has analytical solution. As the time variation is
zero, the product of the density field and the determinant of the deformation gradient
tensor has to be constant over time. Thus, it can be stated that:

ρL (r0, t)FL (r0, t) = C (r0) (8.3)

From the above equation, the equation that defines the density field turns out to
be:

ρL (r0, t) = C (r0)
FL (r0, t)

(8.4)

And the value of the function C can be obtained if the equation is evaluated at
instant t = 0.

C (r0) = ρL (r0, 0)FL (r0, 0) (8.5)
On the one hand, the value of the initial density field is known. On the other

hand, the value of the determinant of the deformation gradient tensor at t = 0 is also
known. As stated in (1.29), the determinant of the deformation gradient tensor can
be interpreted as the volume ratio with respect to the initial volume. Since there is no
change in volume before the application of the external loads, the determinant of the
deformation gradient tensor has to be equal to one.

FL (r0, 0) = 1 (8.6)

Therefore, the function C turns out to be equivalent to the initial density field.

C (r0) = ρL (r0, 0) (8.7)

And the equation that defines the density field over time (8.4) becomes:

ρL (r0, t) = ρL (r0, 0)
FL (r0, t)

∀r0 ∈
◦

Ω0 , ∀t (8.8)

8.3. Linear momentum conservation

Let’s consider a static problem without mass sources. This implies that the velocity
field aE and the mass source φE are null over the whole material domain. Moreover,
the variables no longer depend on time.

aE (r) = 0̄ ∀r ∈ Ω
φE (r) = 0 ∀r ∈ Ω

(8.9)

Under these assumptions, the Eulerian differential equation that defines the linear
momentum balance equation (2.27) is reduced to:

div
(

− σE
T
)

= bE ρE ∀r ∈
◦

Ω (8.10)

Therefore, the equation that rules the static equilibrium of forces of a given solid
subjected to external loads turns out to be:

div
(
σE

T
)

+ bE ρE = 0̄ ∀r ∈
◦

Ω (8.11)
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8.3.1. Alternative derivation

The equation that governs the conservation of linear momentum can be alternatively
derived if the Eulerian integral form of the linear momentum balance equation (2.30)
is recalled. If there are no mass sources, this integral form becomes:

∂

∂t

(∫∫∫
Ω
aE ρE dΩ

)
=
∫∫∫

Ω

[
bE ρE + div

(
σE

T
)]
dΩ (8.12)

If the system is in static equilibrium, the time variation of the linear momentum
has to be equal to zero. Hence, the above equation is reduced to:∫∫∫

Ω

[
bE ρE + div

(
σE

T
)]
dΩ = 0̄ (8.13)

Moreover, according to the localization theorem exposed in section C.2, it can be
stated that the kernel of the above integral has to be null.

div
(
σE

T
)

+ bE ρE = 0̄ ∀r ∈
◦

Ω , ∀t (8.14)

This equation is the one that rules the static equilibrium of a solid subjected to
external forces, and it matches the one obtained before in (8.11).

8.4. Angular momentum conservation

As obtained in section 2.4.2, the Eulerian integral form of the angular momentum
balance equation, considering that there are no mass sources, turns out to be:

∂

∂t

[∫∫∫
Ω

(
r ∧ aE ρE

)
dΩ
]

=
∫∫∫

Ω

(
r ∧ bE ρE

)
dΩ +

∫∫
Γ

(
r ∧ tE

)
dΓ (8.15)

It is considered that the solid is in static equilibrium, and the material is not capable
of absorbing angular momentum per unit volume. Under these assumptions, the time
variation of the angular momentum has to be zero. Thus, the above equation is reduced
to: ∫∫∫

Ω

(
r ∧ bE ρE

)
dΩ +

∫∫
Γ

(
r ∧ tE

)
dΓ = 0̄ (8.16)

The stress vector was defined in (3.34) as:

tE = σE
Tn (8.17)

Hence, the angular momentum conservation equation becomes:∫∫∫
Ω

(
r ∧ bE ρE

)
dΩ +

∫∫
Γ

[
r ∧

(
σE

Tn
)]
dΓ = 0̄ (8.18)

The above surface integral has to be transformed into a volume integral defined
over the deformed material domain.
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On the one hand, the definition of the components of a vector product (A.20) is
recalled, as well as the definition of the components of the resulting vector of the
product of a second order tensor and a first order one (A.67).

r ∧ tE =
{
xi

}
i=1,2,3 =⇒ xi =

3∑
j=1

3∑
k=1

εijkrjtk

tE = σE
Tn =

{
tk

}
k=1,2,3 =⇒ tk =

3∑
l=1

σlknl

(8.19)

Therefore, the second term of the angular momentum conservation (8.18) can be
equivalently expressed as:

∫∫
Γ

[
r ∧

(
σE

Tn
)]
dΓ =


∫∫

Γ

 3∑
j=1

3∑
k=1

εijkrj

( 3∑
l=1

σlknl

) dΓ


i=1,2,3

=


∫∫

Γ

 3∑
l=1

 3∑
j=1

3∑
k=1

εijkrjσlk

nl

 dΓ


i=1,2,3

(8.20)

The above equation can be rewritten in a more compact form as:

∫∫
Γ

[
r ∧

(
σE

Tn
)]
dΓ =

{∫∫
Γ

( 3∑
l=1

yilnl

)
dΓ
}

i=1,2,3

(8.21)

Where:

Y =
[
yil

]
i=1,2,3
l=1,2,3

yil =
3∑

j=1

3∑
k=1

εijkrjσlk (8.22)

On the other hand, the divergence theorem applied to a tensor field (B.44) is re-
called. Its application to the above tensor field leads to:∫∫

Γ
Y n dΓ =

∫∫∫
Ω

div
(
Y
)
dΩ ⇐⇒

⇐⇒

{∫∫
Γ

( 3∑
l=1

yilnl

)
dΓ
}

i=1,2,3

=
{ 3∑

l=1

∂yil

∂rl

}
i=1,2,3

(8.23)

Thus, if the statement of the divergence theorem is taken into account, the equa-
tion (8.21) can be rewritten as a volume integral.

∫∫
Γ

[
r ∧

(
σE

Tn
)]
dΓ =

{∫∫∫
Ω

( 3∑
l=1

∂yil

∂rl

)
dΩ
}

i=1,2,3

(8.24)
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Equation (8.22) can now be substituted into the above equation, and the derivatives
can be calculated.∫∫

Γ

[
r ∧

(
σE

Tn
)]
dΓ =

=


∫∫∫

Ω

 3∑
j=1

3∑
k=1

3∑
l=1

∂

∂rl

(
εijkrjσlk

) dΩ


i=1,2,3

=


∫∫∫

Ω

 3∑
j=1

3∑
k=1

3∑
l=1

(
∂

∂rl

(
εijkrj

)
σlk +

(
εijkrj

)∂σlk

∂rl

) dΩ


i=1,2,3

=


∫∫∫

Ω

 3∑
j=1

3∑
k=1

εijkσjk +
3∑

j=1

3∑
k=1

(
εijkrj

3∑
l=1

∂σlk

∂rl

) dΩ


i=1,2,3

(8.25)

To simplify the previous equation, the definition of the double dot product between
a third order tensor and a second order tensor (section A.7) is recalled, as well as the
definition of the divergence of a tensor field (section B.7.2), and the definition of the
vector product between two first order tensors (section A.1.5).

α = ε : σE =
{
αi

}
i=1,2,3 where αi =

3∑
j=1

3∑
k=1

εijkσjk

β = div
(
σE

T
)

=
{
βk

}
k=1,2,3 where βk =

3∑
l=1

∂σlk

∂rl

γ = r ∧ β =
{
γi

}
i=1,2,3 where γi =

3∑
j=1

3∑
k=1

εijkrjβk

(8.26)

The introduction of the above definitions into (8.25) leads to:

∫∫
Γ

[
r ∧

(
σE

Tn
)]
dΓ =

{∫∫∫
Ω

(
αi +

3∑
j=1

3∑
k=1

εijkrjβk

)
dΩ
}

i=1,2,3

(8.27)

Or, if the tensor notation is adopted, instead of the index one, the above equation
can be equivalently expressed as:∫∫

Γ

[
r ∧

(
σE

Tn
)]
dΓ =

∫∫∫
Ω

[
ε : σE + r ∧ div

(
σE

T
)]
dΩ (8.28)

The substitution of this result into the equation that defines the conservation of
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angular momentum (8.18), leads to:∫∫∫
Ω

(
r ∧ bE ρE

)
dΩ +

∫∫
Γ

[
r ∧

(
σE

Tn
)]
dΓ =

=
∫∫∫

Ω

(
r ∧ bE ρE

)
dΩ +

∫∫∫
Ω

[
ε : σE + r ∧ div

(
σE

T
)]
dΩ

=
∫∫∫

Ω

[
r ∧

(
div
(
σE

T
)

+ bE ρE

)
+ ε : σE

]
dΩ = 0̄

(8.29)

The first term of the above equation is equal to zero due to the equation of conser-
vation of linear momentum (8.14). The integral equation is then reduced to:

∫∫∫
Ω

[
r ∧

(
div
(
σE

T
)

+ bE ρE

)
︸ ︷︷ ︸

=0̄

+ε : σE

]
dΩ =

∫∫∫
Ω

(
ε : σE

)
dΩ = 0̄ (8.30)

And the localization theorem (section C.2.2) allows to conclude that the integrand
of the above integral equation has to be equal to the null vector.

ε : σE = 0̄ (8.31)

Furthermore, this equation can be rewritten in index notation, as:

ε : σE =
{ 3∑

j=1

3∑
k=1

εijkσjk

}
i=1,2,3

=



3∑
j=1

3∑
k=1

ε1jkσjk

3∑
j=1

3∑
k=1

ε2jkσjk

3∑
j=1

3∑
k=1

ε3jkσjk


=


ε1 : σE

ε2 : σE

ε3 : σE

 = 0̄ (8.32)

Where:

ε1 =
[
ε1ij

]
i=1,2,3
j=1,2,3

ε2 =
[
ε2ij

]
i=1,2,3
j=1,2,3

ε3 =
[
ε3ij

]
i=1,2,3
j=1,2,3

(8.33)

If the definition of the Levi-Civita symbol (A.21) is taken into account, the previous
double dot products can be computed. The condition that the components of the
stress tensor have to verify if the angular momentum conservation is fulfilled are then

144



8.5. Overview and conclusions

obtained.

ε : σE =



0 0 0
0 0 1
0 −1 0

 :

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


0 0 −1

0 0 0
1 0 0

 :

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 0 1 0

−1 0 0
0 0 0

 :

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




=


σ23 − σ32

σ31 − σ13

σ12 − σ21

 = 0̄ =⇒


σ23 = σ32

σ13 = σ31

σ12 = σ21

(8.34)
Therefore, it can be concluded that, the Cauchy stress tensor has to be symmetric

if the angular momentum conservation is fulfilled.

σE =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =⇒ σE
T = σE (8.35)

8.5. Overview and conclusions

In Solid Mechanics, it is not usual to deal with mass sources, so the mass is usually
considered to not vary. If the assumption of mass conservation is taken into account,
the equation that defines the value of the density field over time can be obtained from
the Lagrangian differential form of the mass balance equation (2.9). The density of
the media turns out to depend on the initial density field and the determinant of the
deformation gradient tensor.

Moreover, if the static equilibrium is analysed, the equilibrium of forces and torques
has to be verified.

Under the assumptions of static equilibrium and mass conservation, the Eulerian
differential form of the linear momentum balance equation (2.27) leads to the equation
that rules the static equilibrium of forces. This equation can be equivalently obtained
if the linear momentum conservation is taken into account. That is, the time derivative
of the linear momentum has to be zero. The substitution of this time derivative into
the Eulerian integral form of the linear momentum balance equation (2.30) allows to
alternatively obtain the equation that governs the static equilibrium of forces.

In addition, it is considered that the material is not capable of absorbing angular
momentum per unit volume. Therefore, the angular momentum conservation is ver-
ified, and the angular momentum time variation has to be null. The substitution of
this time derivative into the Eulerian integral form of the angular momentum balance
equation (2.34) leads to the symmetry of the Cauchy stress tensor. Consequently, it
can be concluded that the Cauchy stress tensor has to be symmetric if the angular
momentum conservation is fulfilled.
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Chapter 9
Linear finite element analysis

9.1. Introduction

The equations that govern the structural response of a given solid media subjected
to external loads are considerably simplified if the assumptions made in linear theory
are applied. In this chapter, the principles of the linear solid mechanics that allow to
address a structural analysis by means of the linear finite element method are presented.

A wide historical overview of the finite element analysis can be checked in Madier
[2020]; Liu et al. [2022], among other references.

The main aim of this chapter is to state the hypotheses assumed in linear analysis,
and to clearly identify their implications. The equations that compose the mathe-
matical model that allows to simulate the structural response of a given solid media
subjected to external loads are derived. Then, the finite element method is applied to
obtain its structural behaviour.

Once this linear analysis is completely posed, the analogous nonlinear analysis is
carried out in the following chapters. The main differences between both analysis
are the assumptions made about the structural response. The nonlinear hypotheses
considerably difficult the structural analysis.

9.2. Conceptual problem

Let’s consider that the structural behaviour of a given solid subjected to a set of
external forces is analysed. The main aim is to obtain the displacement field experi-
mented by the solid after the application of the external forces, as well as the strain
and stress fields corresponding to this displacement field.
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9.3. Reference material domain

The reference material domain is Ω0, and its surface is divided into two subdo-
mains (figure 9.1). The first one is the surface where the displacements are prescribed,
and the second one is where the external surface loads are applied. The union of both
subdomains generates the whole solid surface.

∂Ω0 = Γ0 = Γσ

0 ∪ Γu

0 (9.1)

The external surface forces may not be applied over the entire subdomain. In this
particular case, this subdomain is, in turn, divided into two areas. A null surface load
is considered where there are no surface forces.

Besides, the following position vector defines the initial position of a given material
particle.

r0 ∈ Ω0 (9.2)

Figure 9.1. Reference material domain.

9.4. Linear analysis hypotheses

If the analysis of the structural behaviour is carried out in linear theory, two main
hypotheses that considerably simplify the analysis are adopted. Nevertheless, if the
real structural behaviour does not verify these assumptions, the results obtained with
this theory do not correspond to the real structural response.

9.4.1. Small displacements

On the one hand, the displacements that the solid experiments are considered small.

∥uL∥ ≪ 1 (9.3)
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9.5. Density field

This assumption allows to consider that the initial and final position of a given
material particle are approximately equivalent, that is, the reference configuration and
the deformed material domain can be considered coincident.

rL (r0) = r0 + uL (r0)
∥uL∥ ≪ 1

}
=⇒ rL ≈ r0 ⇐⇒ Ω ≈ Ω0 (9.4)

This hypothesis simplifies the analysis, since it allows to apply the equilibrium
equation over the reference material domain, which is well-known. Without this as-
sumption, the equilibrium conditions have to be imposed over the deformed material
domain, which is the unknown to solve. And the determinant of the deformation gradi-
ent tensor turns out to be equal to one, since the final and the initial material domains
are considered to be equivalent.

FL (r0) = dΩ
dΩ0

= 1 (9.5)

Furthermore, the Lagrangian and the Eulerian description of a given magnitude are
equivalent. Hence, it is not necessary to add the subscripts L and E that specify the
description adopted.

ψE (r) ≈ ψL (r0) = ψ (r0) (9.6)

9.4.2. Small displacement gradients

On the other hand, the displacement gradients are also considered to be small.

∥J∥ ≪ ∥I∥ (9.7)

This assumption allows to apply the approximate polar decomposition, presented
in section 5.3, to decompose the deformation gradient tensor. If the displacement
gradients are small, the deformation gradient tensor can be accurately decomposed by
means of the displacement gradient tensor. Without this assumption, an eigenvalue
problem has to be solved in order to obtain its polar decomposition, as exposed in
section 4.3.1.

9.5. Density field

If the mass does not vary over time, the mass conservation equation has to be
fulfilled, and the density variation over time was defined in (8.8) as shown below.

ρL (r0, t) = ρL (r0, 0)
FL (r0, t)

∀r0 ∈
◦

Ω0 , ∀t (9.8)

Under the linear analysis assumptions, the determinant of the deformation gradient
tensor turns out to be equal to one (9.5). Therefore, if a static linear analysis is carried
out, the density field is considered to remain constant.

ρ (r0) = ρ 0 (r0)
F (r0) = ρ 0 (r0) (9.9)
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As the initial density field ρ 0 is known, the density field is not an unknown to
calculate.

9.6. Static equilibrium equations

9.6.1. Equilibrium of forces

The equation that rules the static equilibrium of forces of a given solid subjected
to external forces was defined in (8.11) as:

div
(
σE

T
)

+ bE ρE = 0̄ ∀r ∈
◦

Ω (9.10)

If the linear analysis hypotheses are adopted, the initial and deformed material
domain turn out to be equivalent (9.4), the Lagrangian and Eulerian descriptions of
a given magnitude (9.6) become equivalent, and the density remains constant (9.9).
Thus, the above equation is reduced to:

div
(
σT
)

+ b ρ 0 = 0̄ ∀r0 ∈
◦

Ω0 (9.11)

9.6.2. Equilibrium of moments

As proved in section 8.4, the Cauchy stress tensor is symmetric if the angular
momentum conservation is verified. That is, the sum of all torques is zero, and the
equilibrium of moments is fulfilled.

σT = σ (9.12)

9.7. Compatibility equation

The compatibility equation is the one that defines the strain field by means of the
displacement field.

According to the approximate polar decomposition (section 5.3), the strain field can
be approximated by the infinitesimal strain tensor (5.45), which is completely defined
by means of the displacement gradient tensor as:

E ≈ E = 1
2

(
J + JT

)
(9.13)

Since the displacement gradient tensor fulfils condition (9.7), the strain field turns
out to be infinitesimal.

∥E∥ = O
(
∥J∥

)
≪ ∥I∥ (9.14)
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9.8. Constitutive equation

9.8. Constitutive equation

The equation that defines the relation between the stress and strain fields is the
so-called constitutive equation.

Since the strain field is infinitesimal and the displacement gradients are small, the
effect of the rotation on the definition of the Cauchy stress tensor can be neglected.
And the stress tensor can be defined only by means of the strain tensor, as proved in
section 7.4.4.

σ
(
E
)

≈ λTr
(
E
)
I + 2µE (9.15)

9.9. Boundary conditions

In this study, the displacement field and the value of the stress vector can be pre-
scribed on a given portion of the solid surface. Therefore, there are two types of
boundary conditions, which are described in the following sections.

Figure 9.2. Reference material domain and boundary conditions.

9.9.1. Essential boundary conditions

The first ones are usually known as essential boundary conditions, which are based
on the definition of the displacement field on a specific solid surface.

u (r0) = u 0 (r0) ∀r0 ∈ Γu

0 (9.16)

9.9.2. Natural boundary conditions

Moreover, surface external loads are applied on the other portion of the solid surface.
These second type are the so-called natural boundary conditions, and they are based
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on the definition of the stress vector on the solid surface where the external loads are
applied.

g (r0) = σ (r0)n0 (r0) ∀r0 ∈ Γσ

0 (9.17)

It is shown later on in this chapter why they are usually known as natural boundary
conditions.

9.10. Unknowns

The main unknown to solve is the displacement field that the solid experiments.
Once this field is known, the compatibility equation (9.13) allows to define the strain
field by means of the displacement field. And finally, the constitutive equation (9.15)
defines the stress field corresponding to the previous strain field.

u (r0) =⇒ E
(
u (r0)

)
=⇒ σ

(
E
(
u (r0)

))
(9.18)

In addition, once the stress field is defined, the reaction that appears on the surface
where the essential boundary condition is applied can be computed, as shown below.

gR (r0) = σ (r0)n0 (r0) ∀r0 ∈ Γu

0 (9.19)

9.11. Mathematical model

The solid medium is assumed to be homogenous and isotropic. That is, the mechan-
ical properties are constant over the whole material domain, and they do not depend
on the direction taken into account.

The solid is subjected to volumetric b, and superficial g forces. These forces are
forces per unit mass and forces per unit area, respectively.

And the material mechanical properties are known. The Young’s modulus is repre-
sented by E and the Poisson’s ratio by ν. The Lamé’s parameters (7.51) are defined
in terms of the Young’s modulus and the Poisson’s ratio, as:

λ = E ν(
1 − 2ν

)(
1 + ν

) µ = E

2
(
1 + ν

) (9.20)

The main aim is to obtain the displacement field that the solid experiments due to
the application of the external loads, and its corresponding stress field.

u (r0) , σ (r0) r0 ∈ Ω0 (9.21)
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That verify the following equations.

div
(
σ
)

+ b ρ 0 = 0̄ ∀r0 ∈
◦

Ω0 (Equilibrium of forces (9.11) and moments (9.12))
σ = 2µE + λTr

(
E
)
I r0 ∈ Ω0 (Constitutive equation (9.15))

E = 1
2

[
du

dr0
+
(
du

dr0

)T]
r0 ∈ Ω0 (Compatibility equation (9.13))

−σn0 + g = 0̄ ∀r0 ∈ Γσ

0 (Natural boundary condition (9.17))
u = u 0 ∀r0 ∈ Γu

0 (Essential boundary condition (9.16))
(9.22)

9.12. Strong form

In this section, the original form of the problem is summed up, which is usually
known as the strong form.

The main goal of this analysis is to obtain the displacement field experimented by
the solid, after the application of the external loads.

u (r0) r0 ∈ Ω0 (9.23)

The above displacement field verifies the following equations, expressed in terms of
the equilibrium equation residual Rσ and the natural boundary condition residual RΓ.

Rσ = 0̄ ∀r0 ∈
◦

Ω0

RΓ = 0̄ ∀r0 ∈ Γσ

0

(9.24)

Where:
Rσ = div

(
σ
)

+ b ρ 0 r0 ∈
◦

Ω0

σ = 2µE + λTr
(
E
)
I r0 ∈ Ω0

E = 1
2

[
du

dr0
+
(
du

dr0

)T]
r0 ∈ Ω0

RΓ = −σn0 + g r0 ∈ Γσ

0

u = u 0 ∀r0 ∈ Γu

0

(9.25)

9.13. Weak form

In order to obtain the weak form of the previous strong form, the weighted residual
method exposed in section C.3 is applied. The displacement field (9.23) fulfils now the
following equation:∫∫∫

Ω0

ωTRσ dΩ0 +
∫∫

Γσ
0

ωTRΓ dΓ0 = 0 ∀ω ∈ Hω (9.26)

Where ω are suitable test functions, and the residuals Rσ and RΓ were defined
in (9.25).
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9.13.1. Equivalent weak form derivation

If the property of the divergence proved in (B.30) is taken into account, it can be
stated that:

div
(
σTω

)
= ωT div

(
σ
)

+ Tr
(
σT

dω

dr0

)
(9.27)

In the above equation, ω is a vector test function and σ is the Cauchy stress
tensor. But the stress tensor is symmetric, as demonstrated in (8.35). Hence, the
above equation becomes:

div
(
σω

)
= ωT div

(
σ
)

+ Tr
(
σ
dω

dr0

)
(9.28)

The integration of the above equation over the deformed material domain leads to:∫∫∫
Ω0

div
(
σω

)
dΩ0 =

∫∫∫
Ω0

ωT div
(
σ
)
dΩ0 +

∫∫∫
Ω0

Tr
(
σ
dω

dr0

)
dΩ0 (9.29)

The left-hand side of this integral equation can be equivalently expressed as a surface
integral, if the divergence theorem (section B.7.1) is applied.∫∫∫

Ω0

div
(
σω

)
dΩ0 =

∫∫
Γ0

(
σω

)T
n0 dΓ0

=
∫∫

Γ0

ωT
(
σn0

)
dΓ0

(9.30)

If the above equation is substituted into (9.29), and the property (A.79) is taken
into account, equation (9.29) can be rewritten as:∫∫∫

Ω0

ωT div
(
σ
)
dΩ0 =

∫∫
Γ0

ωT
(
σn0

)
dΓ0 −

∫∫∫
Ω0

Tr
(
dω

dr0
σ

)
dΩ0 (9.31)

The substitution of the above equation into the first term of the weak form (9.26)
leads to:∫∫∫

Ω0

ωTRσ dΩ0 =
∫∫∫

Ω0

ωT

[
div
(
σ
)

+ b ρ 0
]
dΩ0

=
∫∫∫

Ω0

ωT div
(
σ
)
dΩ0 +

∫∫∫
Ω0

ωTb ρ 0 dΩ0

=
[∫∫

Γ0

ωT
(
σn0

)
dΓ0 −

∫∫∫
Ω0

Tr
(
dω

dr0
σ

)
dΩ0

]
+
∫∫∫

Ω0

ωTb ρ 0 dΩ0

=
[∫∫

Γσ
0

ωT
(
σn0

)
dΓ0 +

∫∫
Γu

0

ωT
(
σn0

)
dΓ0

]
−

−
∫∫∫

Ω0

Tr
(
dω

dr0
σ

)
dΩ0 +

∫∫∫
Ω0

ωTb ρ 0 dΩ0

(9.32)
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If the above result is now substituted into (9.26), the weak form becomes:∫∫∫
Ω0

ωTRσ dΩ0 +
∫∫

Γσ
0

ωTRΓ dΓ0 =
∫∫

Γσ
0

ωT
(
σn0

)
dΓ0 +

∫∫
Γu

0

ωT
(
σn0

)
dΓ0−

−
∫∫∫

Ω0

Tr
(
dω

dr0
σ

)
dΩ0 +

∫∫∫
Ω0

ωTb ρ 0 dΩ0+

+
∫∫

Γσ
0

ωT
(

− σn0 + g
)
dΓ0 =

= −
∫∫∫

Ω0

Tr
(
dω

dr0
σ

)
dΩ0 +

∫∫∫
Ω0

ωTb ρ 0 dΩ0+

+
∫∫

Γσ
0

ωTg dΓ0 +
∫∫

Γu
0

ωT
(
σn0

)︸ ︷︷ ︸
gR

dΓ0 = 0

(9.33)
Where gR is the reaction that appears on the surface where the essential boundary

condition is applied.
gR = σn0 ∀r0 ∈ Γu

0 (9.34)
Therefore, the equation that defines the equivalent weak form can be obtained

from (9.33) as:∫∫∫
Ω0

Tr
(
dω

dr0
σ

)
dΩ0 =

∫∫∫
Ω0

ωTb ρ 0 dΩ0 +
∫∫

Γσ
0

ωTg dΓ0 +
∫∫

Γu
0

ωTgR dΓ0 (9.35)

And an equivalent weak form can be stated, as shown in the following subsection.

9.13.2. Equivalent weak form statement

The main aim of the linear analysis is to obtain the displacement field that verifies
the essential boundary condition. In addition, the value of the reaction that appears
on the surface where the essential boundary condition is applied may also be required.

u (r0) ∈ Hu | u (r0) = u 0 (r0) ∀r0 ∈ Γu

0 (9.36)
gR (r0) ∀r0 ∈ Γu

0 (9.37)

The above unknowns verify that:∫∫∫
Ω0

Tr
(
dω

dr0
σ

)
dΩ0 =

=
∫∫∫

Ω0

ωTb ρ 0 dΩ0 +
∫∫

Γσ
0

ωTg dΓ0 +
∫∫

Γu
0

ωTgR dΓ0 ∀ω ∈ Hω

(9.38)

where:
σ = 2µE + λTr

(
E
)
I r0 ∈ Ω0

E = 1
2

[
du

dr0
+
(
du

dr0

)T]
r0 ∈ Ω0

(9.39)

The role of the natural boundary condition in the previous weak form is discussed
below.
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9.13.3. Effect of the natural boundary condition

The natural boundary condition is introduced into the weak form (9.38) by the
following term: ∫∫

Γσ
0

ωTg dΓ0 (9.40)

If there is no surface load, the boundary condition and its corresponding term
become:

g = σn0 = 0̄ ∀r0 ∈ Γσ

0 =⇒
∫∫

Γσ
0

ωTg dΓ0 = 0 (9.41)

Thus, its effect on the weak form automatically disappears, and the boundary con-
dition seems to be satisfied naturally. This is why they are usually known as natural
boundary conditions.

9.13.4. Alternative left-hand side

Let’s consider the test functions as a variation of the displacement field. This
variation has to be compatible with the essential boundary condition.

w = δu (9.42)

The new displacement field turns out to be:

u ′ = u+ δu (9.43)

And its corresponding displacement gradient tensor is:

J ′ = du ′

dr0
= d

dr0

(
u+ δu

)
= du

dr0
+ dδu

dr0
= J + δJ (9.44)

Thus, the displacement gradient tensor variation is:

δJ = dδu

dr0
(9.45)

The gradients of the displacement field variation are also assumed to be small.

∥δJ∥ ≪ ∥I∥ (9.46)

On the other hand, the infinitesimal strain tensor corresponding to the displacement
field (9.43) is defined as:

E ′ = 1
2

[
J ′ +

(
J ′
)T
]

= 1
2

[(
J + δJ

)
+
(
J + δJ

)T
]

= 1
2

(
J + JT

)
+ 1

2

(
δJ + δJT

)
= E + δE

(9.47)
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Therefore, the infinitesimal strain tensor variation is defined as:

δE = 1
2

(
δJ + δJT

)
(9.48)

In addition, the displacement gradient tensor variation can be decomposed as the
sum of a symmetric and a skew-symmetric tensor.

δJ = δE + δW with


δE = 1

2

(
δJ + δJT

)
=
[
δEij

]
i=1,...,n
j=1,...,n

δW = 1
2

(
δJ − δJT

)
=
[
δWij

]
i=1,...,n
j=1,...,n

(9.49)

The symmetric term turns out to be equivalent to the infinitesimal strain tensor
variation (9.48).

δET = δE ⇐⇒ δEji = δEij (9.50)

And the components of the skew-symmetric one verify that:

δWT = −δW ⇐⇒ δWji =
{

−δWij if i ̸= j

0 if i = j
(9.51)

Let’s focus now on the left-hand side of the weak form (9.38). If the test functions
are considered as a compatible variation of the displacement field, the left-hand side
becomes: ∫∫∫

Ω0

Tr
(
dδu

dr0
σ

)
dΩ0 (9.52)

An equivalent expression of the above integrand can be obtained, if the property
of the trace operator stated in (A.81) and the symmetry of the Cauchy stress tensor
are applied, as well as the decomposition of the displacement gradient tensor variation
obtained in (9.49). Furthermore, it is recalled that the double dot product between a
skew-symmetric tensor and a symmetric one is equal to zero.

Tr
(
dδu

dr0
σ

)
= δJ : σT =

(
δE + δW

)
: σ = δE : σ + δW : σ︸ ︷︷ ︸

=0

= δE : σ (9.53)

The integration of the above result over the reference material domain leads to an
equivalent left-hand side of the weak form.∫∫∫

Ω0

Tr
(
dδu

dr0
σ

)
dΩ0 =

∫∫∫
Ω0

δE : σ dΩ0 (9.54)
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9.13.5. Switch to vector notation

In order to move from tensor to vector notation, the Voigt notation (section A.14)
is now applied. The vectorial form of the infinitesimal strain tensor variation is:

δE =

δE11 δE12 δE13

δE12 δE22 δE23

δE13 δE23 δE33

 =⇒ δĒ =



δE11

δE22

δE33

2 δE12

2 δE13

2 δE23


(9.55)

And the vector definition of the Cauchy stress tensor is:

σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =⇒ σ̄ =



σ11

σ22

σ33

σ12

σ13

σ23


(9.56)

According to the above definitions, the double dot product between the infinitesimal
strain tensor variation and the Cauchy stress tensor is equivalent to the scalar product
of their corresponding vector definitions.

δE : σ = δĒT

σ̄ (9.57)

Therefore, the left-hand side of the weak form (9.54) can be reduced to:∫∫∫
Ω0

δE : σ dΩ0 =
∫∫∫

Ω0

δĒT

σ̄ dΩ0 (9.58)

Furthermore, the vectorial form of the infinitesimal strain tensor variation was de-
fined in (5.76), as:

δĒ = L0 δu (9.59)

So, the substitution of the above definition into (9.58) leads to:∫∫∫
Ω0

δĒT

σ̄ dΩ0 =
∫∫∫

Ω0

(
L0 δu

)T
σ̄ dΩ0 (9.60)

On the other hand, the equivalent vectorial forms of the infinitesimal strain tensor
and the Cauchy stress tensor were defined in (5.72) and (7.86), respectively, as:

σ̄ = D2 Ē
Ē = L0 u

(9.61)
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9.13.6. Alternative weak form in vector notation

The main goal is to obtain the displacement field that verifies the essential boundary
condition. Moreover, the reaction that appears on the surface where the essential
boundary condition is applied may also be required.

u (r0) ∈ Hu | u (r0) = u 0 (r0) ∀r0 ∈ Γu

0 (9.62)
gR (r0) ∀r0 ∈ Γu

0 (9.63)

The above unknowns verify the following weak form:∫∫∫
Ω0

(
L0 δu

)T
σ̄ dΩ0 =

=
∫∫∫

Ω0

δuTb ρ 0 dΩ0 +
∫∫

Γσ
0

δuTg dΓ0 +
∫∫

Γu
0

δuTgR dΓ0 ∀δu ∈ Hδu

(9.64)

Where the vectorial form of the Cauchy stress tensor σ̄ written by means of the vectorial
form of the infinitesimal strain tensor Ē (constitutive equation), and the vectorial form
of the infinitesimal strain tensor Ē expressed in terms of the displacement field u

(compatibility equation), were defined in (9.61).

9.14. Trial functions basis

The trial functions basis is defined as the set composed by the following functions.{
ϕi (r0)

}
i=1,...,η

(9.65)

These functions allow to state an approximation to the unknown displacement field.
This approach is defined as the sum of an initial approximation, plus a correction term
that modifies this initial value.

u (r0) ≈ uh (r0) = up (r0)︸ ︷︷ ︸
approximation

+ ∆up (r0)︸ ︷︷ ︸
correction

uh ∈ Hh

u ⊂ Hu (9.66)

The above decomposition allows taking into account an initial approximation to the
displacement field. In case there is no initial approximation, this term becomes null,
and the correction term will completely approximate the displacement field.

Both terms are defined as a linear combination of the trial functions, as stated in
the following sections.

9.14.1. Initial displacement field approximation

On the one hand, the initial approximation is user defined, so it is completely known.
This term is defined as a linear combination of the functions that compose the trial
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functions basis. The coefficients that define this linear combination are known.

up (r0) =
η∑

i=1

[
ϕi (r0) I

]︸ ︷︷ ︸
ϕi(r0)

αi

=
η∑

i=1
ϕi (r0)αi

=
[
ϕ1 (r0) · · · ϕη (r0)

]
α1

...
αη


= ϕ (r0)α

(9.67)

Once this approximation is defined, its corresponding strain and stress fields can
be computed. The definitions of both fields were exposed in (9.61). The strain field
corresponding to the initial displacement field approximation is:

Ēp (r0) = L0 up (r0) = L0 ϕ (r0)α (9.68)

And its corresponding stress field turns out to be:

σ̄p (r0) = D2 Ēp (r0) = D2L0 ϕ (r0)α (9.69)

9.14.2. Displacement field correction

On the other hand, the correction term is also defined as a linear combination of trial
functions. However, the coefficients which go with each trial function are unknown.
The main goal is to obtain these coefficients.

∆up (r0) =
η∑

i=1

[
ϕi (r0) I

]︸ ︷︷ ︸
ϕi(r0)

∆αi

=
η∑

i=1
ϕi (r0) ∆αi

=
[
ϕ1 (r0) · · · ϕη (r0)

]
∆α1

...
∆αη


= ϕ (r0) ∆α

(9.70)

Its corresponding strain field is:

∆Ēp (r0) = L0 ∆up (r0) = L0 ϕ (r0) ∆α (9.71)

And the stress field, in terms of the above strain field, is:

∆σ̄p (r0) = D2 ∆Ēp (r0) = D2L0 ϕ (r0) ∆α (9.72)
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9.14.3. Displacement, strain, and stress field approximations

Once the initial approximation (9.67) is completely defined, the correction term (9.70)
is added to complete the displacement field approximation.

u (r0) ≈ uh (r0) = up (r0) + ∆up (r0) = up (r0) + ϕ (r0) ∆α (9.73)

Both the initial approximation and the corrector term have their corresponding
strain fields, defined in (9.68) and (9.71), respectively. Thus, the strain field approxi-
mation is defined as the sum of both contributions.

Ē (r0) ≈ Ēh (r0) = Ēp (r0) + ∆Ēp (r0) = Ēp (r0) +L0 ϕ (r0) ∆α (9.74)

The stress field approximation is also composed by the contributions of both terms.
The stress field corresponding to the initial approximation is obtained in (9.69), and
the one corresponding to the correction term in (9.72).

σ̄ (r0) ≈ σ̄h (r0) = σ̄p (r0) + ∆σ̄p (r0) = σ̄p (r0) +D2L0 ϕ (r0) ∆α (9.75)

Substitution in the weak form

The difference between the real displacement field and the initial approximation
(u− up) represents the term that the corrector has to achieve to obtain the exact
solution.

In general, the trial functions are not able to generate this difference. Thus, the
displacement field approximation (9.73) does not turn out to be equivalent to the real
displacement field.

uh (r0) ̸= u (r0) (9.76)
Consequently, as a general rule, the weak form (9.64) is not verified.∫∫∫

Ω0

(
L0 δu

)T
σ̄h dΩ0 ̸=

∫∫∫
Ω0

δuTb ρ 0 dΩ0 +
∫∫

Γσ
0

δuTg dΓ0 +
∫∫

Γu
0

δuTgh

R dΓ0

(9.77)
Nevertheless, if (u− up) is contained in the subspace generated by the trial func-

tions, the weak form is automatically fulfilled. But, in general, the weak form is not
strictly verified.

From now on, a displacement field that does verify the weak form should be con-
sidered. To circumvent this inconvenience, a discretized subspace of test functions is
adopted, that allows to approximate the test functions as a linear combination of the
functions that compose this subspace. This methodology is presented in the following
section.

9.15. Test functions approximation

The following subspace is the one taken into account to build the test function
approximation. {

δuj (r0)
}

j=1,...,η
(9.78)
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And the test functions are defined as the linear combination of the functions that
compose the above subspace.

δu (r0) ≈ δuh (r0) =
η∑

j=1

[
δuj (r0) I

]︸ ︷︷ ︸
Ωj(r0)

βj

=
η∑

j=1
Ωj (r0)βj

=
[
Ω1 (r0) · · · Ωη (r0)

]
β1
...
βη


= Ω (r0)β δuh ∈ Hh

δu ⊂ Hδu

(9.79)

9.15.1. Weak form approximation

The objective of the linear solid analysis is to obtain an approximation to the
displacement field that verifies the essential boundary condition. Moreover, an ap-
proximation to the reaction that arises on the surface where the essential boundary
condition is applied may also be required.

uh (r0) ∈ Hh

u | uh (r0) = u 0 (r0) ∀r0 ∈ Γu

0 (9.80)
gh

R (r0) r0 ∈ Γu

0 (9.81)

The above unknowns verify the following weak form:∫∫∫
Ω0

(
L0 δu

h
)T
σ̄h dΩ0 =

=
∫∫∫

Ω0

(
δuh

)T
b ρ 0 dΩ0 +

∫∫
Γσ

0

(
δuh

)T
g dΓ0 +

∫∫
Γu

0

(
δuh

)T
gh

R dΓ0 ∀δuh ∈ Hh

δu

(9.82)

9.15.2. Resulting system of linear equations

The test functions were approximated in the previous section as:

δuh = Ωβ (9.83)

Consequently, the weak form (9.82) becomes:

βT

[∫∫∫
Ω0

(
L0 Ω

)T
σ̄h dΩ0 −

∫∫∫
Ω0

ΩTb ρ 0 dΩ0 −
∫∫

Γσ
0

ΩTg dΓ0 −
∫∫

Γu
0

ΩTgh

R dΓ0

]
= 0 ∀β

(9.84)
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Or equivalently:∫∫∫
Ω0

(
L0 Ω

)T
σ̄h dΩ0 =

∫∫∫
Ω0

ΩTb ρ 0 dΩ0 +
∫∫

Γσ
0

ΩTg dΓ0 +
∫∫

Γu
0

ΩTgh

R dΓ0 (9.85)

Furthermore, the stress field approximation was defined in (9.75) as:

σ̄h = σ̄p +D2L0 ϕ∆α (9.86)

The substitution of the above definition into the weak form (9.85) leads to:[∫∫∫
Ω0

(
L0 Ω

)T
D2

(
L0 ϕ

)
dΩ0

]
∆α =

=
∫∫∫

Ω0

ΩTb ρ 0 dΩ0 +
∫∫

Γσ
0

ΩTg dΓ0 +
∫∫

Γu
0

ΩTgh

R dΓ0 −
∫∫∫

Ω0

(
L0 Ω

)T
σ̄p dΩ0

(9.87)
The above equation can be equivalently written as the following system of linear

equations.

K∆α = f +
∫∫

Γu
0

ΩTgh

R dΓ0

K =
∫∫∫

Ω0

(
L0 Ω

)T
D2

(
L0 ϕ

)
dΩ0

f =
∫∫

Γσ
0

ΩTg dΓ0 +
∫∫∫

Ω0

[
ΩTb ρ 0 −

(
L0 Ω

)T
σ̄p

]
dΩ0

(9.88)

Therefore, the original equilibrium problem has been substituted by the above sys-
tem of linear equations. The order of the linear system is η, as there are η unknowns.

∆α =
{

∆αi

}
i=1,...,η

(9.89)

But the reaction gh
R is also an unknown. Hence, there are actually η+ 1 unknowns.

Fortunately, this inconvenience can be overcome if the essential boundary condition is
considered as an additional equation.

The application of the essential boundary condition leads to the following equation.

u (r0) ≈ up (r0) + ϕ (r0) ∆α
u (r0) = u 0 (r0) ∀r0 ∈ Γu

0

}
=⇒ u 0 (r0) = up (r0) + ϕ (r0) ∆α ∀r0 ∈ Γu

0

(9.90)
The additional equation can be equivalently written as shown below.

ϕ (r0) ∆α = u 0 (r0) − up (r0) ∀r0 ∈ Γu

0 (9.91)
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9.15.3. Simplification of the system of linear equations

If the initial approximation fulfils the essential boundary condition, and the trial
functions are null over the surface where this boundary condition is applied, the dis-
placement field approximation automatically verifies the essential boundary condition.

uh (r0) =up (r0) + ϕ (r0) ∆α
up (r0) = u 0 (r0) ∀r0 ∈ Γu

0

ϕ (r0) = 0 ∀r0 ∈ Γu

0

 =⇒ uh (r0) = u 0 (r0) ∀r0 ∈ Γu

0

(9.92)
Moreover, if the test functions are null over the surface where the essential boundary

condition is applied, the reaction is not involved in the formulation.

Ω (r0) = 0 ∀r0 ∈ Γu

0 =⇒
∫∫

Γu
0

ΩTgh

R dΓ0 = 0̄ (9.93)

Thus, the linear system (9.88) to be solved is reduced to:

K∆α = f (9.94)

Where the vector composed by the unknowns is:

∆α =
{

∆αi

}
i=1,...,η

(9.95)

And the matrix and the independent vector are:

K =
∫∫∫

Ω0

(
L0 Ω

)T
D2

(
L0 ϕ

)
dΩ0

f =
∫∫

Γσ
0

ΩTg dΓ0 +
∫∫∫

Ω0

[
ΩTb ρ 0 −

(
L0 Ω

)T
σ̄p

]
dΩ0

(9.96)

The definition of the tensors ϕ and Ω were stated in (9.70) and (9.79), respectively.

Ω =
[
Ω1 · · · Ωη

]
ϕ =

[
ϕ1 · · · ϕη

] (9.97)

The substitution of the above tensors into the definition of the matrix and indepen-
dent vector (9.96) leads to:

K =
∫∫∫

Ω0


(
L0 Ω1

)T

...(
L0 Ωη

)T

D2

[
L0 ϕ1 · · · L0 ϕη

]
dΩ0

f =
∫∫∫

Ω0

Ω1
T

...
Ωη

T

 b ρ 0 dΩ0 +
∫∫

Γσ
0

Ω1
T

...
Ωη

T

 g dΓ0 −
∫∫∫

Ω0


(
L0 Ω1

)T

...(
L0 Ωη

)T

 σ̄p dΩ0

(9.98)
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Therefore, their components can be defined as:

K =
[
Kij

]
j=1,...,η
i=1,...,η

Kij =
∫∫∫

Ω0

(
L0 Ωi

)T
D2

(
L0 ϕj

)
dΩ0

f =
{
f i

}
j=1,...,η

f i =
∫∫

Γσ
0

Ωi
Tg dΓ0 +

∫∫∫
Ω0

[
Ωi

Tb ρ 0 −
(
L0 Ωi

)T
σ̄p

]
dΩ0

(9.99)
Where K is the so-called stiffness matrix, and f is usually known as the external

forces vector.
If the test functions are defined equivalent to the trial ones, the stiffness matrix

becomes symmetric. This election is the basis of the Bubnov-Galerkin method, which
is presented in the following section.

9.16. Bubnov-Galerkin method

The Bubnov-Galerkin method assumes that the test and trial functions are equiv-
alent [Mikhlin & Chambers, 1964; Navarrina et al., 2009].

Ω = ϕ ⇐⇒ Hh

δu = Hh

u (9.100)

Thus, the linear system of equations (9.88) becomes:

K∆α = f +
∫∫

Γu
0

ϕTgh

R dΓ0

K =
∫∫∫

Ω0

(
L0 ϕ

)T
D2

(
L0 ϕ

)
dΩ0

f =
∫∫

Γσ
0

ϕTg dΓ0 +
∫∫∫

Ω0

[
ϕTb ρ 0 −

(
L0 ϕ

)T
σ̄p

]
dΩ0

(9.101)

And the components of both the stiffness matrix and the forces vector turn out to
be:

K =
[
Kij

]
i=1,...,η
j=1,...,η

Kij =
∫∫∫

Ω0

(
L0 ϕi

)T
D2

(
L0 ϕj

)
dΩ0

f =
{
f i

}
i=1,...,η

f i =
∫∫

Γσ
0

ϕi

Tg dΓ0 +
∫∫∫

Ω0

[
ϕi

Tb ρ 0 −
(
L0 ϕi

)T
σ̄p

]
dΩ0

(9.102)
Furthermore, if the initial approximation fulfils the essential boundary condition,

and the trial functions are null over the surface where this condition is applied, the
essential boundary condition is automatically fulfilled. Moreover, the reaction vector
does not appear in the formulation.

uh (r0) =up (r0) + ϕ (r0) ∆α
up (r0) = u 0 (r0) ∀r0 ∈ Γu

0

ϕ (r0) = 0 ∀r0 ∈ Γu

0

 =⇒


uh (r0) = u 0 (r0) ∀r0 ∈ Γu

0∫∫
Γu

0

ϕTgh

R dΓ0 = 0

(9.103)
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Consequently, the system of linear equations to be solved is reduced to:

K∆α = f (9.104)

9.16.1. Stiffness matrix

The stiffness matrix and its components were defined in (9.101) and (9.102) as:

K =
∫∫∫

Ω0

(
L0 ϕ

)T
D2

(
L0 ϕ

)
dΩ0

K =
[
Kij

]
i=1,...,η
j=1,...,η

Kij =
∫∫∫

Ω0

(
L0 ϕi

)T
D2

(
L0 ϕj

)
dΩ0

(9.105)

It can be rewritten in a more compact form in terms of the tensor B0. This tensor
is defined by means of the tensor ϕ, which was presented in equation (9.70).

B0 = L0 ϕ

= L0

[
ϕ1 · · · ϕη

]
=
[
L0 ϕ1 · · · L0 ϕη

]
=
[
B0

(1) · · · B0
(η)
] (9.106)

Where:

B0
(k) = L0 ϕk =



∂

∂r0,1
0 0

0 ∂

∂r0,2
0

0 0 ∂

∂r0,3
∂

∂r0,2

∂

∂r0,1
0

∂

∂r0,3
0 ∂

∂r0,1

0 ∂

∂r0,3

∂

∂r0,2



ϕk 0 0
0 ϕk 0
0 0 ϕk

 =



∂ϕk

∂r0,1
0 0

0 ∂ϕk

∂r0,2
0

0 0 ∂ϕk

∂r0,3
∂ϕk

∂r0,2

∂ϕk

∂r0,1
0

∂ϕk

∂r0,3
0 ∂ϕk

∂r0,1

0 ∂ϕk

∂r0,3

∂ϕk

∂r0,2


(9.107)

Thus, the stiffness matrix becomes:

K =
∫∫∫

Ω0

B0
TD2B0 dΩ0

K =
[
Kij

]
i=1,...,η
j=1,...,η

Kij =
∫∫∫

Ω0

(
B0

(i)
)T
D2B0

(j) dΩ0

(9.108)

According to this definition, the stiffness matrix turns out to be symmetric. To
prove this property, the symmetry of the linear constitutive tensor defined in (7.94) is
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recalled.

KT =
(∫∫∫

Ω0

B0
TD2B0 dΩ0

)T

=
∫∫∫

Ω0

B0
TD2B0 dΩ0 = K

Kij

T =
(∫∫∫

Ω0

(
B0

(i)
)T
D2B0

(j) dΩ0

)T

=
∫∫∫

Ω0

(
B0

(j)
)T
D2B0

(i) dΩ0 = Kji

(9.109)

9.17. Reference material domain discretization

Let’s consider that the reference configuration Ω0 is composed by the union of n
finite elements.

Ω0 =
n⋃

e=1
Ω e

0 (9.110)

Where Ω e
0 is the e-th finite element. The intersection of different finite elements is

assumed to be equal to the empty set.

◦

Ω e

0

⋂ ◦

Ω f

0 = ∅ ∀e ̸= f (9.111)

This assumption allows to divide an integral defined over the whole reference do-
main, as the sum of the integrals defined over the domain corresponding to each finite
element. For instance, the integral of a given function φ turns out to be divided as:∫∫∫

Ω0

φ (r0) dΩ0 =
n∑

e=1

∫∫∫
Ω e

0

φ (r0) dΩ0 (9.112)

9.17.1. Element stiffness matrix

The reference domain discretization allows to state the stiffness matrix (9.99) as
the sum of the contribution of each finite element.

K =
n∑

e=1
K̂

e

K̂
e =

[
K̂ij

e

]
i=1,...,η
j=1,...,η

K̂ij

e =
∫∫∫

Ω e
0

(
L0 Ωi

)T
D2

(
L0 ϕj

)
dΩ0

(9.113)

The hat operator indicates that the subscripts of each component refer to a global
numeration. In the next section, the nodes that compose the mesh will be defined.
They can be numbered according to a global or a local criterion. If the whole set of
nodes is taken into account, a global numeration is applied. However, if the nodes of a
given finite element are numbered, a local numeration is adopted.
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9.17.2. Element forces vector

The forces vector (9.99) can also be rewritten as the sum of each element contribu-
tion, as shown below.

f =
∫∫

Γσ
0

ΩTg dΓ0 +
n∑

e=1
f̂

e

f̂
e =

{
f̂ i

e

}
i=1,...,η

f̂ i

e =
∫∫∫

Ω e
0

[
Ωi

Tb ρ 0 −
(
L0 Ωi

)T
σ̄p

]
dΩ0

(9.114)

9.18. Trial functions definition

To simplify the formulation, and reduce the computation time, the trial functions
are defined according to the criterion exposed in the following subsections.

9.18.1. Nodal points

The following set of nodal points is defined:{
r0,k

}
k=1,...,η

(9.115)

On the one hand, the trial functions defined in section 9.14 are considered to fulfil
the following condition.

{
ϕi (r0)

}
i=1,...,η

=⇒ ϕi (r0,k) = δik =
{

1 if i = k

0 if i ̸= k
(9.116)

That is, each trial function is associated with a nodal point. The function adopts a
unitary value at its corresponding node, whereas it is null at the remaining ones.

The displacement field approximation was defined in (9.73) as:

uh (r0) = up (r0) + ∆up (r0)

=
η∑

i=1

[
ϕi (r0) I

]
αi +

η∑
i=1

[
ϕi (r0) I

]
∆αi

=
η∑

i=1
ϕi (r0)

(
αi + ∆αi

) (9.117)

If the trial functions verify condition (9.116), the evaluation of the above approxi-
mation at the nodal points leads to:

uh (r0,k) =
η∑

i=1
ϕi (r0,k)

(
αi + ∆αi

)
=

η∑
i=1

δik

(
αi + ∆αi

)
= αk + ∆αk

(9.118)
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Therefore, the value αk represents the initial displacement approximation experi-
mented by the k-th node, and the unknown ∆αk represents its corresponding correc-
tion.

The imposition of the condition (9.116) simplifies the physical interpretation of
the result obtained from the system of linear equations, since it turns out to be the
displacement that the nodal points experiment.

9.18.2. Local support

On the other hand, the trial functions ϕj and the test ones δui are defined with
local support. That is, they have to be null over a large amount of finite elements, to
obtain some computational advantages.

If they fulfil this condition, many contributions K̂ij
e and f̂ i

e will be zero. There-
fore, many components of the stiffness matrix Kij might be zero. This implies a
significant reduction of the computation time required to compute the integrals. Fur-
thermore, the stiffness matrix will be sparse. Hence, the number of components is
significantly reduced, and the memory storage needed is much lower.

The stiffness matrix and element forces vector corresponding to a given finite ele-
ment were defined in (9.113) and (9.114), as:

K̂
e =

[
K̂ij

e

]
i=1,...,η
j=1,...,η

K̂ij

e =
∫∫∫

Ω e
0

(
L0 Ωi

)T
D2

(
L0 ϕj

)
dΩ0

f̂
e =

{
f̂ i

e

}
i=1,...,η

f̂ i

e =
∫∫∫

Ω e
0

[
Ωi

Tb ρ 0 −
(
L0 Ωi

)T
σ̄p

]
dΩ0

(9.119)

Where:
Ωi = δui (r0) I
ϕj = ϕj (r0) I

(9.120)

If the test functions δui and the trial ones ϕj are null at a huge part of the reference
configuration, it is only required to compute the elemental contributions K̂ij

e and f̂ i
e

that satisfy both of the following conditions:

δui (r0) ̸= 0 and ϕj (r0) ̸= 0 ∀r0 ∈ Ω e

0 (9.121)

Furthermore, the stiffness matrix component Kij is null, if one of the following
conditions is verified for the whole set of finite elements.

δui (r0) = 0 or ϕj (r0) = 0 ∀r0 ∈ Ω e

0 , ∀e (9.122)

9.18.3. Partition of unity

If a translation is applied to the solid, the displacement field approximation has to
be able to represent this rigid motion. Let’s consider the translation represented by
the following displacement field.

u (r0) = a a ∈ R , ∀r0 ∈ Ω0 (9.123)
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As stated before, the displacement field approximation evaluated at the nodal points
represents the displacement experimented by the nodes (9.118). In order to be capable
of representing the above translation, the nodal displacements have to be equivalent to
the vector that defines this rigid motion.

uh (r0,i) = αi + ∆αi = a i = 1, . . . , η (9.124)

If the above result is taken into account, the displacement field approximation (9.117)
becomes:

uh (r0) =
η∑

i=1
ϕi (r0)

(
αi + ∆αi

)︸ ︷︷ ︸
=a

=
(

η∑
i=1

ϕi (r0)
)
a (9.125)

Therefore, if the sum of the trial functions is equal to one, the displacement field
approximation properly represents a translation.

η∑
i=1

ϕi (r0) = 1 =⇒ uh (r0) =
(

η∑
i=1

ϕi (r0)
)

︸ ︷︷ ︸
=1

a = a (9.126)

The above condition is usually known as the partition of unity [Melenk & Babuška,
1996; Babuška & Melenk, 1997]. It turns out to be an essential condition that the
trial functions have to fulfil to properly address translations. In addition, if this con-
dition is satisfied, the stain and stress fields corresponding to the displacement field
approximation (9.126) are null.

uh (r0) = a =⇒ Ēh = L0 u
h = 0̄

=⇒ σ̄h = D2 Ēh = 0̄
(9.127)

Otherwise, a translation implies the existence of a stress field, which is incorrect
and has no physical sense.

9.19. Three-dimensional finite element

A three-dimensional finite element composed by N nodal points is defined, in order
to obtain its particular elemental stiffness matrix and elemental forces vector.

The elemental stiffness matrix and the elemental forces vector were defined in (9.113)
and (9.114), respectively.

K̂
e =

[
K̂ij

e

]
i=1,...,η
j=1,...,η

K̂ij

e =
∫∫∫

Ω e
0

(
L0 Ωi

)T
D2

(
L0 ϕj

)
dΩ0

f̂
e =

{
f̂ i

e

}
i=1,...,η

f̂ i

e =
∫∫∫

Ω e
0

[
Ωi

Tb ρ 0 −
(
L0 Ωi

)T
σ̄p

]
dΩ0

(9.128)

Where the tensors Ωi and ϕj are composed by the trial and test functions, as:

Ωi = δui (r0) I
ϕj = ϕj (r0) I

(9.129)
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9.19. Three-dimensional finite element

As stated in section 9.18.1, the trial functions become unitary at their corresponding
node, and zero at the remaining ones. Moreover, it can be imposed that the only non-
zero functions over a given finite element are those associated with the nodal points of
that element.

ϕi (r0) = ϕi (r0)︸ ︷︷ ︸
̸=0

I ̸= 0 i = a, b, c, . . . ∀r0 ∈ Ω e

0 ∀e (9.130)

Where a, b, c, . . . are the nodes of a given finite element e. Therefore, the non-zero
components of the elemental stiffness matrix and the elemental forces vector turn out
to be:

K̂ij

e ̸= 0 j = a, b, c, . . .

f̂ i

e ̸= 0̄ i = a, b, c, . . .
(9.131)

If the Bubnov-Galerkin method is applied, the test and trial functions become
equivalent.

δui (r0) = ϕi (r0) ⇐⇒ Ωi = ϕi (9.132)

Thus, the components of the element stiffness matrix become:

K̂ij

e =
∫∫∫

Ω e
0

(
L0 ϕi

)T
D2

(
L0 ϕj

)
dΩ0 (9.133)

And the number of non-zero components is reduced to:

K̂ij

e ̸= 0 i = a, b, c, . . . j = a, b, c, . . . (9.134)

Consequently, if the zero components are not taken into account, the elemental
stiffness matrix and the elemental forces vector are reduced to:

K e =


K̂aa

e K̂ab
e K̂ac

e · · ·
K̂ba

e K̂bb
e K̂bc

e · · ·
K̂ca

e K̂cb
e K̂cc

e · · ·
...

...
... . . .

 f e =


f̂a

e

f̂ b
e

f̂ c
e

...

 (9.135)

9.19.1. Nodal numeration, master element and shape functions

In order to properly identify the nodal points of a given finite element, two different
numerations are defined. On the one hand, the global numeration takes into account
the whole set of nodal points that compose the entire mesh. All of them are numbered
according to this global numeration. On the other hand, an alternative numeration
that only takes into account the nodes of a given finite element is defined. This one is
more suitable to work at a local level. And an equivalence between both numerations
can be established.

Moreover, a master element in a space of normalized coordinates is usually adopted,
where the so-called shape functions are defined. These functions are equivalent to the

171



Chapter 9. Linear finite element analysis

trial ones, but defined in a normalized space. The geometric transformation that allows
moving from the material domain to the normalized one has to be properly defined.
Once, this geometric transformation is completely defined, the integration domain of
each elemental contribution can be changed, and the integration can be now carried
out in the normalized space.

This master element allows to define the displacement field at a given finite element
in terms of the material coordinates or by means of the normalized ones. But the shape
functions can also be applied to interpolate the reference geometry. The finite elements
that employ the same functions to interpolate the displacement field and the geometry
are usually known as isoparametric elements [Taig, 1962; Ergatoudis et al., 1968].

9.20. Overview and conclusions

9.20.1. Linear analysis strategy

In the current chapter, the structural behaviour of a given solid subjected to a set
of external forces is analysed.

According to the definition of the reference domain, two types of boundary condi-
tions are considered. The first ones are usually known as essential boundary conditions,
which are based on the definition of the displacement field on a specific solid surface.
The second type is the so-called natural boundary conditions, which define the stress
vector on the surface where the external loads are applied.

If the analysis is carried out in linear theory, two main hypotheses that considerably
simplify the analysis are adopted.

On the one hand, the displacements that the solid experiments are considered to
be small. This hypothesis allows to consider that the initial and the deformed
domain are coincident. Thus, the equilibrium equations can be imposed over the
reference configuration, which is well-known. This also implies that there is no
volume variation between both configurations.

On the other hand, the displacement gradients are assumed to be small. This
assumption allows to apply the approximate polar decomposition to decompose
the deformation gradient tensor by means of the displacement gradient tensor.
Without this assumption, an eigenvalue problem has to be solved in order to
obtain its polar decomposition. This simplification turns out to be a major
advantage, as it reduces computational effort.

Nevertheless, if the real structural behaviour does not verify the linear analysis as-
sumptions, the results obtained with this theory do not correspond to the real structural
response.

As the mass and the volume are assumed to remain constant, the density field is
also considered to not vary. Hence, the density field is not an unknown to calculate
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if the linear approach is adopted, as the initial density field is known and it remains
constant.

The equations that govern the static equilibrium were also derived in this chapter,
both the equation that rules the equilibrium of forces and the one that states the
equilibrium of moments. The Cauchy stress tensor turns out to be symmetric if the
angular momentum conservation is verified. The conservation of angular momentum
implies that the sum of all torques is zero. Therefore, the equation that rules the
equilibrium of moments is reduced to the symmetry of the Cauchy stress tensor.

The compatibility equation is the one that defines the strain field by means of the
displacement field. According to the approximate polar decomposition, the strain field
can be approximated by the infinitesimal strain tensor, which is completely defined by
means of the displacement gradient tensor. Since the displacement gradients are small
and the strain field depends on the displacement gradient tensor, the strain field turns
out to be infinitesimal in linear analysis.

And the equation that defines the relation between the stress and the strain fields
is the constitutive equation. As the strain field is infinitesimal, and the displacement
gradients are small, the effect of the rotation can be neglected to define the Cauchy
stress tensor. Consequently, the stress tensor can be completely defined by means of
the infinitesimal strain tensor. That is, the Lamé’s equation can be applied to define
the constitutive equation.

All the equations mentioned before compose the mathematical model that allows to
obtain the structural response under the assumptions of the linear analysis. The main
unknown to solve is the displacement field that the solid experiments. Once this field
is known, the compatibility equation allows to compute the strain field by means of the
displacement field. And finally, the constitutive equation states the stress field that
corresponds to the previous strain field. In addition, once the stress field is defined, the
reaction that appears on the surface where the essential boundary condition is applied
can be computed if required.

9.20.2. Linear finite element analysis

The linear finite element analysis derived in this chapter allows to obtain the dis-
placement field experimented by the solid after the application of the external forces,
under the assumptions of small displacements and small displacement gradients.

Both the strong and its corresponding weak form are derived. The definition of the
trial functions basis allows to build a displacement field approximation, which can be
defined as an initial approximation plus an additional term that corrects the former
one. In general, the difference between the exact solution and the initial displacement
field approximation can not be generated by the subspace composed by the trial func-
tions basis. Hence, the displacement field approximation does not usually verify the
weak form. In order to obtain a solution which does verify the weak form, a test func-
tions basis is proposed to generate an approximated test function which leads to an
approximated weak form.
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The original equilibrium problem is then substituted by a system of linear equations.
Its corresponding matrix is usually known as the stiffness matrix, and the independent
vector is the so-called forces vector. If the initial approximation fulfils the essential
boundary condition, and the trial functions are null over the surface where this bound-
ary condition is applied, the displacement field approximation automatically verifies
the essential boundary condition. Moreover, if the test functions are null over the sur-
face where the essential boundary condition is applied, the reaction is not involved in
the formulation.

The Bubnov-Galerkin method is commonly applied. This method is based on the
application of the same functions to define the trial and test functions, which leads to
symmetric stiffness matrices.

Once the resulting system of linear equations is completely defined, the material
domain is divided into a set of finite elements. This allows to rewrite integrals as
the sum of the integrals defined over the domain corresponding to each finite element.
Therefore, the components of the stiffness matrix and the forces vector become the
sum of the contribution of each finite element.

Furthermore, each trial function can be defined associated with a given nodal point.
The function adopts a unitary value at its corresponding node, whereas it becomes
null at the remaining ones. This condition simplifies the physical interpretation of the
result obtained from the system of linear equations, since it turns out to represent the
displacement experimented by the nodal point. On the other hand, the trial functions
and the test ones can be defined with local support. If they are defined null over a
large amount of finite elements, some computational advantages are obtained, such as
a significant reduction of computation time and storage memory required.

Finally, the trial functions have to fulfil an essential condition usually known as the
partition of unity in order to properly address translations. If this condition is not
satisfied, a translation implies the existence of a stress field, which is incorrect and has
no physical sense.

174



Chapter 10
Total Lagrangian finite element

analysis

10.1. Introduction

The linear finite element formulation presented in the previous chapter was de-
rived under the assumptions of small displacements and small displacement gradients.
These hypotheses allow to simplify both the solid mechanics and the obtention of the
structural behaviour by means of the finite element method.

However, these hypotheses are no longer adopted in nonlinear analysis, and the
solid is assumed to experiment large displacements and large displacement gradients.
These hypotheses difficult the analysis. Their implications are extensively analysed in
the current chapter, and the Total Lagrangian finite element formulation is derived.
This formulation allows to obtain the nonlinear behaviour of a given solid subjected to
external loads.

An overview of this formulation can be checked in Bathe et al. [1975]; Bathe &
Bolourchi [1979]; Bathe [1996], among other reference textbooks and papers. Some
classical nonlinear finite element formulations are written entirely in index notation.
Besides the indexes that correspond to the components of each tensor magnitude,
the one that indicates the load level, as well as the one that clarify the reference
configuration adopted, have to be added too. Index notation is convenient for coding
and implementing algorithms into a computer software. However, it is not the best
option to understand the underlying physics of a given problem.

In this work, the use of index notation is avoided whenever possible for facilitating
the understanding of the concepts. If required, it is applied as an intermediate step to
reach a final tensor notation. The main aim of this chapter is to fully comprehend and
follow the complete derivation of this nonlinear finite element formulation.
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10.2. Reference configuration and deformed material domain

The conceptual problem and the reference material domain were already presented
in sections 9.2 and 9.3, respectively.

After the application of the external loads, the reference material domain be-
comes Ω, and its corresponding surface becomes:

∂Ω = Γ = Γσ ∪ Γu (10.1)

The deformed surface is again divided into two subdomains: the surface where
the displacements are prescribed (Γu), and the surface where the surface forces are
applied (Γσ).

The deformation vector is the one that defines the position of a given material
particle, whose initial position is defined by the position vector r0. This vector turns
out to be equivalent to the sum of the initial position vector plus the displacement that
the material particle experiments (figure 10.1).

rL (r0) = r0 + uL (r0) ∀r0 ∈ Ω0 (10.2)

Figure 10.1. Reference configuration, deformed material domain, and vectors that define
the initial and final position of a given material particle.

10.3. Nonlinear analysis hypotheses

In contrast to linear analysis, the structure is now supposed to experiment large
displacements and large displacement gradients. These hypotheses allow to study struc-
tures that do not verify the linear assumptions, that is, structures that do not experi-
ment small displacements nor small displacement gradients can be properly analysed.

Moreover, if the nonlinear theory is adopted, structures that behave according to
the linear assumptions can also be properly simulated.
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10.3.1. Large displacements

On the one hand, it is considered the displacements that the solid experiments can
be large.

∥uL∥ ̸≪ 1 (10.3)
Consequently, the initial and final position of a given material particle can not be

considered equivalent. Thus, the reference configuration and the deformed material
domain can not be considered coincident.

rL (r0) = r0 + uL (r0)
∥uL∥ ̸≪ 1

}
=⇒ r ̸≈ r0 ⇐⇒ Ω ̸≈ Ω0 (10.4)

The above hypothesis leads to impose the equilibrium conditions over the deformed
material domain, which is the unknown to be solved. This is an important inconve-
nience which has to be overcome in the following sections.

As the initial and deformed material domains are no longer considered equivalent,
the determinant of the deformation gradient tensor is no longer equal to one.

FL (r0) ̸= 1 (10.5)

In addition, the Lagrangian and Eulerian descriptions of a given magnitude are not
equivalent. Both descriptions have to be differentiated, so the subscripts L and E are
added to specify the description adopted.

ψE (r) ̸≈ ψL (r0) (10.6)

The equivalence between both descriptions was defined in section 1.8 as shown
below.

ψE (r)
∣∣∣
r=rL(r0)

= ψL (r0) (10.7)

10.3.2. Large displacement gradients

On the other hand, it is considered that the displacement gradients can be large.

∥JL∥ ̸≪ ∥I∥ (10.8)

Thus, the approximate polar decomposition (section 5.3) of the deformation gradi-
ent tensor is no longer acceptable. To properly decompose the deformation gradient
tensor into an expansion and a rotation, an eigenvalue problem must be solved, as
exposed in section 4.3.1.

F L = RL

[
I +EL

]
(10.9)

The tensor RL is the finite rotation tensor, and EL is the Biot strain tensor. As
stated in equation (7.13), the Lagrangian description of the Cauchy stress tensor can
be expressed, by means of these tensors, as:

σL = RL Ψ
(
EL

)
RL

T (10.10)

Once the hypotheses of nonlinear analysis are stated, the equations that rule the
static equilibrium have to be defined according to these assumptions.
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10.4. Static equilibrium equations

Static equilibrium occurs if the equilibrium of forces and moments is fulfilled. These
equations are presented in the following subsections.

10.4.1. Equilibrium of forces

On the one hand, the equilibrium of forces has to be verified. The equation that
rules the static equilibrium of forces of a given solid subjected to external forces was
defined in (8.11) as:

div
(
σE

T
)

+ bE ρE = 0̄ ∀r ∈
◦

Ω (10.11)

10.4.2. Equilibrium of moments

On the other hand, the equilibrium of moments has to be fulfilled too. As proved
in section 8.4, the Cauchy stress tensor is symmetric if the angular momentum conser-
vation is verified.

σE
T = σE ∀r ∈ Ω (10.12)

If the above condition holds, it can be stated that the sum of all torques is zero,
and the equilibrium of moments is fulfilled.

10.5. Density field

If the mass is considered to not vary over time, the mass conservation equation has
to be verified, and the density can be defined, according to (8.8) as:

ρL (r0, t) = ρL (r0, 0)
FL (r0, t)

∀r0 ∈
◦

Ω0 , ∀t (10.13)

If a static analysis is carried out, the final density field can be obtained from the
above equation. The time variable t vanishes, and the density field is finally defined
as:

ρL (r0) = ρ 0
L (r0)
FL (r0) (10.14)

10.6. Boundary conditions

Two types of boundary conditions are again differentiated: the imposition of the
displacement field and the definition of the stress vector on a given portion of the solid
surface.
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Figure 10.2. Reference configuration, deformed material domain, and boundary condi-
tions.

10.6.1. Essential boundary conditions

The first ones are the essential boundary conditions, which are based on the def-
inition of the displacement field on a specific solid surface. That is, they represent
prescribed displacements on a given surface.

uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (10.15)

10.6.2. Natural boundary conditions

Moreover, surface external loads are applied on the other portion of the solid sur-
face. These are the so-called natural boundary conditions, and they are based on
the definition of the stress vector on the surface where the external surface forces are
applied.

gE (r) = σE (r)n (r) ∀r ∈ Γσ (10.16)

10.7. Mathematical model

A homogenous and isotropic solid medium is again considered. That is, the mechan-
ical properties are constant over the whole material domain, and they do not depend
on the direction.

The solid is subjected to volumetric bE and surface gE forces. These loads are forces
per unit mass and forces per unit area, respectively.

And the material mechanical properties are known. The Young’s modulus is repre-
sented by E and the Poisson’s ratio by ν. The Lamé’s parameters (7.51) are defined
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in terms of the Young’s modulus and the Poisson’s ratio, as shown below.

λ = E ν(
1 − 2ν

)(
1 + ν

) µ = E

2
(
1 + ν

) (10.17)

The main aim is to obtain the displacement field that the solid experiments due to
the application of the external loads, and its corresponding stress field.

uL (r0) , σL (r0) r0 ∈ Ω0 (10.18)

The above unknowns verify the following equations:

div
(
σE

)
+ bE ρE = 0̄ ∀r ∈

◦

Ω (Equilibrium of forces (10.11) and moments (10.12))
−σE n+ gE = 0̄ ∀r ∈ Γσ (Natural boundary condition (10.16))

uL = u 0
L ∀r0 ∈ Γu

0 (Essential boundary condition (10.15))
(10.19)

Note that the magnitudes involved in the definition of the equilibrium equation, as
well as the ones that appear in the natural boundary condition, are expressed according
to their Eulerian description. However, the other magnitudes are defined according to
their Lagrangian description.

Later on in this chapter, a strategy to obtain all magnitudes described according to
their Lagrangian description will be outlined. This conversion will drive to adopt the
Green-Lagrange strain tensor (4.73), as the compatibility equation.

EG,L = 1
2

[
∂uL

∂r0
+
(
∂uL

∂r0

)T

+
(
∂uL

∂r0

)T
∂uL

∂r0

]
(10.20)

And the second Piola-Kirchhoff stress tensor defined by means of the above Green-
Lagrange strain tensor (section 7.6), as the constitutive equation.

SL = SL

(
EG,L

)
(10.21)

10.8. Strong form

In this section, the strong form is stated. As the original form of the problem turns
out to be mathematically exact, it is usually known as the strong form.

The main goal of the analysis is to obtain the displacement field experimented by
the solid after the application of the external loads, that verifies the essential boundary
condition.

uL (r0) ∈ Hu | uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (10.22)

The above displacement field verifies the following equations, expressed in terms
of the equilibrium equation residual Rσ,E and the natural boundary condition resid-
ual RΓ,E .

Rσ,E = 0̄ ∀r ∈
◦

Ω
RΓ,E = 0̄ ∀r ∈ Γσ

(10.23)
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Where:
Rσ,E = div

(
σE

)
+ bE ρE r ∈

◦

Ω
RΓ,E = −σE n+ gE r ∈ Γσ

(10.24)

Once the strong form is completely defined, the weighted residual method allows to
obtain its corresponding weak form, as stated in the following section.

10.9. Eulerian weak form

The weighted residual method exposed in section C.3 is now applied, in order to
obtain the weak form of the previous strong form. The displacement field (10.22)
verifies now the following equation:∫∫∫

Ω
ωE

TRσ,E dΩ +
∫∫

Γσ

ωE
TRΓ,E dΓ = 0 ∀ωE ∈ Hω (10.25)

Where ωE are suitable test functions, and the residuals Rσ,E and RΓ,E were defined
in (10.24).

10.9.1. Equivalent Eulerian weak form derivation

If the property of the divergence proved in (B.30) is taken into account, it can be
stated that:

div
(
σE

T ωE

)
= ωE

T div
(
σE

)
+ Tr

(
σE

T
dωE

dr

)
(10.26)

But the stress tensor is symmetric, as demonstrated in (8.35). Hence, the above
equation becomes:

div
(
σE ωE

)
= ωE

T div
(
σE

)
+ Tr

(
σE

dωE

dr

)
(10.27)

The integration of the above equation over the deformed material domain leads to:∫∫∫
Ω

div
(
σE ωE

)
dΩ =

∫∫∫
Ω
ωE

T div
(
σE

)
dΩ +

∫∫∫
Ω

Tr
(
σE

dωE

dr

)
dΩ (10.28)

If the divergence theorem (section B.7.1) is applied, the left-hand side of the above
integral equation can be equivalently expressed as a surface integral.∫∫∫

Ω
div
(
σE ωE

)
dΩ =

∫∫
Γ

(
σE ωE

)T
n dΓ

=
∫∫

Γ
ωE

T
(
σE n

)
dΓ

(10.29)

Therefore, equation (10.28) can be rewritten as:∫∫∫
Ω
ωE

T div
(
σE

)
dΩ =

∫∫
Γ
ωE

T
(
σE n

)
dΓ −

∫∫∫
Ω

Tr
(
dωE

dr
σE

)
dΩ (10.30)
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The above equation can be substituted into the first addend of the weak form (10.25).
So,∫∫∫

Ω
ωE

TRσ,E dΩ =
∫∫∫

Ω
ωE

T

[
div
(
σE

)
+ bE ρE

]
dΩ

=
∫∫∫

Ω
ωE

T div
(
σE

)
dΩ +

∫∫∫
Ω
ωE

TbE ρE dΩ

=
[∫∫

Γ
ωE

T
(
σE n

)
dΓ −

∫∫∫
Ω

Tr
(
dωE

dr
σE

)
dΩ
]

+
∫∫∫

Ω
ωE

TbE ρE dΩ

=
[∫∫

Γσ

ωE
T
(
σE n

)
dΓ +

∫∫
Γu

ωE
T
(
σE n

)
dΓ
]

−

−
∫∫∫

Ω
Tr
(
dωE

dr
σE

)
dΩ +

∫∫∫
Ω
ωE

TbE ρE dΩ

(10.31)
And the substitution of the above result into the weak form (10.25) leads to:∫∫∫

Ω
ωE

TRσ,E dΩ +
∫∫

Γσ

ωE
TRΓ,E dΓ =

∫∫
Γσ

ωE
T
(
σE n

)
dΓ +

∫∫
Γu

ωE
T
(
σE n

)
dΓ−

−
∫∫∫

Ω
Tr
(
dωE

dr
σE

)
dΩ +

∫∫∫
Ω
ωE

TbE ρE dΩ+

+
∫∫

Γσ

ωE
T
(

− σE n+ gE

)
dΓ =

= −
∫∫∫

Ω
Tr
(
dωE

dr
σE

)
dΩ +

∫∫∫
Ω
ωE

TbE ρE dΩ+

+
∫∫

Γσ

ωE
TgE dΓ +

∫∫
Γu

ωE
T
(
σE n

)︸ ︷︷ ︸
gR,E

dΓ = 0

(10.32)
Where gR,E is the reaction that appears on the surface where the essential boundary
condition is applied.

gR,E = σE n ∀r ∈ Γu (10.33)

Therefore, the equation that defines the equivalent weak form can be obtained
from (10.32) as:∫∫∫

Ω
Tr
(
dωE

dr
σE

)
dΩ =

∫∫∫
Ω
ωE

TbE ρE dΩ +
∫∫

Γσ

ωE
TgE dΓ +

∫∫
Γu

ωE
TgR,E dΓ

(10.34)

10.9.2. Equivalent Eulerian weak form statement

The main aim of the structural analysis is to obtain the displacement field that
verifies the essential boundary condition. Moreover, the value of the reaction that
appears on the surface where the essential boundary condition is applied may also be
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required.

uL (r0) ∈ Hu | uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (10.35)
gR,E (r) r ∈ Γu (10.36)

The above unknowns verify the following equation.∫∫∫
Ω

Tr
(
dωE

dr
σE

)
dΩ =

=
∫∫∫

Ω
ωE

TbE ρE dΩ +
∫∫

Γσ

ωE
TgE dΓ +

∫∫
Γu

ωE
TgR,E dΓ ∀ωE ∈ Hω

(10.37)

10.10. Lagrangian weak form

The weak form obtained in the previous section is an Eulerian one, since it is
composed by integrals defined over the unknown deformed material domain, and the
magnitudes involved in it are described according to their Eulerian description. This
is an important issue, since a computation over an unknown material domain can not
be performed.

To overcome this inconvenience, the main aim of this section is to obtain an equiva-
lent weak form composed by integrals defined over the initial material domain, which is
well-know. If this objective is accomplished, the integrands will be composed by mag-
nitudes defined according to their Lagrangian description, and the entire weak form
statement will be composed by Lagrangian magnitudes.

10.10.1. Lagrangian left-hand side

Let’s focus now on the left-hand side of the Eulerian weak form (10.37). If the
property of the trace operator stated in (A.81) is applied as, an equivalent expression
of the integrand can be obtained as:

Tr
(
dωE

dr
σE

)
= dωE

dr
: σE

T (10.38)

Moreover, the test function gradient tensor can be decomposed as the sum of a
symmetric and a skew-symmetric tensor.

dωE

dr
= A+B with


A = 1

2

[
dwE

dr
+
(
dwE

dr

)T]
=
[
Aij

]
i=1,...,n
j=1,...,n

B = 1
2

[
dwE

dr
−
(
dwE

dr

)T]
=
[
Bij

]
i=1,...,n
j=1,...,n

(10.39)

Where the symmetric and skew-symmetric terms verify that:

AT = A ⇐⇒ Aji = Aij

BT = −B ⇐⇒ Bji =
{

−Bij if i ̸= j

0 if i = j

(10.40)
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If the above decomposition and the symmetry of the Cauchy stress tensor are taken
into account, the integrand (10.38) can be simplified as shown below. It is also recalled
that the double dot product between a skew-symmetric tensor and a symmetric one is
equal to zero.

Tr
(
dωE

dr
σE

)
= dωE

dr
: σE

T =
(
A+B

)
: σE = A : σE +B : σE︸ ︷︷ ︸

=0

= A : σE (10.41)

The integration of the above result over the material domain leads to an equivalent
expression of the left-hand side.∫∫∫

Ω
Tr
(
dωE

dr
σE

)
dΩ =

∫∫∫
Ω

1
2

[
dwE

dr
+
(
dwE

dr

)T]
: σE dΩ (10.42)

Let’s consider the test functions as a displacement field variation compatible with
the essential boundary condition.

ωE = δuE (10.43)

And its corresponding gradient tensor is:

dωE

dr
= dδuE

dr
(10.44)

The consideration of the test functions as a compatible displacement field variation,
and the change of the integration domain according to the methodology presented in
section 1.14, lead to the equivalent Lagrangian description of the left-hand side (10.42).∫∫∫

Ω
Tr
(
dδuE

dr
σE

)
dΩ =

∫∫∫
Ω

1
2

[
dδuE

dr
+
(
dδuE

dr

)T]
: σE dΩ

=
∫∫∫

Ω0

{
1
2

[
dδuE

dr
+
(
dδuE

dr

)T]
: σE

}∣∣∣∣∣
r=rL(r0)

FL dΩ0

=
∫∫∫

Ω0

σL : 1
2

[
dδuE

dr
+
(
dδuE

dr

)T] ∣∣∣∣∣
r=rL(r0)

FL dΩ0

(10.45)
On the other hand, the result obtained in (4.89) is recalled.

1
2

[
∂δuE

∂r
+
(
∂δuE

∂r

)T] ∣∣∣∣∣
r=rL(r0,t)

= F L
−T δEG,L F L

−1 (10.46)

The above equation is now substituted into the Lagrangian left-hand side (10.45).
To operate, the trace operator properties mentioned in (A.79,A.81) are recalled, as well
as the symmetry of the Green-Lagrange strain tensor, and the definition of the second
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Piola-Kirchhoff stress tensor (3.48).∫∫∫
Ω

Tr
(
dδuE

dr
σE

)
dΩ =

∫∫∫
Ω0

σL : 1
2

[
dδuE

dr
+
(
dδuE

dr

)T]∣∣∣∣
r=rL(r0)

FL dΩ0

=
∫∫∫

Ω0

σL :
(
F L

−T δEG,L F L
−1
)
FL dΩ0

=
∫∫∫

Ω0

Tr
(
σL

(
F L

−T δEG,L F L
−1
))

FL dΩ0

=
∫∫∫

Ω0

Tr
((
F L

−T δEG,L F L
−1
)
σL

)
FL dΩ0

=
∫∫∫

Ω0

Tr
((
F L

−T δEG,L

)(
F L

−1 σL

))
FL dΩ0

=
∫∫∫

Ω0

Tr
((
F L

−1 σL

)(
F L

−T δEG,L

))
FL dΩ0

=
∫∫∫

Ω0

Tr
((
F L

−1 σL F L
−T

)
δEG,L

)
FL dΩ0

=
∫∫∫

Ω0

FL

(
F L

−1 σL F L
−T

)
: δEG,L dΩ0

=
∫∫∫

Ω0

SL : δEG,L dΩ0

(10.47)
The above equivalent Lagrangian left-hand side turns out to depend on the second

Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor variation.
This equivalence is the basis of the Total Lagrangian formulation. The integral,

initially defined over the unknown material domain, is now referred to the well-known
reference configuration. Moreover, this transformation allows to manipulate magni-
tudes which are defined according to their Lagrangian description, instead of dealing
with their Eulerian one.

10.10.2. Lagrangian right-hand side

The right-hand side of the Eulerian weak form (10.37) is:∫∫∫
Ω
ωE

TbE ρE dΩ +
∫∫

Γσ

ωE
TgE dΓ +

∫∫
Γu

ωE
TgR,E dΓ (10.48)

The external forces are involved in the above equation, which are supposed to not
depend on the displacement field. These are the so-called conservative forces. This
assumption can be made when dealing with usual load cases, such as usage structural
overload or self-weight loads. If the external loads do depend on the displacement field
(non-conservative forces), their treatment has to be addressed differently.

As stated in (10.14), the mass conservation allows to obtain the density field cor-
responding to the deformed material domain. From this equation, the determinant of
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the deformation gradient tensor by means of the initial and final density fields can also
be obtained.

ρL = ρ 0
L

FL
⇐⇒ FL = ρ 0

L

ρL
(10.49)

Let’s focus now on the first addend of the right-hand side (10.48). The integration
domain can be changed according to the methodology proposed in section 1.14. If the
above equation is also taken into account, the determinant of the deformation gradient
tensor can be replaced by an equivalent definition in terms of the initial and final
density fields. ∫∫∫

Ω
ωE

TbE ρE dΩ =
∫∫∫

Ω0

(
ωE

TbE ρE

)∣∣∣
r=rL(r0)

FL dΩ0

=
∫∫∫

Ω0

(
ωL

TbL ρL

)(ρ 0
L

ρL

)
dΩ0

=
∫∫∫

Ω0

ωL
TbL ρ

0
L dΩ0

(10.50)

The same strategy is applied to the second addend, in order to obtain an integral
defined over the reference material domain. To achieve this goal, the methodology
presented in section 1.14 is again applied, and the equation that defines the area vari-
ation (1.55) is recalled. Furthermore, the definitions of the stress vector (3.35) and the
first Piola-Kirchhoff stress tensor (3.45) are also recalled.∫∫

Γσ

ωE
TgE dΓ =

∫∫
Γσ

ωE
T
(
σE n

)
dΓ

=
∫∫

Γσ

ωE
TσE

(
dΓn

)
=
∫∫

Γσ

ωE
TσE dΓ

=
∫∫

Γσ
0

(
ωE

TσE

)∣∣∣
r=rL(r0)

(
FL F L

−T dΓ0

)
=
∫∫

Γσ
0

ωL
T

(
FL σL F L

−T

)(
dΓ0 n0

)
=
∫∫

Γσ
0

ωL
TP L

(
dΓ0 n0

)
=
∫∫

Γσ
0

ωL
T
(
P L n0

)
dΓ0

=
∫∫

Γσ
0

ωL
Tg0,L dΓ0

(10.51)

In the above result, the vector g0,L was introduced, which represents the differential
force acting on the deformed solid per unit initial area. To clarify its physical inter-
pretation, equation (3.44) is recalled, where the definition of the first Piola-Kirchhoff
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stress vector arises.

dfL = P L dΓ0

= P L

(
dΓ0 n0

)
=
(
P L n0

)
dΓ0

= g0,L dΓ0

 =⇒ g0,L = dfL

dΓ0
∀r0 ∈ Γσ

0 (10.52)

The manipulation of the third addend is analogous to the one performed in (10.51).
Hence, this term becomes:∫∫

Γu

ωE
TgR,E dΓ =

∫∫
Γu

0

ωL
TgR,0,L dΓ0 (10.53)

Where gR,0,L represents the differential force acting on the deformed solid surface where
the essential boundary condition is applied, per unit undeformed area.

gR,0,L = dfL

dΓ0
∀r0 ∈ Γu

0 (10.54)

The addition of equations (10.50), (10.51), and (10.53), defines the equivalent La-
grangian right-hand side of the Eulerian weak form.∫∫∫

Ω
ωE

TbE ρE dΩ +
∫∫

Γσ

ωE
TgE dΓ +

∫∫
Γu

ωE
TgR,E dΓ =

=
∫∫∫

Ω0

ωL
TbL ρ

0
L dΩ0 +

∫∫
Γσ

0

ωL
Tg0,L dΓ0 +

∫∫
Γu

0

ωL
TgR,0,L dΓ0

(10.55)

The above equation allows to move from an Eulerian to a Lagrangian description of
the involved magnitudes. Moreover, the resulting integrals are defined over the initial
undeformed domain, which is known, instead of dealing with integrals defined over the
unknown material one.

The test functions are finally considered as a displacement field variation compatible
with the essential boundary condition.

ωL = δuL (10.56)

Therefore, the Lagrangian right-hand side (10.55) becomes:∫∫∫
Ω0

δuL
TbL ρ

0
L dΩ0 +

∫∫
Γσ

0

δuL
Tg0,L dΓ0 +

∫∫
Γu

0

δuL
TgR,0,L dΓ0 (10.57)

And the complete Lagrangian weak form remains as stated in the following subsec-
tion.

10.10.3. Lagrangian weak form statement

The Lagrangian left-hand side (10.47) and the right-hand one (10.57) lead to this
equivalent Lagrangian weak form.
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As stated before, the objective of the structural analysis is to obtain the displace-
ment field that verifies the essential boundary condition. Moreover, the value of the
reaction that appears on the surface where the essential boundary condition is applied
may also be required.

uL (r0) ∈ Hu | uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (10.58)
gR,0,L (r0) r0 ∈ Γu

0 (10.59)

The above unknowns verify the following equation.∫∫∫
Ω0

SL : δEG,L dΩ0 =

=
∫∫∫

Ω0

δuL
TbL ρ

0
L dΩ0 +

∫∫
Γσ

0

δuL
Tg0,L dΓ0 +

∫∫
Γu

0

δuL
TgR,0,L dΓ0 ∀δuL ∈ Hδu

(10.60)
The second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor vari-

ation are involved in the above weak form. Since the second Piola-Kirchhoff stress ten-
sor and the Green-Lagrange strain tensor are conjugate magnitudes (table 7.1), it seems
reasonable to adopt the equation that defines the relation between both magnitudes as
the constitutive equation.

Moreover, the equation that defines the Green-Lagrange strain tensor by means of
the displacement gradient tensor was already defined in section 4.6.2. Therefore, this
equation is the compatibility equation adopted in this analysis.

The constitutive and the compatibility equations are exposed in detail in the fol-
lowing subsections.

Compatibility equation

On the one hand, the compatibility equation is the one that defines the strain field
by means of the displacement field.

The definition of the Green-Lagrange strain tensor in terms of the displacement
gradient tensor was stated in (4.73) as:

EG,L = 1
2

[
∂uL

∂r0
+
(
∂uL

∂r0

)T

+
(
∂uL

∂r0

)T
∂uL

∂r0

]
(10.61)

According to the previous definition, the strain tensor remains constant if a transla-
tion is applied to the solid. Moreover, as demonstrated in section 4.6.4, it also remains
invariant when a rotation occurs. Therefore, it can be concluded that the Green-
Lagrange strain tensor remains constant if a rigid motion (rotation and/or translation)
is applied.

This is an important property to deal with a large displacement analysis, since it
can be guaranteed that no additional strains will appear when a rigid motion is applied.
Hence, the Green-Lagrange strain tensor turns out to be a suitable strain tensor if a
nonlinear analysis is carried out.
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Constitutive equation

On the other hand, the equation that defines the relation between the strain field
and its corresponding stress one is the constitutive equation.

As stated in section 7.6, the second Piola-Kirchhoff stress tensor remains invariant
if a rigid motion is applied to the solid. Moreover, it turns out to be work conjugate
with the Green-Lagrange strain tensor (table 7.1). That is, the double product between
both tensors gives the work per unit volume developed by the internal forces during
the deformation process. Therefore, this tensor seems to be an appropriate choice to
represent the stress field in nonlinear theory.

In order to set the constitutive equation, the equation that states the mathemati-
cal relation between the Green-Lagrange strain tensor and the second Piola-Kirchhoff
stress tensor has to be defined.

SL = SL

(
EG,L

)
(10.62)

10.10.4. Unknowns

The main unknown to solve is the displacement field that the solid experiments.
Once this field is known, the compatibility equation (10.61) allows to define the strain
field by means of the displacement field. And finally, the constitutive equation (10.62)
defines the stress field corresponding to the previous strain field.

uL =⇒ EG,L (uL) =⇒ SL

(
EG,L (uL)

)
(10.63)

Once the above fields are known, the computation of the reaction that appears on
the surface where the essential boundary condition is applied may also be required.

gR,0,L = P L n0 ∀r0 ∈ Γu

0 (10.64)

To obtain this reaction, the first Piola-Kirchhoff stress tensor has to be calculated.
Equation (3.50) defines the second Piola-Kirchhoff stress tensor by means of the first
one. Therefore, the first Piola-Kirchhoff stress tensor can be obtained as:

SL = F L
−1 P L ⇐⇒ P L = F L SL (10.65)

10.10.5. Switch to vector notation

The Voigt notation (section A.14) allows to reach an equivalent Lagrangian left-hand
side expressed in vector notation, instead of the tensor one obtained in equation (10.60).

The vectorial form of the second Piola-Kirchhoff stress tensor is:

SL =

S11 S12 S13

S12 S22 S23

S13 S23 S33

 =⇒ S̄L =



S11

S22

S33

S12

S13

S23


(10.66)
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And the vectorial form of Green-Lagrange strain tensor variation turns out to be:

δEG,L =

δE11 δE12 δE13

δE12 δE22 δE23

δE13 δE23 δE33

 =⇒ δĒG,L =



δE11

δE22

δE33

2 δE12

2 δE13

2 δE23


(10.67)

According to this notation, the double dot product between the second Piola-
Kirchhoff stress tensor and the Green-Lagrange strain tensor variation is equal to the
scalar product between their equivalent vectorial forms.

SL : δEG,L = δĒ
T

G,LS̄L (10.68)

Therefore, the left-hand side of the Lagrangian weak form (10.60) can be equiva-
lently written as: ∫∫∫

Ω0

SL : δEG,L dΩ0 =
∫∫∫

Ω0

δĒ
T

G,L S̄L dΩ0 (10.69)

10.11. Equivalent Lagrangian weak form statement

If the equivalent vectorial expression obtained in (10.69) is adopted, the Lagrangian
weak form exposed in section 10.10.3 can be equivalently written as exposed below.

The main objective is to obtain the displacement field that verifies the essential
boundary condition, and the reaction that appears on the surface where the essential
boundary condition is applied (if needed).

uL (r0) ∈ Hu | uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (10.70)
gR,0,L (r0) r0 ∈ Γu

0 (10.71)

The above unknowns verify that:∫∫∫
Ω0

δĒ
T

G,LS̄L dΩ0 =

=
∫∫∫

Ω0

δuL
TbL ρ

0
L dΩ0 +

∫∫
Γσ

0

δuL
Tg0,L dΓ0

∫∫
Γu

0

δuL
TgR,0,L dΓ0 ∀δuL ∈ Hδu

(10.72)
where the compatibility equation (10.61) and the constitutive one (10.62), are now
defined according to their vector notation. The vectorial form of the Green-Lagrange
strain tensor defined in (4.109) is recalled.

S̄L = S̄L

(
ĒG,L

)
r0 ∈ Ω0

ĒG,L =
(
AC + 1

2A
)
J̄L r0 ∈ Ω0

(10.73)

190



10.11. Equivalent Lagrangian weak form statement

10.11.1. Alternative left-hand side

The vectorial form of the Green-Lagrange strain tensor variation was defined in
(4.112) as:

δĒG,L =
(
AC +A

)
δJ̄L (10.74)

Where the vectorial form of the displacement gradient tensor variation can be ex-
pressed, in terms of a differential operator, as:

δJ̄L =



∂δu1

∂r0,1

∂δu1

∂r0,2

∂δu1

∂r0,3

∂δu2

∂r0,1

∂δu2

∂r0,2

∂δu2

∂r0,3

∂δu3

∂r0,1

∂δu3

∂r0,2

∂δu3

∂r0,3



=



∂

∂r0,1
0 0

∂

∂r0,2
0 0

∂

∂r0,3
0 0

0 ∂

∂r0,1
0

0 ∂

∂r0,2
0

0 ∂

∂r0,3
0

0 0 ∂

∂r0,1

0 0 ∂

∂r0,2

0 0 ∂

∂r0,3




δu1

δu2

δu3

 = ∂0 δuL (10.75)

On the other hand, an approach to the test functions is defined by linearly combining
the functions that compose the test functions basis.

δuL ≈ δuh

L =
η∑

j=1

[
δuj,L I

]︸ ︷︷ ︸
Ωj,L

βj

=
η∑

j=1
Ωj,L βj

=
[
Ω1,L · · · Ωη,L

]
β1
...
βη


= ΩL β δuh

L ∈ Hh

δu ⊂ Hδu

(10.76)

The initial displacement field approximation (9.67) defined in linear theory is con-
sidered to be the null function. Consequently, the displacement field approximation is
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defined by means of the trial functions, as:

uL ≈ uh

L =
η∑

i=1

[
ϕi,L I

]︸ ︷︷ ︸
ϕi,L

αi

=
η∑

i=1
ϕi,Lαi

=
[
ϕ1,L · · · ϕη,L

]
α1

...
αη


= ϕLα uh

L ∈ Hh

u ⊂ Hu

(10.77)

The Bubnov-Galerkin approach is adopted, so the test and trial functions are equiv-
alent.

ΩL = ϕL ⇐⇒ Hh

δu = Hh

u (10.78)

Hence, the test functions are finally defined as:

δuL ≈ ΩL β = ϕL β (10.79)

The above approximation is now substituted into the vectorial form of the displace-
ment gradient tensor variation (10.75).

δJ̄L = ∂0 δuL

δuL ≈ ϕL β

}
=⇒


δJ̄L ≈ ∂0

(
ϕL β

)
=
(
∂0 ϕL

)
β

= G0 β

(10.80)

The tensor G0 is defined by means of the tensor ϕL (10.77), and its components
turn out to be:

G0 = ∂0 ϕL

= ∂0

[
ϕ1,L · · · ϕη,L

]
=
[
∂0 ϕ1,L · · · ∂0 ϕη,L

]
=
[
G0

(1) · · · G0
(η)
] (10.81)
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10.11. Equivalent Lagrangian weak form statement

Where:

G0
(k) = ∂0 ϕk,L

=



∂

∂r0,1
0 0

∂

∂r0,2
0 0

∂

∂r0,3
0 0

0 ∂

∂r0,1
0

0 ∂

∂r0,2
0

0 ∂

∂r0,3
0

0 0 ∂

∂r0,1

0 0 ∂

∂r0,2

0 0 ∂

∂r0,3



ϕk,L 0 0
0 ϕk,L 0
0 0 ϕk,L

 =



∂ϕk,L

∂r0,1
0 0

∂ϕk,L

∂r0,2
0 0

∂ϕk,L

∂r0,3
0 0

0 ∂ϕk,L

∂r0,1
0

0 ∂ϕk,L

∂r0,2
0

0 ∂ϕk,L

∂r0,3
0

0 0 ∂ϕk,L

∂r0,1

0 0 ∂ϕk,L

∂r0,2

0 0 ∂ϕk,L

∂r0,3


(10.82)

The substitution of the vectorial form of the displacement gradient tensor varia-
tion (10.80) into the vectorial form of the Green-Lagrange strain tensor variation (10.74)
leads to:

δĒG,L =
(
AC +A

)
δJ̄L

δJ̄L ≈ G0 β

 =⇒


δĒG,L ≈

(
AC +A

)(
G0 β

)
=
[(
AC +A

)
G0

]
β

= Bβ

(10.83)

Where the tensor that defines the above relation is:

B =
(
AC +A

)
G0

= AC G0 +AG0

= BL,0 +BN,0

(10.84)

Two different terms compose this tensor. The first one is BL,0, which is the linear
term, since it does not depend on the displacement field.

BL,0 = AC G0

= AC

[
G0

(1) · · · G0
(η)
]

=
[
AC G0

(1) · · · AC G0
(η)
]

=
[
BL,0

(1) · · · BL,0
(η)
] (10.85)
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Its components can be defined if the tensor AC (4.107), and the definition of the
tensor G0 stated in (10.82) and (10.81), are recalled.

BL,0
(k) = AC G0

(k) =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂ϕk,L

∂r0,1
0 0

∂ϕk,L

∂r0,2
0 0

∂ϕk,L

∂r0,3
0 0

0 ∂ϕk,L

∂r0,1
0

0 ∂ϕk,L

∂r0,2
0

0 ∂ϕk,L

∂r0,3
0

0 0 ∂ϕk,L

∂r0,1

0 0 ∂ϕk,L

∂r0,2

0 0 ∂ϕk,L

∂r0,3



=



∂ϕk,L

∂r0,1
0 0

0 ∂ϕk,L

∂r0,2
0

0 0 ∂ϕk,L

∂r0,3

∂ϕk,L

∂r0,2

∂ϕk,L

∂r0,1
0

∂ϕk,L

∂r0,3
0 ∂ϕk,L

∂r0,1

0 ∂ϕk,L

∂r0,3

∂ϕk,L

∂r0,2


(10.86)

The second term BN,0 is the nonlinear one. This component does depend on the
displacement field, since A depends on the displacement gradient tensor.

BN,0 = AG0

= A
[
G0

(1) · · · G0
(η)
]

=
[
AG0

(1) · · · AG0
(η)
]

=
[
BN,0

(1) · · · BN,0
(η)
] (10.87)

In order to simplify the notation, the components of the displacement gradient
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10.11. Equivalent Lagrangian weak form statement

tensor are defined as:

JL =
[
Jij

]
i=1,2,3
j=1,2,3

Jij = ∂ui

∂r0,j

(10.88)

And the definitions of A and G0, exposed in (4.108) and (10.81), are recalled. If
these definitions are taken into account, the components of the nonlinear term become:

BN,0
(k) = AG0

(k)

=



J11 0 0 J21 0 0 J31 0 0
0 J12 0 0 J22 0 0 J32 0
0 0 J13 0 0 J23 0 0 J33

J12 J11 0 J22 J21 0 J32 J31 0
J13 0 J11 J23 0 J21 J33 0 J31

0 J13 J12 0 J23 J22 0 J33 J32





∂ϕk,L

∂r0,1
0 0

∂ϕk,L

∂r0,2
0 0

∂ϕk,L

∂r0,3
0 0

0 ∂ϕk,L

∂r0,1
0

0 ∂ϕk,L

∂r0,2
0

0 ∂ϕk,L

∂r0,3
0

0 0 ∂ϕk,L

∂r0,1

0 0 ∂ϕk,L

∂r0,2

0 0 ∂ϕk,L

∂r0,3



=



J11

∂ϕk,L

∂r0,1
J21

∂ϕk,L

∂r0,1
J31

∂ϕk,L

∂r0,1

J12

∂ϕk,L

∂r0,2
J22

∂ϕk,L

∂r0,2
J32

∂ϕk,L

∂r0,2

J13

∂ϕk,L

∂r0,3
J23

∂ϕk,L

∂r0,3
J33

∂ϕk,L

∂r0,3

J12

∂ϕk,L

∂r0,1
+ J11

∂ϕk,L

∂r0,2
J22

∂ϕk,L

∂r0,1
+ J21

∂ϕk,L

∂r0,2
J32

∂ϕk,L

∂r0,1
+ J31

∂ϕk,L

∂r0,2

J13

∂ϕk,L

∂r0,1
+ J11

∂ϕk,L

∂r0,3
J23

∂ϕk,L

∂r0,1
+ J21

∂ϕk,L

∂r0,3
J33

∂ϕk,L

∂r0,1
+ J31

∂ϕk,L

∂r0,3

J13

∂ϕk,L

∂r0,2
+ J12

∂ϕk,L

∂r0,3
J23

∂ϕk,L

∂r0,2
+ J22

∂ϕk,L

∂r0,3
J33

∂ϕk,L

∂r0,2
+ J32

∂ϕk,L

∂r0,3


(10.89)

At this point, the substitution of the vectorial form of the Green-Lagrange strain
tensor variation obtained in (10.83) and (10.84), into the left-hand side of the La-
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grangian weak form exposed in (10.72), leads to the following alternative expression.∫∫∫
Ω0

δĒ
T

G,L S̄L dΩ0 =
∫∫∫

Ω0

(
Bβ

)T
S̄L dΩ0

= βT

∫∫∫
Ω0

BT S̄L dΩ0

= βT

∫∫∫
Ω0

[(
AC +A

)
G0

]T

S̄L dΩ0

= βT

∫∫∫
Ω0

G0
T

(
AC +A

)T

S̄L dΩ0

(10.90)

10.11.2. Right-hand side simplification

On the one hand, the test functions were defined according to the Bubnov-Galerkin
method in (10.79) as:

δuL = ϕL β (10.91)

If the above definition is substituted, the right-hand side of the Lagrangian weak
form (10.72) becomes:∫∫∫

Ω0

δuL
TbL ρ

0
L dΩ0 +

∫∫
Γσ

0

δuL
Tg0,L dΓ0 +

∫∫
Γu

0

δuL
TgR,0,L dΓ0 =

= βT

∫∫∫
Ω0

ϕL
TbL ρ

0
L dΩ0 + βT

∫∫
Γσ

0

ϕL
Tg0,L dΓ0 + βT

∫∫
Γu

0

ϕL
TgR,0,L dΓ0

(10.92)

On the other hand, the trial functions are defined null over the surface where the
essential boundary condition is applied. This condition allows to get rid of the reaction,
since it does not appear in the weak form. If it is required, this unknown can be
computed once the problem is solved, as exposed in section 10.10.4.

ϕL (r0) = 0 ∀r0 ∈ Γu

0 =⇒ βT

∫∫
Γu

0

ϕL
TgR,0,L dΓ0 = 0 (10.93)

Therefore, the Lagrangian right-hand side of the weak form can be finally reduced
to:

βT

∫∫∫
Ω0

ϕL
TbL ρ

0
L dΩ0 + βT

∫∫
Γσ

0

ϕL
Tg0,L dΓ0 (10.94)

10.11.3. Final Lagrangian weak form

The equivalent Lagrangian left-hand side (10.90) is now introduced into the La-
grangian weak form (10.72), and the trial functions are defined according to the con-
dition (10.93), so the reaction is not involved in the equation. The Lagrangian weak
form is then reduced to:

βT

∫∫∫
Ω0

BT S̄L dΩ0 = βT

∫∫∫
Ω0

ϕL
TbL ρ

0
L dΩ0 + βT

∫∫
Γσ

0

ϕL
T g0,L dΓ0 (10.95)
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The left-hand side depends on the tensor B, which was defined in (10.84), and on
the second Piola-Kirchhoff stress tensor. Both tensors depend on the displacement
field. Hence, this side turns out to depend on the displacement field.

Nevertheless, the right-hand side does not depend on it. It depends on the trial func-
tions and the external forces. Both magnitudes depend on the reference configuration
geometry, and not on the displacement field.

βT

∫∫∫
Ω0

BT S̄L dΩ0︸ ︷︷ ︸
f(uL)

= βT

∫∫∫
Ω0

ϕL
TbL ρ

0
L dΩ0 + βT

∫∫
Γσ

0

ϕL
T g0,L dΓ0︸ ︷︷ ︸

P

(10.96)

Therefore, the above equation turns out to be a nonlinear equation whose unknown
is the displacement field. This nonlinear equation has to be solved in order to obtain
the displacement field that the solid undergoes.

f (uL) = P (10.97)

As stated in section 4.7, an incremental loading procedure has to be applied in order
to properly carry out a nonlinear analysis. Hence, each load step has its corresponding
Lagrangian weak form (10.96). In the following section, the incremental loading process
and its implications are extensively analysed.

10.12. Incremental loading process

The external forces are applied according to the incremental loading process pro-
posed in section 4.7, and the total approach developed in section 4.7.1 is adopted.
That is, the initial material domain becomes the reference configuration, and all the
variables are defined with respect to this initial domain.

10.12.1. Previous known deformed material domain

Let’s consider the load step t + ∆t of the incremental loading procedure. At this
point, the previous one has been already solved, so the material domain corresponding
to the load step t is completely defined. The deformation vector that defines the
position of a material particle that belongs to this domain turns out to be:

r t

L (r0)︸ ︷︷ ︸
known

= r0 + u t

L (r0)︸ ︷︷ ︸
known

(10.98)

And its corresponding deformation gradient tensor, defined by means of the dis-
placement gradient tensor, is:

F t

L = dr t
L

dr0
= I + J t

L J t

L = du t
L

dr0
(10.99)
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Figure 10.3. Total Lagrangian approach: reference configuration and material domains
corresponding to two consecutive load steps.

10.12.2. Current unknown deformed material domain

Once the load step t is solved, an increment is added to the external forces, and
the main aim is now to obtain the displacement field corresponding to this new load
level. The displacement field caused by this new loading state completely defines its
corresponding material domain.

The displacement field corresponding to the current load step t + ∆t is defined as
the previous displacement field plus an increment, which is unknown.

u t+∆t

L (r0)︸ ︷︷ ︸
unknown

= u t

L (r0) + ∆u t

L (r0)︸ ︷︷ ︸
unknown

(10.100)

And the deformation vector that defines the position of a material particle that
belongs to this material domain is:

r t+∆t

L (r0)︸ ︷︷ ︸
unknown

= r0 + u t+∆t

L (r0)︸ ︷︷ ︸
unknown

(10.101)

If the decomposition of the displacement field (10.100) is taken into account, and
the deformation vector of the previous load step (10.98) is recalled, the deformation
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10.12. Incremental loading process

vector of the current one becomes:

r t+∆t

L (r0) = r0 + u t+∆t

L (r0)

= r0 +
[
u t

L (r0) + ∆u t

L (r0)
]

=
[
r0 + u t

L (r0)
]

+ ∆u t

L (r0)

= r t

L (r0) + ∆u t

L (r0)

(10.102)

Moreover, the displacement field decomposition (10.100) allows to define the dis-
placement gradient tensor as the sum of the previous one plus an increment.

J t+∆t

L = du t+∆t
L

dr0
= d

dr0

(
u t

L + ∆u t

L

)
= du t

L

dr0
+ d∆u t

L

dr0

= J t

L + ∆J t

L

(10.103)

And the deformation gradient tensor can also be defined as the one corresponding
to the previous load step plus an increment.

F t+∆t

L = dr t+∆t
L

dr0
= d

dr0

(
r t

L + ∆u t

L

)
= dr t

L

dr0
+ d∆u t

L

dr0

= F t

L + ∆F t

L

(10.104)

If equations (10.103) and (10.104) are compared, it can be concluded that the
deformation gradient tensor increment is equivalent to the displacement gradient tensor
increment.

∆F t

L = ∆J t

L = d∆u t
L

dr0
(10.105)

In addition, the Lagrangian weak form corresponding to load step t+ ∆t turns out
to be:

βT

∫∫∫
Ω0

BT S̄
t+∆t

L dΩ0 = βT

∫∫∫
Ω0

ϕL
Tb t+∆t

L ρ 0
L dΩ0 + βT

∫∫
Γσ

0

ϕL
Tg t+∆t

0,L dΓ0

(10.106)
The above equation is analogous to one presented in (10.95), but the superscripts

t + ∆t are added to indicate the current load step. This is the nonlinear equation to
be solved in order to obtain the displacement field corresponding to the current load
step.

f (u t+∆t

L ) = P t+∆t (10.107)
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10.13. Iterative solution procedure

As obtained in the previous section, the weak form corresponding to the current load
step t+ ∆t is the nonlinear equation to be solved in order to obtain the displacement
field that the solid experiments after the application of the external incremental forces.

To simplify the notation throughout this section, the subscript L that indicates that
the magnitudes are described according to their Lagrangian description is omitted. The
nonlinear function to be solved is then reduced to:

f (u t+∆t) = P t+∆t (10.108)

Where:

P t+∆t = βT

∫∫∫
Ω0

ϕTb t+∆t ρ 0 dΩ0 + βT

∫∫
Γσ

0

ϕTg t+∆t

0 dΓ0 (10.109)

Equation (10.108) can be equivalently rewritten as:

g (u t+∆t) = f (u t+∆t) − P t+∆t = 0 (10.110)

Where the nonlinear function g can be interpreted as a residual, and the displace-
ment field corresponding to the current load step is the value that cancels this residual.
Therefore, the displacement field turns out to be the root of the following nonlinear
equation:

g (u) = f (u) − P t+∆t

u = u t+∆t

}
=⇒ g (u t+∆t) = 0 (10.111)

This root can be obtained if an iterative method is applied. For instance, the
Newton-Raphson method is a suitable procedure to take into consideration. This
method guarantees quadratic convergence, if the initial solution approximation is close
enough to the root.

The incremental load after each load step is assumed to be so small that the dis-
placement fields corresponding to consecutive load step can be considered to be close
enough. If this assumption is fulfilled, the displacement field obtained in the previous
load step can be adopted to start the iterative procedure. This allows to start the it-
erative method from a close approximation to the root, and the quadratic convergence
should be guaranteed.

10.13.1. Newton-Raphson method

The Newton-Raphson method can be applied to obtain the root. The iterative
procedure is applied as follows.

To start the iterative method, an initial approximation has to be selected. The
displacement field corresponding to the previous load step is adopted as the initial

200



10.13. Iterative solution procedure

Figure 10.4. Graphical interpretation of an iterative step of the Newton-Raphson method
applied to a one-dimensional case.

solution approximation. This choice allows to start the iterative procedure from
a close root approximation.

Initial approximation: u t+∆t

0 = u t (10.112)

It is then considered that the displacement field corresponding to the k-th iter-
ation has already been computed. But its corresponding residual is not zero, so
the iterative method has to continue iterating to improve the result.

Iteration k: u t+∆t

k =⇒ g (u t+∆t

k ) ̸= 0 =⇒ ¿u t+∆t

k+1 ? (10.113)

At this point, the next iteration is computed by adding an increment to the
displacement field obtained in the previous one.

Iteration k + 1: u t+∆t

k+1 = u t+∆t

k + ∆u t+∆t

k︸ ︷︷ ︸
¿?

(10.114)

To calculate the increment of the displacement field between two consecutive itera-
tions, the new residual g is imposed to be zero. The residual is also defined according
to its Taylor series expansion about the displacement field obtained from the previous
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iteration.

g
(
u t+∆t

k+1

)
=

 = 0

= g (u t+∆t

k ) + dg

du
(u t+∆t

k ) ∆u t+∆t

k + O (∥∆u t+∆t

k ∥2)
(10.115)

As the increment of the displacement field between two consecutive iterations is
assumed to be small, it can be concluded that:

∥∆u t+∆t

k ∥ ≪ 1 =⇒ g
(
u t+∆t

k+1

)
≈ g (u t+∆t

k )+ dg

du
(u t+∆t

k ) ∆u t+∆t

k = 0 (10.116)

Or equivalently:
dg

du
(u t+∆t

k ) ∆u t+∆t

k ≈ −g (u t+∆t

k ) (10.117)

Hence, the equation to be solved in order to obtain the increment of the displacement
field between two consecutive iterations turns out to be:

dg

du
(u t+∆t

k ) ∆u t+∆t

k ≈ −g (u t+∆t

k )

g (u) = f (u) − P t+∆t

dg

du
(u) = df

du
(u)

 =⇒ df

du
(u t+∆t

k ) ∆u t+∆t

k ≈ P t+∆t−f (u t+∆t

k )

(10.118)
Once the above equation is solved, and the displacement field increment is known,

this increment is added to the previous displacement field. And the displacement field
corresponding to the current iteration turns out to be:

u t+∆t

k+1 = u t+∆t

k + ∆u t+∆t

k (10.119)

10.13.2. Convergence criterion

A criterion is required to stop the iterative procedure. It can be based on the
difference between the displacement field obtained after consecutive iterations. The
absolute and relative difference between them are defined as:

∥u t+∆t

k+1 − u t+∆t

k ∥ = ∥∆u t+∆t

k ∥
∥u t+∆t

k+1 − u t+∆t
k ∥

∥u t+∆t
k+1 ∥

= ∥∆u t+∆t
k ∥

∥u t+∆t
k+1 ∥

(10.120)

And the maximum admitted absolute and relative differences are defined by the
parameters Eu and εu, respectively. These parameters are user defined and depend on
the precision required.

∥∆u t+∆t

k ∥ ≤ Eu

∥∆u t+∆t
k ∥

∥u t+∆t
k+1 ∥

≤ εu ⇐⇒ ∥∆u t+∆t

k ∥ ≤ εu ∥u t+∆t

k+1 ∥
(10.121)
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10.14. Newton-Raphson equation

The above inequations can be gathered, and a reasonable convergence criterion
applied to the displacement field is shown below.

∥∆u t+∆t

k ∥ ≤ max
{
εu ∥u t+∆t

k+1 ∥ , Eu

}
(10.122)

The first term of the above criterion might be too small if the displacement field
experimented by the solid is small. To achieve convergence only based on this criterion
becomes not possible. Thus, the addition of the second term becomes necessary to
define a suitable convergence criterion. In case the displacement field is small, this
second value is the one that will rule the criterion.

But the convergence criterion can not be based exclusively on the difference of
the displacement field obtained in consecutive iterations. Convergence may not have
been reached, even if this difference is small. To solve this inconvenience, the same
criterion can be applied to the residual obtained after each iteration. In this case,
the maximum residual, and the maximum relative residual calculated with respect to
the one corresponding to the initial approximation, are defined by the parameters Eg

and εg. ∣∣g (u t+∆t

k+1

) ∣∣ ≤ Eg∣∣g (u t+∆t
k+1

) ∣∣∣∣g (u t)
∣∣ ≤ εg ⇐⇒

∣∣g (u t+∆t

k+1

) ∣∣ ≤ εg

∣∣g (u t)
∣∣ (10.123)

The above inequations can be gathered, and the residual criterion becomes:∣∣g (u t+∆t

k+1

) ∣∣ ≤ max
{
εg

∣∣g (u t)
∣∣ , Eg

}
(10.124)

Therefore, if the displacement convergence criterion (10.122) and the residual one
(10.124) are taken into account, the convergence criterion to stop the iterative proce-
dure turns out to be:

convergence✓ ⇐⇒


∥∆u t+∆t

k ∥ ≤ max
{
εu ∥u t+∆t

k+1 ∥ , Eu

}
and∣∣g (u t+∆t

k+1

) ∣∣ ≤ max
{
εg

∣∣g (u t)
∣∣ , Eg

} (10.125)

10.14. Newton-Raphson equation

The equation to be solved at each iteration of the Newton-Raphson method was
defined in (10.118) as:

df

duL

(
u t+∆t

k,L

)
∆u t+∆t

k,L = P t+∆t − f
(
u t+∆t

k,L

)
(10.126)

Where the scalar function f represents the left-hand side of the Lagrangian weak form,
and was defined in (10.72) as:

f (uL) =
∫∫∫

Ω0

δĒ
T

G,L S̄L dΩ0 (10.127)
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To compute the gradient of the above scalar function, it is taken into account that
the reference material domain does not depend on the displacement field. Thus, the
derivative can be taken inside the integral.

df

duL
= d

duL

(∫∫∫
Ω0

δĒ
T

G,L S̄L dΩ0

)
=
∫∫∫

Ω0

d

duL

(
δĒ

T

G,L S̄L

)
dΩ0

(10.128)

And the derivative of the above scalar product can be calculated according to the
result obtained in (B.10), where the gradient of a generic scalar product is computed.

df

duL
=
∫∫∫

Ω0

d

duL

(
δĒ

T

G,L S̄L

)
dΩ0

=
∫∫∫

Ω0

(
S̄

T

L

d
(
δĒG,L

)
duL

+ δĒ
T

G,L

dS̄L

duL

)
dΩ0

=
∫∫∫

Ω0

S̄
T

L

d
(
δĒG,L

)
duL

dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

dS̄L

duL
dΩ0

(10.129)

The scalar product between this gradient and the displacement field increment is
now computed.

df

duL
∆uL =

(∫∫∫
Ω0

S̄
T

L

d
(
δĒG,L

)
duL

dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

dS̄L

duL
dΩ0

)
∆uL

=
∫∫∫

Ω0

S̄
T

L

d
(
δĒG,L

)
duL

∆uL dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

dS̄L

duL
∆uL dΩ0

=
∫∫∫

Ω0

S̄
T

L

(
d
(
δĒG,L

)
duL

∆uL

)
︸ ︷︷ ︸

∆
(

δĒG,L

)
dΩ0 +

∫∫∫
Ω0

δĒ
T

G,L

(
dS̄L

duL
∆uL

)
︸ ︷︷ ︸

∆S̄L

dΩ0

=
∫∫∫

Ω0

δĒ
T

G,L ∆S̄L dΩ0 +
∫∫∫

Ω0

S̄
T

L ∆
(
δĒG,L

)
dΩ0

(10.130)
Let’s focus on the second term. The Voigt notation (A.14) is applied to move from

vector to tensor notation, since this addend is easier to manipulate if it is expressed in
tensor notation.

The vectorial form of the second Piola-Kirchhoff stress tensor becomes:

S̄L =



S11

S22

S33

S12

S13

S23


=⇒ SL =

S11 S12 S13

S12 S22 S23

S13 S23 S33

 (10.131)
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10.14. Newton-Raphson equation

And the vectorial form of the Green-Lagrange strain tensor also recovers its tensor
definition.

∆
(
δĒG,L

)
=



∆ (δEG)11

∆ (δEG)22

∆ (δEG)33

2 ∆ (δEG)12

2 ∆ (δEG)13

2 ∆ (δEG)23


=⇒ ∆

(
δEG,L

)
=

∆ (δEG)11 ∆ (δEG)12 ∆ (δEG)13

∆ (δEG)12 ∆ (δEG)22 ∆ (δEG)23

∆ (δEG)13 ∆ (δEG)23 ∆ (δEG)33



(10.132)
This tensor notation allows to rewrite the scalar product between both vectors as

the double dot product between their equivalent tensor expressions.

S̄
T

L ∆
(
δĒG,L

)
= ∆

(
δEG,L

)
: SL (10.133)

Therefore, equation (10.130) can be rewritten as:

df

duL
∆uL =

∫∫∫
Ω0

δĒ
T

G,L ∆S̄L dΩ0 +
∫∫∫

Ω0

S̄
T

L ∆
(
δĒG,L

)
dΩ0

=
∫∫∫

Ω0

δĒ
T

G,L ∆S̄L dΩ0 +
∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0

(10.134)

The first term of the above scalar product is the so-called material component,
and the second one turns out to be the geometric component. Both components are
extensively analysed in the following subsections, and arise when applying the Newton-
Raphson method to solve the Lagrangian weak form.

10.14.1. Material component

The first term of the previous equation is the so-called material component, since
it depends on the constitutive tensor of the material. This dependency will be proved
later on in this section. ∫∫∫

Ω0

δĒ
T

G,L ∆S̄L dΩ0 (10.135)

This component depends on the vectorial form of the second Piola-Kirchhoff stress
tensor increment. The gradients of the displacement field increment are assumed to
be small at each iteration of the Newton-Raphson procedure. If this assumption is
fulfilled, the increment of the vectorial form of the second Piola-Kirchhoff stress tensor
was defined in (7.127) as:

∆S̄L ≈ C2 ∆ĒG,L with C2 = dS̄L

dĒG,L

(10.136)

Moreover, the vectorial form of the Green-Lagrange strain tensor increment was
defined in (4.114) as:

∆ĒG,L =
(
AC +A

)
∆J̄L (10.137)

205



Chapter 10. Total Lagrangian finite element analysis

But the vectorial form of the displacement gradient tensor increment can be defined
by means of the displacement field increment as:

∆J̄L =



∂∆u1

∂r0,1

∂∆u1

∂r0,2

∂∆u1

∂r0,3

∂∆u2

∂r0,1

∂∆u2

∂r0,2

∂∆u2

∂r0,3

∂∆u3

∂r0,1

∂∆u3

∂r0,2

∂∆u3

∂r0,3



=



∂

∂r0,1
0 0

∂

∂r0,2
0 0

∂

∂r0,3
0 0

0 ∂

∂r0,1
0

0 ∂

∂r0,2
0

0 ∂

∂r0,3
0

0 0 ∂

∂r0,1

0 0 ∂

∂r0,2

0 0 ∂

∂r0,3




∆u1

∆u2

∆u3

 = ∂0 ∆uL (10.138)

And the displacement field increment can be approximated by the trial functions
as:

∆uL ≈ ∆uh

L =
η∑

i=1

[
ϕi,L I

]︸ ︷︷ ︸
ϕi,L

∆αi

=
η∑

i=1
ϕi,L ∆αi

=
[
ϕ1,L · · · ϕη,L

]
∆α1

...
∆αη


= ϕL ∆α

(10.139)

The substitution of the above approximation into the vectorial form of the displace-
ment gradient tensor increment (10.138) leads to:

∆J̄L = ∂0 ∆uL

∆uL ≈ ϕL ∆α

}
=⇒


∆J̄L ≈ ∂0

(
ϕL ∆α

)
=
(
∂0 ϕL

)
∆α

= G0 ∆α
(10.140)

Therefore, the vectorial form of the Green-Lagrange strain tensor increment (10.137)
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finally becomes:

∆ĒG,L =
(
AC +A

)
∆J̄L

∆J̄L ≈ G0 ∆α

 =⇒


∆ĒG,L ≈

(
AC +A

)(
G0 ∆α

)
=
[(
AC +A

)
G0

]
∆α

= B∆α

(10.141)

Where the tensor that defines the above relation is:

B =
(
AC +A

)
G0 (10.142)

The substitution of equations (10.83), (10.136) and (10.141) into the primal defini-
tion of the material component (10.135) leads to:

δĒG,L ≈ Bβ

∆S̄L ≈ C2 ∆ĒG,L

∆ĒG,L ≈ B∆α

 =⇒


∫∫∫

Ω0

δĒ
T

G,L ∆S̄L dΩ0 ≈
∫∫∫

Ω0

(
Bβ

)T
(
C2

(
B∆α

))
dΩ0

= βT

(∫∫∫
Ω0

BTC2B dΩ0

)
∆α

(10.143)
As proved in the previous result, this term depends on the constitutive tensor C2.

For this reason, this component is usually known as the material component.

10.14.2. Geometric component

The second term of the equation (10.134) is the so-called geometric component,
since it depends on the stress state and the geometry of the reference material domain.
This dependence will be proved later on in this section.∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0 (10.144)

The increment of the Green-Lagrange strain tensor variation was defined in (4.101)
as:

∆
(
δEG,L

)
= 1

2

(
δJL

T ∆JL + ∆JL
T δJL

)
(10.145)

The above equation holds if the gradients of the displacement field increments are
small. As stated in the previous section, the gradients of the displacement field in-
crement are assumed to be small at each step of the iterative procedure. Hence, the
application of this equation is justified.

If the increment of the Green-Lagrange strain tensor variation (10.145) is introduced
into the definition of the geometric component (10.144), and the double dot product
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property exposed in (A.64) is taken into account, the geometric component becomes:∫∫∫
Ω0

∆
(
δEG,L

)
: SL dΩ0 =

=1
2

∫∫∫
Ω0

(
δJL

T ∆JL + ∆JL
T δJL

)
: SL dΩ0

=1
2

∫∫∫
Ω0

(
δJL

T ∆JL

)
: SL dΩ0 + 1

2

∫∫∫
Ω0

(
∆JL

T δJL

)
: SL dΩ0

=1
2

∫∫∫
Ω0

(
δJL

T ∆JL

)
: SL dΩ0 + 1

2

∫∫∫
Ω0

(
δJL

T ∆JL

)T

: SL dΩ0

=1
2

∫∫∫
Ω0

(
δJL

T ∆JL

)
: SL dΩ0 + 1

2

∫∫∫
Ω0

(
δJL

T ∆JL

)
: SL dΩ0

=
∫∫∫

Ω0

(
δJL

T ∆JL

)
: SL dΩ0

(10.146)

Moreover, the integrand of the above equation can be rewritten in a more convenient
form, as:∫∫∫

Ω0

∆
(

δEG,L

)
: SL dΩ0

=
∫∫∫

Ω0

(
δJL

T ∆JL

)
: SL dΩ0

=
∫∫∫

Ω0


∂δu1

∂r0,1

∂δu1

∂r0,2

∂δu1

∂r0,3
∂δu2

∂r0,1

∂δu2

∂r0,2

∂δu2

∂r0,3
∂δu3

∂r0,1

∂δu3

∂r0,2

∂δu3

∂r0,3


T 

∂∆u1

∂r0,1

∂∆u1

∂r0,2

∂∆u1

∂r0,3
∂∆u2

∂r0,1

∂∆u2

∂r0,2

∂∆u2

∂r0,3
∂∆u3

∂r0,1

∂∆u3

∂r0,2

∂∆u3

∂r0,3

 :

[
S11 S12 S13
S12 S22 S23
S13 S23 S33

]
dΩ0

=
∫∫∫

Ω0



∂δu1

∂r0,1
∂δu1

∂r0,2
∂δu1

∂r0,3
∂δu2

∂r0,1
∂δu2

∂r0,2
∂δu2

∂r0,3
∂δu3

∂r0,1
∂δu3

∂r0,2
∂δu3

∂r0,3



T



S11 S12 S13 0 0 0 0 0 0
S12 S22 S23 0 0 0 0 0 0
S13 S23 S33 0 0 0 0 0 0
0 0 0 S11 S12 S13 0 0 0
0 0 0 S12 S22 S23 0 0 0
0 0 0 S13 S23 S33 0 0 0
0 0 0 0 0 0 S11 S12 S13
0 0 0 0 0 0 S12 S22 S23
0 0 0 0 0 0 S13 S23 S33





∂∆u1

∂r0,1
∂∆u1

∂r0,2
∂∆u1

∂r0,3
∂∆u2

∂r0,1
∂∆u2

∂r0,2
∂∆u2

∂r0,3
∂∆u3

∂r0,1
∂∆u3

∂r0,2
∂∆u3

∂r0,3



dΩ0

=
∫∫∫

Ω0

δJ̄L
T
ŜL ∆J̄L dΩ0

(10.147)
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10.14. Newton-Raphson equation

Where ŜL is composed by three second Piola-Kirchhoff stress tensors, located in the
diagonal of a diagonal tensor.

The substitution of the vectorial forms of both the displacement gradient tensor
variation (10.80) and the displacement gradient tensor increment (10.140) into the
primal expression of the geometric component (10.144) leads to:

δJ̄L ≈ G0 β

∆J̄L ≈ G0 ∆α

}
=⇒



∫∫∫
Ω0

∆
(
δEG,L

)
: SL dΩ0 =

∫∫∫
Ω0

δJ̄L
T

ŜL ∆J̄L dΩ0

≈
∫∫∫

Ω0

(
G0 β

)T
ŜL

(
G0 ∆α

)
dΩ0

= βT

(∫∫∫
Ω0

G0
T ŜLG0 dΩ0

)
∆α

(10.148)
According to this result, this component depends both on the second Piola-Kirchhoff

stress tensor and the tensor G0, which contains the derivatives of the trial functions
with respect to the reference material domain. Therefore, this term turns out to depend
on both the stress field and the geometry of the reference configuration. For this reason,
it is usually known as the geometric component.

10.14.3. Tangent stiffness

The sum of the material component (10.143) and the geometric one (10.148) leads
to the definition of the tangent stiffness.

df

duL
∆uL =

∫∫∫
Ω0

δĒ
T

G,L ∆S̄L dΩ0 +
∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0

= βT

(∫∫∫
Ω0

BTC2B dΩ0 +
∫∫∫

Ω0

G0
T ŜLG0 dΩ0

)
∆α

= βT

(
KM +KG

)
∆α

= βTKT ∆α

(10.149)

Where KT is usually known as the tangent stiffness matrix, which is composed by
two terms: the material component KM and the geometric stiffness matrix KG.

KT =KM +KG

KM =
∫∫∫

Ω0

BTC2B dΩ0

KG =
∫∫∫

Ω0

G0
T ŜLG0 dΩ0

(10.150)
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Material component

The material component of the tangent stiffness was defined in (10.150) as:

KM =
∫∫∫

Ω0

BTC2B dΩ0 (10.151)

This component depends on the constitutive tensor, that is, it depends on the
mechanical properties of the material.

If it is compared to the linear stiffness matrix (9.108), it can be concluded that both
matrices have similar structure. But the linear one is constant, and does not depend
on the displacement field. However, this one does depend on the displacement field,
since B (10.142) depends on it.

The substitution of the tensor B, according to its decomposition outlined in (10.84),
leads to:

KM =
∫∫∫

Ω0

BTC2B dΩ0

=
∫∫∫

Ω0

(
BL,0 +BN,0

)T
C2

(
BL,0 +BN,0

)
dΩ0

=
∫∫∫

Ω0

BL,0
TC2BL,0 dΩ0 +

∫∫∫
Ω0

BL,0
TC2BN,0 dΩ0+

+
(∫∫∫

Ω0

BL,0
TC2BN,0 dΩ0

)T

+
∫∫∫

Ω0

BN,0
TC2BN,0 dΩ0

(10.152)

Therefore, the material component is stated by three different terms:

KM =K ′
M +K ′′

M + (K ′′
M)T +K ′′′

M

K ′
M =

∫∫∫
Ω0

BL,0
TC2BL,0 dΩ0

K ′′
M =

∫∫∫
Ω0

BL,0
TC2BN,0 dΩ0

K ′′′
M =

∫∫∫
Ω0

BN,0
TC2BN,0 dΩ0

(10.153)

Geometric stiffness

The second component of the tangent stiffness is the so-called geometric stiffness,
and it was defined in (10.150) as:

KG =
∫∫∫

Ω0

G0
T ŜLG0 dΩ0 (10.154)

On the one hand, this component depends on the second Piola-Kirchhoff stress
tensor. That is, it depends on the stress state that the solid undergoes. On the other
hand, it also depends on G0, which contains the derivatives of the trial functions with
respect to the reference material domain. Therefore, this term also depends on the
geometry of the reference configuration.
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10.14. Newton-Raphson equation

10.14.4. Iterative procedure overview

To sum up, the equation to be solved at each step of the Newton-Raphson method
is the one presented in (10.126).

df

duL

(
u t+∆t

k,L

)
∆u t+∆t

k,L = P t+∆t − f
(
u t+∆t

k,L

)
(10.155)

As obtained in (10.149), the left-hand side of the above equation can be equivalently
written as:

df

duL
(uL) ∆uL = βTKT (uL) ∆α (10.156)

And the two addends that compose the right-hand side were defined in (10.109),
and (10.96), respectively. The definition of the tensor B obtained in (10.142) is also
recalled.

P t+∆t = βT

(∫∫∫
Ω0

ϕL
Tb t+∆t

L ρ 0
L dΩ0 +

∫∫
Γσ

0

ϕL
Tg t+∆t

0,L dΓ0

)

f (uL) = βT

∫∫∫
Ω0

BT S̄L dΩ0 = βT

∫∫∫
Ω0

G0
T

(
AC +A

)T

S̄L dΩ0

(10.157)

The substitution of (10.156) and (10.157) into (10.155) leads to the system of lin-
ear equations to be solved in order to obtain the increment of the displacement field
corresponding to the iteration k + 1.

KT

(
u t+∆t

k,L

)
∆αk =

∫∫∫
Ω0

ϕL
Tb t+∆t

L ρ 0
L dΩ0 +

∫∫
Γσ

0

ϕL
Tg t+∆t

0,L dΓ0

−
[∫∫∫

Ω0

G0
T

(
AC +A

)T

S̄L dΩ0

] ∣∣∣∣∣
uL=u t+∆t

k,L

(10.158)

Where the components of the tangent stiffness matrix were defined in detail in
section 10.14.3. Moreover, the discretization methodology and the criteria taken into
account to define the trial functions are the same as those exposed in linear theory.
They can be checked in section 9.17 and 9.18, respectively.

Once the above linear system is solved, the displacement field is updated, and
the convergence criterion (10.125) is verified. If convergence is achieved, the iterative
procedure is stopped, and the last iterative result is adopted as the displacement field
corresponding to the current load step. If not, the process outlined in this section is
repeated in the next iteration.

∆αk =⇒ ∆u t+∆t

k,L = ϕL ∆αk

=⇒ u t+∆t

k+1,L = u t+∆t

k,L + ∆u t+∆t

k,L

=⇒ Convergence?
{

Yes =⇒ u t+∆t

k+1,L = u t+∆t

L (stop)
No =⇒ u t+∆t

k+2,L = u t+∆t

k+1,L + ∆u t+∆t

k+1,L (continue)
(10.159)
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10.14.5. Convergence problems

The Newton-Raphson iterative procedure fails to converge if the tangent stiffness
matrix is singular. Figure 10.4 represents a single one degree of freedom equilibrium
path. The tangent stiffness becomes singular when the slope of the tangent becomes
zero. Hence, the Newton-Raphson technique may fail to converge if passing these limit
points is required. Many techniques have been proposed to overcome this convergence
problem.

The first authors who worked on this topic were Wempner and Riks. Wempner
introduced a generalized arc-length method in order to facilitate the incremental cal-
culations near limit points [Wempner, 1971], while Riks focused on the computation of
nonlinear equilibrium paths with continuation through limit points [Riks, 1979].

Later on, Crisfield modified Riks’ approach in order to obtain a suitable algorithm
for its use in conjunction with the finite element method, and improved the convergence
characteristics of the previous methods [Crisfield, 1981]. Ramm reviewed the prior
methods, and discussed the necessary modifications for their implementation [Ramm,
1981].

The arc-length method, also known as a path following technique, evolved into
a commonly used tool in nonlinear finite element analysis. Many authors proposed
variations of this method, such as Forde and Stiemer, who presented a new general for-
mulation, with a simplified procedure and a reduction in computational effort [Forde
& Stiemer, 1987]. Fafard and Massicotte worked on another variation called the mod-
ified Crisfield-Ramm method, based on the former methods proposed by Crisfield and
Ramm [Fafard & Massicotte, 1993]. This improved procedure combines the advantages
of its two parent methods.

However, even the arc-length methods can fail to converge if they have to deal
with very sharp variations of the tangent stiffness at the contours of limit points. To
overcome these sharp variations, a novel algorithm was proposed in Hellweg & Crisfield
[1998].

The original algorithm, and its subsequent modifications, are included in Memon &
Su [2004], where the developments achieved in the previous two decades are reviewed.

10.15. Strain and stress fields update

Once the convergence has been achieved, the displacement field of the current load
step t+ ∆t is known. The next step is to compute its corresponding strain and stress
fields.

Before solving this load step, the previous one was completely defined. Hence, the
displacement, strain, and stress fields corresponding to the load step t are:

u t

L (r0) =⇒ E t

G,L

(
u t

L (r0)
)

=⇒ S t

L

(
E t

G,L

(
u t

L (r0)
))

(10.160)

Let’s move then to the next load step t+∆t, where the displacement field is obtained
by applying the iterative procedure exposed in the previous section. The difference
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between the displacement field of consecutive load steps defines the displacement field
increment.

∆u t

L = u t+∆t

L − u t

L (10.161)

If the gradients of the displacement field increment are small, the Green-Lagrange
strain tensor increment, and the second Piola-Kirchhoff stress tensor increment can be
computed according to equations (4.114) and (7.127).

∥∥∥∥d∆u t
L

dr0

∥∥∥∥ ≪ ∥I∥ =⇒

∆Ē t

G,L =
(
AC +A

)
∆J̄ t

L

∆S̄ t

L = C2

(
Ē

t

G,L

)
∆Ē t

G,L

(10.162)

Therefore, the updated strain and stress fields are obtained by adding the above
increments to the previous results.

Ē
t+∆t

G,L = Ē
t

G,L + ∆Ē t

G,L

S̄
t+∆t

L = S̄
t

L + ∆S̄ t

L

(10.163)

10.16. Overview and conclusions

10.16.1. Nonlinear analysis strategy

In nonlinear analysis, the solid is supposed to experiment large displacements and
large displacement gradients.

On the one hand, the assumption of large displacements implies that the reference
configuration and the deformed domain can not be considered coincident. Thus,
the equilibrium equations have to be imposed over the deformed material domain,
which is the unknown to be solved. As the initial and deformed configurations
are not considered equivalent, the determinant of the deformation gradient tensor
is not equal to one, and the Lagrangian and Eulerian descriptions of a given
magnitude are not coincident.

On the other hand, the displacement gradients are assumed to be large, so the
approximate polar decomposition of the deformation gradient tensor is not ac-
ceptable. To properly decompose the deformation gradient tensor, an eigenvalue
problem has to be solved. Once this problem is solved, the rotation tensor and
the strain tensor can be defined, and the deformation gradient tensor can be de-
composed as the product between both tensors. Furthermore, the Cauchy stress
tensor can be expressed by means of both tensors.

This work is focused on static analysis. That is, the solid adopts a deformed con-
figuration in static equilibrium after the application of the external loads. Therefore,
both the equilibrium of forces and moments have to be fulfilled. It is recalled that the
Cauchy stress tensor is symmetric if the angular momentum conservation is verified.
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Chapter 10. Total Lagrangian finite element analysis

If the angular momentum is conserved, it can be stated that the sum of all torques is
zero, and the equilibrium of moments is fulfilled.

The external applied forces are supposed to not depend on the displacement field.
This assumption can be made when dealing with usual load cases, such as usage struc-
tural overload or self-weight loads.

In addition, the mass is also considered to not vary. Therefore, the mass con-
servation leads to the equation that defines the value of the density field over time.
The density turns out to be defined by means of both the initial density field and the
determinant of the deformation gradient tensor.

Besides the equilibrium equations, the boundary conditions have to be properly
defined to obtain the mathematical model. Two types of boundary conditions are
differentiated: the essential boundary conditions and the natural ones. The essential
boundary conditions are based on the definition of the displacement field on a specific
solid surface, whereas the natural boundary conditions define the stress vector on the
surface where the external surface forces are applied.

Finally, a compatibility equation and a constitutive one have to be stated in order
to complete the mathematical model. The compatibility equation defines the strain
field by means of the displacement field, whereas the constitutive equation states the
stress field in terms of the strain field.

10.16.2. Total Lagrangian nonlinear finite element analysis

The original form of the problem is composed by the equations that compose the
mathematical model, written in terms of the residuals of both the equilibrium equation
and the natural boundary condition. This original form is usually known as the strong
form, and the weighted residual method is then applied to obtain its corresponding
weak form.

Under the assumptions made in nonlinear analysis, the weak form turns out to
be an Eulerian one. That is, it is composed by integrals defined over the unknown
deformed domain, and the magnitudes involved in it are described according to their
Eulerian description. This is an important issue, since a computation over an unknown
material domain can not be performed. To overcome this inconvenience, the Eulerian
weak form can be manipulated in order to obtain its equivalent Lagrangian form.

According to the result obtained in this chapter, the equivalent Lagrangian weak
form is composed by integrals defined over the well-known initial configuration, and the
magnitudes are described according to their Lagrangian description. The second Piola-
Kirchhoff stress tensor and the Green-Lagrange strain tensor variation are involved in
the resulting Lagrangian weak form.

Since the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain ten-
sor are conjugate magnitudes, it seems reasonable to adopt the equation that defines
the relation between both magnitudes as the constitutive equation. Both magnitudes
remain constant if a rigid motion (rotation and/or translation) is applied to the solid.
This is an important property to deal with a large displacement analysis, since it can
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be guaranteed that no additional strains nor stresses will appear when a rigid motion
is applied.

Therefore, the Green-Lagrange strain tensor is adopted to describe the strain field,
and the second Piola-Kirchhoff stress tensor represents its corresponding stress field.
And the equation that defines the Green-Lagrange strain tensor in terms of the dis-
placement gradient tensor becomes then the compatibility equation, whereas the equa-
tion that states the relation between the second Piola-Kirchhoff stress tensor and the
Green-Lagrange strain tensor is the constitutive equation adopted in this nonlinear
analysis.

The Lagrangian weak form turns out to be a nonlinear equation whose unknown
is the displacement field. This nonlinear equation has to be solved in order to obtain
the displacement field that the solid undergoes. An incremental loading procedure is
applied in order to properly carry out the nonlinear analysis. The external forces are
applied according to the incremental loading process, and the initial material domain
becomes the reference configuration with respect to which all variables are defined.

The main unknown to obtain is the displacement field that the solid experiments.
Once the displacement field is known, the compatibility equation allows to define its
corresponding strain field, and the constitutive equation leads to the stress field corre-
sponding to the previous strain field. Then, the reaction that appears on the surface
where the essential boundary condition is applied can be calculated, if needed.

The root of the nonlinear equation can be obtained by means of an iterative method.
The Newton-Raphson method is a suitable option that guarantees quadratic conver-
gence if the initial solution approximation is close enough to the root. The incremental
load after each load step is assumed to be so small that the displacement field cor-
responding to consecutive load steps can be considered to be close enough. If this
assumption is fulfilled, the displacement field obtained in the previous load step can be
adopted to start the iterative procedure at each load step. This allows to start the it-
erative method from a close approximation to the root, and the quadratic convergence
should be guaranteed.

The iterative procedure is stopped according to a given criterion, which can be
based on both the difference between the displacement field obtained after consecutive
iterations and the residual obtained after each iteration.

The Newton-Raphson method leads to a system of linear equations which has to
be solved to obtain the displacement field corresponding to each step of the iterative
process. The matrix of this system of equations is the so-called tangent stiffness, which
is composed by the sum of two terms: the material and the geometric components. The
material component turns out to depend on the mechanical properties of the material,
whereas the geometric component depends on both the stress state and the geometry
of the reference material domain.

Once the system of linear equations is solved, the displacement field can be updated,
and the convergence criterion has to be verified. If convergence is achieved, the iterative
procedure is stopped, and the last iterative result is adopted as the displacement field
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corresponding to the current load step. If not, the process is repeated until reaching
convergence.

It should be noted that the Newton-Raphson method may fail to converge if the
tangent stiffness matrix becomes singular. To deal with these limit points, many tech-
niques have been proposed to successfully pass them. A review of these techniques has
also been outlined in this chapter.
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Chapter 11
Updated Lagrangian finite element

analysis

11.1. Introduction

The finite element formulation derived in the previous chapter is usually known as
the Total Lagrangian one, since the initial material domain is adopted as the reference
configuration along the entire incremental loading process.

This consideration implies that the Lagrangian weak form that leads to the finite
element formulation turns out to be composed by integrals defined over the undeformed
configuration, which is well-known. Moreover, the magnitudes involved in it are de-
scribed with respect to the initial configuration. That is, they are defined according to
their Lagrangian description.

In this chapter, the updated approach is adopted instead of the total one. Accord-
ing to this updated point of view, the last computed material domain becomes the
new reference configuration. Once each load step is solved, its corresponding material
domain becomes known, and this configuration is taken as the reference one for the
next load step.

11.2. Conceptual problem and analysis hypotheses

In this chapter, the same problem as the one stated in the previous chapters is
faced. The conceptual problem was described in section 9.2.

On the one hand, the definition of the initial configuration and the deformed ma-
terial domain were presented in sections 9.3 and 10.2, respectively. Furthermore, two
types of boundary conditions are taken into consideration: the essential boundary
conditions (section 10.6.1), and the natural ones (section 10.6.2).

On the other hand, the structural analysis is carried out under the assumption that
the solid experiments large displacements and large displacement gradients after the

217



Chapter 11. Updated Lagrangian finite element analysis

application of the external forces. The implications of these hypotheses are detailed in
sections 10.3.1 and 10.3.2, respectively.

11.3. Eulerian weak form

For this study, the Eulerian weak form obtained in section 10.9.2 of the previous
chapter holds.

According to this weak form, the main aim is to obtain the displacement field that
verifies the essential boundary condition. Moreover, the computation of the reaction
that appears on the surface where the essential boundary condition is applied may also
be required.

uL (r0) ∈ Hu | uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (11.1)
gR,E (r) r ∈ Γu (11.2)

The above unknowns verify the following equation:∫∫∫
Ω

Tr
(
dωE

dr
σE

)
dΩ =

=
∫∫∫

Ω
ωE

TbE ρE dΩ +
∫∫

Γσ

ωE
TgE dΓ +

∫∫
Γu

ωE
TgR,E dΓ ∀ωE ∈ Hω

(11.3)

This equation is composed by integrals defined over the deformed material domain,
which is unknown, and the magnitudes are described according to their Eulerian de-
scription.

11.3.1. Equivalent left-hand side

The left-hand side of the Eulerian weak form obtained in the previous section is:∫∫∫
Ω

Tr
(
dωE

dr
σE

)
dΩ (11.4)

An equivalent expression of the above integrand can be obtained, if the property of
the trace operator stated in (A.81) is applied:

Tr
(
dωE

dr
σE

)
= dωE

dr
: σE

T (11.5)

Let’s consider the test functions as a displacement field variation, compatible with
the essential boundary conditions. The modified displacement field and its correspond-
ing displacement gradient tensor are:

ωL = δuL =⇒ u ′
L = uL + δuL

=⇒ J ′
L = du ′

L

dr0
= duL

dr0
+ dδuL

dr0
= JL + δJL

(11.6)
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11.3. Eulerian weak form

Let’s also consider that the gradients of the displacement field variation are small.
Hence, the gradient tensor of the displacement field variation fulfils the following con-
dition.

∥δJL∥ ≪ ∥I∥ (11.7)

The equivalence between the Lagrangian and the Eulerian descriptions of the mod-
ified displacement field is:

u ′
L = uL + δuL ⇐⇒ u ′

E

∣∣∣
r=rL(r0)

=
(
uE + δuE

)∣∣∣
r=rL(r0)

(11.8)

Since the gradients of the displacement field variation fulfil condition (11.7), it can
be stated that the gradients of the Eulerian displacement field variation are small, too.
To prove it, the equation that defines the derivative of a given Lagrangian magnitude
with respect to the reference position vector (1.20) and the definition of the deformation
gradient tensor by means of the displacement gradient tensor (1.12) are recalled, as
well as the assumption that the solid behaves with large displacement gradients.

δJL = dδuL

dr0
= dδuE

dr

∣∣∣∣
r=rL(r0)

F L

∥δJL∥ ≪ ∥I∥

F L = I + JL

∥JL∥ ̸≪ ∥I∥

}
=⇒ ∥F L∥ ̸≪ ∥I∥


=⇒

∥∥∥∥dδuE

dr

∥∥∥∥ ≪ ∥I∥ (11.9)

On the other hand, the gradient tensor of the Eulerian displacement field variation
can be decomposed as the sum of a symmetric tensor and a skew-symmetric one. If the
Eulerian displacement field variation is interpreted as a displacement variation applied
on the deformed geometry, and taking into account that its gradients are small, the
symmetric term can be interpreted as an infinitesimal strain tensor variation defined
with respect to the deformed geometry.

dδuE

dr
= δEE + δWE =⇒


δEE = 1

2

[
dδuE

dr
+
(
dδuE

dr

)T]
=
[
δEij

]
i=1,...,n
j=1,...,n

δWE = 1
2

[
dδuE

dr
−
(
dδuE

dr

)T]
=
[
δWij

]
i=1,...,n
j=1,...,n

(11.10)
Where the components of the symmetric component and the skew-symmetric one

verify that:
δEE

T = δEE ⇐⇒ δEji = δEij

δWE
T = −δWE ⇐⇒ δWji =

{
−δWij if i ̸= j

0 if i = j

(11.11)

If the previous decomposition and the symmetry of the Cauchy stress tensor are
taken into account, as well as the nullity of the double dot product between a skew-
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symmetric tensor and a symmetric one, the integrand (11.5) can be reduced to:

Tr
(
dδuE

dr
σE

)
= dδuE

dr
: σE

T =
(
δEE + δWE

)
: σE = δEE : σE + δWE : σE︸ ︷︷ ︸

=0

= δEE : σE

(11.12)
The integration of the above equation over the deformed material domain leads to

an equivalent expression of the left-hand side (11.4).

∫∫∫
Ω

Tr
(
dδuE

dr
σE

)
dΩ =

∫∫∫
Ω
δEE : σE dΩ (11.13)

11.3.2. Switch to vector notation

The magnitudes involved in the previous equivalent left-hand side are tensor ones.
However, it is convenient to switch to vector notation since this one is easier to deal
with.

The test function gradient tensor was decomposed in (11.10) into the sum of a
symmetric and a skew-symmetric tensor. Its symmetric component was defined as:

δEE = 1
2

[
dδuE

dr
+
(
dδuE

dr

)T]
(11.14)

Where the gradient tensor of the Eulerian displacement field variation is:

dδuE

dr
=


∂δu1

∂r1

∂δu1

∂r2

∂δu1

∂r3

∂δu2

∂r1

∂δu2

∂r2

∂δu2

∂r3

∂δu3

∂r1

∂δu3

∂r2

∂δu3

∂r3

 (11.15)

Hence, the components of the symmetric term turn out to be:

δEE =



∂δu1

∂r1

1
2

(
∂δu1

∂r2
+ ∂δu2

∂r1

)
1
2

(
∂δu1

∂r3
+ ∂δu3

∂r1

)
1
2

(
∂δu1

∂r2
+ ∂δu2

∂r1

)
∂δu2

∂r2

1
2

(
∂δu2

∂r3
+ ∂δu3

∂r2

)
1
2

(
∂δu1

∂r3
+ ∂δu3

∂r1

)
1
2

(
∂δu2

∂r3
+ ∂δu3

∂r2

)
∂δu3

dr3


(11.16)

To move from tensor to vector notation, the Voigt notation (section A.14) is applied.
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11.3. Eulerian weak form

Thus, the vectorial form of the above symmetric tensor is:

δEE =

δE11 δE12 δE13

δE12 δE22 δE23

δE13 δE23 δE33

 =⇒ δĒE =



δE11

δE22

δE33

2 δE12

2 δE13

2 δE23


=



∂δu1

∂r1

∂δu2

∂r2

∂δu3

∂r3

∂δu1

∂r2
+ ∂δu2

∂r1

∂δu1

∂r3
+ ∂δu3

∂r1

∂δu2

∂r3
+ ∂δu3

∂r2



(11.17)

And the vectorial expression of the Cauchy stress tensor is:

σE =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =⇒ σ̄E =



σ11

σ22

σ33

σ12

σ13

σ23


(11.18)

This equivalent vector notation allows to replace the double dot product between
both tensors by the scalar product between their vectorial forms.

δEE : σE = δĒE
T

σ̄E (11.19)

Consequently, the left-hand side obtained in (11.13) can be equivalently written as:∫∫∫
Ω
δEE : σE dΩ =

∫∫∫
Ω
δĒE

T

σ̄E dΩ (11.20)

11.3.3. Equivalent Eulerian weak form

The interpretation of the test functions as a compatible displacement field variation
leads to the following equivalent Eulerian weak form.

The main aim is to obtain the displacement field that verifies the essential boundary
condition. In addition, the computation of the reaction that appears on the surface
where the essential boundary condition is applied may also be required.

uL (r0) ∈ Hu | uL (r0) = u 0
L (r0) ∀r0 ∈ Γu

0 (11.21)
gR,E (r) r ∈ Γu (11.22)
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Where the above unknowns verify that:

∫∫∫
Ω
δĒE

T

σ̄E dΩ =

=
∫∫∫

Ω
δuE

TbE ρE dΩ +
∫∫

Γσ

δuE
TgE dΓ +

∫∫
Γu

δuE
TgR,E dΓ ∀δuE ∈ Hδu

(11.23)
The above equation is the result of substituting the equivalent left-hand side ob-

tained in (11.20) into the Eulerian weak form presented in (11.3).

11.3.4. Equivalent left-hand side in vectorial form

In the previous sections, the change from tensor to vector notation was outlined.
The next objective is to obtain an equivalent expression of the Eulerian left-hand side
presented in the previous subsection.

On the one hand, the vector δĒE can be expressed by means of the tensor AC , which
was introduced while defining the vectorial form of the infinitesimal strain tensor (5.70).

δĒE =



∂δu1

∂r1

∂δu2

∂r2

∂δu3

∂r3

∂δu1

∂r2
+ ∂δu2

∂r1

∂δu1

∂r3
+ ∂δu3

∂r1

∂δu2

∂r3
+ ∂δu3

∂r2



=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂δu1

∂r1

∂δu1

∂r2

∂δu1

∂r3

∂δu2

∂r1

∂δu2

∂r2

∂δu2

∂r3

∂δu3

∂r1

∂δu3

∂r2

∂δu3

∂r3



= AC δJ̄ t

(11.24)
Where δJ̄ t is the vectorial form of the Eulerian test function gradient tensor, which

is composed by the rows of the gradient tensor organized in a single column. The
subscript t indicates that the derivatives are taken with respect to the deformed geom-
etry corresponding to a given load step t. That is, the current deformed geometry is
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assumed to correspond to the load level t.

δJ t = dδuE

dr
=


∂δu1

∂r1

∂δu1

∂r2

∂δu1

∂r3

∂δu2

∂r1

∂δu2

∂r2

∂δu2

∂r3

∂δu3

∂r1

∂δu3

∂r2

∂δu3

∂r3

 =⇒ δJ̄ t =



∂δu1

∂r1

∂δu1

∂r2

∂δu1

∂r3

∂δu2

∂r1

∂δu2

∂r2

∂δu2

∂r3

∂δu3

∂r1

∂δu3

∂r2

∂δu3

∂r3



(11.25)

The above vector can be defined by means of a differential operator which contains
derivatives with respect to the deformed geometry. The subscript t is added again
to clarify that the derivatives contained in the operator are taken with respect to the
deformed geometry corresponding to a given load step t.

δJ̄ t =



∂δu1

∂r1

∂δu1

∂r2

∂δu1

∂r3

∂δu2

∂r1

∂δu2

∂r2

∂δu2

∂r3

∂δu3

∂r1

∂δu3

∂r2

∂δu3

∂r3



=



∂

∂r1
0 0

∂

∂r2
0 0

∂

∂r3
0 0

0 ∂

∂r1
0

0 ∂

∂r2
0

0 ∂

∂r3
0

0 0 ∂

∂r1

0 0 ∂

∂r2

0 0 ∂

∂r3




δu1

δu2

δu3

 = ∂t δuE (11.26)

On the other hand, the Eulerian test functions can be approximated by a linear
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combination of the functions that compose the test functions basis.

δuE ≈ δuh

E =
η∑

j=1

[
δuj,E I

]︸ ︷︷ ︸
Ωj,E

βj

=
η∑

j=1
Ωj,E βj

=
[
Ω1,E · · · Ωη,E

]
β1
...
βη


= ΩE β δuh

E ∈ Hh

δu ⊂ Hδu

(11.27)

And the Eulerian description of the displacement field can be approximated by
means of the trial functions defined according to their Eulerian description.

uE ≈ uh

E =
η∑

i=1

[
ϕi,E I

]︸ ︷︷ ︸
ϕi,E

αi

=
η∑

i=1
ϕi,E αi

=
[
ϕ1,E · · · ϕη,E

]
α1

...
αη


= ϕE α uh

E ∈ Hh

u ⊂ Hu

(11.28)

If the Bubnov-Galerkin approach is applied, the functions adopted as the trial
functions are also chosen to define the test ones.

ΩE = ϕE ⇐⇒ Hh

δu = Hh

u (11.29)

According to this approach, the test functions (11.27) become:

δuE ≈ ΩE β = ϕE β (11.30)

Therefore, the vector δJ̄ t (11.26) can be approximated as:

δJ̄ t = ∂t δuE

δuE ≈ ϕE β

}
=⇒


δJ̄ t ≈ ∂t

(
ϕE β

)
=
(
∂t ϕE

)
β

= Gt β

(11.31)
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The tensor Gt that establishes the above relation is defined by means of ϕE , which
was introduced in (11.28). This tensor can be equivalently defined as:

Gt = ∂t ϕE

= ∂t

[
ϕ1,E . . . ϕη,E

]
=
[
∂t ϕ1,E . . . ∂t ϕη,E

]
=
[
Gt

(1) . . . Gt
(η)
] (11.32)

Where:

Gt
(k) = ∂t ϕk,E

=



∂

∂r1
0 0

∂

∂r2
0 0

∂

∂r3
0 0

0 ∂

∂r1
0

0 ∂

∂r2
0

0 ∂

∂r3
0

0 0 ∂

∂r1

0 0 ∂

∂r2

0 0 ∂

∂r3



ϕk,E 0 0
0 ϕk,E 0
0 0 ϕk,E

 =



∂ϕk,E

∂r1
0 0

∂ϕk,E

∂r2
0 0

∂ϕk,E

∂r3
0 0

0 ∂ϕk,E

∂r1
0

0 ∂ϕk,E

∂r2
0

0 ∂ϕk,E

∂r3
0

0 0 ∂ϕk,E

∂r1

0 0 ∂ϕk,E

∂r2

0 0 ∂ϕk,E

∂r3



(11.33)

The substitution of the vectorial form of the test function gradient tensor (11.31)
into the vector δĒE (11.24) leads to:

δĒE = AC δJ̄ t

δJ̄ t ≈ Gt β

}
=⇒


δĒE ≈ AC

(
Gt β

)
=
(
AC Gt

)
β

= Bt β

(11.34)

The tensor Bt that defines the above relation depends on Gt, which was introduced
in (11.32) and (11.33). This tensor can be equivalently written as:

Bt = AC Gt

= AC

[
Gt

(1) · · · Gt
(η)
]

=
[
AC Gt

(1) · · · AC Gt
(η)
]

=
[
Bt

(1) · · · Bt
(η)
] (11.35)
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Where:

Bt
(k) = AC Gt

(k) =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂ϕk,E

∂r1
0 0

∂ϕk,E

∂r2
0 0

∂ϕk,E

∂r3
0 0

0 ∂ϕk,E

∂r1
0

0 ∂ϕk,E

∂r2
0

0 ∂ϕk,E

∂r3
0

0 0 ∂ϕk,E

∂r1

0 0 ∂ϕk,E

∂r2

0 0 ∂ϕk,E

∂r3



=



∂ϕk,E

∂r1
0 0

0 ∂ϕk,E

∂r2
0

0 0 ∂ϕk,E

∂r3

∂ϕk,E

∂r2

∂ϕk,E

∂r1
0

∂ϕk,E

∂r3
0 ∂ϕk,E

∂r1

0 ∂ϕk,E

∂r3

∂ϕk,E

∂r2


(11.36)

Finally, the substitution of the vector δĒE defined in (11.34) and (11.35) into the
left-hand side of the Eulerian weak form (11.23) leads to the following equivalent left-
hand side.

δĒE ≈ Bt β

Bt = AC Gt

}
=⇒



∫∫∫
Ω
δĒE

T

σ̄E dΩ ≈
∫∫∫

Ω

(
Bt β

)T
σ̄E dΩ

= βT

∫∫∫
Ω
Bt

T σ̄E dΩ

= βT

∫∫∫
Ω

(
AC Gt

)T
σ̄E dΩ

= βT

∫∫∫
Ω
Gt

TAC
T σ̄E dΩ

(11.37)
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11.4. Incremental loading process

11.4. Incremental loading process

The external forces are applied according to the incremental loading process pro-
posed in section 4.7, and the updated approach developed in section 4.7.3 is adopted.
That is, the material domain computed after the last load step becomes the reference
configuration, and the magnitudes have to be defined with respect to this material
domain.

Figure 11.1. Incremental loading process: initial configuration and material domains
corresponding to two consecutive load steps.

11.4.1. Reference configuration

If the updated approach is adopted, the material domain defined after the last load
step becomes the new reference configuration. Hence, at the load level t + ∆t, the
material domain defined at the load step t becomes the reference domain. The vector
that defines the position of a material particle that belongs to this domain is:

rt ∈ Ωt (11.38)

And the weak form corresponding to this load step turns out to be:∫∫∫
Ωt

(
δĒ t

E

)T
σ̄ t

E dΩt =
∫∫∫

Ωt

δuE
Tb t

E ρ
t

E dΩt +
∫∫

Γσ
t

δuE
Tg t

E dΓt +
∫∫

Γu
t

δuE
Tg t

R,E dΓt

(11.39)
Where δuE is a compatible displacement variation applied to the displacement field

that corresponds to the load step t (u t
E). The superscript t is added to the above

magnitudes to indicate the load level they correspond to.
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The vector δĒ t

E is the vectorial form of the following tensor:

δE t

E = 1
2

[
dδuE

drt

+
(
dδuE

drt

)T]
(11.40)

And the vectorial form of the above tensor was obtained in (11.34) and (11.35) as:

δĒ t

E = Bt β with Bt = AC Gt (11.41)

11.4.2. Unknown deformed material domain

Once the load step t is solved, the incremental external forces are applied and the
load step t + ∆t becomes the current one. The deformation vector that defines the
position of a given material particle that belongs to the unknown material domain is:

rt+∆t = r t+∆t

L (r0)︸ ︷︷ ︸
unknown

= r0 + u t+∆t

L (r0)︸ ︷︷ ︸
unknown

(11.42)

The above unknown displacement vector can be decomposed as the sum of the dis-
placement field corresponding to the previous load step plus an increment (figure 11.1).

u t+∆t

L (r0)︸ ︷︷ ︸
unknown

= u t

L (r0) + ∆u t

L (r0)︸ ︷︷ ︸
unknown

(11.43)

Consequently, the deformation vector (11.42) becomes:

rt+∆t = r t+∆t

L (r0)︸ ︷︷ ︸
unknown

= r0 + u t

L (r0) + ∆u t

L (r0)︸ ︷︷ ︸
unknown

(11.44)

But the geometry of the previous material domain is completely defined by the
deformation vector corresponding to the previous load step.

rt = r t

L (r0) = r0 + u t

L (r0) (11.45)

Hence, the deformation vector of the current load step (11.44) becomes:

rt+∆t = r t+∆t

L (r0)︸ ︷︷ ︸
unknown

= r t

L (r0) + ∆u t

L (r0)︸ ︷︷ ︸
unknown

(11.46)

The above magnitudes are defined according to its Lagrangian description. That
is, they are defined with respect to the initial configuration. However, if the updated
approach is adopted, the material domain Ωt becomes the new reference one. The
introduction of equation (11.45) into the above equation, as a change of variable, allows
its definition with respect to the new reference material domain.

rt+∆t = r t+∆t

t (rt)
∣∣∣
rt=r t

L(r0)︸ ︷︷ ︸
r t+∆t

L (r0)

=
[
rt + ∆u t

t (rt)
]∣∣∣∣

rt=r t
L(r0)︸ ︷︷ ︸

r t
L(r0)+∆u t

L(r0)

(11.47)
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Therefore, the deformation vector can be finally defined with respect to the previous
material domain as:

r t+∆t

t (rt) = rt + ∆u t

t (rt) (11.48)

The subscript t is added to the above magnitudes to clarify that they are defined
with respect to the material domain corresponding to the load step t.

Material vector transformation between consecutive load steps

The tensor that rules the geometric transformation of a material vector between the
current unknown material domain and the previous computed one, can be obtained as
shown below.

δrt+∆t = r t+∆t

t (rt + δrt) − r t+∆t

t (rt)

=
[
r t+∆t

t (rt) + dr t+∆t
t

drt

(rt) δrt + O
(
∥δrt∥2

)]
− r t+∆t

t (rt)

= dr t+∆t
t

drt

(rt) δrt + O
(
∥δrt∥2

) (11.49)

Therefore, the tensor that rules this geometric transformation turns out to be:

δrt+∆t = F t+∆t

t δrt + O (∥δrt∥2) with



F t+∆t

t = dr t+∆t
t

drt

= d

drt

(
rt + ∆u t

t

)
= I + d∆u t

t

drt

(11.50)

The main hypothesis is to consider that the gradients of the displacement field
increment are small. ∥∥∥∥d∆u t

t

drt

∥∥∥∥ ≪ ∥I∥ (11.51)

This assumption implies that the displacement increments between consecutive load
steps may be large, while the gradients of these increments are necessarily small. Since
the gradients are small, the approximate polar decomposition (section 5.3) can be
applied to decompose the tensor that rules the incremental geometric transformation
presented in (11.50). This decomposition implies that its corresponding strain field is
infinitesimal. The strain effect is neglected, so only the effect of the rotation between
consecutive load steps is taken into account.

F t+∆t

t ≈ R t+∆t

t

[
I + E t+∆t

t

]
≈ R t+∆t

t (11.52)

As proved in (5.24) and (5.36), the above infinitesimal rotation tensor has to be
orthogonal and represent a proper rotation. Thus, it fulfils the following conditions:(

R t+∆t

t

)−1 ≈
(
R t+∆t

t

)T with det
(
R t+∆t

t

)
≈ 1 (11.53)
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As demonstrated in section 1.12, the determinant of the tensor that rules the geo-
metric transformation can be physically interpreted as the proportion which represents
the differential volume corresponding to the current unknown material domain with
respect to the previous computed one. This definition, as well as the property exposed
in (11.53), lead to the conclusion that the volume variation between consecutive load
steps can be neglected.

F t+∆t

t = det
(
F t+∆t

t︸ ︷︷ ︸
R t+∆t

t

)
= dΩt+∆t

dΩt

≈ 1 ⇐⇒ dΩt+∆t ≈ dΩt (11.54)

On the other hand, tensor (11.52) and its determinant state the relation between
the differential areas corresponding to consecutive material domains, as proved in sec-
tion 1.13.

dΓt+∆t = F t+∆t

t

(
F t+∆t

t

)−T
dΓt

≈ R t+∆t

t dΓt

(11.55)

Both magnitudes also define the first Piola-Kirchhoff stress tensor, which was ex-
tensively defined in section 3.4.

P t+∆t

t = F t+∆t

t σ t+∆t

t

(
F t+∆t

t

)−T

≈ σ t+∆t

t R t+∆t

t

(11.56)

11.5. Weak form of the current load step

The weak form corresponding to the current load step t+ ∆t turns out to be:∫∫∫
Ωt+∆t

(
δĒ t+∆t

E

)T
σ̄ t+∆t

E dΩt+∆t =

=
∫∫∫

Ωt+∆t

δuE
Tb t+∆t

E ρ t+∆t

E dΩt+∆t +
∫∫

Γσ
t+∆t

δuE
Tg t+∆t

E dΓt+∆t +
∫∫

Γu
t+∆t

δuE
Tg t+∆t

R,E dΓt+∆t

(11.57)
Where δuE is a compatible displacement field variation applied to the displacement

field that corresponds to the load step t + ∆t (u t+∆t
E ). This equation is equivalent to

the one presented in (11.23), adding the superscripts t+ ∆t to clarify the load level.
The vector δĒ t+∆t

E is the vectorial form of the following tensor:

δE t+∆t

E = 1
2

[
dδuE

drt+∆t

+
(
dδuE

drt+∆t

)T]
(11.58)

And its vectorial form was defined in (11.34) and (11.35) as:

δĒ t+∆t

E = Bt+∆t β with Bt+∆t = AC Gt+∆t (11.59)

Where Bt+∆t contains the derivatives of the Eulerian trial functions with respect to
the deformed geometry that corresponds to the material domain Ωt+∆t.
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11.5. Weak form of the current load step

11.5.1. Right-hand side

The right-hand side of the previous weak form is composed by integrals defined over
an unknown deformed material domain.∫∫∫

Ωt+∆t

δuE
Tb t+∆t

E ρ t+∆t

E dΩt+∆t+
∫∫

Γσ
t+∆t

δuE
Tg t+∆t

E dΓt+∆t+
∫∫

Γu
t+∆t

δuE
Tg t+∆t

R,E dΓt+∆t

(11.60)
In the following subsections, mathematical manipulations are applied in order to

obtain integrals defined over the material domain corresponding to the previous load
step, which is completely defined.

The external applied forces are involved in this side of the weak form equation.
Let’s consider that they do not depend on the displacement field. If the external forces
do depend on the displacement field, their treatment has to be faced differently.

Change of the integration domain

The right-hand side is composed by integrals defined over the unknown material
domain. In this section, these integrals are manipulated to change the integration
domain and obtain integral expressions defined over the configuration computed in
the previous load step. As the updated approach is adopted, the material domain
corresponding to the previous load step becomes the new reference configuration.

According to the result obtained in (11.54), the volume variation between con-
secutive load steps can be neglected. Thus, consecutive differential volumes can be
considered equivalent. Furthermore, as the mass is assumed to remain constant, the
density corresponding to consecutive load steps can be considered equivalent too.

dΩt+∆t ≈ dΩt ⇐⇒ dm

ρ t+∆t
t

≈ dm

ρ t
t

⇐⇒ ρ t

t ≈ ρ t+∆t

t (11.61)

To change the integration domain of the first addend of the right-hand side (11.60),
the methodology proposed in section 1.14 is applied. In addition, the assumptions that
there is neither density change nor volume variation between consecutive load steps
are taken into account.∫∫∫

Ωt+∆t

δuE
Tb t+∆t

E ρ t+∆t

E dΩt+∆t =
∫∫∫

Ωt

(
δuE

Tb t+∆t

E ρ t+∆t

E

)∣∣∣∣
rt+∆t=r t+∆t

t (rt)
F t+∆t

t dΩt

≈
∫∫∫

Ωt

δut
Tb t+∆t

t ρ t+∆t

t dΩt

≈
∫∫∫

Ωt

δut
Tb t+∆t

t ρ t

t dΩt

(11.62)
The same strategy is applied to the second addend, hence, the methodology pre-

sented in section 1.14 is applied. Moreover, the equation that defines the area vari-
ation (11.55) and the stress vector definition (3.35) are taken into account, as well
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as the definition of the first Piola-Kirchhoff stress tensor with respect to the previous
computed material domain (11.56).∫∫

Γσ
t+∆t

δuE
Tg t+∆t

E dΓt+∆t =
∫∫

Γσ
t+∆t

δuE
T
(
σ t+∆t

E nt+∆t

)
dΓt+∆t

=
∫∫

Γσ
t+∆t

δuE
Tσ t+∆t

E

(
dΓt+∆t nt+∆t

)
=
∫∫

Γσ
t+∆t

δuE
Tσ t+∆t

E dΓt+∆t

=
∫∫

Γσ
t

(
δuE

Tσ t+∆t

E

)∣∣∣∣
rt+∆t=r t+∆t

t (rt)

(
F t+∆t

t

(
F t+∆t

t

)−T
dΓt

)
≈
∫∫

Γσ
t

δut
T

(
σ t+∆t

t R t+∆t

t

)(
dΓt nt

)
=
∫∫

Γσ
t

δut
TP t+∆t

t

(
dΓt nt

)
=
∫∫

Γσ
t

δut
T
(
P t+∆t

t nt

)
dΓt

=
∫∫

Γσ
t

δut
Tg t+∆t

t,t dΓt

(11.63)
The vector g t+∆t

t,t was introduced in the above result. It represents the differen-
tial force acting on Γσ

t+∆t per unit area of the previous computed solid surface Γσ
t .

Equation (3.44), where the definition of the first Piola-Kirchhoff stress vector arises,
is recalled to clarify its physical interpretation. This equation is rewritten indicat-
ing the current load level and clarifying that the reference configuration is the one
corresponding to the previous load step t.

df t+∆t

t = P t+∆t

t dΓt

= P t+∆t

t

(
dΓt nt

)
=
(
P t+∆t

t nt

)
dΓt

= g t+∆t

t,t dΓt

 =⇒ g t+∆t

t,t = df t+∆t

t

dΓt

∀rt ∈ Γσ

t (11.64)

The manipulation of the third addend is analogous to the one performed in (11.63).
Then, this term becomes:∫∫

Γu
t+∆t

δuE
Tg t+∆t

R,E dΓt+∆t =
∫∫

Γu
t

δut
Tg t+∆t

R,t,t dΓt (11.65)

Where g t+∆t
R,t,t represents the differential force acting on the deformed solid surface where

the essential boundary condition is applied, per unit area of the previous solid sur-
face Γu

t .

g t+∆t

R,t,t = df t+∆t

t

dΓt

∀rt ∈ Γu

t (11.66)
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The addition of equations (11.62), (11.63), and (11.65) defines an equivalent right-
hand side of the weak form, where the integrals are defined over the reference material
domain previously defined.∫∫∫

Ωt

δut
Tb t+∆t

t ρ t

t dΩt +
∫∫

Γσ
t

δut
Tg t+∆t

t,t dΓt +
∫∫

Γu
t

δut
Tg t+∆t

R,t,t dΓt (11.67)

Equivalent right-hand side

According to the Bubnov-Galerkin method, the test functions were defined in (11.30)
as:

δuE = ϕE β (11.68)
The application of the change of variable (11.48) to the above test functions leads

to their equivalent definition with respect to the reference material domain.

δuE

∣∣∣
rt+∆t=r t+∆t

t (rt)
=
(
ϕE β

)∣∣∣
rt+∆t=r t+∆t

t (rt)
⇐⇒ δut = ϕt β (11.69)

Therefore, the right-hand side (11.67) becomes:

βT

∫∫∫
Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt + βT

∫∫
Γσ

t

ϕt

Tg t+∆t

t,t dΓt + βT

∫∫
Γu

t

ϕt

Tg t+∆t

R,t,t dΓt (11.70)

Furthermore, the imposition of the trial function nullity over the surface where the
essential boundary condition is applied allows to get rid of the term that contains the
reaction. Then,

ϕt (rt) = 0 ∀rt ∈ Γu

t =⇒ βT

∫∫
Γu

t

ϕt

Tg t+∆t

R,t,t dΓt = 0 (11.71)

Therefore, the right-hand side of the weak form is finally reduced to:

βT

∫∫∫
Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt + βT

∫∫
Γσ

t

ϕt

Tg t+∆t

t,t dΓt (11.72)

11.5.2. Left-hand side

In this section, the focus is on the left-hand side of the Eulerian weak form (11.57),
which is an integral defined over the unknown material domain.

The integration domain is again changed by applying the methodology presented
in section 1.14. The change of variable (11.48) is applied to the integrand, and the
equivalence between consecutive differential volumes (11.54) is recalled. This set of
operations allows to obtain an integral defined over the previous computed material
domain, as well as magnitudes defined with respect to this known configuration.∫∫∫

Ωt+∆t

(
δĒ t+∆t

E

)T
σ̄ t+∆t

E dΩt+∆t =
∫∫∫

Ωt

[(
δĒ t+∆t

E

)T
σ̄ t+∆t

E

]∣∣∣∣
rt+∆t=r t+∆t

t (rt)
F t+∆t

t dΩt

≈
∫∫∫

Ωt

(
δĒ t+∆t

t

)T
σ̄ t+∆t

t dΩt

(11.73)
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According to the change of variable (11.48) applied in the above equation, the
position of a material particle that belongs to the unknown material domain depends
on the increment of the displacement field.

rt+∆t = r t+∆t

t (rt) = rt + ∆u t

t (rt)︸ ︷︷ ︸
unknown

(11.74)

The above increment defines the displacement field corresponding to the current
load step, with respect to the updated reference material domain.

u t+∆t

t (rt) = u t

t (rt) + ∆u t

t (rt) (11.75)

Therefore, the displacement field increment can be equivalently written as the dif-
ference between consecutive displacement fields. The displacement field corresponding
to the previous load step is assumed to be known, since it was computed previously,
whereas the one that corresponds to the current load step is an unknown.

∆u t

t (rt) = u t+∆t

t (rt)︸ ︷︷ ︸
unknown

−u t

t (rt) (11.76)

Consequently, it can be concluded that the equivalent left-hand side (11.73) depends
on the displacement field corresponding to the current load step as:

f
(
u t+∆t

t

)
=
∫∫∫

Ωt

(
δĒ t+∆t

t

)T
σ̄ t+∆t

t dΩt (11.77)

11.5.3. Equivalent weak form

The left and right-hand sides obtained in (11.73) and (11.72), respectively, are now
gathered. This equivalent weak form is finally defined with respect to the previous
material domain, which is completely known.∫∫∫

Ωt

(
δĒ t+∆t

t

)T
σ̄ t+∆t

t dΩt︸ ︷︷ ︸
f(u t+∆t

t )

= βT

∫∫∫
Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt + βT

∫∫
Γσ

t

ϕt

Tg t+∆t

t,t dΓt︸ ︷︷ ︸
P t+∆t

(11.78)
The left-hand side turns out to depend on the displacement field that the solid

experiments after the application of the current load step, whereas the right-hand
side is a constant that depends on the value of the external forces. Hence, the above
equation is the nonlinear equation to be solved in order to obtain the displacement
field that the solid undergoes.

This nonlinear equation needs to be solved by iterative methods, and can be stated
as:

f (u t+∆t

t ) = P t+∆t (11.79)
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11.6. Iterative solution procedure

As exposed in the previous section, the weak form corresponding to the current load
step t+ ∆t is a nonlinear equation whose solution leads to the displacement field that
the solid experiments after the application of the external incremental forces.

To simplify the notation throughout this section, the subscript t that indicates that
the magnitudes are described with respect to the material domain corresponding to
the previous load step is omitted. Therefore, the nonlinear equation (11.79) is reduced
to:

f (u t+∆t) = P t+∆t (11.80)

Where:

f (u t+∆t) =
∫∫∫

Ωt

(
δĒ t+∆t)T

σ̄ t+∆t dΩt

P t+∆t = βT

∫∫∫
Ωt

ϕTb t+∆t ρ t dΩt + βT

∫∫
Γσ

t

ϕTg t+∆t

t dΓt

(11.81)

Equation (11.80) can be equivalently rewritten as:

g (u t+∆t) = f (u t+∆t) − P t+∆t = 0 (11.82)

Where the nonlinear function g can be interpreted as a residual, and the displace-
ment field corresponding to the current load step turns out to be the value that cancels
this residual. That is, this displacement field is the root of the following nonlinear
equation.

g (u) =f (u) − P t+∆t

f (u) =
∫∫∫

Ωt

δĒT

σ̄ dΩt

u = u t+∆t

 =⇒ g (u t+∆t) = 0 (11.83)

This root can be obtained through an iterative method. For instance, the Newton-
Raphson method is a suitable procedure to take into consideration. This method
guarantees quadratic convergence, if the initial solution approximation is close enough
to the root.

Let’s consider that the incremental load after each load step is so small, that the
displacement fields corresponding to consecutive load step can be considered to be
close enough. If this assumption is fulfilled, the displacement field obtained in the
previous load step can be adopted to start the iterative procedure. This choice allows
to start the iterative method from a close approximation to the root, and the quadratic
convergence should be guaranteed.

11.6.1. Newton-Raphson method

The iterative procedure of the Newton-Raphson method is applied as follows.
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Figure 11.2. Graphical interpretation of an iterative step of the Newton-Raphson method
applied to a one-dimensional case.

An initial approximation is chosen to start the iterative method. The displace-
ment field corresponding to the previous load step is adopted as the initial solution
approximation. This choice allows to start the iterative procedure from a close
root approximation.

Initial approximation: u t+∆t

0 = u t (11.84)

Let’s consider that the displacement field corresponding to the k-th iteration is
already computed, but the residual is not zero. Hence, the iterative method has
to continue iterating to improve the result.

Iteration k: u t+∆t

k =⇒ g (u t+∆t

k ) ̸= 0 =⇒ ¿u t+∆t

k+1 ? (11.85)

At this point, the next iteration is computed by adding an increment to the
displacement field obtained in the previous one.

Iteration k + 1: u t+∆t

k+1 = u t+∆t

k + ∆u t+∆t

k︸ ︷︷ ︸
¿?

(11.86)

To calculate the displacement field increment between two consecutive iterations,
the nullity of the new residual g is imposed. Moreover, the residual is defined according
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11.6. Iterative solution procedure

to its Taylor series expansion about the displacement field obtained in the previous
iteration.

g
(
u t+∆t

k+1

)
=

 = 0

= g (u t+∆t

k ) + dg

du
(u t+∆t

k ) ∆u t+∆t

k + O
(
∥∆u t+∆t

k ∥2
) (11.87)

As the displacement field increment between two consecutive iterations is supposed
to be small, it can be stated that:

∥∆u t+∆t

k ∥ ≪ 1 =⇒ g
(
u t+∆t

k+1

)
≈ g (u t+∆t

k ) + dg

du
(u t+∆t

k ) ∆u t+∆t

k = 0 (11.88)

Or equivalently:
dg

du
(u t+∆t

k ) ∆u t+∆t

k ≈ −g (u t+∆t

k ) (11.89)

Therefore, the equation whose resolution leads to the displacement field increment
between consecutive iterations turns out to be:
dg

du
(u t+∆t

k ) ∆u t+∆t

k ≈ −g (u t+∆t

k )

g (u) = f (u) − P t+∆t

dg

du
(u) = df

du
(u)

 =⇒ df

du
(u t+∆t

k ) ∆u t+∆t

k ≈ P t+∆t−f (u t+∆t

k )

(11.90)
Once the above equation is solved and the displacement field increment is known,

this increment is added to the displacement field corresponding to the previous it-
eration. This calculation defines the displacement field corresponding to the current
iteration.

u t+∆t

k+1 = u t+∆t

k + ∆u t+∆t

k (11.91)

11.6.2. Convergence criterion

A criterion is required to stop the iterative procedure. On the one hand, it can be
based on the difference between the displacement field obtained in consecutive itera-
tions. The absolute difference between consecutive displacement fields, and its relative
difference with respect to the last computed displacement field, are:

∥u t+∆t

k+1 − u t+∆t

k ∥ = ∥∆u t+∆t

k ∥
∥u t+∆t

k+1 − u t+∆t
k ∥

∥u t+∆t
k+1 ∥

= ∥∆u t+∆t
k ∥

∥u t+∆t
k+1 ∥

(11.92)

The maximum admitted absolute and relative differences are defined by means of
the parameters Eu and εu, respectively. These parameters are user defined and depend
on the precision required.

∥∆u t+∆t

k ∥ ≤ Eu

∥∆u t+∆t
k ∥

∥u t+∆t
k+1 ∥

≤ εu ⇐⇒ ∥∆u t+∆t

k ∥ ≤ εu ∥u t+∆t

k+1 ∥
(11.93)
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The above inequations can be gathered, and a reasonable convergence criterion
applied to the displacement field is shown below.

∥∆u t+∆t

k ∥ ≤ max
{
εu ∥u t+∆t

k+1 ∥ , Eu

}
(11.94)

The first term of the above criterion might be too small if the displacement field
experimented by the solid is small. To achieve convergence only based on this criterion
becomes not possible. Thus, the addition of the second term becomes necessary to
define a suitable convergence criterion. In case the displacement field is small, this
second value is the one that will rule the criterion.

On the other hand, the convergence criterion can not be based exclusively on the
difference between the displacement field obtained in consecutive iterations. Conver-
gence may not have been reached, even if this difference is small. To circumvent this
inconvenience, the same criterion can be applied to the residual obtained after each
iteration. In this case, the maximum residual, and the maximum relative residual cal-
culated with respect to the one corresponding to the initial approximation, are defined
by the parameters Eg and εg, respectively. ∣∣g (u t+∆t

k+1

) ∣∣ ≤ Eg∣∣g (u t+∆t
k+1

) ∣∣∣∣g (u t+∆t
0 )

∣∣ =
∣∣g (u t+∆t

k+1

) ∣∣∣∣g (u t)
∣∣ ≤ εg ⇐⇒

∣∣g (u t+∆t

k+1

) ∣∣ ≤ εg

∣∣g (u t)
∣∣ (11.95)

If the above inequations are gathered, the residual criterion becomes:∣∣g (u t+∆t

k+1

) ∣∣ ≤ max
{
εg

∣∣g (u t)
∣∣ , Eg

}
(11.96)

Therefore, if the displacement convergence criterion (11.94) and the residual one
(11.96) are taken into account, the convergence criterion to stop the iterative procedure
is finally defined as:

convergence✓ ⇐⇒


∥∆u t+∆t

k ∥ ≤ max
{
εu ∥u t+∆t

k+1 ∥ , Eu

}
and∣∣g (u t+∆t

k+1

) ∣∣ ≤ max
{
εg

∣∣g (u t)
∣∣ , Eg

} (11.97)

11.7. Newton-Raphson first iteration

The equation that defines the iterative procedure was presented in (11.90) as:

df

dut

(
u t+∆t

k,t

)
∆u t+∆t

k,t = P t+∆t − f
(
u t+∆t

k,t

)
k = 0, 1, 2, . . . (11.98)

In the above equation, the subscripts t are added again. They indicate the reference
configuration with respect to which the magnitudes are defined. In this case, the
reference material domain is the one corresponding to the load step t.
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11.7. Newton-Raphson first iteration

The value k = 0 leads to the equation that corresponds to the first iteration.

df

dut

(
u t+∆t

0,t

)
∆u t+∆t

0,t = P t+∆t − f
(
u t+∆t

0,t

)
(11.99)

An initial root approximation is needed to start the iterative procedure. As stated
before, the displacement field corresponding to the previous load step is the one adopted
to start iterating.

u t+∆t

0,t = u t

t (11.100)

Hence, the first step of the iterative method (11.99) can be rewritten as follows:

df

dut

(u t

t ) ∆u t+∆t

0,t = P t+∆t − f (u t

t ) (11.101)

Figure 11.3. Newton-Raphson first iteration applied to a one-dimensional case.

11.7.1. Right-hand side

The equation that defines the first iteration of the iterative procedure was defined
in (11.101). Its right-hand side is composed by the following two terms:

P t+∆t − f (u t

t ) (11.102)

On the one hand, the constant P t+∆t was defined in (11.81) as:

P t+∆t = βT

∫∫∫
Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt + βT

∫∫
Γσ

t

ϕt

Tg t+∆t

t,t dΓt (11.103)

On the other hand, the nonlinear function f was defined in (11.83) as:

f (ut) =
∫∫∫

Ωt

δĒt

T

σ̄t dΩt (11.104)
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Where the tensorial form of the vector δĒt turns out to be:

δEt = δEE

∣∣∣
r=r(rt)

= 1
2

[
dδuE

dr
+
(
dδuE

dr

)T] ∣∣∣∣∣
r=r(rt)

(11.105)

And the change of variable applied in the above equation is analogous to the one
presented in (11.48), without particularizing the deformation vector for a given load
step.

r = r (rt) = rt + ∆ut (rt)

= rt +
[
ut (rt) − u t

t (rt)
] (11.106)

But the scalar function (11.104) has to be evaluated at the displacement field cor-
responding to the previous load step ut = u t

t . If this displacement field is substituted
into the change of variable (11.106), the deformation vector r becomes the one corre-
sponding to the load step t. Moreover, the tensor δEt turns out to be analogous to the
one presented in (11.40), and its vectorial form was already defined in (11.41).

ut = u t

t =⇒ r = rt

=⇒ δEt = 1
2

[
dδuE

drt

+
(
dδuE

drt

)T]
= δE t

t

=⇒ δĒ t

t = Bt β with Bt = AC Gt

(11.107)

Therefore, the evaluation of the scalar function (11.104) at the displacement field
corresponding to the previous load step leads to:

f (u t

t ) =
∫∫∫

Ωt

(
δĒ t

t

)T
σ̄ t

t dΩt

= βT

∫∫∫
Ωt

Bt
T σ̄ t

t dΩt

= βT

∫∫∫
Ωt

Gt
TAC

T σ̄ t

t dΩt

(11.108)

Equations (11.103) and (11.108) completely define the right-hand side presented
in (11.102).

11.7.2. Left-hand side

According to (11.101), the left-hand side of the equation that defines the first step
of the iterative procedure turns out to be:

df

dut

(u t

t ) ∆u t+∆t

0,t (11.109)

Where the scalar function f was defined in (11.83) as:

f (ut) =
∫∫∫

Ωt

δĒt

T

σ̄t dΩt (11.110)
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Therefore, the gradient of the above scalar function has to be computed to define
the left-hand side presented in (11.109).

df

dut

= d

dut

(∫∫∫
Ωt

δĒt

T

σ̄t dΩt

)
(11.111)

Since the deformed material domain Ωt depends on the displacement field, the
derivative can not be taken inside the integral. To overcome this inconvenient, a result
obtained in the previous chapter is recalled. As proved in (10.47) and (10.69), the
above scalar function can be equivalently expressed with respect to the initial material
domain as: ∫∫∫

Ωt

δĒt

T

σ̄t dΩt︸ ︷︷ ︸
f(ut)

=
∫∫∫

Ω0

δĒ
T

G,L S̄L dΩ0︸ ︷︷ ︸
h(uL)

(11.112)

Although both expressions are equivalent, they depend on different displacement
field descriptions. The left-hand side depends on the displacement field defined with
respect to the material domain Ωt, whereas the right-hand side depends on the displace-
ment field defined with respect to the initial configuration (Lagrangian description).

Consequently, if a displacement field increment is applied, it can be stated that:

∆f = ∆h ⇐⇒ df

dut

∆ut = dh

duL
∆uL (11.113)

The gradient of the scalar function h is easier to calculate than the gradient of
the scalar function f since the initial material domain does not depend on the dis-
placement field, and the derivative can now be taken inside the integral. The result
obtained in (B.9) is taken into account, where the gradient of a generic scalar product
is computed. Thus,

dh

duL
= d

duL

(∫∫∫
Ω0

δĒ
T

G,L S̄L dΩ0

)
=
∫∫∫

Ω0

d

duL

(
δĒ

T

G,L S̄L

)
dΩ0

=
∫∫∫

Ω0

(
S̄

T

L

d
(
δĒG,L

)
duL

+ δĒ
T

G,L

dS̄L

duL

)
dΩ0

=
∫∫∫

Ω0

S̄
T

L

d
(
δĒG,L

)
duL

dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

dS̄L

duL
dΩ0

(11.114)

And the scalar product between the above gradient and the displacement field
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increment leads to the following result.

dh

duL
∆uL =

(∫∫∫
Ω0

S̄
T

L

d
(
δĒG,L

)
duL

dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

dS̄L

duL
dΩ0

)
∆uL

=
∫∫∫

Ω0

S̄
T

L

d
(
δĒG,L

)
duL

∆uL dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

dS̄L

duL
∆uL dΩ0

=
∫∫∫

Ω0

S̄
T

L

(
d
(
δĒG,L

)
duL

∆uL

)
︸ ︷︷ ︸

∆(δĒG,L)

dΩ0 +
∫∫∫

Ω0

δĒ
T

G,L

(
dS̄L

duL
∆uL

)
︸ ︷︷ ︸

∆S̄L

dΩ0

=
∫∫∫

Ω0

δĒ
T

G,L ∆S̄L dΩ0 +
∫∫∫

Ω0

S̄
T

L ∆
(
δĒG,L

)
dΩ0

(11.115)

The above equation is defined in vector notation. In order to manipulate it, it is
convenient to switch to its equivalent tensorial form.

On the one hand, the vectorial expression of the Green-Lagrange strain tensor vari-
ation is exchanged for its equivalent tensor definition. The same tensor transformation
is applied to the vectorial form of the second Piola-Kirchhoff stress tensor increment.

δĒG,L =



δE11

δE22

δE33

2 δE12

2 δE13

2 δE23


=⇒ δEG,L =

δE11 δE12 δE13

δE12 δE22 δE23

δE13 δE23 δE33



∆S̄L =



∆S11

∆S22

∆S33

∆S12

∆S13

∆S23


=⇒ ∆SL =

∆S11 ∆S12 ∆S13

∆S12 ∆S22 ∆S23

∆S13 ∆S23 ∆S33


(11.116)

On the other hand, the vectorial form of the second Piola-Kirchhoff stress tensor
is exchanged for its equivalent tensor definition, and the same tensor transformation
is applied to the increment of the Green-Lagrange strain tensor variation defined in
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vectorial form.

S̄L =



S11

S22

S33

S12

S13

S23


=⇒ SL =

S11 S12 S13

S12 S22 S23

S13 S23 S33



∆
(
δĒG,L

)
=



∆ (δEG)11

∆ (δEG)22

∆ (δEG)33

2 ∆ (δEG)12

2 ∆ (δEG)13

2 ∆ (δEG)23


=⇒ ∆

(
δEG,L

)
=

∆ (δEG)11 ∆ (δEG)12 ∆ (δEG)13

∆ (δEG)12 ∆ (δEG)22 ∆ (δEG)23

∆ (δEG)13 ∆ (δEG)23 ∆ (δEG)33



(11.117)
This notation equivalence allows to replace the scalar product of their vectorial

forms by the double dot product of their tensor definitions.

δĒ
T

G,L ∆S̄L = δEG,L : ∆SL

S̄
T

L ∆
(
δĒG,L

)
= ∆

(
δEG,L

)
: SL

(11.118)

Consequently, the scalar product computed in (11.115) can be equivalently ex-
pressed as:

dh

duL
∆uL =

∫∫∫
Ω0

δĒG,L
T ∆S̄L dΩ0 +

∫∫∫
Ω0

S̄
T

L ∆
(
δĒG,L

)
dΩ0

=
∫∫∫

Ω0

δEG,L : ∆SL dΩ0 +
∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0

(11.119)

As stated in (11.113), the scalar product can be equivalently computed by means
of the scalar functions f or h. The computation by means of function h is the one
performed in this section, and leads to the following result:

h =
∫∫∫

Ω0

δĒ
T

G,L S̄L dΩ0 =⇒


dh

duL
∆uL =

∫∫∫
Ω0

δEG,L : ∆SL dΩ0

+
∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0

(11.120)

The election of the function f has to drive to a result with analogous structure to
the one obtained with the above scalar product. Therefore, it can be stated that:

f =
∫∫∫

Ωt

δĒt

T

σ̄t dΩt =⇒


df

dut

∆ut =
∫∫∫

Ωt

δEt : ∆σt dΩt

+
∫∫∫

Ωt

∆
(
δEt

)
: σt dΩt

(11.121)

The definition of the terms that compose the above scalar product is performed in
the following subsections.
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11.7.3. Material component

As stated in section 10.14.1, the first component of the scalar product (11.120) is the
so-called material component, since it turns out to depend on the constitutive tensor
of the material. The integral expression that defines this component is:∫∫∫

Ω0

δEG,L : ∆SL dΩ0 (11.122)

This integrand is composed by two tensors: the Green-Lagrange strain tensor vari-
ation and the second Piola-Kirchhoff stress tensor increment.

On the one hand, the second Piola-Kirchhoff stress tensor increment was defined
in (7.101) as:

∆SL = C4 : ∆EG,L =
[
∆Sij

]
i=1,2,3
j=1,2,3

C4 =
[
Cijkl

]
i=1,2,3
j=1,2,3
k=1,2,3
l=1,2,3

∆EG,L =
[
∆Ekl

]
k=1,2,3
l=1,2,3


=⇒ ∆Sij =

∑
k,l

Cijkl ∆Ekl (11.123)

The above equation was derived under the assumption that the gradients of the
displacement field increment are small. At each iteration of the iterative procedure,
the gradients of the displacement field increment are assumed to be small. Therefore,
the above equation can be properly applied in this context. Furthermore, the second
Piola-Kirchhoff stress tensor increment was expressed by means of the Green-Lagrange
strain tensor increment, which was defined in (4.94) as:

∆EG,L = F L
T 1

2

[
d∆uE

dr
+
(
d∆uE

dr

)T] ∣∣∣∣∣
r=rL(r0)

F L =
[
∆Ekl

]
k=1,2,3
l=1,2,3

∆EE

∣∣∣
r=rL(r0)

= 1
2

[
d∆uE

dr
+
(
d∆uE

dr

)T] ∣∣∣∣∣
r=rL(r0)

=
[
∆Ers

]
r=1,2,3
s=1,2,3

F L =
[
Fij

]
i=1,2,3
j=1,2,3


=⇒

=⇒ ∆Ekl =
∑
r,s

Frk ∆ErsFsl

(11.124)
Thus, the components of the second Piola-Kirchhoff stress tensor increment defined

in (11.123) become:

∆Sij =
∑
k,l

Cijkl

(∑
r,s

Frk ∆ErsFsl

)
(11.125)
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On the other hand, the Green-Lagrange strain tensor variation can be defined ac-
cording to the expression obtained in (4.88) as:

δEG,L = F L
T 1

2

[
dδuE

dr
+
(
dδuE

dr

)T] ∣∣∣∣∣
r=rL(r0)

F L =
[
δEij

]
i=1,2,3
j=1,2,3

δEE

∣∣∣
r=rL(r0)

= 1
2

[
dδuE

dr
+
(
dδuE

dr

)T] ∣∣∣∣∣
r=rL(r0)

=
[
δEpq

]
p=1,2,3
q=1,2,3

F L =
[
Fij

]
i=1,2,3
j=1,2,3


=⇒

=⇒ δEij =
∑
p,q

Fpi δEpqFqj

(11.126)

The substitution of the components of the Green-Lagrange strain tensor variation
(11.126) and those of the Piola-Kirchhoff stress tensor increment (11.125) into the
double dot product between both tensors leads to:

δEG,L : ∆SL =
∑
i,j

δEij ∆Sij

=
∑
i,j

(∑
p,q

Fpi δEpqFqj

)(∑
k,l

Cijkl

(∑
r,s

Frk ∆ErsFsl

))

= FL

∑
p,q,r,s

δEpq

(
1
FL

∑
i,j,k,l

FpiFqj CijklFrk Fsl

)
︸ ︷︷ ︸

D ′
pqrs

∆Ers

= FL

∑
p,q

δEpq

(∑
r,s

D ′
pqrs∆Ers

)
= FL δEE

∣∣∣
r=rL(r0)

:
(
D ′

4,L : ∆EE

∣∣∣
r=rL(r0)

)
= FL

(
δEE : D ′

4,E : ∆EE

)∣∣∣∣
r=rL(r0)

(11.127)

Where D ′
4,L is the so-called fourth order spatial constitutive tensor [Crisfield et al.,

1991b; Capaldi, 2012; Kim, 2014; Bonet et al., 2016], whose components turn out to
be defined in terms of the components of both the fourth order constitutive tensor C4

(section 7.6.2) and the deformation gradient tensor.

D ′
4,L =

[
D ′

pqrs

]
p=1,2,3
q=1,2,3
r=1,2,3
s=1,2,3

D ′
pqrs = 1

FL

∑
i,j,k,l

FpiFqj CijklFrk Fsl (11.128)

According to the definition of the above components, it is straightforward to prove
that the major symmetry is fulfilled. To prove it, the major symmetry of the tensor C4

245



Chapter 11. Updated Lagrangian finite element analysis

demonstrated in section 7.6.3 is taken into account.

D ′
pqrs = 1

FL

∑
i,j,k,l

FpiFqj CijklFrk Fsl

= 1
FL

∑
i,j,k,l

Frk FslCklijFpiFqj = D ′
rspq

 ⇐⇒ D ′
pqrs = D ′

rspq (11.129)

Furthermore, the minor symmetries of the tensor C4 (section 7.6.3) allow to prove
that the minor symmetries are also verified.

D ′
pqrs = 1

FL

∑
i,j,k,l

FpiFqj CijklFrk Fsl

= 1
FL

∑
i,j,k,l

FpiFqj CijlkFslFrk = D ′
pqsr

= 1
FL

∑
i,j,k,l

Fqj FpiCjiklFrk Fsl = D ′
qprs


⇐⇒ D ′

pqrs = D ′
pqsr = D ′

qprs

(11.130)
The integration of equation (11.127) over the initial configuration allows to obtain

an equivalent definition of the material component. To change the integration domain,
the methodology presented in section 1.14 is taken into account. This methodology
allows moving from integrals defined over the deformed domain, to integrals defined
over the initial reference configuration. Note that, in this particular case, the inverse
transformation is required. That is, the change from an integral defined over the
reference material domain to an equivalent one over the deformed configuration is
carried out.∫∫∫

Ω0

δEG,L : ∆SL dΩ0 =
∫∫∫

Ω0

(
δEE : D ′

4,E : ∆EE

)∣∣∣∣
r=rL(r0)

FL dΩ0

=
∫∫∫

Ω
δEE : D ′

4,E : ∆EE dΩ
(11.131)

And the comparison of the above result with the first term of the scalar product
obtained in (11.121) allows to introduce the Eulerian definition of the Cauchy stress
tensor increment. Thus, the above material component can be rewritten as:∫∫∫

Ω0

δEG,L : ∆SL dΩ0 =
∫∫∫

Ω
δEE :

(
D ′

4,E : ∆EE

)︸ ︷︷ ︸
∆σE

dΩ

=
∫∫∫

Ω
δEE : ∆σE dΩ

(11.132)

The magnitudes involved in the above integral are tensor ones. It is convenient
to move to their equivalent vectorial forms by applying the Voigt notation exposed in
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section A.14.

δEE =

δE11 δE12 δE13

δE12 δE22 δE23

δE13 δE23 δE33

 =⇒ δĒE =



δE11

δE22

δE33

2 δE12

2 δE13

2 δE23



∆σE =

∆σ11 ∆σ12 ∆σ13

∆σ12 ∆σ22 ∆σ23

∆σ13 ∆σ23 ∆σ33

 =⇒ ∆σ̄E =



∆σ11

∆σ22

∆σ33

∆σ12

∆σ13

∆σ23



(11.133)

The double dot product between both tensors can be now substituted by the scalar
product between their equivalent vectorial forms.

δEE : ∆σE = δĒE
T ∆σ̄E (11.134)

Consequently, the material component (11.132) can be equivalently expressed as:∫∫∫
Ω
δEE : ∆σE dΩ =

∫∫∫
Ω
δĒE

T ∆σ̄E dΩ (11.135)

The adoption of the vector notation forces the definition of the vectorial form of
the Eulerian Cauchy stress tensor increment. Its tensor expression was introduced
in (11.132) and turns out to be defined by means of the fourth order spatial constitutive
tensor. Hence, its equivalent vectorial form is defined in terms of the second order
spatial constitutive tensor.

∆σE = D ′
4,E : ∆EE ⇐⇒ ∆σ̄E = D ′

2,E ∆ĒE (11.136)

The Voigt notation (section A.14) is again applied to switch from tensor magnitudes
to their equivalent vectorial forms.

∆EE =

∆E11 ∆E12 ∆E13

∆E12 ∆E22 ∆E23

∆E13 ∆E23 ∆E33

 =⇒ ∆ĒE =



∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23



∆σE =

∆σ11 ∆σ12 ∆σ13

∆σ12 ∆σ22 ∆σ23

∆σ13 ∆σ23 ∆σ33

 =⇒ ∆σ̄E =



∆σ11

∆σ22

∆σ33

∆σ12

∆σ13

∆σ23



(11.137)
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Thus, the vectorial equation (11.136) becomes:

∆σ11

∆σ22

∆σ33

∆σ12

∆σ13

∆σ23


=



D ′
11 D ′

12 D ′
13 D ′

14 D ′
15 D ′

16

D ′
21 D ′

22 D ′
23 D ′

24 D ′
25 D ′

26

D ′
31 D ′

32 D ′
33 D ′

34 D ′
35 D ′

36

D ′
41 D ′

42 D ′
43 D ′

44 D ′
45 D ′

46

D ′
51 D ′

52 D ′
53 D ′

54 D ′
55 D ′

56

D ′
61 D ′

62 D ′
63 D ′

64 D ′
65 D ′

66





∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


(11.138)

According to its equivalent tensor definition, the components of the above vectorial
equation can be equivalently computed by means of the 81 components that compose
the fourth order spatial constitutive tensor, as shown below.

∆σE = D ′
4,E : ∆EE ⇐⇒ ∆σij =

3∑
k=1

3∑
l=1

D ′
ijkl ∆Ekl (11.139)

The tensor ∆EE , which was defined in (11.126), turns out to be symmetric. In addi-
tion, the spatial constitutive tensor possesses minor symmetries, as proved in (11.130).
If these symmetries are taken into account, the above components become:

∆σij =
3∑

k=1

3∑
l=1

D ′
ijkl ∆Ekl

= D ′
ij11 ∆E11 +D ′

ij12 ∆E12 +D ′
ij13 ∆E13 +

+D ′
ij21 ∆E21 +D ′

ij22 ∆E22 +D ′
ij23 ∆E23 +

+D ′
ij31 ∆E31 +D ′

ij32 ∆E32 +D ′
ij33 ∆E33

= D ′
ij11 ∆E11 +D ′

ij22 ∆E22 +D ′
ij33 ∆E33 +

+D ′
ij12

(
2 ∆E12

)
+D ′

ij13

(
2 ∆E13

)
+D ′

ij23

(
2 ∆E23

)
(11.140)

That is, the 81 tensor components required in (11.139) are reduced to 36.

∆σ11

∆σ22

∆σ33

∆σ12

∆σ13

∆σ23


=



D ′
1111 D ′

1122 D ′
1133 D ′

1112 D ′
1113 D ′

1123

D ′
2211 D ′

2222 D ′
2233 D ′

2212 D ′
2213 D ′

2223

D ′
3311 D ′

3322 D ′
3333 D ′

3312 D ′
3313 D ′

3323

D ′
1211 D ′

1222 D ′
1233 D ′

1212 D ′
1213 D ′

1223

D ′
1311 D ′

1322 D ′
1333 D ′

1312 D ′
1313 D ′

1323

D ′
2311 D ′

2322 D ′
2333 D ′

2312 D ′
2313 D ′

2323





∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


(11.141)

If the major symmetry (11.129) of the fourth order constitutive tensor is also taken
into account, the number of components is finally reduced to 21.

∆σ11

∆σ22

∆σ33

∆σ12

∆σ13

∆σ23


=



D ′
1111 D ′

1122 D ′
1133 D ′

1112 D ′
1113 D ′

1123

D ′
2222 D ′

2233 D ′
2212 D ′

2213 D ′
2223

D ′
3333 D ′

3312 D ′
3313 D ′

3323

D ′
1212 D ′

1213 D ′
1223

sym D ′
1313 D ′

1323

D ′
2323





∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


(11.142)
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Therefore, the second order spatial constitutive tensor turns out to be symmetric.

(
D ′

2,E

)T = D ′
2,E ⇐⇒ D ′

ji = D ′
ij (11.143)

And its components, defined by means of the fourth order ones, are:



D ′
11 D ′

12 D ′
13 D ′

14 D ′
15 D ′

16

D ′
22 D ′

23 D ′
24 D ′

25 D ′
26

D ′
33 D ′

34 D ′
35 D ′

36

D ′
44 D ′

45 D ′
46

sym D ′
55 D ′

56

D ′
66


=



D ′
1111 D ′

1122 D ′
1133 D ′

1112 D ′
1113 D ′

1123

D ′
2222 D ′

2233 D ′
2212 D ′

2213 D ′
2223

D ′
3333 D ′

3312 D ′
3313 D ′

3323

D ′
1212 D ′

1213 D ′
1223

sym D ′
1313 D ′

1323

D ′
2323


(11.144)

Up to this point, the second order spatial constitutive tensor is completely defined.
Hence, the definition of the vector ∆ĒE is required to complete the vectorial form of
the Eulerian Cauchy stress tensor increment (11.136).

The tensor ∆EE was introduced in (11.124) as:

∆EE = 1
2

[
d∆uE

dr
+
(
d∆uE

dr

)T]
d∆uE

dr
=


∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3

∂∆u2

∂r1

∂∆u2

∂r2

∂∆u2

∂r3

∂∆u3

∂r1

∂∆u3

∂r2

∂∆u3

∂r3


(11.145)

Where the components of the above tensor are:

∆EE =



∂∆u1

∂r1

1
2

(
∂∆u1

∂r2
+ ∂∆u2

∂r1

)
1
2

(
∂∆u1

∂r3
+ ∂∆u3

∂r1

)
1
2

(
∂∆u1

∂r2
+ ∂∆u2

∂r1

)
∂∆u2

∂r2

1
2

(
∂∆u2

∂r3
+ ∂∆u3

∂r2

)
1
2

(
∂∆u1

∂r3
+ ∂∆u3

∂r1

)
1
2

(
∂∆u2

∂r3
+ ∂∆u3

∂r2

)
∂∆u3

∂r3


(11.146)

And its vectorial form, obtained by applying the Voigt notation (section A.14),

249



Chapter 11. Updated Lagrangian finite element analysis

turns out to be:

∆EE =

∆E11 ∆E12 ∆E13

∆E12 ∆E22 ∆E23

∆E13 ∆E23 ∆E33

 =⇒ ∆ĒE =



∆E11

∆E22

∆E33

2 ∆E12

2 ∆E13

2 ∆E23


=



∂∆u1

∂r1

∂∆u2

∂r2

∂∆u3

∂r3

∂∆u1

∂r2
+ ∂∆u2

∂r1

∂∆u1

∂r3
+ ∂∆u3

∂r1

∂∆u2

∂r3
+ ∂∆u3

∂r2


(11.147)

Furthermore, the above vectorial form can be equivalently written by means of
the tensor AC , which was introduced in (5.70) to define the vectorial form of the
infinitesimal strain tensor.

∆ĒE =



∂∆u1

∂r1

∂∆u2

∂r2

∂∆u3

∂r3

∂∆u1

∂r2
+ ∂∆u2

∂r1

∂∆u1

∂r3
+ ∂∆u3

∂r1

∂∆u2

∂r3
+ ∂∆u3

∂r2



=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3

∂∆u2

∂r1

∂∆u2

∂r2

∂∆u2

∂r3

∂∆u3

∂r1

∂∆u3

∂r2

∂∆u3

∂r3



= AC ∆J̄ t

(11.148)

Where the vector ∆J̄ t is made up of the components of the Eulerian displacement
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gradient tensor, whose rows are organized in a single column.

∆J t = d∆uE

dr
=


∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3

∂∆u2

∂r1

∂∆u2

∂r2

∂∆u2

∂r3

∂∆u3

∂r1

∂∆u3

∂r2

∂∆u3

∂r3

 =⇒ ∆J̄ t =



∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3

∂∆u2

∂r1

∂∆u2

∂r2

∂∆u2

∂r3

∂∆u3

∂r1

∂∆u3

∂r2

∂∆u3

∂r3



(11.149)

The above vector can be rewritten by means of a differential operator. The sub-
script t is added to the operator in order to clarify that the derivatives are taken with
respect to the deformed geometry corresponding to a given load step t.

∆J̄ t =



∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3

∂∆u2

∂r1

∂∆u2

∂r2

∂∆u2

∂r3

∂∆u3

∂r1

∂∆u3

∂r2

∂∆u3

∂r3



=



∂

∂r1
0 0

∂

∂r2
0 0

∂

∂r3
0 0

0 ∂

∂r1
0

0 ∂

∂r2
0

0 ∂

∂r3
0

0 0 ∂

∂r1

0 0 ∂

∂r2

0 0 ∂

∂r3




∆u1

∆u2

∆u3

 = ∂t ∆uE (11.150)

On the other hand, the Eulerian displacement field increment can be approximated
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by means of the Eulerian trial functions.

∆uE ≈ ∆uh

E =
η∑

j=1

[
ϕj,E I

]︸ ︷︷ ︸
ϕj,E

∆αj

=
η∑

j=1
ϕj,E ∆αj

=
[
ϕ1,E · · · ϕη,E

]
∆α1

...
∆αη


= ϕE ∆α

(11.151)

If the above approximation is introduced into (11.150), the vector ∆J̄ t becomes:

∆J̄ t = ∂t ∆uE

∆uE ≈ ϕE ∆α

}
=⇒


∆J̄ t ≈ ∂t

(
ϕE ∆α

)
=
(
∂t ϕE

)
∆α

= Gt ∆α
(11.152)

And the vector ∆ĒE , which was defined in (11.148) by means of the above vector,
can be finally approximated as:

∆ĒE = AC ∆J̄ t

∆J̄ t ≈ Gt ∆α

}
=⇒


∆ĒE ≈ AC

(
Gt ∆α

)
=
(
AC Gt

)
∆α

= Bt ∆α
(11.153)

The above result can be substituted into (11.136), so the vectorial form of the
Cauchy stress tensor increment is completely defined. In addition, the vector δĒE

was defined in (11.34). If these results are taken into account, the material compo-
nent (11.135) can be finally approximated as:

δĒE ≈ Bt β

∆σ̄E = D ′
2,E ∆ĒE

∆ĒE ≈ Bt ∆α

 =⇒


∫∫∫

Ω
δĒE

T ∆σ̄E dΩ ≈
∫∫∫

Ω

(
Bt β

)T
(
D ′

2,E

(
Bt ∆α

))
dΩ

= βT

(∫∫∫
Ω
Bt

TD ′
2,E Bt dΩ

)
∆α

(11.154)
According to the previous result, this term turns out to depend on the spatial

constitutive tensor D ′
2,E . For this reason, this component is usually known as the

material component.

Spatial constitutive tensor

The spatial constitutive tensor was introduced in (11.132) as the tensor that states
the linear relation between the Eulerian Cauchy stress tensor increment ∆σE and the
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11.7. Newton-Raphson first iteration

tensor ∆EE defined in (11.124).

∆σE = D ′
4,E : ∆EE with ∆EE = 1

2

[
d∆uE

dr
+
(
d∆uE

dr

)T]
(11.155)

As the gradients of the displacement field increment are considered to be small at
each step of the iterative procedure, the above tensor verifies that:

∥∆EE∥ ≪ ∥I∥ (11.156)

The above condition allows to conclude that the incremental equation (11.155) is
the incremental form of the following constitutive equation:

σE = σE

(
EE

)
with EE = 1

2

[
duE

dr
+
(
duE

dr

)T]
(11.157)

The demonstration is analogous to the one performed in section 7.6.1, where the in-
cremental constitutive equation that corresponds to the nonlinear relation between the
second Piola-Kirchhoff stress tensor (SL) and the Green-Lagrange strain tensor (EG,L)
is derived.

The equivalent Lagrangian description of the incremental equation (11.155) turns
out to be:

∆σL = D ′
4,L : ∆EE

∣∣∣
r=rL(r0)

(11.158)

Where the Lagrangian description of the fourth order spatial constitutive tensor was
defined in (11.128) by means of the components of both the fourth order constitutive
tensor C4 and the deformation gradient tensor.

D ′
4,L =

[
D ′

pqrs

]
p=1,2,3
q=1,2,3
r=1,2,3
s=1,2,3

D ′
pqrs = 1

FL

∑
i,j,k,l

FpiFqj CijklFrk Fsl (11.159)

Spatial constitutive tensor in an infinitesimal strain context

When dealing with an infinitesimal strain field, the definition of the spatial consti-
tutive tensor is simplified. If the strain field is infinitesimal, the strain effect can be
neglected, so the deformation gradient tensor can be reduced to the rotation tensor.

F L = RL

[
I +EL

]
∥EL∥ ≪ I

}
=⇒ F L ≈ RL =

[
Rij

]
i=1,...,n
j=1,...,n

(11.160)

As the rotation tensor has to be orthogonal, the following conditions have to be
fulfilled.

RL
T = RL

−1 ⇐⇒

{
RL

TRL = I

RLRL
T = I

}
⇐⇒



n∑
k=1

Rki Rkj = δij

n∑
k=1

Rik Rjk = δij

 (11.161)
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Moreover, the rotation tensor has to represent a proper rotation. This implies that
the determinant of the deformation gradient tensor has to be equal to one, as stated
in (4.15). Therefore, this deformation process does not produce volume variation.

FL = det
(
F L

)
≈ det

(
RL

)
= 1 (11.162)

On the other hand, if the strain field is infinitesimal, the St Venant-Kirchhoff con-
stitutive model (section 7.7) can be applied. According to this model, the relation
between the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor
can be accurately approximated by the linear relation stated in (7.151). And the ten-
sor that defines this linear relation is the fourth order constitutive tensor C4 defined
in (7.152). The components of this tensor turn out to be equivalent to the ones that
compose the linear constitutive tensor D4 (7.82), which states the relation between the
Cauchy stress tensor and the infinitesimal strain tensor.

C4 =
[
Cijkl

]
i=1,2,3
j=1,2,3
k=1,3,3
l=1,3,3

Cijkl = λ δijδkl + µ
(
δikδjl + δilδjk

)
(11.163)

If the above components are substituted into the components of the fourth order
spatial constitutive tensor (11.159), and the conditions (11.161) are taken into account,
these components are reduced to:

D ′
pqrs = 1

FL

∑
i,j,k,l

FpiFqj CijklFrk Fsl

≈
∑

i,j,k,l

[
λRpiRqjδijδklRrkRsl + µ

(
RpiRqjδikδjlRrkRsl +RpiRqjδilδjkRrkRsl

)]
= λ

(∑
i,j

RpiRqjδij

)(∑
k,l

RrkRslδkl

)

+ µ

[(∑
i,k

RpiRrkδik

)(∑
j,l

RqjRslδjl

)
+
(∑

i,l

RpiRslδil

)(∑
j,k

RqjRrkδjk

)]

= λ

(∑
i

RpiRqi

)(∑
k

RrkRsk

)

+ µ

[(∑
i

RpiRri

)(∑
j

RqjRsj

)
+
(∑

i

RpiRsi

)(∑
j

RqjRrj

)]
= λ δpqδrs + µ

(
δprδqs + δpsδqr

)
= Cpqrs

(11.164)
Therefore, if the strain field is infinitesimal, it can be concluded that the spatial

constitutive tensor is constant and equivalent to the fourth order constitutive tensor C4.
Furthermore, if the strain field is infinitesimal, C4 is also equivalent to the linear elastic
constitutive tensor D4. Thus,

D ′
4 = C4 = D4 (11.165)
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11.7. Newton-Raphson first iteration

11.7.4. Geometric component

The second term of the scalar product (11.120) is the so-called geometric component,
since it depends on the stress state and the geometry of the reference material domain.
This dependence will be proved later on in this section. The integral that defines this
term is: ∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0 (11.166)

This term is defined by means of the second Piola-Kirchhoff stress tensor and the
increment of the Green-Lagrange strain tensor variation.

The second Piola-Kirchhoff stress tensor was defined in (3.48) as:

SL = FL

(
F L

−1 σL F L
−T

)
(11.167)

And the increment of the Green-Lagrange strain tensor variation, was obtained
in (4.101) as:

∆
(
δEG,L

)
= 1

2

(
δJL

T ∆JL + ∆JL
T δJL

)
(11.168)

The above equation holds if the gradients of the displacement field increments are
small. As stated before, this assumption is made at each step of the iterative procedure.
Hence, this equation can be properly applied.

In order to compute the double dot product between both tensors, the properties
exposed in (A.79) and (A.81) are applied, and the symmetry of the Cauchy stress
tensor is taken into account. Thus, the double dot product between both tensors leads
to the following result.

∆
(
δEG,L

)
: SL = 1

2

(
δJL

T ∆JL + ∆JL
T δJL

)
: FL

(
F L

−1 σL F L
−T

)
= FL

2 Tr
((
δJL

T ∆JL + ∆JL
T δJL

)(
F L

−1 σL F L
−T
))

= FL

2 Tr
(
F L

−T
(
δJL

T ∆JL + ∆JL
T δJL

)
F L

−1σL

)
= FL

2 Tr
((
F L

−T δJL
T ∆JL F L

−1 + F L
−T ∆JL

T δJL F L
−1
)
σL

)
= FL

2

((
δJL F L

−1
)T(∆JL F L

−1
)

+
(
∆JL F L

−1
)T(

δJL F L
−1
))

: σL

(11.169)
Furthermore, the increment and the variation of the displacement gradient tensor

can be equivalently expressed by means of the deformation gradient tensor. To obtain
these equations, the derivative of a given magnitude with respect to the reference
position vector (1.20) is applied. From these equations, the terms which are involved
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in the above double dot product can be obtained.

δJL = dδuL

dr0
= dδuE

dr

∣∣∣∣
r=rL(r0)

F L ⇐⇒ δJL F L
−1 = dδuE

dr

∣∣∣∣
r=rL(r0)

∆JL = d∆uL

dr0
= d∆uE

dr

∣∣∣∣
r=rL(r0)

F L ⇐⇒ ∆JL F L
−1 = d∆uE

dr

∣∣∣∣
r=rL(r0)

(11.170)
Consequently, these terms can be substituted into (11.169), and the double dot

product becomes:

∆
(
δEG,L

)
: SL = FL

{
1
2

[(
dδuE

dr

)T
d∆uE

dr
+
(
d∆uE

dr

)T
dδuE

dr

]
: σE

}∣∣∣∣∣
r=rL(r0)

(11.171)
The integration of the above double dot product over the initial configuration leads

to an equivalent definition of the geometric component. To change the integration
domain and get an integral defined over the deformed domain, the methodology pre-
sented in section 1.14 is recalled. This methodology allows moving from integrals
defined over the deformed domain, to integrals defined over the initial reference con-
figuration. However, the inverse transformation is required. That is, the change from
an integral defined over the reference material domain to an equivalent one over the
deformed configuration is carried out.∫∫∫

Ω0

∆
(
δEG,L

)
: SL dΩ0 =

=
∫∫∫

Ω0

{
1
2

[(
dδuE

dr

)T
d∆uE

dr
+
(
d∆uE

dr

)T
dδuE

dr

]
: σE

}∣∣∣∣∣
r=rL(r0)

FL dΩ0

=
∫∫∫

Ω

1
2

[(
dδuE

dr

)T
d∆uE

dr
+
(
d∆uE

dr

)T
dδuE

dr

]
: σE dΩ

(11.172)

And the comparison of the above result with the scalar product (11.121) allows to
introduce the definition of the tensor ∆

(
δEE

)
.

∆
(
δEE

)
= 1

2

[(
d∆uE

dr

)T
dδuE

dr
+
(
dδuE

dr

)T
d∆uE

dr

]
∆J t = d∆uE

dr

δJ t = dδuE

dr


=⇒

=⇒ ∆
(
δEE

)
= 1

2

(
∆J t

T δJ t + δJ t
T ∆J t

)
(11.173)

Since the Cauchy stress tensor is symmetric, the double dot product property proved
in (A.64) can be applied, which leads to the following equivalent definition of the
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geometric component.∫∫∫
Ω0

∆
(
δEG,L

)
: SL dΩ0 =

∫∫∫
Ω

∆
(
δEE

)
: σE dΩ

= 1
2

∫∫∫
Ω

(
δJ t

T ∆J t + ∆J t
T δJ t

)
: σE dΩ

= 1
2

∫∫∫
Ω

(
δJ t

T ∆J t

)
: σE dΩ + 1

2

∫∫∫
Ω

(
∆J t

T δJ t

)
: σE dΩ

= 1
2

∫∫∫
Ω

(
δJ t

T ∆J t

)
: σE dΩ + 1

2

∫∫∫
Ω

(
δJ t

T ∆J t

)T

: σE dΩ

= 1
2

∫∫∫
Ω

(
δJ t

T ∆J t

)
: σE dΩ + 1

2

∫∫∫
Ω

(
δJ t

T ∆J t

)
: σE dΩ

=
∫∫∫

Ω

(
δJ t

T ∆J t

)
: σE dΩ

(11.174)
The substitution of the tensors that compose the above integrand allows to rewrite

the geometric component and obtain a more convenient definition.∫∫∫
Ω

∆
(

δEE

)
: σE dΩ =

=
∫∫∫

Ω

(
δJt

T ∆Jt

)
: σE dΩ

=
∫∫∫

Ω


∂δu1

∂r1

∂δu1

∂r2

∂δu1

∂r3
∂δu2

∂r1

∂δu2

∂r2

∂δu2

∂r3
∂δu3

∂r1

∂δu3

∂r2

∂δu3

∂r3


T 

∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3
∂∆u2

∂r1

∂∆u2

∂r2

∂∆u2

∂r3
∂∆u3

∂r1

∂∆u3

∂r2

∂∆u3

∂r3

 :

[
σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

]
dΩ

=
∫∫∫

Ω



∂δu1

∂r1
∂δu1

∂r2
∂δu1

∂r3
∂δu2

∂r1
∂δu2

∂r2
∂δu2

∂r3
∂δu3

∂r1
∂δu3

∂r2
∂δu3

∂r3



T



σ11 σ12 σ13 0 0 0 0 0 0
σ12 σ22 σ23 0 0 0 0 0 0
σ13 σ23 σ33 0 0 0 0 0 0
0 0 0 σ11 σ12 σ13 0 0 0
0 0 0 σ12 σ22 σ23 0 0 0
0 0 0 σ13 σ23 σ33 0 0 0
0 0 0 0 0 0 σ11 σ12 σ13
0 0 0 0 0 0 σ12 σ22 σ23
0 0 0 0 0 0 σ13 σ23 σ33





∂∆u1

∂r1
∂∆u1

∂r2
∂∆u1

∂r3
∂∆u2

∂r1
∂∆u2

∂r2
∂∆u2

∂r3
∂∆u3

∂r1
∂∆u3

∂r2
∂∆u3

∂r3



dΩ

=
∫∫∫

Ω
δJ̄t

T
σ̂E ∆J̄t dΩ

(11.175)
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Where σ̂E is a banded tensor composed by three Eulerian Cauchy stress tensors located
at the diagonal positions.

On the other hand, the vector ∆J̄ t can be defined by means of a differential operator,
as shown below.

∆J̄ t =



∂∆u1

∂r1

∂∆u1

∂r2

∂∆u1

∂r3

∂∆u2

∂r1

∂∆u2

∂r2
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
∆u1

∆u2

∆u3

 = ∂t ∆uE (11.176)

And the Eulerian displacement field increment was approximated in (11.151) by
means of the trial functions as:

∆uE ≈ ϕE ∆α (11.177)

If the above approximation is introduced into (11.176), the vector ∆J̄ t becomes:

∆J̄ t = ∂t ∆uE

∆uE ≈ ϕE ∆α

}
=⇒


∆J̄ t ≈ ∂t

(
ϕE ∆α

)
=
(
∂t ϕE

)
∆α

= Gt ∆α
(11.178)

Where the tensor Gt was previously defined in (11.32).
The substitution of the vectors δJ̄ t and ∆J̄ t obtained in (11.31) and (11.178),

respectively, into the geometric component (11.175) is now possible. By doing so, the
geometric component becomes:

δJ̄ t ≈ Gt β

∆J̄ t ≈ Gt ∆α

}
=⇒



∫∫∫
Ω

∆
(
δEE

)
: σE dΩ =

∫∫∫
Ω
δJ̄ t

T

σ̂E ∆J̄ t dΩ

≈
∫∫∫

Ω

(
Gt β

)T
σ̂E

(
Gt ∆α

)
dΩ

= βT

(∫∫∫
Ω
Gt

T σ̂E Gt dΩ
)

∆α

(11.179)
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11.7. Newton-Raphson first iteration

According to the above definition, this component depends on the Cauchy stress
tensor and the tensor Gt, which contains the derivatives of the trial functions with
respect to the material domain that corresponds to load step t. Therefore, this term
turns out to depend on the stress field and the geometry of the reference configuration.
For this reason, it is usually known as the geometric component.

11.7.5. Tangent stiffness

The addition of the material component (11.154) and the geometric one (11.179)
leads to the definition of the tangent stiffness.

df

duE
∆uE =

∫∫∫
Ω
δĒE

T ∆σ̄E dΩ +
∫∫∫

Ω
∆
(
δEE

)
: σE dΩ

= βT

(∫∫∫
Ω
Bt

TD ′
2,E Bt dΩ +

∫∫∫
Ω
Gt

T σ̂E Gt dΩ
)

∆α

= βT
(
KM +KG

)
∆α

= βT KT ∆α

(11.180)

Where KT is usually known as the tangent stiffness matrix, which is composed by
two terms: the material component KM and the geometric stiffness matrix KG.

KT =KM +KG

KM =
∫∫∫

Ω
Bt

TD ′
2,E Bt dΩ

KG =
∫∫∫

Ω
Gt

T σ̂E Gt dΩ

(11.181)

Material component

The material component of the tangent stiffness was defined as:

KM =
∫∫∫

Ω
Bt

TD ′
2,E Bt dΩ (11.182)

Its structure is similar to the linear stiffness matrix (9.108), with some major dif-
ferences.

On the one hand, the tensor Bt includes the derivatives of the trial functions with
respect to the geometry corresponding to load step t, while in linear analysis,
these derivatives are taken with respect to the initial configuration.

On the other hand, the constitutive tensor involved in this component is the
spatial constitutive tensor D ′

2,E , instead of the linear constitutive one D2 defined
in (7.94).
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Geometric stiffness

The second component of the tangent stiffness is the so-called geometric stiffness,
which was defined in (11.181) as:

KG =
∫∫∫

Ω
Gt

T σ̂E Gt dΩ (11.183)

Its structure is quite similar to the one obtained with the total Lagrangian approach
in (10.154). However, their comparison leads to the following major differences.

The Cauchy stresses are involved instead of the second Piola-Kirchhoff ones.

And the derivatives of the trial functions are taken with respect to the geometry
corresponding to load step t, which is the new reference configuration, instead of
being taken with respect to the initial one.

11.7.6. Iterative procedure overview

To sum up, the equation to be solved at each step of the Newton-Raphson method
is the one presented in (11.98).

df

dut

(
u t+∆t

k,t

)
∆u t+∆t

k,t = P t+∆t − f
(
u t+∆t

k,t

)
k = 0, 1, 2, . . . (11.184)

As obtained in (11.180), the left-hand side of the above equation can be equivalently
written as:

df

dut

(ut) ∆ut = βTKT (ut) ∆α (11.185)

And the two addends that compose the right-hand side of equation (11.184) were
defined in (11.103) and (11.104), respectively.

P t+∆t = βT

(∫∫∫
Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt +
∫∫

Γσ
t

ϕt

Tg t+∆t

t,t dΓt

)

f (ut) =
∫∫∫

Ωt

δĒt

T

σ̄t dΩt

(11.186)

Modified Newton-Raphson method

The value k = 0 applied to (11.184) leads to the equation that defines the first
iteration.

df

dut

(
u t+∆t

0,t

)
∆u t+∆t

0,t = P t+∆t − f
(
u t+∆t

0,t

)
(11.187)

The initial approximation needs to be defined to start the iterative procedure. As
stated in previous sections, the displacement field corresponding to the previous load
step is adopted as the initial root approximation.

u t+∆t

0,t = u t

t (11.188)
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And the terms that depend on the above displacement field are defined below. The
evaluation of the function f at the above displacement field was defined in (11.108) as:

f
(
u t+∆t

0,t

)
= f (u t

t ) = βT

∫∫∫
Ωt

Gt
TAC

T σ̄ t

t dΩt (11.189)

And the left-hand side of the equation (11.187) becomes:

df

dut

(
u t+∆t

0,t

)
∆u t+∆t

0,t = df

dut

(u t

t ) ∆u t+∆t

0,t = βTKT (u t

t ) ∆α0 (11.190)

Where the components of the above tangent stiffness, according to their definition
presented in (11.181), turn out to be:

KT (u t

t ) =KM (u t

t ) +KG (u t

t )

KM (u t

t ) =
∫∫∫

Ωt

Bt
TD ′

2,tBt dΩt

KG (u t

t ) =
∫∫∫

Ωt

Gt
T σ̂ t

t Gt dΩt

(11.191)

The above results allow to obtain an equivalent equation that defines the first iter-
ation (11.187), as shown below.

KT (u t

t ) ∆α0 =
∫∫∫

Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt +
∫∫

Γσ
t

ϕt

Tg t+∆t

t,t dΓt

−
∫∫∫

Ωt

Gt
T AC

T σ̄ t

t dΩt

(11.192)

If the modified Newton-Raphson method is applied, the tangent stiffness is only
computed once, and the same stiffness is maintained over the entire iterative process.
This method avoids to update the tangent stiffness at each iterative step, so a big
amount of computational effort is saved. Nevertheless, more iterations might be needed
to reach convergence.

The decision of applying this simplified method or the general one has to be made.
As a general rule, it is worth trying the modified Newton-Raphson method. If con-
vergence issues arise, the general Newton-Raphson method, in which the computation
of the tangent stiffness has to be made at each iterative step, has to be taken into
account.

The equation that defines the remaining iterations of the modified Newton-Raphson
method is:

KT (u t

t ) ∆αk = P t+∆t − f
(
u t+∆t

k,t

)
=
∫∫∫

Ωt

ϕt

Tb t+∆t

t ρ t

t dΩt +
∫∫

Γσ
t

ϕt

Tg t+∆t

t,t dΓt

−
[∫∫∫

Ω
GT AC

T σ̄E dΩ
] ∣∣∣∣∣

ut=u t+∆t
k,t

k = 1, 2, 3, . . .

(11.193)
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Therefore, the only term that has to be updated in order to continue iterating is the
scalar function f , since the integral is defined over the last computed material domain.
This material domain is defined according to the following equation:

r t+∆t

k,t (rt) = rt + ∆u t+∆t

k,t (rt)

= rt +
[
u t+∆t

k,t (rt) − u t

t (rt)
] (11.194)

Once the system of linear equations (11.193) is solved, the displacement field is
updated and the convergence criterion (10.125) is checked. If convergence is achieved,
the iterative procedure is stopped, and the last iterative result is adopted as the dis-
placement field corresponding to the current load step. If not, the next iteration is
carried out by repeating the procedure exposed in this section.

∆αk =⇒ ∆u t+∆t

k,t = ϕt ∆αk

=⇒ u t+∆t

k+1,t = u t+∆t

k,t + ∆u t+∆t

k,t

=⇒ Convergence?
{

Yes =⇒ u t+∆t

k+1,t = u t+∆t

t (stop)
No =⇒ u t+∆t

k+2,t = u t+∆t

k+1,t + ∆u t+∆t

k+1,t (continue)
(11.195)

Note that the discretization methodology, as well as the criteria to define the trial
functions, are the same as those exposed in linear theory. They can be checked in
sections 9.17 and 9.18, respectively.

11.8. Strain and stress fields update

Once the convergence has been achieved, the displacement field of the current load
step t+ ∆t is known. The next step is to compute its corresponding strain and stress
fields.

Before solving this load step, the previous one was completely defined. Hence, the
displacement, strain, and stress fields corresponding to the load step t are:

u t

t (rt) =⇒ E t

t

(
u t

t (rt)
)

=⇒ σ t

t

(
E t

t

(
u t

t (rt)
))

(11.196)

Let’s move then to the next load step t+∆t, where the displacement field is obtained
by applying the iterative procedure exposed in the previous section. The difference
between the displacement field of consecutive load steps defines the displacement field
increment.

∆u t

t = u t+∆t

t − u t

t (11.197)

As the gradients of the displacement field increment are small, the strain tensor
increment and the Cauchy stress tensor increment can be computed according to equa-
tions (11.148) and (11.136), respectively.∥∥∥∥d∆u t

t

drt

∥∥∥∥ ≪ ∥I∥ =⇒

{
∆Ē t

t = AC ∆J̄ t

t

∆σ̄ t

t = D ′
2,t

(
Ē t

t

)
∆Ē t

t

(11.198)
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Therefore, the updated strain and stress fields are obtained by adding the above
increments to the previous results.

Ē t+∆t

t = Ē t

t + ∆Ē t

t

σ̄ t+∆t

t = σ̄ t

t + ∆σ̄ t

t

(11.199)

11.9. Overview and conclusions

11.9.1. Nonlinear analysis strategy

This chapter is again focused on the static analysis of solids subjected to external
loads. The external forces are supposed to be common loads that do not depend on
the displacement field. The solid adopts a deformed configuration in static equilibrium
after the application of the external loads.

A nonlinear analysis is again carried out in order to obtain the structural behaviour.
That is, the solid is supposed to behave with large displacements and large displacement
gradients.

As the displacements that the solid undergoes are large, the reference configura-
tion and the deformed domain can not be considered coincident. Therefore, the
equilibrium equations have to be imposed over the unknown deformed material
domain. Moreover, the volume variation has to be taken into account, and the
Lagrangian and Eulerian descriptions of a given magnitude are not coincident.

The displacement gradients are also assumed to be large, so the approximate
polar decomposition of the deformation gradient tensor can not be applied in
this context. Consequently, an eigenvalue problem has to be solved to properly
decompose the deformation gradient tensor. Once this problem is solved, both
the rotation and the strain tensors can be defined, and their product states the
polar decomposition of the deformation gradient tensor. Furthermore, the stress
field experimented by the solid can also be defined by means of both tensors.

As the structural response is nonlinear, a given load state could have multiple
solutions. Thus, the total load can not be applied in only one step. If the order in
which the external loads are applied is not taken into account, a structural behaviour
that does not correspond to the real one may be obtained. And the superposition
principle which is commonly applied in linear analysis does no longer hold.

To overcome the issues of dealing with a nonlinear structural response, an incre-
mental loading process can be carried out. Moreover, an incremental loading procedure
is a suitable method, since the weak form that leads to the finite element formulation
turns out to be a nonlinear equation that depends on the displacement field. This
equation has to be solved by an iterative method, which needs to start iterating from
a close approximation to the solution. The application of a small incremental load
at each step allows to start the iterative procedure from a close approximation to the
displacement field of the current load step.
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11.9.2. Updated Lagrangian finite element analysis

The finite element formulation derived in the previous chapter is usually known
as the total Lagrangian one. This approach is based on the adoption of the initial
material domain as the reference configuration along the entire incremental loading
process. The weak form that leads to the finite element formulation turns out to be
a Lagrangian one. That is, it turns out to be composed by integrals defined over the
well-known undeformed configuration, and the magnitudes involved in it are described
according to their Lagrangian descriptions.

However, the updated approach is now adopted instead of the total one. According
to this updated point of view, the last computed material domain becomes the new
reference configuration. Once each load step is solved, the last computed material
domain becomes the reference one for the next load step.

The derivation of the finite element formulation corresponding to this updated ap-
proach is analogous to the one presented in the previous chapter. The weak form of the
current load step is composed by integrals defined over the unknown material domain,
and the magnitudes are described according to their Eulerian description. The real
challenge is to manipulate this weak form to obtain integrals defined over the material
domain corresponding to the previous load step, which has become the new reference
configuration, as well as magnitudes described with respect to this domain. The result-
ing weak form turns out to be a nonlinear equation which needs to be solved iteratively.
The application of an iterative method in conjunction with the finite element method
leads to the obtention of a system of linear equations, which has to be solved in order
to obtain the displacement field at each iteration.

The matrix that defines this system of linear equations is the so-called tangent stiff-
ness, since it can be geometrically interpreted as the tangent of the nonlinear structural
response. This stiffness turns out to be composed by the sum of two components: the
material component and the geometric stiffness. The material component of the tan-
gent stiffness turns out to depend on the mechanical properties of the material, whereas
the geometric component depends on both the stress state and the geometry of the
reference material domain.

The tangent stiffness can be calculated only once, if the same tangent stiffness
is maintained over the entire iterative process. This method avoids to update the
tangent stiffness at each iterative step, so a big amount of computational effort is saved.
Nevertheless, more iterations might be needed to reach convergence. The decision of
applying this simplified method or the general one has to be made. As a general rule,
it is worth trying the modified method. If convergence issues arise, the general one has
to be taken into account, in which the computation of the tangent stiffness has to be
made at each iteration.

Both the total and the updated approaches lead to analogous system of linear
equations. Nevertheless, the following major differences between the components of
the tangent stiffness can be outlined.
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On the one hand, the material component of the tangent stiffness is similar to the
linear stiffness matrix. However, the derivatives of the trial functions are taken
with respect to the geometry of the previous load step, instead of being taken
with respect to the initial configuration. Moreover, this term is defined by means
of the spatial constitutive tensor, instead of the linear constitutive one.

On the other hand, the geometric stiffness is quite similar to the one obtained in
the Total Lagrangian approach. Nevertheless, the Cauchy stresses are involved
instead of the second Piola-Kirchhoff ones. And the derivatives of the trial func-
tions are taken with respect to the geometry of the previous load step, instead of
being taken with respect to the initial one.

Once the system of linear equations is solved, the displacement field can be updated,
and the convergence criterion has to be verified. If convergence is achieved, the iterative
procedure is stopped, and the last iterative result is adopted as the displacement field
corresponding to the current load step. If not, the process is repeated until reaching
convergence.

Note that the iterative method may fail to converge if the tangent stiffness matrix
becomes singular. To deal with these limit points, many techniques have been proposed
to successfully pass them. A review of these techniques can be checked in the previous
chapter.
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Chapter 12
Conclusions and future research

12.1. Conclusions

In this section, the most relevant conclusions obtained along this work are presented.
The first subsection contains the main general conclusions. The second one is dedicated
to the principal conclusions obtained after proposing a general formulation for the
nonlinear solid mechanics, whereas the third one is focused on the conclusions that can
be drawn from the derivation of the nonlinear finite element formulations.

12.1.1. General conclusions

One of the main contributions of this work is the proposition of a novel unifying
formulation for nonlinear solid mechanics.

The assumptions made about the magnitude of both the displacements and
the displacement gradients are very important, since they define the theoretical
framework of the structural analysis. Most references in the existing literature
do not clearly identify the implications of these assumptions.

• This formulation allows to clearly identify the implications of each assump-
tion in order to properly define the mathematical models that governs the
structural behaviour both in linear and nonlinear analysis.

A novel, simple, and clear nomenclature is proposed.

Only the necessary magnitudes and equations that allow to describe the presented
deformation process are stated in order to achieve a detailed formulation for
nonlinear solid mechanics.

• This formulation is based on only two main equations that completely char-
acterize the solid behaviour.
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◦ The equation that defines the motion of a given particle that belongs
to the initial configuration. This one defines the solid motion.

◦ And the equation that rules the finite or infinitesimal geometric trans-
formation experimented by a given material vector. This one governs
the change of volume, orientation, and shape experimented by the solid.

• The incremental approach that defines the incremental geometric transfor-
mation experimented by a given material vector between two consecutive
time steps is also derived.

◦ This formulation can be extended to describe the incremental loading
process usually applied in nonlinear analysis, if the incremental load at
each step is small enough.

◦ This approach is also suitable for describing viscous behaviour.

The proposed nonlinear solid mechanics formulation establishes the basic principles
that allow to derive a novel subsequent finite element formulation. Another main
contribution of this thesis is to present the complete derivation of two nonlinear finite
element formulations.

Many references address the derivation of the nonlinear finite element formula-
tions. Nevertheless, there is no consensus about a common nomenclature and
notation. Moreover, the hypotheses made along these derivations are not clearly
specified or are not even stated.

• A novel derivation which clarifies these formulations is proposed, in order
to deeply understand the underlying physics and the essence of the algo-
rithms. The intermediate hypotheses are clearly identified, and the origin
and definition of the matrices that compose the algorithms is extensively
analysed.

• A detailed guideline that facilitates the deep comprehension of this powerful
technology is proposed.

Some classical nonlinear finite element formulations are written entirely in index
notation, which is convenient for coding and implementing the algorithms into a
computer software. In this work, the use of index notation is avoided whenever
possible for facilitating the understanding of the concepts. If required, it is applied
as an intermediate step to reach a final tensor notation.

The derivation of static finite element formulations is presented. However, the
nonlinear solid mechanics principles proposed in this thesis also allow the deriva-
tion of the corresponding dynamic formulation.

The nonlinear analysis is carried out according to an incremental loading process.
At each loading step, the finite element method in conjunction with an iterative
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method lead to the resolution of a linear system of equations at each iteration.
The matrix of this system is the tangent stiffness, which varies at each iteration.

• For saving computing effort, the tangent stiffness can be calculated only
once at the first iteration, so the same stiffness is maintained over the entire
iterative process. This modified method allows to save a big amount of
computation effort. Nevertheless, more iterations might be needed to reach
convergence.

• The decision of applying this simplified method or the general one has to be
made. As a general rule, it is worth trying the modified method.

• The iterative method may fail to converge if the tangent stiffness matrix
becomes singular. To deal with these limit points, many techniques have
been proposed to successfully pass them. An overview of these techniques
has also been presented.

As a general rule, the Total Lagrangian finite element formulation is preferable
to the updated one, since the reference domain does not need to be updated at
each step of the incremental loading process. Moreover, to define the magnitudes
with respect to the initial configurations along the entire loading process is more
convenient than modifying the reference at each load step. In addition, the total
approach does not require the use of the spatial constitutive tensor, which leads
to less computational effort.

12.1.2. Conclusions derived from the solid mechanics formulation

In this subsection, some of the most relevant conclusions that can be obtained from
the derivation of the nonlinear solid mechanics formulation proposed in this thesis are
summarized.

The deformation vector and its corresponding gradient tensor are the most impor-
tant magnitudes to describe the deformation of a solid media subjected to external
forces.

The solid motion is described by the deformation vector, which is defined by
means of the displacement vector. Therefore, if the displacement field is known,
the deformed material vector can be defined over time, and the solid motion is
completely defined.

The deformation gradient tensor turns out to rule the geometric transformation
of a given material vector over time. Thus, this tensor is the one that governs the
change of volume, orientation, and shape. It contains the required information
to properly define the displacement field, as well as its corresponding strain and
stress fields.
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The determinant of the deformation gradient tensor governs the volume variation
of a given differential volume defined on the initial configuration.

• A novel derivation to obtain the determinant of the deformation gradient
tensor is proposed. The classical proof is based on the vector product,
which is a tensor operation only defined in a thee-dimensional space. The
demonstration proposed in this thesis is based on the metric tensor, and the
use of the vector product is not required.

The balance equations of mass, linear momentum, and angular momentum rule the
solid structural behaviour. These equations govern the value of the density field over
time, and state the dynamic equilibrium of forces and torques.

In Solid Mechanics, it is not common to deal with mass sources. So, it is usually
considered that the mass remains constant. Under the assumption of mass con-
servation, the density of the media turns out to be defined by means of the initial
density field and the value of determinant of the deformation gradient tensor.

The balance equations also allow to obtain the equations that rule the static
equilibrium. A solid at static equilibrium fulfils the conservation of both the
linear momentum and the angular momentum.

• The imposition of the linear momentum conservation leads to the equation
that rules the static equilibrium of forces.

• The material is assumed to not been capable of absorbing angular momen-
tum per unit volume, so the angular momentum is conserved. And the
angular momentum conservation applied to its corresponding balance equa-
tion leads to the equation that governs the equilibrium of torques. This
equation turns out to be reduced to the symmetry of the Cauchy stress
tensor.

The external loads cause a displacement field, which produces internal stresses.
The stress vector at a given material particle is defined with respect to a specific plane.
Cauchy’s definition leads to state the stress vector as the product between the Cauchy
stress tensor and the normal unit vector that defines the plane with respect to which
the stress is defined. And the Cauchy stress tensor turns out to be composed by the
components of the stress vectors which are defined with respect to the Cartesian planes.

If the initial configuration is adopted as the reference domain, instead of the
deformed one as in the Cauchy’s proposal, alternative stress vectors arise which
fulfil interesting properties to deal with a nonlinear analysis.
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An alternative stress vector can be defined as the product between the first Piola-
Kirchhoff stress tensor and the normal unit vector corresponding to the initial
configuration, that identifies the plane with respect to which the stress is cal-
culated. This definition is useful to convert integral weak forms defined over
the unknown deformed configuration to integrals defined over a known material
domain.

Another alternative stress vector can be stated as the product between the sec-
ond Piola-Kirchhoff stress tensor and the normal unit corresponding to the initial
configuration, that identifies the plane with respect to which the stress is calcu-
lated. Although this vector has no clear physical interpretation, it is defined by
means of a symmetric tensor that verifies some interesting properties. The appli-
cation of a rigid motion (translation and/or rotation) does not alter the value of
the second Piola-Kirchhoff stress tensor. Therefore, this tensor becomes a suit-
able candidate to properly represent the stress field when a nonlinear analysis is
carried out.

The deformation gradient tensor is a powerful tool to analyse solids that behave with
large displacements and/or large displacement gradients, since it rules the geometric
transformation of a given material vector over time.

Its polar decomposition leads to a clearer physical interpretation of the geometric
transformation. The polar decomposition allows to decompose the deformation
gradient tensor as the product between the rotation and the strain tensors. In
order to define both tensors, an eigenvalue problem has to be solved.

• Firstly, the strain tensor modifies the modulus and direction of the material
vector, by means of a pure stretch transformation.

• Then, the rotation tensor rotates the previous modified material vector to
orientate it according to the deformed geometry.

This geometric transformation turns out to be infinitesimal if the displacement
gradients are small. Note that this consideration does not imply a small displace-
ment behaviour.

• If this assumption is fulfilled, the approximate polar decomposition can be
accurately applied to decompose the deformation gradient tensor. Therefore,
the polar decomposition is completely posed only by means of the displace-
ment gradient tensor, and there is no need to solve an eigenvalue problem.
This is a major advantage, since less computational effort is required.

• The deformation gradient tensor is then defined as the product between the
infinitesimal rotation tensor and the infinitesimal strain. Both tensors cause
an infinitesimal geometric transformation.
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The deformation gradient tensor states the geometric transformation experienced
by a given material vector between t = 0 and a given instant of time t. This geo-
metric transformation can be finite or infinitesimal, depending on the magnitude
of the displacement gradients. However, the incremental approach can also be
adopted, which is focused on the incremental geometric transformation experi-
mented by a material vector between two consecutive infinitesimal time steps.

• This geometric transformation between t and t+ dt is ruled by the velocity
gradient tensor.

• As this incremental geometric variation turns out to be infinitesimal, the
approximate polar decomposition can be accurately applied to decompose
the tensor that governs this transformation. Therefore, this tensor can be
defined as the product between an incremental rotation and an incremental
strain.

• This formulation also rules the incremental loading process applied in non-
linear analysis, if the incremental load at each load step is small enough.
If an incremental loading process is applied, the time variable vanishes and
becomes a parameter that indicates the current load level.

The computation of the difference between the square of the norm of a given material
vector and the square of the norm of its initial geometry leads to the definition of the
Green-Lagrange strain tensor. This tensor fulfils some interesting properties to deal
with nonlinear analyses.

This tensor does not vary if a rotation is applied to the deformed solid. Its
definition allows to get rid of the effect of the rotation tensor that defines the
applied rotation. That is, it is able to only take into account the strain effect in
order to define the strain field.

It turns out to be work conjugate with the second Piola-Kirchhoff stress tensor.
That is, their double dot product leads to the work per unit volume developed by
the internal forces during the deformation process. The second Piola-Kirchhoff
stress tensor also remains invariant if a rigid rotation is applied to the solid.
Therefore, both tensors are a suitable pair of magnitudes to represent the strain
and stress fields. Consequently, a constitutive equation that relate both magni-
tudes can be defined.

This work is focused on elastic solids. The value of the stress field of an elastic
solid only depends on the value of the deformation gradient tensor at a given instant
of time.
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If the external loads are removed, the initial configuration is completely recovered.

If the polar decomposition of the deformation gradient tensor is recalled, it can be
stated that the stress tensor depends on both the rotation and the strain tensors.

If the strain field is infinitesimal, the linear elasticity theory can be accurately
applied.

This assumption does not necessarily imply neither small displacements nor small
displacement gradients.

If the strain field is infinitesimal and the displacement gradients are small, the
Cauchy stress tensor can be defined according to the Lamé’s equation. That is,
the Cauchy stress tensor turns out to be defined only by means of the infinitesimal
strain tensor, and the relation between both magnitudes turns out to be linear.
The linear relation between both magnitudes can also be defined by means of the
linear constitutive tensor.

If the strain field is not infinitesimal, the linear elasticity does no longer hold, and
a proper definition of the Cauchy stress tensor by means of both the rotation and
the strain tensors has to be stated. However, more suitable tensor magnitudes can be
adopted to define the strain and stress fields, such as the Green-Lagrange strain tensor
and the second Piola-Kirchhoff stress tensor.

Both tensors remain invariant if a rigid motion (rotation and/or translation) is
applied to the solid, and turn out to be work conjugate magnitudes.

If the solid experiments large displacements, with large or small displacement
gradients, these tensors can be adopted to properly describe the strain field and
its corresponding stress field. Therefore, a constitutive equation that defines their
mathematical relation has to be stated.

As the nonlinear analysis is carried out according to an incremental loading proce-
dure, it is also essential to define the incremental constitutive equations.

To define the second Piola-Kirchhoff stress tensor increment by means of the
Green-Lagrange strain tensor increment, the gradients of the displacement field
increments are assumed to be small. If this assumption is fulfilled, the relation
between both incremental magnitudes can be stated as a linear relation defined
by means of a constitutive tensor.

If the strain field is infinitesimal, even if the displacements and/or the displacement
gradients are large, the relation between the second Piola-Kirchhoff stress tensor and
the Green-Lagrange strain tensor can be accurately approximated as a linear relation
defined by means of the linear constitutive tensor. This is the so-called St. Venant-
Kirchhoff constitutive equation, which is one of the simplest constitutive models.
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12.1.3. Conclusions derived from nonlinear finite element
formulations

Here are some of the main conclusions that can be drawn from the derivation of the
finite element formulations proposed in this work.

When the weak forms are stated, the test functions are interpreted as a displace-
ment field variation compatible with the essential boundary conditions. More-
over, the gradients of this displacement field variations are also assumed to be
small. Without these considerations, the physical interpretation of some tensors
that arise when the weak forms are posed becomes not possible, and to follow
the derivation becomes difficult and not intuitive at all.

• To consider the test functions as a displacement field variation is also the
base of the principle of virtual work, which is commonly applied in a big
amount of reference textbooks where the derivation of nonlinear finite ele-
ment formulations is faced.

• To differently approach these derivations, the calculation of the virtual work
of both the external and the internal forces is avoided. Consequently, no
energetic terms are defined to state the weak forms.

To numerically solve a nonlinear analysis, an incremental loading procedure has
to be applied, and the displacement field that corresponds to each load step has
to be solved iteratively.

The incremental loading procedure is based on some hypotheses about the mag-
nitude of the displacement field increment that defines consecutive material do-
mains.

• The displacement field increment between consecutive load steps may be
large, but the gradients of the displacement field increment between consec-
utive load steps are assumed to be small.

An iterative method is applied at each step of the incremental procedure to obtain
the displacement field of each load step. In order to guarantee convergence, the
procedure needs to start iterating from a close approximation to the solution.

• The incremental load applied at each step is assumed to be so small, that
the solution corresponding to the previous load step can be considered close
enough to the solution of the current load step.

• The displacement field increments between consecutive iterations are as-
sumed to be small. However, as mentioned before, the displacement field
increment between consecutive load steps may be large.
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Two approaches can be adopted, that differ on the material domain they take as
a reference configuration along the incremental loading process.

• The total approach is based on the adoption of the initial material configu-
ration as the reference along the entire incremental process.

• Whereas, the updated one adopts the last computed material domain as the
new reference for the current load step.

Both approaches in conjunction with the iterative procedure lead to a system of
linear equations that has to be solved at each iteration. The matrix of this system
is the so-called tangent stiffness, since it can be interpreted as the tangent to the
nonlinear structural response. The tangent stiffness turns out to be composed by
two terms, regardless the adopted approach.

• The material component, which turns out to depend on the mechanical
properties of the material.

• And the geometric stiffness, which depends on both the stress state and the
geometry of the reference material domain.

12.2. Future research

Up to now, the main conclusions that can be extracted from the novel nonlinear
solid mechanics formulation and its subsequent finite element formulations have been
summarized. Some guidelines are now presented to further extend this research work
in the near future.

To face the derivation of the dynamic nonlinear finite element formulation.

• The nonlinear solid mechanics formulation proposed in this thesis also allows
to address the derivation of the dynamic finite element formulation.

The classical derivation of the Cauchy stress vector is based on the application
of the linear momentum balance over a given finite tetrahedron that belongs to
the deformed configuration, which later becomes infinitesimal.

• A novel derivation based on the imposition of the linear momentum balance
over a domain which depends on a given parameter can be proposed. This
parameter is later forced to tend to zero, and the definition of the stress
vector should arise. This derivation is more generic and avoids the use of
specific geometrical entities, such as the classical tetrahedron.

Convert an existing linear finite element code into a nonlinear one by applying
the minimum number of modifications.
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• A guideline to obtain this conversion can be proposed.

• If the strain field is infinitesimal, this conversion should not be too difficult,
as the linear constitutive tensor can be adopted to describe the relation
between the second Piola-Kirchhoff stress tensor and the Green-Lagrange
strain tensor. Therefore, the tensor that defines the linear constitutive equa-
tions turns out to be equivalent to the one that define the nonlinear one,
and the definition of the constitutive equation is straightforward to obtain.

• Many linear analysis applications can be run in its corresponding nonlinear
version, and the accuracy of the linear results can be checked.

• Later on, this nonlinear analysis code can be implemented into a structural
optimization algorithm, in order to reduce the amount of material needed
under displacement and/or stress constraints

• A parametric structural analysis under the nonlinear analysis framework
could also be addressed. This analysis is based on the Proper General-
ized Decomposition (PGD) [Chinesta et al., 2013]. This turns out to be a
powerful tool, since it allows to obtain the structural response in terms of
certain parameters. For instance, the structural behaviour can be obtained
by means of the Young’s modulus. This implies that the structural response
of different materials can be obtained without the need to repeat the analysis
for each one of them.

The application of artificial intelligence techniques to obtain the nonlinear struc-
tural response of solids that behave with large displacement and/or large dis-
placement gradients.

• The equilibrium equations can be written in terms of a residual. For a
series of arbitrary displacement fields which are compatible with the essential
boundary conditions, their corresponding residuals have to be computed.
Then, with the data set composed by the arbitrary displacement fields and
their corresponding residuals, a neural network can be trained in order to
obtain the equation which defines the residual by means of the displacement
field. In general, this equation turns out to be a nonlinear one, and the
displacement field that corresponds to the equilibrium configuration cancels
the residual. Therefore, the root of the nonlinear equation turns out to
define the deformed configuration, and it can be calculated by means of an
iterative method.

• Alternatively, the inverse relation can be obtained from the same data set.
That is, the neural network will lead to the equation that defines the dis-
placement field by means of the residual. In this particular case, the dis-
placement field that corresponds to the equilibrium configuration is easier
to obtain, since the evaluation of this function at the point of null residual is
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only required. With this approach, the application of an iterative procedure
is not required.

Finally, more complex constitutive models have to be proposed, in order to prop-
erly analyse solids that do not experiment infinitesimal strains.

• In this thesis, only the St. Venant-Kirchhoff constitutive model is extensively
analysed. This simple model can only be accurately applied in an infinites-
imal strain context. In this case, the constitutive tensor can be considered
constant and equivalent to the linear constitutive one.

• If the strain field is not infinitesimal, the St. Venant-Kirchhoff model can no
longer be applied and more complex constitutive models have to be consid-
ered. In this case, the constitutive tensor is no longer constant and depends
on the displacement field undergone by the solid.
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Appendix A
Tensor algebra

A.1. First order tensors

A first order tensor turns out to be a vector. A vector can be defined in a n di-
mensional space as a linear combination of the vectors that compose a particular basis.
These vectors are defined with respect to the canonical basis as follows:

e⃗k = ek =
{
ek,l

}
l=1,...,n

k = 1, . . . , n (A.1)

In this work, an orthonormal basis is adopted as a reference. Under this assumption,
a generic vector can be expressed with respect to the canonical basis as shown below.

a⃗ =
n∑

k=1
ekak ⇐⇒ a⃗ = E a where


E =

[
e1 · · · en

]
a =


a1
...
an

 (A.2)

As the reference basis is an orthonormal one, the matrix E which is composed by
the vectors arranged in columns has to be equal to the identity matrix. Therefore, the
definition of a vector with respect to an orthonormal basis can be reduced to:

E = I =⇒ a⃗ = a =
{
ak

}
k=1,...,n

(A.3)

The previous result implies that the components of the vector are equal to the
vector itself. This conclusion only holds when dealing with orthonormal basis.

279



Appendix A. Tensor algebra

A.1.1. Transpose

The transpose operator is an operator that can be applied to a first order tensor,
and transforms a column vector into a row vector.

a =


a1
...
an

 =
{
ak

}
k=1,...,n

=⇒ aT =
[
a1 · · · an

]
=
[
ak

]
k=1,...,n

(A.4)

A.1.2. Scalar product

The scalar product is a tensor operation that involves two vectors to produce a
scalar. It is also called dot product, since it is represented by a single dot between both
vectors. This dot represents the index contraction experimented by the components of
both vectors.

c = a · b = aT b =
n∑

k=1
akbk (A.5)

According to the above definition, the scalar product is commutative. That is, the
order of the vectors does not affect the result.

b · a =
n∑

k=1
bkak =

n∑
k=1

akbk = a · b (A.6)

A.1.3. Norm

The length of a given vector is adopted to define its norm. According to the Pythago-
ras’ theorem, this length can be computed as:

∥a∥ =
(

n∑
k=1

ak

2

)1/2

(A.7)

If the definition of the scalar product (A.5) is recalled, the norm can also be defined
as:

∥a∥ =
(

n∑
k=1

ak

2

)1/2

=
(
a · a

)1/2 (A.8)

A.1.4. Scalar product in a three-dimensional space

Once the norm of a given vector is defined, an alternative equation to compute
the scalar product between two vectors embedded in a three-dimensional space can be
defined.

Let’s consider that the vector b is decomposed into the sum of the following vectors.

b = b p + bn where
{
b p = λa , λ ∈ R

bn · a = 0
(A.9)
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The previous conditions imply that b p is parallel to a. Moreover, if the scalar
product of perpendicular vectors is assumed to be null, the vector bn turns out to be
perpendicular to b p and a (figure A.1).

Figure A.1. Decomposition of the vectors involved in a scalar product computation.

The substitution of the above decomposition into the scalar product leads to:

c = a · b = a ·
(
b p + bn

)
= a ·

(
λa+ bn

)
= λa · a+ a · bn︸ ︷︷ ︸

=0

= λa · a (A.10)

The value of the constant λ can be obtained from the previous result as:

λ = a · b
a · a

= a · b
∥a∥2

(A.11)

Furthermore, the cosine of the angle composed by both vectors turns out to be:

cos (α) = ∥b p∥
∥b∥

=
(
b p · b p

)1/2(
b · b

)1/2
=
λ
(
a · a

)1/2(
b · b

)1/2
= λ

∥a∥
∥b∥

(A.12)

The substitution of the constant λ obtained in (A.11) into the above equation leads
to the following result.

cos (α) = a · b
∥a∥∥b∥

(A.13)

Therefore, the scalar product can be finally computed as shown below.

a · b = ∥a∥∥b∥ cos (α) (A.14)

A.1.5. Vector product

The vector product is a tensor operation that involves two vectors to produce an-
other vector as a result. This operation is only defined in a three-dimensional space,
and it is also known as the cross product. It is defined as follows:

c = a ∧ b = det


 i⃗ j⃗ k⃗

a1 a2 a3

b1 b2 b3


 (A.15)
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Where the vectors i⃗, j⃗, and k⃗ are the vectors that compose the canonical basis in
a three-dimensional space.

It can be proven that the norm of the resulting vector can be computed by means
of the norm of both vectors and the angle α between them, as:

∥c∥ = ∥a ∧ b∥ = ∥a∥∥b∥ sin (α) (A.16)

If the determinant defined in (A.15) is computed, the components of the resulting
vector turn out to be:

c = a ∧ b = i⃗ (a2 b3 − a3 b2) + j⃗ (a3 b1 − a1 b3) + k⃗ (a1 b2 − a2 b1) (A.17)

This operation can also be defined in matrix notation, by defining the following
antisymmetric matrix composed by the components of the vector a.

a =


a1

a2

a3

 −→ A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 AT = −A (A.18)

The product between the above matrix and the vector b leads to the same vector
as the one obtained computing the determinant defined in (A.15).

c = Ab =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


b1

b2

b3

 =


a2 b3 − a3 b2

a3 b1 − a1 b3

a1 b2 − a2 b1

 (A.19)

On the other hand, the above components can also be obtained as:

ci =
3∑

j=1

3∑
k=1

εijkajbk i = 1, 2, 3 (A.20)

Where εijk are the components of the Levi-Civita symbol, which are defined as:

εijk =


= +1 if (i, j, k) is (1, 2, 3) , or (2, 3, 1) , or (3, 1, 2)
= −1 if (i, j, k) is (3, 2, 1) , or (2, 1, 3) , or (1, 3, 2)
= 0 if i = j , or j = k , or i = k

(A.21)

A.1.6. Some vector product properties

Since this tensor operation is defined as a determinant, some properties can be
stated if the properties of this operator are taken into account. For instance, the
vector product of two parallel vectors is the null vector, as the determinant of a matrix
with two identical rows has to be zero.

a ∧
(
λa
)

= λ det


 i⃗ j⃗ k⃗

a1 a2 a3

a1 a2 a3


 = 0 (A.22)
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In addition, if two rows of a determinant are exchanged, the same result with
opposite sign is obtained. Thus, if the vector order is exchanged, the opposite vector
is obtained. That is, the vector product holds the anticommutative property.

b ∧ a = det


 i⃗ j⃗ k⃗

b1 a2 a3

a1 a2 a3


 = − det


 i⃗ j⃗ k⃗

a1 a2 a3

b1 b2 b3


 = −

(
a ∧ b

)
(A.23)

Another interesting particular case occurs when one of the vectors turn out to be
the sum of two different vectors.

a ∧
(
b+ c

)
= det


 i⃗ j⃗ k⃗

a1 a2 a3

(b1 + c1) (b2 + c1) (b3 + c3)


 (A.24)

If the components of a row are composed by the sum of two elements, the deter-
minant can be separated into the sum of two determinants, composed by the first and
second term, respectively. The other rows remain identical to the original one.

det


 i⃗ j⃗ k⃗

a1 a2 a3

(b1 + c1) (b2 + c2) (b3 + c3)


 =

= det


 i⃗ j⃗ k⃗

a1 a2 a3

b1 b2 b3


+ det


 i⃗ j⃗ k⃗

a1 a2 a3

c1 c2 c3




(A.25)

Hence, the vector product holds the distributive property, and the vector product
can be computed as:

a ∧
(
b+ c

)
= a ∧ b+ a ∧ c (A.26)

On the other hand, it is possible to deal with vectors that depend on a given variable.
The resulting vector of their vector product will also depend on the same variable.

c (x) = a (x) ∧ b (x) (A.27)

The derivative of the above vector with respect to the variable x is another vector.
Its components are defined as the derivatives of the components obtained in (A.17)
with respect to this variable.

dc

dx
= d

dx

(
a ∧ b

)
=


dc1

dx
dc2

dx
dc3

dx

 =


d

dx
(a2 b3 − a3 b2)

d

dx
(a3 b1 − a1 b3)

d

dx
(a1 b2 − a2 b1)

 (A.28)
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In order to obtain the equation that defines the above vector, the previous deriva-
tives are computed.

dc

dx
=


da2

dx
b3 − da3

dx
b2

db1

dx
a3 − db3

dx
a1

da1

dx
b2 − da2

dx
b1

+


a2

db3

dx
− a3

db2

dx

b1

da3

dx
− b3

da1

dx

a1

db2

dx
− a2

db1

dx

 (A.29)

And the above components can be equivalently expressed as the sum of the following
determinants.

dc

dx
= det



i⃗ j⃗ k⃗
da1

dx

da2

dx

da3

dx
b1 b2 b3


+



i⃗ j⃗ k⃗

a1 a2 a3
db1

dx

db2

dx

db3

dx


 (A.30)

Therefore, the derivative can be computed as follows:

d

dx

(
a ∧ b

)
= da

dx
∧ b+ a ∧ db

dx
(A.31)

A.1.7. Triple product

The triple product is a tensor operation that combines the vector product and the
scalar product, to generate a scalar. As the vector product is involved, it can only be
defined in a three-dimensional space. It is defined as:

d =
(
a ∧ b

)
· c (A.32)

According to the result obtained in (A.19), the components of a vector product can
be computed as:

a ∧ b =


a2 b3 − a3 b2

a3 b1 − a1 b3

a1 b2 − a2 b1

 (A.33)

And the scalar product between the above vector and the third vector involved in
the triple product leads to:(
a∧ b

)
· c =

(
a∧ b

)T
c = c1 (a2 b3 − a3 b2) + c2 (a3 b1 − a1 b3) + c3 (a1 b2 − a2 b1) (A.34)

The previous result can also be obtained as the determinant of the following matrix.

(
a ∧ b

)
· c = det

a1 a2 a3

b1 b2 b3

c1 c2 c3

 (A.35)

Moreover, the property (A.97) of the determinant operator can be applied. Ac-
cording to this property, the determinant of a second order tensor is equivalent to the
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determinant of its transpose.

(
a∧b

)
·c = det

a1 a2 a3

b1 b2 b3

c1 c2 c3

 = det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = det
( [
a b c

] )
(A.36)

Consequently, the triple product of three specific vectors can be calculated as the
determinant of the matrix composed by the vectors organized into columns.(

a ∧ b
)

· c = det
( [
a b c

] )
(A.37)

Figure A.2. Geometrical interpretation of the triple product.

To geometrically interpret this operation, the definition of the scalar product stated
in (A.14) is applied.(

a ∧ b
)

· c = ∥a ∧ b∥ ∥c∥ cos (β)︸ ︷︷ ︸
g

= ∥a ∧ b∥ × g (A.38)

Where g turns out to be the height of the parallelepiped composed by the three
vectors involved in the triple product. Furthermore, the modulus of the vector a ∧ b
can be computed as stated in (A.16), as:

∥a ∧ b∥ = ∥a∥ ∥b∥ sin (α)︸ ︷︷ ︸
h

= ∥a∥ × h (A.39)

Where h is the height of the parallelepiped composed by the vectors a and b.
Consequently, the modulus of the vector product (A.16) can be interpreted as the area
of the parallelepiped composed by the two vectors involved in the vector product.

∥a ∧ b∥ = ∥a∥ × h = A (A.40)

And the triple product can be interpreted as the volume of the parallelepiped com-
posed by the three vectors.(

a ∧ b
)

· c = ∥a ∧ b∥ × ∥c∥ cos (β) = A× g = V (A.41)
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A.1.8. Tensor product

The tensor product is a tensor operation that involves two vectors and produces a
second order tensor as a result. This operation is also called dyadic product, and it is
defined as:

C = a⊗ b = abT =
[
Cij

]
i=1,...,n
j=1,...,n

(A.42)

Where the components of the resulting second order tensor are defined as:

Cij = cibj (A.43)

A.2. Second order tensors

The following equation is the one that defines a second order tensor with respect
to the basis defined in (A.1).

A
≈

=
n∑

k=1

n∑
l=1

(
ek ⊗ el

)
Akl (A.44)

And the components of the above tensor can be gathered in the following matrix:

A =
[
Aij

]
i=1,...,n
j=1,...,n

(A.45)

If the vectors that compose the reference basis are orthonormal, the matrix cor-
responding to each one of the addends that compose equation (A.44) turns out to
be:

B = ek ⊗ el =
[
Bij

]
i=1,...,n
j=1,...,n

Bij =
{

= 1 if i = k and j = l

= 0 if i ̸= k or j ̸= l
(A.46)

That is, the components of the above matrix are null, except for one which is
equal to one. Therefore, if the sum of all the addends that compose the second order
tensor (A.44) is performed, it can be checked that the tensor and the matrix that
gathers its components are equivalent.

A
≈

= A =
[
Aij

]
i=1,...,n
j=1,...,n

(A.47)

The above conclusion only holds when an orthonormal basis is adopted as a refer-
ence.

A.2.1. Unit tensor

The second order unit tensor is defined as a matrix whose diagonal components are
equal to one, and the non-diagonal components are zero. It can be defined by means
of the Kronecker delta, as shown below.

I =
[
δij

]
i=1,...,n
j=1,...,n

δij =
{

= 1 ; i = j

= 0 ; i ̸= j
(A.48)
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A.2.2. Norm

The result of applying a second order tensor to a vector is another vector, whose
norm and direction are different from the original ones. That is, the second order
tensor is the one that modifies the norm and direction of the primal vector. Therefore,
a suitable measure of its modulus can be defined by means of the unit vector that
experiments the biggest norm variation when the second order tensor is applied.

∥A∥ = max
x̸=0

∥∥∥∥A x

∥x∥

∥∥∥∥ = max
x̸=0

∥Ax∥
∥x∥

(A.49)

The norm of the second order unit tensor is straightforward to obtain, since the
unit tensor does not modify the norm and direction of a vector.

∥I∥ = max
x̸=0

∥I x∥
∥x∥

= ∥x∥
∥x∥

= 1 (A.50)

A.2.3. Transpose

The transpose of a second order tensor is obtained by permuting the order of the
components indices, that is, the rows become columns and vice versa. Thus, the
transpose of the tensor defined in (A.47) turns out to be:

A =
[
Aij

]
i=1,...,n
j=1,...,n

=⇒ AT =
[
Aji

]
j=1,...,n
i=1,...,n

(A.51)

A.2.4. Multiplication

The multiplication of two second order tensors leads to another second order tensor
as a result.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

 =⇒ C = AB =
[
Cij

]
i=1,...,n
j=1,...,n

(A.52)

Where the components of the resulting tensor are defined as:

Cij =
n∑

k=1
Aik Bkj (A.53)

A.2.5. Transpose of a multiplication

The multiplication of two second order tensors was defined in the previous section.
In this section, the transpose of this multiplication is analysed.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

 =⇒


C = AB =

[
Cij

]
i=1,...,n
j=1,...,n

Cij =
n∑

k=1
Aik Bkj

D = CT =
(
AB

)T =
[
Dij

]
i=1,...,n
j=1,...,n

(A.54)
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Where the components of the resulting second order tensor turn out to be:

Dij = Cji =
n∑

k=1
Ajk Bki =

n∑
k=1

Bki Ajk (A.55)

In addition, the components of their transposes are defined below.

E = AT =
[
Eij

]
i=1,...,n
j=1,...,n

Eij = Aji

F = BT =
[
Bij

]
i=1,...,n
j=1,...,n

Fij = Bji

(A.56)

Therefore, the components defined in (A.55) become:

Dij =
n∑

k=1
Bki Ajk =

n∑
k=1

Fik Ekj (A.57)

The above components turn out to be the corresponding ones to the result of mul-
tiplying both transposes. Consequently, it can be concluded that:

D = F E ⇐⇒
(
AB

)T = BTAT (A.58)

A.2.6. Square

Let’s consider the following second order square tensor.

A =
[
Aij

]
i=1,...,n
j=1,...,n

AT = A (A.59)

The square of the above tensor is defined as:

B = A2 = AA =
[
Bij

]
i=1,...,n
j=1,...,n

(A.60)

Where the components are defined as shown below.

Bij =
n∑

k=1
AikAkj (A.61)

A.2.7. Double dot product

The double dot product is a tensor operation that implies the contraction of two in-
dices. The double dot product between two second order tensors leads to a scalar, since
the contraction of both indices is performed. This double contraction is symbolized by
a double dot, and the operation is defined as shown below.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

 =⇒ c = A : B =
n∑

k=1

n∑
l=1

Akl Bkl (A.62)
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A.3. Product between a second order tensor and a first order tensor

The order of the tensors does not modify the result, that is, the double dot product
holds the commutative property.

B : A =
n∑

k=1

n∑
l=1

Bkl Akl

=
n∑

k=1

n∑
l=1

AklBkl = A : B
(A.63)

An interesting property arises when considering that the tensor B is symmetric.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

Bji = Bij

C = AT =
[
Cij

]
i=1,...,n
j=1,...,n

Cij = Aji

 =⇒



C : B =
n∑

k=1

n∑
l=1

CklBkl

=
n∑

k=1

n∑
l=1

AlkBkl

=
n∑

k=1

n∑
l=1

AlkBlk = A : B

(A.64)
Therefore, if the tensor B is symmetric, the following property can be taken into

account.
AT : B = A : B (A.65)

A.3. Product between a second order tensor and a first order
tensor

When the calculation of the product between a second order tensor and a first
order one is performed, only one index can be contracted. Consequently, this operation
generates a first order tensor as a result.

A =
[
Aij

]
i=1,...,n
j=1,...,n

b =
{
bi

}
i=1,...,n

 =⇒ c = Ab =
{
ci

}
i=1,...,n

(A.66)

The components of the resulting vector are defined as follows.

ci =
n∑

k=1
Aikbk (A.67)

A.4. Product between the transpose of a first order tensor
and a second order tensor

The product of the transpose of a first order tensor and a second order tensor leads
to a row vector.

c = bTA =
[
ci

]
i=1,...,n

(A.68)
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Where the components of the above row vector are defined as:

ci =
n∑

k=1
bkAki (A.69)

A.5. Transpose of the product between a second order tensor
and a first order tensor

As stated in section A.3, the product between a second order tensor and a first
order one generates a first order tensor. Therefore, the transpose of this result turns
out to be a row vector.

A =
[
Aij

]
i=1,...,n
j=1,...,n

b =
{
bi

}
i=1,...,n

c = Ab =
{
ci

}
i=1,...,n

ci =
n∑

k=1
Aikbk


=⇒ cT =

(
Ab
)T =

[
ci

]
i=1,...,n

(A.70)

Where the components of the previous row vector are defined as:

ci =
n∑

k=1
Aikbk =

n∑
k=1

bkAik (A.71)

On the other hand, the transpose of the tensor A turns out to be:

D = AT =
[
Dij

]
i=1,...,n
j=1,...,n

Dij = Aji (A.72)

Thus, the components (A.71) become:

ci =
n∑

k=1
bkAik =

n∑
k=1

bkDki (A.73)

And according to equation (A.69), it can be concluded that the above components
correspond to the following tensor operation.

cT = bTD ⇐⇒
(
Ab
)T = bTAT (A.74)

A.6. Trace of a second order tensor

The trace is an operator that computes the sum of the components of the tensor
that have repeated indices.

A =
[
Aij

]
i=1,...,n
j=1,...,n

=⇒ c = Tr
(
A
)

=
n∑

k=1
Akk (A.75)

290



A.6. Trace of a second order tensor

It can also be interpreted as the double dot product between the tensor itself and
the second order unit tensor, which was defined in (A.48).

Tr
(
A
)

=
n∑

k=1
Akk =

n∑
k=1

n∑
l=1

Aklδkl = A : I (A.76)

A.6.1. Some trace properties

The trace of the transpose of a given second order tensor (section A.2.3) turns to
be equal to the trace of the tensor without being transposed.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B = AT =
[
Bij

]
i=1,...,n
j=1,...,n

Bij = Aji

 =⇒


Tr
(
AT
)

=
n∑

k=1
Bkk

=
n∑

k=1
Akk = Tr

(
A
)

(A.77)
Moreover, the application of the trace operator to the sum of two second order

tensors is equivalent to the sum of the traces of both tensors.

Tr
(
A+B

)
=

n∑
k=1

(Akk +Bkk )

=
n∑

k=1
Akk +

n∑
k=1

Bkk = Tr
(
A
)

+ Tr
(
B
) (A.78)

The multiplication between two second order tensors was exposed in section A.2.4.
If the trace operator is applied to this resulting tensor, the result does not depend on
the order in which both tensors are multiplied.

Tr
(
AB

)
=

n∑
l=1

n∑
k=1

(AlkBkl)

=
n∑

k=1

n∑
l=1

(BklAlk) = Tr
(
BA

) (A.79)

On the other hand, the double dot product between two second order tensors (sec-
tion A.2.7) can also be defined by means of the trace operator, as shown below.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

C = BT =
[
Cij

]
i=1,...,n
j=1,...,n

Cij = Bji

 =⇒



A : B =
n∑

k=1

n∑
l=1

Akl Bkl

=
n∑

k=1

n∑
l=1

Akl Clk

= Tr
(
AC

)
= Tr

(
ABT

)
(A.80)
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If the properties exposed in (A.77) and (A.79) are taken into account, and the
transpose of the multiplication between two second order tensors defined in (A.58) is
applied, the above property can alternatively be expressed as:

A : B = Tr
(
ABT

)
= Tr

(
BTA

)
= Tr

((
ABT

)T
)

= Tr
((
BTA

)T
)

= Tr
(
BAT

)
= Tr

(
ATB

) (A.81)

A.7. Double dot product between a third order tensor and a
second order tensor

The double dot product between a third order tensor and a second order tensor
implies the contraction of two indices. Consequently, the result of this tensor operation
is a first order tensor

A =
[
Aijk

]
i=1,...,n
j=1,...,n
k=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

c =
{
ci

}
i=1,...,n


=⇒ c = A : B =

{
ci

}
i=1,...,n

(A.82)

Where the components of the resulting second order tensor are defined as:

ci =
n∑

j=1

n∑
k=1

AijkBjk (A.83)

A.8. Double dot product between a fourth order tensor and a
second order tensor

The double dot product between a fourth order tensor and a second order one
implies the contraction of two indices. Therefore, this tensor operation leads to a
second order tensor.

A =
[
Aijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

C =
[
Cij

]
i=1,...,n
j=1,...,n


=⇒ C = A : B =

[
Cij

]
i=1,...,n
j=1,...,n

(A.84)

Where the components of the resulting second order tensor are defined as:

Cij =
n∑

k=1

n∑
l=1

Aijkl Bkl (A.85)
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A.9. Tensor product between two second order tensors

The tensor product can also be computed between two second order tensors. In
this case, this tensor operation leads to a fourth order tensor.

A =
[
Aij

]
i=1,...,n
j=1,...,n

B =
[
Bij

]
i=1,...,n
j=1,...,n

 =⇒ C = A⊗B =
[
Cijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

(A.86)

Where the components of the resulting fourth order tensor are defined as:

Cijkl = AijBkl (A.87)

A.10. Fourth order unit tensors

There are two types of fourth order unit tensors, which are defined as:

I4 =
[
αijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

αijkl = δikδjl

Ī4 =
[
βijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

βijkl = δilδjk

(A.88)

Let’s consider the following second order tensor, which can be decomposed as the
sum of a symmetric and a skew-symmetric component.

A = 1
2

(
A+AT

)
+ 1

2

(
A−AT

)
= A sym +A skw =

[
Aij

]
i=1,...,n
j=1,...,n

(A.89)

The double dot product between the first fourth order unit tensor presented in (A.88)
and the above second order unit tensor does not alter the value of the second order
unit tensor.

I4 : A =
[
γij

]
i=1,...,n
j=1,...,n

γij =
n∑

k=1

n∑
l=1

αijklAkl

=
n∑

k=1

n∑
l=1

δikδjlAkl = Aij


=⇒ I4 : A = A (A.90)

However, if the second fourth unit tensor is the one involved in the above operation,
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the result turns out to be the transpose of the second order tensor.

Ī4 : A =
[
φij

]
i=1,...,n
j=1,...,n

φij =
n∑

k=1

n∑
l=1

βijklAkl

=
n∑

k=1

n∑
l=1

δilδjkAkl = Aji


=⇒ Ī4 : A = AT (A.91)

Another important fourth order tensor is the one defined as the tensor product
between two second order unit tensors. The tensor product between two second order
tensors was presented in section A.9.

I2 ⊗ I2 =
[
εijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

εijkl = δijδkl (A.92)

The double dot product of the above tensor and a second order tensor is:(
I2 ⊗ I2

)
: A =

[
κij

]
i=1,...,n
j=1,...,n

κij =
n∑

k=1

n∑
l=1

εijklAkl

=
n∑

k=1

n∑
l=1

δijδklAkl

= δij

n∑
k=1

Akk = δij Tr (A)



=⇒
(
I2 ⊗ I2

)
: A = Tr (A) I2 (A.93)

On the other hand, the first fourth order unit tensor can be decomposed as the sum
of a symmetric tensor plus a skew-symmetric one.

I4 = 1
2

(
I4 + Ī4

)
+ I skw

4 = 1
2

(
I4 − Ī4

)
= I sym

4 + I skw
4 (A.94)

Where the components of the above unit tensors turn out to be:

I sym
4 = 1

2

(
I4 + Ī4

)
=
[
λijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

λijkl = 1
2
(
δikδjl + δilδjk

)

I skw
4 = 1

2

(
I4 − Ī4

)
=
[
µijkl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

µijkl = 1
2
(
δikδjl − δilδjk

) (A.95)

The computation of the double dot product between the above symmetric term
and the second order tensor defined in (A.89) leads to its corresponding symmetric
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component. Nevertheless, if the above skew-symmetric tensor is the one involved in
the tensor operation, the result turns out to be the skew-symmetric component of the
second order tensor.

I sym
4 : A = 1

2

(
I4 + Ī4

)
: A = 1

2

(
A+AT

)
= Asym

I skw
4 : A = 1

2

(
Ī4 − Ī4

)
: A = 1

2

(
A−AT

)
= A skw

(A.96)

A.11. Some properties of the determinant of a second order
tensor

In this section, some properties of the determinant operator are summed up. On
the one hand, it can be demonstrated that the determinant of a second order square
tensor turns out to be equivalent to the determinant of its transpose.

det
(
AT
)

= det
(
A
)

(A.97)

It can also be proven that the determinant of the multiplication between two second
order tensors is equivalent to the product between the determinant of both tensors.

det
(
AB

)
= det

(
A
)

det
(
B
)

(A.98)

On the other hand, the determinant of a diagonal second order tensor turns out to
be equivalent to the product of its diagonal components.

det
(
A
)

= det


A11 · · · 0

... . . . ...
0 · · · Ann


 =

n∏
k=1

Akk (A.99)

A.12. Derivative of a determinant with respect to a given
parameter

Let’s consider the following non-singular square matrix, whose components depend
on a given parameter p.

A =
[
Aij

]
i=1,...,n
j=1,...,n

Aij = Aij (p) (A.100)

Its derivative, with respect to the parameter p is defined as the following second
order tensor.

∂A

∂p
=
[
∂Aij

∂p

]
i=1,...,n
j=1,...,n

(A.101)

Since the matrix defined in (A.100) is non-singular, its inverse exists and can be
calculated. The mathematical condition that guarantees the existence of this inverse is

295



Appendix A. Tensor algebra

the non-nullity of the determinant. The determinant can be calculated along the i-th
row, as:

A = det
(
A
)

=
n∑

k=1
Aikaik ̸= 0 i ∈ [1, . . . , n] (A.102)

Where aik is the cofactor corresponding to the component Aik, which is defined by
means of the minor Mij . This minor is defined as the determinant of the resulting
matrix by removing the i-th row and the j-th column.

aik = cofactor (Aik) = (−1) i+j
Mij (A.103)

The derivative of the previous determinant with respect to the parameter p can be
calculated by applying the chain rule.

∂A

∂p
=

n∑
i=1

n∑
j=1

∂A

∂Aij

∂Aij

∂p
(A.104)

In order to manipulate and simplify the above derivative, the inverse of the second
order tensor defined in (A.100) is calculated.

B = A−1 =
[
Bij

]
i=1,...,n
j=1,...,n

(A.105)

Where its components are defined in terms of the cofactors as:

Bji = 1
A
aij (A.106)

On the other hand, the derivative of the determinant with respect to a given compo-
nent is involved in equation (A.104). If the computation of the determinant performed
in (A.102) is taken into account, this derivative becomes:

∂A

∂Aij

= ∂

∂Aij

(
n∑

k=1
Aik aik

)
= aij (A.107)

Moreover, from equation (A.106), the cofactor can be equivalently expressed as:

aij = ABji (A.108)

Therefore, equation (A.107) becomes:
∂A

∂Aij

= ABji (A.109)

And the substitution of the above result into the equation that defines the deriva-
tive (A.104), leads to:

∂A

∂p
= A

n∑
j=1

n∑
i=1

Bji

∂Aij

∂p
= A

n∑
i=1

n∑
j=1

∂Aij

∂p
Bji (A.110)

The above equation is expressed in index notation. If the definition of the trace
operator is recalled, it can be equivalently written as:

∂A

∂p
= A Tr

(
A−1 ∂A

∂p

)
= A Tr

(
∂A

∂p
A−1

)
(A.111)

296



A.13. Rotation tensor

A.13. Rotation tensor

The equation that defines the scalar product between two vectors was defined in
section A.1.4 as:

a · b = ∥a∥∥b∥ cos (α) (A.112)

According to the above equation, the scalar product turns out to depend on the
norm of both vectors and the angle between them.

On the one hand, let’s consider that a rotation is applied to both vectors. The
components of the rotated vectors are obtained by applying a rotation tensor R to the
original ones. As it is a rotation, the norm of both vectors do not change. The rotation
only modifies their direction.

a ′ = Ra −→ ∥a ′∥ = ∥a∥
b ′ = Rb −→ ∥b ′∥ = ∥b∥

(A.113)

Furthermore, the rotation does not modify the angle between them. Hence, the
scalar product of the rotated vectors is defined as:

a ′ · b ′ = ∥a ′∥∥b ′∥ cos (α) (A.114)

But the norm of the rotated vectors is equivalent to the norm of the original one.
Thus, the above scalar product becomes:

a ′ · b ′ = ∥a∥∥b∥ cos (α) = a · b (A.115)

Therefore, it can be concluded that a rotation does not vary the scalar product.
That is, it does not modify neither angles nor distances.

On the other hand, the scalar product between the rotated vectors can be equiva-
lently expressed according to equation (A.5), as shown below.

a ′ · b ′ =
(
Ra

)
·
(
Rb
)

=
(
Ra

)T(
Rb
)

= aTRTRb
(A.116)

Consequently, if the scalar product is not modified when a rotation is applied, it
can be concluded that the rotation tensor has to be orthogonal.

a ′ · b ′ = aTRTRb

a ′ · b ′ = aT b = a · b

}
=⇒ RTR = I ⇐⇒ R−1 = RT (A.117)

A.14. Voigt notation

A criterion is needed to represent symmetric second order tensors as first order
tensors, since it is easier to manipulate and code vector operations than tensor ones.
In Solid Mechanics, the Voigt notation is usually applied. According to this notation,
a different rule is applied to define the vectorial form of strain and stress tensors.
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The vectorial form of a stress tensor is composed by the diagonal components,
followed by the non-diagonal ones.

σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =⇒ σ̄ =



σ1

σ2

σ3

σ4

σ5

σ6


=



σ11

σ22

σ33

σ12

σ13

σ23


(A.118)

And the vectorial form of a strain tensor has the same structure as the above
definition, but the non-diagonal components are multiplied by 2.

E =

E11 E12 E13

E12 E22 E23

E13 E23 E33

 =⇒ Ē =



E1

E2

E3

E4

E5

E6


=



E11

E22

E33

2E12

2E13

2E23


(A.119)

The main advantage of this notation is the equivalence between the double dot
product between both tensors and the scalar product of their vectorial definition.

E : σ =
3∑

i=1

3∑
j=1

Eijσij

Ē
T

σ̄ =
3∑

k=1
Ekσk =

3∑
i=1

3∑
j=1

Eijσij


=⇒ E : σ = Ē

T

σ̄ (A.120)
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B.1. Gradient of a scalar field

Let’s consider the following scalar field:

f = f (r) r =
{
ri

}
i=1,...,n

(B.1)

Where f is a scalar function that depends on the vector variable r. Let’s also assume
that the vector is defined in a n-dimensional space.

The gradient of the previous scalar field is defined as a row vector whose components
are the derivatives of the scalar function with respect to the components of the vector r.

df

dr
=
[
∂f

∂r1

· · · ∂f

∂rn

]
=
[
∂f

∂ri

]
i=1,...,n

(B.2)

B.1.1. Gradient of the scalar product

Let’s now consider the following particular scalar field, which turns out to be the
scalar product between two different vector fields.

a (r) =
{
ai (r)

}
i=1,...,m

b (r) =
{
bi (r)

}
i=1,...,m

r =
{
ri

}
i=1,...,n

 =⇒
f (r) = a (r) · b (r)

= a (r)T
b (r) =

m∑
k=1

akbk

(B.3)

According to the definition presented in (B.2), the gradient of the compound field
is:

df

dr
=
[
∂f

∂r1

· · · ∂f

∂rn

]
(B.4)

Where the components of the above vector are:

∂f

∂ri

= ∂

∂ri

(
m∑

k=1
akbk

)
=

m∑
k=1

(
∂ak

∂ri

bk + ak

∂bk

∂ri

)
(B.5)
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In addition, the components of the following vectors are involved in the above
equation.

∂a

∂ri

=
{
∂ak

∂ri

}
k=1,...,m

∂b

∂ri

=
{
∂bk

∂ri

}
k=1,...,m

(B.6)

Therefore, the components (B.5) can be equivalently written as:

∂f

∂ri

= bT ∂a

∂ri

+ aT
∂b

∂ri

(B.7)

And the gradient (B.4) becomes:

df

dr
=



∂f

∂r1...
∂f

∂rn



T

=


bT ∂a

∂r1

+ aT
∂b

∂r1...
bT ∂a

∂rn

+ aT
∂b

∂rn



T

= bT

[
∂a

∂r1

· · · ∂a

∂rn

]
+aT

[
∂b

∂r1

· · · ∂b

∂rn

]

(B.8)
The gradient of a given vector function is defined in (B.14). According to this

definition, the gradients of the vector functions a and b turn out to be:

da

dr
=


∂a1

∂r1

· · · ∂a1

∂rn... . . . ...
∂am

∂r1

· · · ∂am

∂rn

 =
[
∂a

∂r1

· · · ∂a

∂rn

]

db

dr
=


∂b1

∂r1

· · · ∂b1

∂rn... . . . ...
∂bm

∂r1

· · · ∂bm

∂rn

 =
[
∂b

∂r1

· · · ∂b

∂rn

]
(B.9)

Thus, the gradient (B.4) can be expressed by means of the above gradients, as:

df

dr
= bT da

dr
+ aT

db

dr
(B.10)

B.2. Derivative of a scalar field with respect to a second order
tensor

Let’s consider the following scalar field that depends on a tensor variable:

f = f
(
A
)

A =
[
Aij

]
i=1,...,n
j=1,...,n

(B.11)
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The derivative of the above scalar field with respect to the tensor variable is defined
as the following tensor.

df

dA
=


∂f

∂A11

· · · ∂f

∂A1n... . . . ...
∂f

∂An1

· · · ∂f

∂Ann

 =
[
∂f

∂Aij

]
i=1,...,n
j=1,...,n

(B.12)

B.3. Gradient of a vector field

Let’s consider the following vector field. Both the vector function and the vector
variable on which it depends are defined in a n-dimensional space.

f = f (r) =
{
fi (r)

}
i=1,...,n

r =
{
ri

}
i=1,...,n

(B.13)

The gradient of the previous vector function is defined as a column vector, whose
components turn out to be the gradients of its components. In addition, these com-
ponents can be rewritten according to the definition of the gradient of a scalar field
stated in (B.2).

df

dr
=


∂f1

∂r...
∂fn

∂r

 =


∂f1

∂r1

· · · ∂f1

∂rn... . . . ...
∂fn

∂r1

· · · ∂fn

∂rn

 =
[
∂f

∂r1

· · · ∂f

∂rn

]
=
[
∂fi

∂rj

]
i=1,...,n
j=1,...,n

(B.14)

B.3.1. Gradient of the product between a scalar field and a vector
field

The resulting vector field of the product between a scalar field and a vector one
is an interesting particular case, since its gradient is computed frequently along this
document.

h (r) =
{
hi (r)

}
i=1,...,n

r =
{
ri

}
i=1,...,n

 =⇒
f (r) = g (r)h (r) =

{
fi (r)

}
i=1,...,n

fi (r) = g (r)hi (r)
(B.15)

The gradient of the above vector field is defined as:

df

dr
=
[
∂fi

∂rj

]
i=1,...,n
j=1,...,n

∂fi

∂rj

= ∂ (g hi)
∂rj

= ∂g

∂rj

hi + g
∂hi

∂rj

(B.16)

On the other hand, the gradient of the vector field h is:

dh

dr
=
[
∂hi

∂rj

]
i=1,...,n
j=1,...,n

(B.17)
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And the resulting tensor of the tensor product between h and the gradient of the
scalar field g is:

h⊗ dg

dr
= h

dg

dr
=
[
hi

∂g

∂rj

]
i=1,...,n
j=1,...,n

(B.18)

Thus, if the tensors defined in (B.17) and (B.18) are taken into account, the gradient
of the vector field defined in (B.15) can be finally defined as:

df

dr
= h

dg

dr
+ g

dh

dr
=
[
∂fi

∂rj

]
i=1,...,n
j=1,...,n

∂fi

∂rj

= hi

∂g

∂rj

+ g
∂hi

∂rj

(B.19)

B.4. Divergence of a vector field

The divergence is an operator which is applied to vector fields. The divergence of
the vector field presented in (B.13) is defined as:

f (r) =
{
fi (r)

}
i=1,...,n

r =
{
ri

}
i=1,...,n

 =⇒ div (f) =
[
∂

∂r1

· · · ∂

∂rn

]
f1
...
fn

 =
n∑

k=1

∂fk

∂rk

(B.20)
According to the previous definition, it can also be defined as the trace operator

applied to the gradient tensor of the vector field. This gradient tensor was previously
defined in (B.14).

div (f) = Tr
(
df

dr

)
=

n∑
k=1

∂fk

∂rk

(B.21)

B.4.1. Divergence of the product between a scalar field and a
vector field

Let’s apply the divergence operator to the following compound field, where a is a
scalar field and g is a vector one.

g (r) =
{
gi (r)

}
i=1,...,n

r =
{
ri

}
i=1,...,n

 =⇒
f (r) = a (r) g (r) =

{
fi (r)

}
i=1,...,n

fi (r) = a (r) gi (r)
(B.22)

The divergence of the above vector field turns out to be:

div (f) =
n∑

k=1

∂fk

∂rk

=
n∑

k=1

∂ (a gk)
∂rk

=
n∑

k=1

∂a

∂rk

gk + a
n∑

k=1

∂gk

∂rk

(B.23)

If the definitions of the gradient of a scalar field and the divergence of a vector field
presented in (B.2) and (B.21), respectively, are taken into account, the divergence of
the previous compound field can be finally computed as shown below.

div (a g) = ∂a

∂r
g + a div (g) (B.24)
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B.4.2. Divergence of the product between a second order tensor
and a first order tensor

Another interesting vector field is the one composed by the product between a
second order tensor and a first order one.

A (r) =
[
Aij (r)

]
i=1,...,n
j=1,...,n

b (r) =
{
bi (r)

}
i=1,...,n

r =
{
ri

}
i=1,...,n

 =⇒

c (r) = A (r) b (r) =
{
cj (r)

}
j=1,...,n

cj (r) =
n∑

k=1
Ajkbk

(B.25)
The application of the divergence operator to the above vector field leads to the

following result:

div (c) =
n∑

j=1

∂cj

∂rj

=
n∑

j=1

[
∂

∂rj

(
n∑

k=1
Ajkbk

)]

=
n∑

j=1

n∑
k=1

∂

∂rj

(
Ajkbk

)
=

n∑
j=1

n∑
k=1

(
∂Ajk

∂rj

bk +Ajk

∂bk

∂rj

)

=
n∑

k=1

bk

 n∑
j=1

∂Ajk

∂rj

+
n∑

k=1

n∑
j=1

Ajk

∂bk

∂rj

(B.26)

In the above result, the components of the resulting vector of applying the diver-
gence operator to the tensor AT are involved in the first term. The divergence of a
tensor field is defined in the following section.

div
(
AT
)

=
{ n∑

j=1

∂Ajk

∂rj

}
k=1,...,n

(B.27)

Moreover, the second term turns out to be the double dot product between AT and
the gradient of the vector field b.

AT : db
dr

=
n∑

k=1

n∑
j=1

Ajk

∂bk

∂rj

(B.28)

Therefore, the divergence of the vector field defined in (B.25) is finally defined as:

div
(
Ab
)

= bT div
(
AT
)

+AT : db
dr

(B.29)

Furthermore, if the double dot property stated in (A.81) is applied, the above
definition can be rewritten as follows.

div
(
Ab
)

= bT div
(
AT
)

+ Tr
(
A
db

dr

)
(B.30)
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B.5. Divergence of a tensor field

The divergence operator can also be applied to a tensor field. Let’s consider the
following tensor field defined in a n-dimensional space. Its components depend on a
vector variable composed by n components.

S (r) =
[
Sij

]
i=1,...,n
j=1,...,n

Sij = Sij (r) r =
{
ri

}
i=1,...,n

(B.31)

Its divergence is defined as a vector, whose components are the result of applying
the divergence operator to each one of the rows that compose the above tensor. If the
rows of the second order tensor are defined as:

S =

S11 · · · S1n

... . . . ...
Sn1 · · · Snn

 =

a1
T

...
an

T

 =⇒ ai =
{
Sij

}
j=1,...,n

i = 1, . . . , n

(B.32)
The divergence of the tensor field turns out to be:

div
(
S
)

=
{

div (ai)
}

i=1,...,n
=
{

n∑
k=1

∂Sik

∂rk

}
i=1,...,n

(B.33)

B.5.1. Divergence of the tensor product between two first order
tensors

The divergence of the tensor field that corresponds to the tensor product between
two vector fields is an interesting particular case. The tensor field is defined as:

a (r) =
{
ai (r)

}
i=1,...,n

b (r) =
{
bi (r)

}
i=1,...,n

r =
{
ri

}
i=1,...,n

 =⇒
S = a⊗ b = abT =

[
Sij

]
i=1,...,n
j=1,...,n

Sij = aibj

(B.34)

According to (B.33), the divergence of the above tensor field turns out to be:

div
(
S
)

=
{

n∑
k=1

∂Sik

∂rk

}
i=1,...,n

=
{

n∑
k=1

∂ (aibk)
∂rk

}
i=1,...,n

=
{

n∑
k=1

∂ai

∂rk

bk + ai

n∑
k=1

∂bk

∂rk

}
i=1,...,n

(B.35)

Furthermore, the product between the gradient of the vector field a and the vector
field b, as well as the divergence of the vector field b, are:

da

dr
b =

{
n∑

k=1

∂ai

∂rk

bk

}
i=1,...,n

div (b) =
n∑

k=1

∂bk

∂rk

(B.36)
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Therefore, the divergence computed in (B.35) can be finally expressed as:

div (abT ) = da

dr
b+ a div (b) (B.37)

B.6. Derivative of a tensor field with respect to a second
order tensor

Let’s consider the following second order tensor field that depends on a second order
tensor variable:

F
(
A
)

=
[
Fij (A)

]
i=1,...,n
j=1,...,n

A =
[
Aij

]
i=1,...,n
j=1,...,n

(B.38)

The derivative of the above tensor with respect to its corresponding second order
tensor variable is defined as a fourth order tensor, as:

dF

dA
=
[
dFij

dA

]
i=1,...,n
j=1,...,n

dFij

dA
=
[
∂Fij

∂Akl

]
k=1,...,n
l=1,...,n

 =⇒ dF

dA
=
[
∂Fij

∂Akl

]
i=1,...,n
j=1,...,n
k=1,...,n
l=1,...,n

(B.39)

B.7. Divergence theorem

The divergence operator leads to the divergence theorem, which is frequently applied
in Solid Mechanics. In this appendix, the divergence theorem applied to a given vector
field, as well as its application to tensor fields, is stated. It is also known as the
Gauss-Ostrogradsky theorem or as the Gauss theorem.

B.7.1. Divergence theorem applied to a vector field

Let’s consider a given closed domain Ω and its boundary ∂Ω. Let’s also assume
that a vector field is defined within this domain.

The divergence theorem states that the flux of the vector field through the boundary
of the domain is equivalent to the integration of the vector field divergence over the
whole domain. Thus, ∫∫

Γ=∂Ω
fTn dΓ =

∫∫∫
Ω

div (f) dΩ (B.40)

B.7.2. Divergence theorem applied to a tensor field

This theorem can be extended to tensor fields. Let’s consider the following one:

S =

S11 · · · S1n

... . . . ...
Sn1 · · · Snn

 =

a1
T

...
an

T

 (B.41)
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In order to obtain its tensor statement, the integration of the divergence definition
exposed in (B.33) is performed over the whole domain.

div
(
S
)

=
{

div (ai)
}

i=1,...,n
=⇒

∫∫∫
Ω

div
(
S
)
dΩ =

{∫∫∫
Ω

div (ai) dΩ
}

i=1,...,n

(B.42)
The components of the above vector can be substituted by their equivalent expres-

sion according to the divergence theorem presented in (B.40)

∫∫∫
Ω

div
(
S
)
dΩ =



∫∫
∂Ω
a1

Tn dΓ
...∫∫

∂Ω
an

Tn dΓ

 =
∫∫

∂Ω

a1
T

...
an

T

n dΓ =
∫∫

∂Ω
S n dΓ (B.43)

Therefore, when dealing with a tensor field, the divergence theorem becomes:∫∫
Γ=∂Ω

S n dΓ =
∫∫∫

Ω
div
(
S
)
dΩ (B.44)

B.8. Taylor series expansion

The Taylor series expansion of a given function is defined as an infinite sum of terms
that are expressed in terms of its corresponding derivatives, which are evaluated at a
single point. If the point where the derivatives are evaluated is the origin of coordinates,
the series expansion is also known as the Maclaurin series expansion.

The terms that compose the infinite sum are defined in terms of the field operators
exposed in this appendix, and the tensor operations presented in the previous one are
also recalled.

B.8.1. Scalar function of a scalar variable

The Taylor series expansion of a given scalar function that depends on a scalar
variable is presented below.

f (x) = f (x0) +
∞∑

k=1

1
k!
d(k)f

dxk
(x0) (x− x0)k (B.45)

The above series expansion can be rewritten in terms of the linear term. The last
addend represents the error made if the nonlinear terms are not taken into account.

f (x) = f (x0) + df

dx
(x0) (x− x0) + O (|x− x0|2) (B.46)
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B.8.2. Scalar function of a vector variable

If the scalar function depends on a vector variable, the series expansion becomes:

f (x) = f (x0) +
∞∑

k=1

1
k!
d(k)f

dxk
(x0) (x− x0)k

= f (x0) + df

dx
(x0) (x− x0) + O (∥x− x0∥2)

(B.47)

B.8.3. Vector function of a scalar variable

Let’s now consider vector functions. In case the function depends on a scalar vari-
able, its corresponding Taylor series expansion turns out to be:

f (x) = f (x0) +
∞∑

k=1

1
k!
d(k)f

dxk
(x0) (x− x0)k

= f (x0) + df

dx
(x0) (x− x0) + O (|x− x0|2)

(B.48)

B.8.4. Vector function of a vector variable

If the vector function depends on a vector variable, the series expansion becomes:

f (x) = f (x0) +
∞∑

k=1

1
k!
d(k)f

dxk
(x0) (x− x0)k

= f (x0) + df

dx
(x0) (x− x0) + O (∥x− x0∥2)

(B.49)

B.8.5. Tensor function of a tensor variable

Finally, let’s consider a given tensor function that depends on a tensor variable. Its
series expansion is defined as:

F
(
X
)

= F
(
X0

)
+

∞∑
k=1

1
k!
d(k)F

dXk

(
X0

)
:
(
X −X0

)k

= F
(
X0

)
+ dF

dX

(
X0

)
:
(
X −X0

)
+ O

(
∥X −X0∥2

) (B.50)
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Appendix C
Calculus of variations

C.1. Relevant space of functions

The Lebesgue space of functions L2 is the one composed by the square-integrable
functions.

L2 (Ω) =
{
f
∣∣∣ ∫∫∫

Ω
f 2 dΩ < ∞

}
(C.1)

And the following Sobolev’s space belongs to the above space of functions. The
functions contained in this space, as well as their m first partial derivatives, turn out
to be square-integrable functions.

Wm,2 (Ω) =
{
f ∈ L2 (Ω)

∣∣∣ Dαf ∈ L2 (Ω) , α = 0, . . . ,m
}

∈ L2 (Ω) (C.2)

The above Sobolev’s space turns out to be equivalent to the following Hilbert’s
space of functions.

Hm (Ω) = Wm,2 (Ω) (C.3)

Where the value m = 1 leads to the following particular Hilbert’s space of functions,
that belongs to the C1 class of functions. The functions contained in this space, as well
as their first derivatives, are continuous.

H1 (Ω) =
{
f ∈ L2 (Ω) , f ′ ∈ L2 (Ω)

}
∈ C1 (C.4)

C.2. Localization theorem

The localization theorem is one of the fundamental lemmas of the calculus of varia-
tions. It allows dealing with a differential equation instead of dealing with an integral
expression.
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Appendix C. Calculus of variations

C.2.1. Localization theorem applied to scalar functions

Let’s consider the following continuous function defined over a material domain in
a n-dimensional space.

ψ (r) ∈ C 0 (Ω) (C.5)

The localization theorem states that:∫∫∫
Ω
ω (r)ψ (r) dΩ = 0 ∀ω ∈ Hω =⇒ ψ (r) = 0 ∀r ∈

◦

Ω (C.6)

Where ω are the so-called test functions. It can be proven that the test functions have
to be null over the boundary domain, and they belong to the space of functions H1.
That is, the test functions, as well as their first derivatives, have to be square-integrable
functions.

Hω =
{
ω (r)

}
that verify

{
ω (r) = 0 ∀r ∈ ∂Ω
ω (r) ∈ H1 (Ω)

(C.7)

Therefore, when dealing with an integral expression as the one defined in (C.6), it
can be concluded that the function (C.5) has to be null over the interior of the domain.

Proof by contradiction

Let’s consider the following primal assumption:∫∫∫
Ω
ω (r)ψ (r) dΩ = 0 (C.8)

Let’s also consider a given point z that belongs to the interior of the domain. If the
scalar function is evaluated at this particular point, the function is positive.

z ∈
◦

Ω
∣∣ ψ (z) > 0 (C.9)

If the scalar function is continuous, the existence of an open ball where the scalar
function is positive can be stated.

ψ (r) ∈ C1 (Ω) =⇒ ∃ δ > 0
∣∣ ψ (r) > 0 ∀r ∈

◦
B (z, δ) (C.10)

On the other hand, the test function can be defined as:

ω (r) =

 = 0 if |x− z| ≥ δ

=
(
δ2 − |x− z|2

)2n

if |x− z| < δ
(C.11)

Where the value of n determine the Hilbert’s space to which the test function belongs

n = 1 =⇒ ω (r) ∈ H1 (Ω)
n > 1 =⇒ ω (r) ∈ Hn (Ω)

(C.12)
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C.2. Localization theorem

The computation of the product between the scalar function and the above test
function, and the integration of this result over the whole material domain, leads to:∫∫∫

Ω
ψ (r)ω (r) dΩ =

∫∫∫
◦
B(z,δ)

ψ (r)︸ ︷︷ ︸
>0

(
δ2 − |x− z|2

)2n

︸ ︷︷ ︸
>0

dΩ > 0 (C.13)

The scalar function and the test function are positive in the interior of the open
ball. Moreover, both functions are square integrable, so the integration of their product
leads to a finite value. According to the primal assumption (C.8), this result turns out
to be a contradiction. Therefore, it can be concluded that the scalar function has to
be null when evaluated at the point z, if the initial assumption (C.8) is fulfilled.

ψ (z) = 0 ∀z ∈
◦

Ω (C.14)

C.2.2. Localization theorem applied to vector functions

This principle can be extended to vector functions. Let’s now consider the following
vector function, whose components are continuous functions defined over the domain Ω.

ψ (r) =
{
ψi (r)

}
i=1,...,n

ψi ∈ C 0 (Ω) (C.15)

In this particular case, the localization theorem states that:∫∫∫
Ω
ωT (r)ψ (r) dΩ = 0 ∀ω ∈ Hω =⇒ ψ (r) = 0 ∀r ∈

◦

Ω (C.16)

And the following subspace is the one that contains the vectorial test functions.

Hω =
{
ω (r)

}
ω (r) =

{
ωi (r)

}
i=1,...,n

(C.17)

This theorem holds, if the components of the above vectorial test function fulfil two
conditions: they have to be null over the boundary and be n times differentiable over
the domain. {

ωi (r) = 0 ∀r ∈ ∂Ω
ωi (r) ∈ C n (Ω)

(C.18)

The fulfilment of the above conditions allows to apply the theorem stated in sec-
tion C.2.1 to each one of the addends of the scalar product.∫∫∫

Ω
ωT (r)ψ (r) dΩ =

n∑
k=1

∫∫∫
Ω
ωi (r)ψi (r) dΩ = 0 =⇒

=⇒ ψi = 0 ∀r ∈
◦

Ω

=⇒ ψ =
{
ψi

}
i=1,...,n

= 0̄ ∀r ∈
◦

Ω

(C.19)

Therefore, when dealing with an integral expression as the one exposed in (C.16),
it can be concluded that the vector function (C.15) has to be null over the interior of
the domain.
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Appendix C. Calculus of variations

C.3. Weighted residual method

The other fundamental lemma of the calculus of variations is the weighted residual
principle. This method allows dealing with an integral expression which is equivalent
to a differential one. Once this integral equation is defined, the finite element method
can be applied.

C.3.1. Weighted residual method applied to scalar functions

Let’s define the following scalar function that depends on a given vector variable,
which is null over the interior of the domain.

ψ (r) = 0 ∀r ∈
◦

Ω (C.20)

The weighted residual method consists in multiplying the previous function by a
scalar test function and integrate the result over the whole domain.∫∫∫

Ω
ω (r)ψ (r) dΩ = 0 ∀ω ∈ Hω (C.21)

Where ω are the so-called test functions that verify:

Hω =
{
ω (r)

}
,

{
ω (r) = 0 ∀r ∈ ∂Ω
ω (r) ∈ Cn (Ω)

(C.22)

In conclusion, when dealing with a differential equation as the one defined in (C.20),
an equivalent integral one can be obtained by applying the weighted residual method
presented in this section.

C.3.2. Weighted residual method applied to vector functions

This method can be extended to vector functions. Let’s now consider the following
null vector function defined over the interior of the domain.

ψ (r) = 0̄ ∀r ∈
◦

Ω (C.23)

In this particular case, the weighted residual method have to be applied as follows.
Firstly, the scalar product between the vector test function and the above vector func-
tion is computed. Then, the result is integrated over the whole domain. By doing so,
an equivalent integral expression is obtained.∫∫∫

Ω
ωT (r)ψ (r) dΩ = 0 ∀ω ∈ Hω (C.24)

The following subspace is the one that contains the vector test functions.

Hω =
{
ω (r)

}
ω (r) =

{
ωi (r)

}
i=1,...,n

,
{
ωi (r) = 0 ∀r ∈ ∂Ω
ωi (r) ∈ C n (Ω)

(C.25)
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C.3. Weighted residual method

The fulfilment of the above conditions allows to apply the methodology stated in
section C.3.1 to each one of the addends that compose equation (C.24).∫∫∫

Ω
ωT (r)ψ (r) dΩ =

n∑
k=1

∫∫∫
Ω
ωi (r)ψi (r) dΩ = 0 (C.26)

Therefore, when dealing with a vector function as the one exposed in (C.23), an
equivalent integral equation can be defined by applying the methodology presented in
this section.
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hyper-parallelepiped

D.1. Vector definition with respect to a given basis

Let’s consider a n-dimensional space where a basis composed by n linearly indepen-
dent vectors is defined. The components of these vectors with respect to the canonical
basis are:

e⃗i = ei =


e1

i

...
en

i

 ⇐⇒ E =
[
e1 · · · en

]
=

e
1

1 · · · e1
n

... . . . ...
en

1 · · · en
n

 (D.1)

Therefore, a given vector u⃗ can be defined as a linear combination of the vectors
that compose the above basis, as:

u⃗ = e⃗i u
i ⇐⇒ u⃗ = Eu with u =


u1

...
un

 (D.2)

The above left equation expresses the linear combination in index notation. This
notation is ruled by the Einstein Summation Convention [Einstein, 1916], where lower
and upper repeated indexes imply summation. On the right, the same equation is
expressed according to the equivalent matrix notation.

D.1.1. Change of basis

Let’s assume that the reference basis is modified. The new reference basis is com-
posed by another set of n linearly independent vectors. Each one of these vectors can
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Appendix D. Hyper-volume of a hyper-parallelepiped

be expressed as a linear combination of the ones that compose the original basis as:

e⃗ ′
α = e⃗i c

i

α ⇐⇒

E ′ =
[
e⃗ ′

1 · · · e⃗ ′
n

]
=

e
1

1 · · · e1
n

... . . . ...
en

1 · · · en
n


c

1
1 · · · c1

n

... . . . ...
cn

1 · · · cn
n

 = EC
(D.3)

Where the coefficients ci
α can be interpreted as the components of the vectors that

compose the new basis, defined with respect to the original one.

D.1.2. Inverse change of basis

The change of basis presented in the previous section can be inverted.

e⃗i = e⃗ ′
α γ

α

i ⇐⇒ E = E ′C−1 (D.4)

Where the coefficients γi
j are the components of the tensor C−1.

C−1 =
[
γi

j

]
i=1,...,n
j=1,...,n

γi

j = 1
det (C) cofactor (cj

i) (D.5)

And they verify that:{
γα

i c
i

β = δα

β

ci

α γ
α

j = δi

j

⇐⇒

{
C−1C = I

C C−1 = I
(D.6)

D.1.3. Change of basis of the contravariant components

If the reference basis is modified, the vector components also vary. In this subsec-
tion, this variation is defined.

The vector definition with respect to the original basis, as well as the vectors that
compose the modified basis, were previously defined as:{

u⃗ = e⃗i u
i

e⃗ ′
α = e⃗i c

i

α

⇐⇒

{
u⃗ = Eu

E ′ = EC
(D.7)

The same vector can be equivalently defined with respect to the new basis, as:

u⃗ = e⃗ ′
α u

′α ⇐⇒ u⃗ = E ′ u ′ (D.8)

The substitution of the new basis definition (D.7) into the above equation leads to:

u⃗ = e⃗ ′
α u

′ α

=
(
e⃗i c

i

α

)
u ′ α

= e⃗i

(
ci

α u
′ α
)︸ ︷︷ ︸

ui

= e⃗i u
i

⇐⇒

u⃗ = E ′ u ′

=
(
EC

)
u ′

= E
(
C u ′

)︸ ︷︷ ︸
u

= Eu

(D.9)
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Therefore, the equation that defines the original components by means of the mod-
ified ones turns out to be:

ui = ci

α u
′ α ⇐⇒ u = C u ′ (D.10)

And the inversion of the above equation allows to define the new components by
means of the primal ones.

u ′ α = γα

i u
i ⇐⇒ u ′ = C−1 u (D.11)

According to the above equation, it can be stated that the expression of a given
vector with respect to a different basis implies the variation of the vector components
by means of the inverse of the tensor C. As exposed in (D.3), this tensor is the one
involved in the definition of the modified basis. Consequently, it can be concluded
that the vector components experiment the opposite variation than the vectors that
compose the original basis. This fact justifies denominating these components as the
contravariant ones, since their variation is contrary to the variation experimented by
the vectors that compose the original basis.

D.2. Scalar product

The scalar product is a tensor operation that involves two vectors and yields a
scalar.

Let’s consider the two following vectors:{
u⃗ = e⃗i u

i

v⃗ = e⃗j v
j

⇐⇒

{
u⃗ = Eu

v⃗ = E v
(D.12)

The scalar product between the above vectors is defined as:

u⃗ · v⃗ =
(
e⃗i u

i
)

·
(
e⃗j v

j
)

= ui
(
e⃗i · e⃗j

)︸ ︷︷ ︸
g

ij

vj

= ui gij v
j

⇐⇒

u⃗ · v⃗ =
(
Eu

)
·
(
E v

)
=
(
Eu

)T(
E v

)
= uT

(
ETE

)︸ ︷︷ ︸
G

v

= uTGv

(D.13)

Where the tensor G involved in the scalar product computation is the so-called
metric tensor.

D.2.1. Metric tensor

The components gij that compose the above tensor turn out to be the doubly
covariant components of the metric tensor.

G = ETE =
[
gij

]
i=1,...,n
j=1,...,n

gij = e⃗i · e⃗j = ei
Tej (D.14)
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According to the above definition, the metric tensor turns out to be symmetric and
positive definite.

gji = e⃗j · e⃗i = e⃗i · e⃗j = gij ⇐⇒ GT =
(
ETE

)T = ETE = G (D.15)
xTGx = xT

(
ETE

)
x =

(
E x

)T(
E x

)
= x⃗ · x⃗ = ∥x⃗∥2 > 0 ∀x⃗ ̸= 0 (D.16)

Note that, if the basis is composed by orthonormal vectors, the metric tensor be-
comes the second order unit tensor.

gij = e⃗i · e⃗j = δij ⇐⇒ G = I (D.17)

D.2.2. Change of basis of the metric tensor

If the reference basis is modified, the components of the metric tensor vary. In this
subsection, this variation is defined.

Let’s recall the expression of the metric tensor defined with respect to a given
basis (D.14) and the definition of a new basis exposed in (D.3).{

gij = e⃗i · e⃗j

e⃗ ′
α = e⃗i c

i

α

⇐⇒

{
G = ETE

E ′ = EC
(D.18)

The metric tensor defined with respect to the modified basis turns out to be:

g ′
αβ = e⃗ ′

α · e⃗ ′
β ⇐⇒ G ′ =

(
E ′
)T
E ′ (D.19)

The substitution of the new basis definition (D.18) into the above equation leads
to:

g ′
αβ = e⃗ ′

α · e⃗ ′
β

=
(
e⃗i c

i

α

)
·
(
e⃗j c

j

β

)
= ci

α

(
e⃗i · e⃗j

)︸ ︷︷ ︸
g

ij

cj

β

⇐⇒

G ′ =
(
E ′
)T
E ′

=
(
EC

)T(
EC

)
= CT

(
ETE

)︸ ︷︷ ︸
G

C
(D.20)

Therefore, the equation that defines the new components of the metric tensor by
means of the initial ones is:

g ′
αβ = ci

α gij c
j

β ⇐⇒ G ′ = CTGC (D.21)

And the inversion of the above equation leads to the equation that defines the
original metric tensor by means of the modified one.

gij = γα

i g
′
αβ γ

β

j ⇐⇒ G = C−TG ′C−1 (D.22)

According to the result obtained in (D.21), it can be stated that the definition of the
metric tensor with respect to a modified basis implies the variation of its components
by means of the tensor C. As exposed in (D.3), this tensor is the one involved in the
definition of the modified basis. Therefore, the metric tensor suffers the same variation
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as the vectors that compose the initial basis. Moreover, since the tensor C appears
twice in the definition of the new metric tensor, it is commonly said that its components
suffer a doubly covariant variation.

This fact justifies denominating these components as the doubly covariant ones,
since they experiment the same variation as the one experimented by the vectors that
compose the original basis.

D.3. Hyper-parallelepiped definition

Let’s consider a given basis, composed by the following ν linearly independent
vectors defined in a n-dimensional space. These vectors compose a basis of a linear
variety whose dimension is ν ≤ n.{

h⃗k

}
k=1,...,ν

, h⃗k ∈ Rn , ν ≤ n (D.23)

Let’s also define the following k-dimensional hyper-parallelepiped embedded in a n-
dimensional space. This geometrical entity is also known as a paralleletope and its
corresponding hyper-volume would be represented by Vk.

Pk ≡

{
r⃗ =

k∑
j=1

h⃗j r
j , 0 ≤ rj ≤ 1 ∀j

}
(D.24)

The vector r⃗ which defines the above paralleletope is defined with respect to the
basis composed by k linearly independent vectors of the previous basis, which, in
general, are not orthonormal. Therefore, this basis is assumed to be the primal one,
and the components turn out to be the contravariant ones. Lower and upper repeated
indices imply summation, according to the Einstein Summation Convention [Einstein,
1916].

D.4. Hyper-parallelepiped embedded in a three-dimensional
space

In a three-dimensional space (n = 3), the physical interpretation of the above
paralleletope is quite simple, specially for the values k = 1, 2, 3, which are presented in
the following subsections.

D.4.1. Segment

When k = 1, the paralleletope P1 turns out to be a segment.

P1 ≡
{
r⃗ = h⃗1 r

1 , 0 ≤ r1 ≤ 1
}

(D.25)

And the hyper-volume is reduced to the norm of the single vector that compose the
basis.

V1 = L = ∥h⃗1∥ =
√
h⃗1 · h⃗1 (D.26)
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Figure D.1. Segment in a 3-d space (hyper-parallelepiped with n = 3 and k = 1).

D.4.2. Parallelogram

When k = 2, the paralleletope P2 becomes a parallelogram.

P2 ≡

{
r⃗ =

2∑
j=1

h⃗j r
j , 0 ≤ rj ≤ 1 ∀j

}
(D.27)

Figure D.2. Parallelogram in a 3-d space (hyper-parallelepiped with n = 3 and k = 2).

And its corresponding hyper-volume turns out to be the parallelogram area, which
can be calculated as the modulus of the vector product between the two vectors that
compose the basis. This modulus can be computed according to the equation presented
in (A.16).

V2 = A = ∥h⃗1 ∧ h⃗2∥ = ∥h⃗1∥︸︷︷︸
V1=L

∥h⃗2∥ |sin (α)|︸ ︷︷ ︸
g

(D.28)

Where g is the norm of the component of h⃗2 that is perpendicular to h⃗1, or equivalently,
the norm of the vector h⃗

n

2 . Moreover, the norm of h⃗1 is the hyper-volume of the
paralleletope defined in the previous subsection.

D.4.3. Parallelepiped

Finally, if k adopts the value k = 3, the paralleletope P3 becomes a parallelepiped.

P3 ≡

{
r⃗ =

3∑
j=1

h⃗j r
j , 0 ≤ rj ≤ 1 ∀j

}
(D.29)
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Figure D.3. Parallelepiped in a 3-d space (hyper-parallelepiped with n = 3 and k = 3).

And the volume of the above parallelepiped can be computed as the triple product
between the vectors that compose the basis. Or, equivalently, as the basis area times
the parallelepiped height.

V3 = V =
(
h⃗1 ∧ h⃗2

)
· h⃗3 = A︸︷︷︸

V2

∥h⃗3∥ |sin (β)|︸ ︷︷ ︸
h

(D.30)

Where h represents the parallelepiped height, and can be computed as the norm of the
component of h⃗3 that is perpendicular to h⃗1 and h⃗2. That is, h turns out to be the
norm of the vector h⃗

n

3 . Furthermore, the basis area of the parallelepiped turns out to
be equivalent to the area of the paralleletope defined in the previous subsection.

D.5. Hyper-parallelepiped embedded in n-dimensional space

In this section, the extension of the previous one to a n-dimensional space is pre-
sented.

D.5.1. One-dimensional hyper-parallelepiped

With a single vector composing the basis, only a one-dimensional paralleletope
can be defined, whose corresponding hyper-volume turns out to be the length of the
segment.

V1 = L = ∥h⃗1∥ =
√
h⃗1 · h⃗1 (D.31)

D.5.2. Two-dimensional hyper-parallelepiped

If the basis is increased and composed by two vectors, the hyper-parallelepiped
becomes a two-dimensional one. Its hyper-volume turns out to be its corresponding
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area, which can be calculated as follows.

V2 = A = ∥h⃗1∥︸︷︷︸
V1=L

∥h⃗2∥ |sin (α)|︸ ︷︷ ︸
g

= V1 × g (D.32)

Where g is the norm of the component of h⃗2 that is perpendicular to h⃗1, and the norm
of h⃗1 is the hyper-volume of the previous one-dimensional paralleletope.

D.5.3. Three-dimensional hyper-parallelepiped

If the basis is finally composed by three vectors, the hyper-parallelepiped becomes a
three-dimensional one, whose hyper-volume turns out to be its corresponding volume.
This volume can be computed as the basis area times the paralleletope height, as shown
below.

V3 = V = A︸︷︷︸
V2

∥h⃗3∥ |sin (β)|︸ ︷︷ ︸
h

= V2 × h (D.33)

Where h represents the parallelepiped height, and can be computed as the norm of the
component of h⃗3 that is perpendicular to h⃗1 and h⃗2. Furthermore, the basis area turns
out to be equivalent to the area of the paralleletope defined before.

D.5.4. Higher dimensional hyper-parallelepipeds

Let’s consider the following hyper-parallelepiped embedded in a n-dimensional space,
defined by means of k + 1 linearly independent vectors.

{
h⃗j ∈ Rn

}
j=1,...,k+1

−→ Pk+1 ≡

{
r⃗ =

k+1∑
j=1

h⃗j r
j , 0 ≤ rj ≤ 1 ∀j

}
(D.34)

Let’s also define the following k-dimensional linear variety. The vector λ⃗ is defined
with respect to the basis composed by k linearly independent vectors of the previous
basis.

Vk ≡

{
λ⃗ =

k∑
j=1

h⃗j λ
j

}
(D.35)

Under the above assumptions, the vector h⃗k+1 can be expressed as the sum of the
following two components.

h⃗k+1 = h⃗
p

k+1 + h⃗
n

k+1 (D.36)

Where h⃗
p

k+1 is defined as the linear combination of the vectors that compose the
basis of the linear variety Vk (D.35).

h⃗
p

k+1 =
k∑

j=1
h⃗j p

j (D.37)
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Figure D.4. Hyper-parallelepiped embedded in a n-dimensional space.

And h⃗
n

k+1 is defined orthogonal with respect to the vectors that compose this
basis.

h⃗
n

k+1 · h⃗i = 0 i = 1, . . . , k (D.38)

According to the results obtained in the previous subsections, it seems reasonable
to state that the hyper-volume of the hyper-parallelepiped defined in (D.34) can be
computed as:

Vk+1 = Vk ∥h⃗k+1∥ |sin (φ)|︸ ︷︷ ︸
h⃗

n

k+1

= Vk

∥∥h⃗n

k+1

∥∥ (D.39)

Where φ is the angle between h⃗
p

k+1 and h⃗k+1 (figure D.4).

D.6. Hyper-volume of a hyper-parallelepiped

D.6.1. Theorem

Let’s consider the following k-dimensional hyper-parallelepiped embedded in a n-
dimensional space.

{
h⃗j ∈ Rn

}
j=1,...,k

−→ Pk ≡

{
r⃗ =

k∑
j=1

h⃗j r
j , 0 ≤ rj ≤ 1 ∀j

}
(D.40)

And let’s define the following metric tensor:

Gk =
[
gij

]
i=1,...,k
j=1,...,k

gij = h⃗i · h⃗j (D.41)

In this section, it is proved that the square root of the determinant of the above
metric tensor is equivalent to the hyper-volume of the hyper-parallelepiped Pk.

Vk =
√

det
(
Gk

)
(D.42)
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Application to a three-dimensional space

If the paralleletopes defined in a three-dimensional space are recalled (section D.4),
it can be checked that the results obtained according to the previous theorem are
consistent with the content presented previously.

For a one-dimensional case, the computation of the determinant of the metric tensor
and the calculation of its square root leads to the length of the segment.

V1 =
√

det
(
G1

)
G1 =

[
g11

]
 =⇒ V1 = √

g11 =
√
h⃗1 · h⃗1 = ∥h⃗1∥ (D.43)

If the basis is increased with an additional vector, the square root of the determinant
of the metric tensor leads to the area of the parallelogram.

V2 =
√

det
(
G2

)
G2 =

[
g11 g12

g21 g22

]
h⃗1 · h⃗2 = ∥h⃗1∥ ∥h⃗2∥ cos (α)


=⇒

V2 =
√
g11 g22 − g12 g21

=
√(

h⃗1 · h⃗1

)(
h⃗2 · h⃗2

)
−
(
h⃗1 · h⃗2

)2

=
√

∥h⃗1∥2 ∥h⃗2∥2 −
(
h⃗1 · h⃗2

)2

=
√

∥h⃗1∥2 ∥h⃗2∥2 − ∥h⃗1∥2 ∥h⃗2∥2 cos2 (α)

= ∥h⃗1∥ ∥h⃗2∥
√

1 − cos2 (α)

= ∥h⃗1∥ ∥h⃗2∥ sin (α)

= ∥h⃗1 ∧ h⃗2∥
(D.44)

And finally, if the basis is composed by three vectors, the hyper-parallelepiped
becomes a parallelepiped, and the theorem leads to its corresponding volume.

V3 =
√

det
(
G3

)
G3 =

g11 g12 g13

g21 g22 g23

g31 g32 g33



=

h⃗
T

1

h⃗
T

2

h⃗
T

3

[h⃗1 h⃗2 h⃗3

]
= HTH



=⇒

V3 =
√

det
(
G3

)
=
√

det
(
HTH

)
=
√

det2
(
H
)

=
∣∣ det

(
H
)∣∣

=
(
h⃗1 ∧ h⃗2

)
· h⃗3

(D.45)

Therefore, in the particular case of dealing with a three-dimensional space, the
theorem leads to correct results.
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D.6.2. Theorem proof

The following equation, which is defined in terms of the value k, can be proven by
induction.

Vk =
√

det
(
Gk

)
k = 1, 2, . . . (D.46)

The above equation is assumed to be true for k = 1.

V1 =
√

det
(
G1

)
(D.47)

The next step of the mathematical induction is based on demonstrating equa-
tion (D.46) for k + 1.

Vk+1 =
√

det
(
Gk+1

)
(D.48)

Where the above metric tensor can be expressed by means of the previous one, as:

Gk+1 =
[
Gk gk+1

gk+1
T gk+1,k+1

]
with gk+1 =


g1,k+1

g2,k+1
...

gk,k+1

 (D.49)

According to the result obtained in (D.39), the hyper-volume of the paralleletope
Pk+1 turns out to be:

Vk+1 = Vk ∥h⃗
n

k+1∥ (D.50)

If equations (D.36) and (D.37) are taken into account, the above vector h⃗
n

k+1 can
be expressed as:

h⃗
n

k+1 = h⃗k+1 − h⃗
p

k+1

= h⃗k+1 −
k∑

j=1
hj p

j
(D.51)

Moreover, this vector fulfils condition (D.38), so:

h⃗
n

k+1 · h⃗i = 0 i = 1, . . . , k (D.52)

And the substitution of equation (D.51) into the above equation leads to the fol-
lowing result.

h⃗
n

k+1 · h⃗i =

h⃗k+1 −
k∑

j=1
hj p

j

 · h⃗i

= h⃗k+1 · h⃗i︸ ︷︷ ︸
g

k+1,i
=g

i,k+1

−
k∑

j=1

(
h⃗j · h⃗i

)
︸ ︷︷ ︸

g
ji

=g
ij

pj

= gi,k+1 −
k∑

j=1
gij p

j = 0 i = 1, . . . , k

(D.53)
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From the above result, it can be stated that:
k∑

j=1
gij p

j = gi,k+1 i = 1, . . . , k ⇐⇒

⇐⇒ Gk p = gk+1 with p =


p1

...
pk


(D.54)

So, the vector p can be defined as:

p = Gk
−1 gk+1 (D.55)

On the other hand, the square of the norm of the vector h⃗
n

k+1 turns out to be:

∥h⃗
n

k+1∥2 = h⃗
n

k+1 · h⃗
n

k+1

=
(
h⃗k+1 −

k∑
j=1

h⃗j p
j

)
·

(
h⃗k+1 −

k∑
l=1

h⃗l p
l

)

= h⃗k+1 · h⃗k+1︸ ︷︷ ︸
g

k+1,k+1

−
k∑

l=1

(
h⃗k+1 · h⃗l

)
︸ ︷︷ ︸

g
k+1,l

pl −
k∑

j=1

(
h⃗j · h⃗k+1

)
︸ ︷︷ ︸
g

j,k+1=g
k+1,j

pl +
k∑

j=1

k∑
l=1

(
h⃗j · h⃗l

)
︸ ︷︷ ︸

g
jl

pj pl

= gk+1,k+1 −
k∑

l=1
gk+1,l p

l −
k∑

j=1
gk+1,j p

j +
k∑

j=1

k∑
l=1

pj gjl p
l

= gk+1,k+1 − 2 gk+1
T p+ pTGk p

(D.56)
The vector p obtained in (D.55) can be substituted into the above equation. Thus,

∥h⃗
n

k+1∥2 = gk+1,k+1 − 2 gk+1
T p+ pTGK p

= gk+1,k+1 − 2 gk+1
T
(
Gk

−1 gk+1

)
+
(
gk+1

TGk
−T
)
Gk

(
Gk

−1 gk+1

)
= gk+1,k+1 − gk+1

TGk
−1 gk+1

(D.57)

And the substitution of the above equation into the square of equation (D.50) leads
to:

Vk+1
2 = Vk

2 ∥h⃗
n

k+1∥2

= det
(
Gk

)(
gk+1,k+1 − gk+1

TGk
−1 gk+1

) (D.58)

As it is demonstrated in the following subsection, the above result turns out to be
equivalent to the following determinant.

det
(
Gk+1

)
= det

(
Gk

)(
gk+1,k+1 − gk+1

TGk
−1gk+1

)
(D.59)

Consequently, equation (D.58) becomes:

Vk+1 =
√

det
(
Gk+1

)
(D.60)

And it can be concluded that equation (D.46) is correct and can be applied to
obtain the hyper-volume of a given hyper-parallelepiped.
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D.6.3. Determinant of the metric tensor

Let’s recall the metric tensor exposed in (D.49).

Gk+1 =
[
Gk gk+1

gk+1
T gk+1,k+1

]
(D.61)

According to the Cholesky factorization, the tensor Gk can be decomposed as:

Gk = Lk Lk
T (D.62)

Where Lk is a lower triangular matrix.
Analogously, the metric tensor (D.61) can be decomposed as:

Gk+1 = Lk+1Lk+1
T with Lk+1 =

[
Lk 0
lk+1

T l
k+1,k+1

]
(D.63)

The above decomposition can be equivalently written as:

Gk+1 =
[
Lk 0
lk+1

T lk+1,k+1

] [
Lk

T lk+1

0T lk+1,k+1

]
=
[
Lk Lk

T Lk lk+1

lk+1
T Lk

T lk+1
T lk+1 + lk+1,k+1

2

] (D.64)

If the above tensor and its initial definition (D.61) are compared, it can be concluded
that:

Lk lk+1 = gk+1 ⇐⇒ lk+1 = Lk
−1 gk+1

gk+1,k+1 = lk+1
T lk+1 + lk+1,k+1

2 ⇐⇒ lk+1,k+1
2 = gk+1,k+1 − lk+1

T lk+1

(D.65)

From the above equations, it can be also stated that:

lk+1,k+1
2 = gk+1,k+1 − lk+1

T lk+1

= gk+1,k+1 −
(
Lk

−1 gk+1

)T(
Lk

−1 gk+1

)
= gk+1,k+1 − gk+1

T Lk
−T Lk

−1gk+1

= gk+1,k+1 − gk+1
T
(
Lk Lk

T
)−1
gk+1

= gk+1,k+1 − gk+1
TGk

−1 gk+1

(D.66)

If the Cholesky factorization of the tensors Gk and Gk+1, as well as the struc-
ture of the lower triangular tensor Lk+1 shown in (D.63) are taken into account, the
computation of the following determinant can be faced as:

det
(
Gk+1

)
= det

(
Lk+1Lk+1

T
)

=
(

det
(
Lk+1

))2

=
(

det
(
Lk

))2

lk+1,k+1
2

= det
(
LkLk

T
)
lk+1,k+1

2

= det
(
Gk

)
lk+1,k+1

2

(D.67)
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And the substitution of the result obtained in (D.66) into the above equation, allows
to obtain the following equivalent definition of the determinant.

det
(
Gk+1

)
= det

(
Gk

)(
gk+1,k+1 − gk+1

TGk
−1 gk+1

)
(D.68)

Therefore, the assumption made in (D.59) is correct, and the hyper-volume of a
given hyper-parallelepiped can be properly computed according to equation (D.60).
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Apéndice E
Resumen extendido en castellano

E.1. Introducción

El método de los elementos finitos es una tecnoloǵıa bien conocida que permite
obtener una aproximación al comportamiento estructural real de un medio sólido con-
tinuo sometido a fuerzas externas. Su uso está ampliamente extendido en ingenieŕıa
civil y en muchos otros campos, como la ingenieŕıa naval o la aeronáutica.

Esta formulación puede obtenerse bajo el marco de los análisis lineal o no lineal.
Si se supone que los desplazamientos y sus correspondientes gradientes son pequeños,
el análisis se simplifica considerablemente, y resulta realizarse bajo los supuestos de la
teoŕıa lineal. Sin embargo, si los desplazamientos y/o los gradientes de los desplaza-
mientos se consideran grandes, surge el análisis no lineal.

Como ambos análisis se basan en supuestos diferentes, conducen a respuestas es-
tructurales completamente distintas. Y la exactitud de los resultados depende de la
precisión de las hipótesis realizadas. Es decir, si la estructura no experimenta pequeños
desplazamientos o pequeños gradientes de desplazamiento, el análisis lineal conduce a
resultados inaceptables que difieren significativamente del comportamiento real.

Antes de llevar a cabo una simulación estructural, el ingeniero tiene que decidir,
basándose en su experiencia e intuición, si los supuestos lineales son correctos. Si la
respuesta estructural real no verifica las hipótesis lineales, hay que descartar el análisis
lineal y realizar uno no lineal para obtener resultados precisos.

Por lo tanto, las hipótesis adoptadas acerca de la magnitud tanto de los desplaza-
mientos como de los gradientes de los desplazamientos son muy importantes, ya que
definen el marco teórico del análisis estructural. Es necesario definir claramente las
implicaciones de cada supuesto. En la literatura existente, la mayoŕıa de las referen-
cias no identifica claramente las implicaciones de estos supuestos. Por lo tanto, uno de
los principales objetivos de este trabajo es identificarlas claramente y definir adecua-
damente los modelos matemáticos lineales y no lineales que rigen el comportamiento
estructural asociado a cada análisis.
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Para lograr este objetivo, se propone una formulación unificadora de la mecánica
de sólidos lineal y no lineal completa y detallada. Esta formulación permite describir
y comprender completamente la deformación que experimenta un sólido elástico a lo
largo del tiempo. Se propone una nomenclatura novedosa, sencilla y clara para enunciar
adecuadamente los principios de la mecánica de sólidos y las ecuaciones estrictamente
necesarias que describen este proceso de deformación.

Una vez que los modelos matemáticos están bien planteados, se puede aplicar el
método de los elementos finitos. Se presenta una obtención original completa tanto en
teoŕıa lineal como no lineal. Se presenta también el desarrollo lineal para compararlo
con su versión no lineal.

Una de las principales diferencias entre ambas formulaciones radica en la forma de
aplicar las fuerzas externas. En general, la formulación lineal conduce a un comporta-
miento lineal, mientras que la no lineal conduce a uno no lineal. Mientras la respuesta
sea lineal, la carga total puede aplicarse en un solo paso, y el principio de superposición
de cargas de la teoŕıa lineal puede aplicarse adecuadamente. Sin embargo, este principio
ya no se puede aplicar cuando se trata con un comportamiento no lineal. Si la respuesta
es no lineal, un estado de carga dado tiene múltiples soluciones posibles. Por lo tanto, la
carga total no puede aplicarse en un solo paso, y hay que tener en cuenta el historial de
carga para obtener la solución correcta. Para solventar estos inconvenientes, las cargas
externas suelen aplicarse según un proceso de carga incremental.

Esta estrategia incremental es en realidad un procedimiento adecuado, ya que la
respuesta estructural correspondiente a cada paso de carga debe resolverse de forma
iterativa. Este procedimiento necesita empezar a iterar desde una aproximación cercana
a la solución. Si las cargas incrementales son lo suficientemente pequeñas, el resultado
del paso de carga anterior puede adoptarse para iniciar el procedimiento iterativo, y la
convergencia debeŕıa estar garantizada.

Numerosos libros de texto de referencia y trabajos de investigación abordan la ob-
tención de las formulaciones de elementos finitos no lineales. Sin embargo, no existe
consenso sobre una nomenclatura y notación comunes. Además, las hipótesis formula-
das a lo largo de estos desarrollos no se especifican claramente o ni siquiera se enuncian.
Por lo tanto, para comprender completamente la f́ısica subyacente y la esencia de los
algoritmos propuestos, se hace necesaria una visión más detallada que lo aclare.

En esta tesis se hace un gran esfuerzo por identificar claramente las hipótesis inter-
medias y analizar ampliamente el origen y la composición de las matrices que surgen en
el análisis no lineal. Se elabora una gúıa detallada que facilita el aprendizaje profundo
de esta potente tecnoloǵıa. Este trabajo plantea una formulación unificadora, clara y
completa en el campo del análisis no lineal, para que la extensión de algunas ĺıneas de
investigación que hasta ahora se han llevado a cabo en teoŕıa lineal sea posible.
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E.2. Deformación de un medio sólido sometido a cargas
externas

Para el estudio del movimiento de un medio sólido continuo sometido a fuerzas
externas se adopta el enfoque Lagrangiano. Es decir, todas las magnitudes se definen
con respecto a la configuración inicial de referencia, que es conocida.

Se obtienen dos ecuaciones principales: la ecuación que define el movimiento de una
part́ıcula material y la ecuación que describe la transformación geométrica de un vector
material a lo largo del tiempo. Estas ecuaciones son importantes, ya que describen
el movimiento del sólido, aśı como el cambio de volumen, orientación y forma que
experimenta debido a las cargas externas.

Por una parte, el vector movimiento (“deformation vector” en inglés) es el que
describe el movimiento del sólido. Este vector describe la posición de una part́ıcula
material a lo largo del tiempo a través de su posición inicial y del vector desplazamiento.

Por otro lado, la transformación geométrica experimentada por un vector material
resulta depender del tensor gradiente de movimientos, el cual, a su vez, puede definir-
se mediante el tensor gradiente de desplazamientos. De acuerdo con este resultado, se
puede concluir que el tensor gradiente de desplazamientos es el que contiene la informa-
ción necesaria para definir el cambio de volumen, orientación y forma experimentado
por el sólido. Esta información es necesaria para definir adecuadamente el campo de
desplazamiento que experimenta el sólido, aśı como sus correspondientes campos de
deformación y tensión.

Otro de los objetivos principales es el de definir una nomenclatura novedosa, sencilla
y clara, aśı como manejar las magnitudes y ecuaciones estrictamente necesarias. El
objetivo final es alcanzar una visión general de la mecánica de sólidos no lineal completa
y detallada, para poder plantear más adelante una novedosa obtención de la formulación
de elementos finitos no lineales.

E.3. Ecuaciones de balance

Se han deducido las ecuaciones que establecen el equilibrio de masa, momento li-
neal y momento angular. Las ecuaciones de balance de estas tres magnitudes rigen el
comportamiento estructural de un medio sólido continuo sometido a cargas externas.

Por una parte, la ecuación de balance de masa es la ecuación que gobierna el va-
lor de la densidad a lo largo del tiempo. La variación de la densidad del medio está
provocada por las fuentes de masa y la variación de volumen a lo largo del proceso
de deformación. Como primera aproximación, se considera la existencia de fuentes de
masa. Sin embargo, más adelante en este trabajo se dejarán de considerar y se adoptará
la hipótesis de que se cumple la conservación de la masa.

Por otro lado, la ecuación de equilibrio del momento lineal resulta ser la ecuación que
gobierna el equilibrio dinámico de fuerzas. La variación temporal del momento lineal
está causada por las fuerzas externas aplicadas, aśı como por el campo de velocidades
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de la fuente de masa. La ecuación de equilibrio del momento angular, a su vez, es la
que rige el equilibrio dinámico de los momentos. Como el momento angular se define
en función del momento lineal, su variación temporal se origina por las mismas causas
que producen la variación del momento lineal.

Una vez definida la variación temporal de una magnitud dada (masa, momento li-
neal o momento angular), es sencillo obtener su correspondiente ecuación de equilibrio
escrita en forma integral. Y al operar sobre esta forma integral, se llega a su forma
diferencial equivalente. Además, se pueden obtener las versiones Lagrangiana o Eule-
riana de estas ecuaciones de balance, dependiendo de la descripción de las magnitudes
adoptada.

E.4. Campo de tensiones

El vector tensión se define con respecto a un plano determinado, por lo que pue-
den definirse un número infinito de vectores tensión en un punto que pertenece a la
configuración deformada. Se define como el diferencial de fuerza que actúa sobre la
configuración deformada por unidad de área diferencial. Obsérvese que esta fuerza
diferencial depende del plano considerado, y que el área diferencial pertenece a este
plano.

Según esta definición, el vector tensión resulta ser una fuerza por unidad de superfi-
cie que depende del punto material y del tiempo. Además, también depende del vector
normal que define el plano, ya que la dirección de la fuerza de tracción depende del
plano considerado.

El balance de momento lineal aplicado a un tetraedro que pertenece al dominio
material deformado conduce a la definición del vector tensión de Cauchy. Esta ecuación
define el vector tensión como el producto entre el tensor de tensiones de Cauchy y el
vector unitario normal que define el plano con respecto al cual se define el vector
tensión.

En un punto dado del material, el tensor de tensiones de Cauchy resulta estar
compuesto por las componentes de los vectores tensión definidos con respecto a los
planos cartesianos. Este tensor representa el campo de tensiones experimentado por el
sólido, definido como fuerzas internas por unidad de superficie. Si se aplica una rotación
al dominio deformado, se modifican las componentes del tensor de tensiones de Cauchy.

Pueden definirse tensores de tensiones alternativos, si se modifica la configuración
de referencia. Al definir el vector tensión de Cauchy, el dominio deformado es la con-
figuración de referencia. Es decir, las tensiones se definen como fuerzas por unidad de
área deformada. Sin embargo, si el dominio inicial pasa a ser el de referencia, surge el
primer tensor de tensiones de Piola-Kirchhoff. Este tensor de tensiones permite defi-
nir un vector tensión referido al dominio inicial, que es conocido. Este vector tensión
alternativo se define como el diferencial de fuerza que actúa sobre la configuración de-
formada por unidad de área inicial diferencial. La principal desventaja de este tensor
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es su no simetŕıa, y su uso para representar el campo de tensiones suele rechazarse, ya
que conduce a matrices de rigidez no simétricas.

Si el diferencial de fuerza se multiplica por la inversa del tensor gradiente de movi-
mientos, surge el segundo tensor de tensiones de Piola-Kirchhoff. Aunque este tensor
define otro tipo de vector tensión que no tiene una interpretación f́ısica clara, cumple
algunas propiedades interesantes y útiles cuando nos enfrentamos a un comportamien-
to estructural de grandes desplazamientos. Define un vector que representa una fuerza
de tracción diferencial modificada (el producto entre la inversa del tensor gradiente de
movimientos y el diferencial de fuerza) por unidad de área diferencial inicial. Obsérvese
que el dominio inicial se adopta de nuevo como referencia. El segundo tensor de ten-
siones de Piola-Kirchhoff resulta ser simétrico y no vaŕıa si se aplica una rotación a un
dominio deformado dado.

E.5. Campo de deformaciones finitas

Para comprender la deformación que experimenta un sólido en las proximidades de
un determinado punto, se analiza en detalle la transformación geométrica de un vector
material. Esta transformación resulta estar gobernada por el tensor gradiente de movi-
mientos, que, a su vez, depende del tensor gradiente de desplazamientos. Por tanto, se
puede concluir que el tensor gradiente de desplazamientos contiene la información nece-
saria para definir el cambio de volumen, orientación y forma que experimenta el sólido.
Esta información es necesaria para definir correctamente el campo de desplazamientos,
aśı como el de deformaciones y tensiones.

La descomposición polar del tensor gradiente de movimientos conduce a una in-
terpretación f́ısica más clara de la transformación geométrica sufrida por el vector
material. Permite descomponer el tensor gradiente de movimientos como el producto
entre el tensor de rotación finita y el tensor de deformación finita. En primer lugar,
el tensor de deformación finita modifica el módulo y la dirección del vector material,
a través de una elongación pura. A continuación, el tensor de rotación finito rota el
vector material previamente modificado para orientarlo de acuerdo con la geometŕıa
deformada.

También puede considerarse una descomposición polar alternativa. Esta descom-
posición divide el tensor de deformación finita como el producto entre el tensor de
inflación y el tensor de distorsión. El tensor de inflación rige el cambio de volumen en
las proximidades de una part́ıcula dada, mientras que el tensor de distorsión es el que
gobierna el proceso de distorsión sin variación de volumen.

Otro tensor que cumple propiedades interesantes es el tensor de deformaciones de
Green-Lagrange. Este tensor surge cuando se calcula la diferencia entre el cuadrado de
la norma de un determinado vector material en un instante de tiempo dado y el cuadra-
do de la norma de su geometŕıa inicial. El tensor de deformaciones de Green-Lagrange
no vaŕıa si se aplica una rotación al sólido. Esta es una propiedad importante cuan-
do se trata con un sólido que se comporta con grandes desplazamientos y/o grandes
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gradientes de desplazamiento, ya que una rotación ŕıgida no produce una variación del
campo de deformaciones. Además, este tensor resulta ser conjugado del segundo tensor
de tensiones de Piola-Kirchhoff, que también es invariante cuando se aplican rotacio-
nes. Aśı, su producto contracto conduce al trabajo por unidad de volumen desarrollado
por las fuerzas internas durante el proceso de deformación. Estos tensores constituyen
un par de magnitudes adecuadas para representar los campos de deformación y ten-
sión cuando se realiza un análisis no lineal. En consecuencia, es necesario definir una
ecuación constitutiva que relacione ambas magnitudes.

En un análisis no lineal se suele adoptar un proceso de carga incremental. Dado
que un estado de carga dado tiene múltiples soluciones posibles, la carga total no
puede aplicarse en un solo paso, y hay que tener en cuenta el historial de cargas para
alcanzar la respuesta estructural correcta. Además, el conjunto de ecuaciones no lineales
que rigen el comportamiento estructural suele resolverse mediante un procedimiento
iterativo que necesita partir de una aproximación cercana a la solución. El proceso
de carga incremental permite partir de una aproximación cercana, aśı como tener en
cuenta el historial de cargas.

Por último, pueden adoptarse dos enfoques de análisis, en función del dominio
material que se tome como configuración de referencia. El enfoque total referencia todas
las magnitudes a la configuración inicial durante todo el proceso de carga incremental,
mientras que el actualizado actualiza el dominio de referencia en cada paso de carga.
Es decir, el dominio material calculado en el paso de carga anterior se convierte en el
de referencia en cada paso incremental.

E.6. Campo de deformaciones infinitesimales

La transformación geométrica de un vector material resulta ser infinitesimal si los
gradientes de los desplazamientos son pequeños. Nótese que una estructura que se com-
porta con pequeños gradientes de desplazamientos puede sufrir grandes desplazamien-
tos. Por tanto, puede concluirse que una respuesta estructural con pequeños gradientes
de desplazamientos no implica un comportamiento con pequeños desplazamientos.

Si los gradientes de los desplazamientos son pequeños, puede aplicarse con pre-
cisión la descomposición polar aproximada para descomponer el tensor gradiente de
movimientos. Esta descomposición define el tensor gradiente de movimientos como el
producto entre el tensor de rotación infinitesimal y la deformación infinitesimal. Ambos
tensores resultan estar definidos mediante el tensor gradiente de desplazamientos. Por
lo tanto, si los gradientes de los desplazamientos son pequeños, no es necesario resolver
un problema de valores propios para obtener la descomposición polar del tensor gra-
diente de movimientos, como pasa en el caso finito. Esto supone una gran ventaja, ya
que implica un menor coste computacional.

La descomposición polar aclara la interpretación f́ısica de la transformación geométri-
ca sufrida por el vector material. En primer lugar, la deformación infinitesimal modifica
el módulo y la dirección del vector material a través de una elongación infinitesimal
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pura. A continuación, el tensor de rotación infinitesimal rota el vector material pre-
viamente modificado para orientarlo según la geometŕıa deformada. Ambos efectos
resultan ser transformaciones geométricas infinitesimales.

Además, se puede plantear una descomposición polar alternativa. Esta descompo-
sición divide el efecto de la deformación infinitesimal en una inflación infinitesimal,
seguida de una distorsión infinitesimal. La inflación se rige por el tensor de inflación in-
finitesimal, que provoca una variación de volumen en las proximidades de una part́ıcula
dada. Mientras que el efecto de distorsión se rige por el tensor de distorsión infinitesi-
mal, que produce una distorsión sin variación de volumen.

La descomposición polar del tensor gradiente de movimientos es una potente herra-
mienta para analizar sólidos que experimentan grandes desplazamientos y/o grandes
gradientes de desplazamientos. Si los gradientes de los desplazamientos son pequeños,
el análisis estructural se simplifica y la descomposición polar puede obtenerse directa-
mente a través del tensor gradiente de desplazamientos.

E.7. Planteamiento incremental

Hasta ahora se ha analizado ampliamente la transformación geométrica experimen-
tada por un vector material dado entre t = 0 y t. Tanto si la variación es finita como
infinitesimal, ambos cambios geométricos resultan estar regidos por el tensor gradiente
de movimientos. La descomposición polar permite definir el tensor gradiente de movi-
mientos como el producto entre un tensor de rotación y un tensor de deformación.

No obstante, el enfoque incremental se centra en la transformación geométrica in-
cremental entre dos pasos de tiempo infinitesimales consecutivos. La transformación
geométrica experimentada por un vector material entre t y t + dt resulta estar regida
por el tensor gradiente de velocidad. Como esta variación geométrica es infinitesimal,
se puede aplicar con precisión la descomposición polar aproximada para descomponer
el tensor que gobierna esta transformación geométrica incremental. Según la descom-
posición aproximada, este tensor puede definirse como el producto entre una rotación
incremental y una deformación incremental.

Además, la deformación incremental puede definirse de forma equivalente como una
inflación incremental seguida de una distorsión incremental. La inflación incremental ri-
ge la variación incremental de volumen en las proximidades de un punto dado, mientras
que la distorsión incremental no implica variación de volumen.

Este enfoque incremental puede ampliarse para comprender el proceso de carga
incremental que suele llevarse a cabo en el análisis no lineal. Cuando se trata de un
procedimiento de carga incremental, la variable temporal t se convierte en una variable
que indica el paso de carga actual. Si la carga incremental es lo suficientemente pequeña
en cada paso del proceso de carga, la transformación geométrica incremental de un
vector material dado se rige según esta formulación.
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E.8. Ecuaciones constitutivas

En este trabajo se analiza el comportamiento estructural de los sólidos elásticos. El
valor del campo de tensiones de un sólido elástico solo depende del valor del tensor
gradiente de movimientos. Si se tiene en cuenta la descomposición polar del tensor
gradiente de movimientos, se puede afirmar de forma equivalente que el tensor de
tensiones depende tanto del tensor de rotación finita como del tensor de deformación
finita. Además, el tensor de tensiones no depende de los valores anteriores del tensor
gradiente de movimientos. Es decir, solo depende del valor del tensor gradiente de
movimientos en un instante de tiempo dado. Por tanto, si se eliminan las cargas externas
aplicadas, se recupera completamente la configuración inicial.

La definición del tensor de tensiones se simplifica en la teoŕıa de la elasticidad lineal.
La hipótesis principal consiste en considerar un campo de deformaciones infinitesimal,
lo que no implica necesariamente ni pequeños desplazamientos ni pequeños gradien-
tes de desplazamientos. Esta hipótesis permite simplificar la definición del tensor de
tensiones de Cauchy, ya que el término que depende del campo de deformaciones pue-
de linealizarse en términos del tensor de deformaciones infinitesimales. Además, si los
gradientes de los desplazamientos son pequeños, el efecto de la rotación infinitesimal
puede despreciarse, y el tensor de tensiones de Cauchy puede definirse finalmente sólo
mediante el tensor de deformaciones infinitesimales. Por lo tanto, la ecuación que rela-
ciona ambas magnitudes se puede linealizar, y el tensor que define esta relación lineal
es el llamado tensor constitutivo lineal.

Si no se cumplen los supuestos de la elasticidad lineal, hay que establecer una
definición adecuada del tensor de tensiones de Cauchy mediante el tensor de rotación
y el tensor de deformaciones. No obstante, pueden adoptarse magnitudes tensoriales
más adecuadas para definir los campos de deformación y tensión.

Tanto el segundo tensor de tensiones de Piola-Kirchhoff como el tensor de deforma-
ciones de Green-Lagrange permanecen invariantes si se aplica al sólido un movimiento
ŕıgido (rotación y/o traslación). Esta es una propiedad importante a tener en cuen-
ta cuando se realiza un análisis de grandes desplazamientos. Si el sólido experimenta
grandes desplazamientos, con gradientes de desplazamientos grandes o pequeños, estos
tensores pueden adoptarse para describir adecuadamente el campo de deformaciones y
su correspondiente campo de tensiones. Por lo tanto, es necesario enunciar una ecuación
constitutiva que defina su relación matemática.

Para desarrollar un análisis no lineal, es esencial definir la ecuación constitutiva
incremental, ya que el análisis se llevará a cabo mediante un procedimiento de carga
incremental. Por lo tanto, hay que establecer la ecuación que define el incremento del
segundo tensor de tensiones de Piola-Kirchhoff en función del incremento del tensor
de deformaciones de Green-Lagrange. Si se supone que los gradientes del incremento
del campo de desplazamientos entre pasos de carga consecutivos son pequeños, su
correspondiente incremento de deformaciones de Green-Lagrange resulta ser pequeño.
Aśı, la relación entre ambas magnitudes tensoriales puede definirse a través de una
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relación lineal definida por el tensor constitutivo.
Si el campo de deformaciones es infinitesimal, incluso si los desplazamientos y/o

los gradientes de los desplazamientos son grandes, la relación entre el segundo tensor
de tensiones de Piola-Kirchhoff y el tensor de deformaciones de Green-Lagrange puede
aproximarse con precisión a través de una relación lineal definida por el tensor cons-
titutivo lineal. Es decir, el mismo tensor constitutivo que establece la relación lineal
entre el tensor de tensiones de Cauchy y el tensor de deformaciones infinitesimales de-
fine la relación entre el segundo tensor de tensiones de Piola-Kirchhoff y el tensor de
deformaciones de Green-Lagrange. Se trata de la denominada ecuación constitutiva de
St. Venant-Kirchhoff, que es uno de los modelos constitutivos más sencillos.

E.9. Ecuaciones de equilibrio estático

En Mecánica de Sólidos, no es habitual tratar con fuentes de masa, por lo que se
suele considerar que la masa no vaŕıa. Si se tiene en cuenta el supuesto de conservación
de la masa, la ecuación que define el valor de la densidad a lo largo del tiempo puede
obtenerse a partir de la forma diferencial Lagrangiana de la ecuación de balance de
masa. La densidad del medio resulta depender de la densidad inicial y del determinante
del tensor gradiente de movimientos.

Además, si se analiza el equilibrio estático, hay que verificar el equilibrio de fuerzas
y momentos.

Bajo los supuestos de equilibrio estático y conservación de la masa, la forma dife-
rencial Euleriana de la ecuación de balance de momento lineal conduce a la ecuación
que rige el equilibrio estático de fuerzas. Esta ecuación puede obtenerse de forma equi-
valente si se tiene en cuenta la conservación del momento lineal. Es decir, la derivada
temporal del momento lineal tiene que ser cero. La sustitución de esta derivada tempo-
ral en la forma integral Euleriana de la ecuación de balance de momento lineal permite
obtener alternativamente la ecuación que rige el equilibrio estático de fuerzas.

Además, se considera que el material no es capaz de absorber momento angular
por unidad de volumen. Por tanto, se verifica la conservación del momento angular, y
la variación temporal del momento angular tiene que ser nula. La sustitución de esta
derivada temporal en la forma integral Euleriana de la ecuación de balance del momento
angular conduce a la simetŕıa del tensor de tensiones de Cauchy. En consecuencia, puede
concluirse que el tensor de tensiones de Cauchy tiene que ser simétrico si se cumple la
conservación del momento angular.

E.10. Formulación lineal de elementos finitos

E.10.1. Estrategia de análisis lineal

Se consideran dos tipos de condiciones de contorno. Las primeras suelen conocer-
se como condiciones de contorno esenciales, y se basan en la definición del campo de
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desplazamientos en una superficie espećıfica del sólido. El segundo tipo son las denomi-
nadas condiciones de contorno naturales, que definen el vector tensión en la superficie
sobre la que se aplican las cargas externas.

Si el análisis se realiza en teoŕıa lineal, se adoptan dos hipótesis principales que
simplifican considerablemente el análisis.

Se considera que los desplazamientos que experimenta el sólido son pequeños.
Esta hipótesis permite considerar que el dominio inicial y el deformado son coin-
cidentes. Aśı, las ecuaciones de equilibrio pueden imponerse sobre la configuración
de referencia, que es conocida. Esto implica también que no hay variación de vo-
lumen entre ambas configuraciones.

Además, se supone que los gradientes de los desplazamientos son pequeños. Esta
suposición permite aplicar la descomposición polar aproximada para descompo-
ner el tensor gradiente de movimientos mediante el tensor gradiente de despla-
zamientos. Sin esta suposición, hay que resolver un problema de valores propios
para obtener su descomposición polar. Esta simplificación resulta ser una gran
ventaja, ya que reduce el coste computacional.

No obstante, si el comportamiento estructural real no verifica los supuestos del análi-
sis lineal, los resultados obtenidos con esta teoŕıa no se corresponden con la respuesta
estructural real.

Como se supone que la masa y el volumen permanecen constantes, también se
considera que la densidad no vaŕıa. Por lo tanto, la densidad no es una incógnita a
calcular si se adopta el enfoque lineal, ya que la densidad inicial es conocida y permanece
constante.

También se han deducido las ecuaciones que rigen el equilibrio estático, tanto la
ecuación que rige el equilibrio de fuerzas como la que establece el equilibrio de momen-
tos. El tensor de tensiones de Cauchy resulta ser simétrico si se verifica la conservación
del momento angular. La conservación del momento angular implica que la suma de
todos los momentos es cero. Por tanto, la ecuación que rige el equilibrio de momentos
se reduce a la simetŕıa del tensor de tensiones de Cauchy.

La ecuación de compatibilidad es la que define el campo de tensiones en función del
campo de desplazamientos. Según la descomposición polar aproximada, el campo de
deformaciones puede aproximarse a través del tensor de deformaciones infinitesimales,
que se define completamente mediante el tensor gradiente de desplazamientos. Como
los gradientes de los desplazamientos son pequeños y el campo de deformaciones de-
pende del tensor gradiente de desplazamientos, el campo de deformaciones resulta ser
infinitesimal en el análisis lineal.

Y la ecuación que define la relación entre los campos de tensiones y deformaciones
es la ecuación constitutiva. Como el campo de deformaciones es infinitesimal, y los gra-
dientes de los desplazamientos son pequeños, el efecto de la rotación puede despreciarse
para definir el tensor de tensiones de Cauchy. En consecuencia, el tensor de tensiones
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puede definirse completamente a través del tensor de deformaciones infinitesimales. Es
decir, se puede aplicar la ecuación de Lamé para definir la ecuación constitutiva.

Todas las ecuaciones mencionadas anteriormente componen el modelo matemático
que permite obtener la respuesta estructural bajo los supuestos del análisis lineal.
La principal incógnita a resolver es el campo de desplazamientos que experimenta el
sólido. Una vez conocido, la ecuación de compatibilidad permite calcular el campo
de deformaciones a partir del campo de desplazamientos. Y por último, la ecuación
constitutiva define el campo de tensiones que corresponde al campo de deformaciones
anterior. Además, una vez definido el campo de tensiones, y en caso de que sea necesario,
se puede calcular la reacción que aparece en la superficie donde se aplica la condición
de contorno esencial.

E.10.2. Análisis lineal por el método de los elementos finitos

El análisis lineal por elementos finitos permite obtener el campo de desplazamientos
experimentado por el sólido tras la aplicación de las fuerzas externas, bajo los supuestos
de pequeños desplazamientos y pequeños gradientes de desplazamientos.

Se obtienen tanto la forma fuerte como su correspondiente forma débil. La definición
de la base de funciones de prueba permite construir una aproximación del campo de
desplazamientos, que puede definirse como una aproximación inicial más un término
adicional que corrige la anterior. En general, la diferencia entre la solución exacta y la
aproximación inicial del campo de desplazamientos no puede ser generada por el subes-
pacio compuesto por la base de funciones de prueba. Por lo tanto, la aproximación del
campo de desplazamientos no suele verificar la forma débil. Para obtener una solución
que śı verifique la forma débil, se propone una base de funciones de test que permita
generar una función de test aproximada que conduzca a una forma débil aproximada.

El problema de equilibrio original se sustituye entonces por un sistema de ecua-
ciones lineales. Su matriz correspondiente suele denominarse matriz de rigidez, y el
vector independiente es el denominado vector de fuerzas. Si la aproximación inicial
cumple la condición de contorno esencial, y las funciones de prueba son nulas sobre la
superficie donde se aplica esta condición de contorno, la aproximación del campo de
desplazamientos verifica automáticamente la condición de contorno esencial. Además,
si las funciones de prueba son nulas sobre la superficie donde se aplica la condición
esencial de contorno, la reacción no interviene en la formulación.

Se suele aplicar el método Bubnov-Galerkin. Este método se basa en la aplicación
de las mismas funciones para definir las funciones de prueba y de test, lo que conduce
a matrices de rigidez simétricas.

Una vez definido completamente el sistema de ecuaciones lineales resultante, el
dominio material se divide en un conjunto de elementos finitos. Esto permite reescribir
las integrales como la suma de las integrales definidas sobre el dominio correspondiente
a cada elemento finito. Por lo tanto, las componentes de la matriz de rigidez y el vector
de fuerzas se convierten en la suma de la contribución de cada elemento finito.
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Además, cada función de prueba puede definirse asociada a un nodo determinado.
La función adopta un valor unitario en su nodo correspondiente, mientras que se hace
nula en los restantes. Esta condición simplifica la interpretación f́ısica del resultado
obtenido del sistema de ecuaciones lineales, ya que resulta representar el desplazamiento
experimentado por el nodo. Por otra parte, las funciones de prueba y las de test pueden
definirse con soporte local. Si se definen nulas sobre una gran cantidad de elementos
finitos, se obtienen algunas ventajas computacionales, como una reducción significativa
del tiempo de cálculo y de la memoria de almacenamiento requerida.

Por último, las funciones de prueba deben cumplir una condición esencial que suele
denominarse partición de la unidad para poder abordar correctamente las traslaciones.
Si no se cumple esta condición, una traslación implica la existencia de un campo de
tensiones, lo cual es incorrecto y no tiene sentido f́ısico.

E.11. Formulación no lineal de elementos finitos

E.11.1. Estrategia de análisis no-lineal

En análisis no lineal, se asume que el sólido experimenta grandes desplazamientos
y grandes gradientes de desplazamientos.

La hipótesis de grandes desplazamientos implica que la configuración de referencia
y el dominio deformado no pueden considerarse coincidentes. Aśı, las ecuaciones
de equilibrio deben imponerse sobre el dominio deformado, que es la incógnita a
resolver. Como las configuraciones inicial y deformada no se consideran equiva-
lentes, el determinante del tensor gradiente de movimientos no es igual a uno, y
las descripciones Lagrangiana y Euleriana de una magnitud dada no son coinci-
dentes.

Además, se supone que los gradientes de los desplazamientos son grandes, por
lo que la descomposición polar aproximada del tensor gradiente de movimientos
no es aceptable. Para descomponer adecuadamente el tensor gradiente de movi-
mientos, hay que resolver un problema de valores propios. Una vez resuelto este
problema, pueden definirse el tensor de rotación y el tensor de deformación, y el
tensor gradiente de movimientos puede descomponerse como el producto entre
ambos tensores. Además, el tensor de tensiones de Cauchy puede expresarse en
función de ambos tensores.

Este trabajo se centra en el análisis estático. Es decir, el sólido adopta una con-
figuración deformada en equilibrio estático tras la aplicación de las cargas externas.
Por lo tanto, deben cumplirse tanto el equilibrio de fuerzas como el de momentos. Se
recuerda que el tensor de tensiones de Cauchy es simétrico si se verifica la conservación
del momento angular. Si se conserva el momento angular, puede afirmarse que la suma
de todos los momentos es cero, y se cumple el equilibrio de momentos.
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Se supone que las fuerzas externas aplicadas no dependen del campo de desplaza-
miento. Esta suposición puede hacerse cuando se trata de casos de carga habituales,
como la sobrecarga estructural de uso o las cargas de peso propio.

Además, también se considera que la masa no vaŕıa. Por lo tanto, la conservación de
la masa conduce a la ecuación que define el valor de la densidad a lo largo del tiempo.
La densidad resulta estar definida tanto por el valor inicial de la densidad como por el
determinante del tensor gradiente de movimientos.

Además de las ecuaciones de equilibrio, hay que definir adecuadamente las con-
diciones de contorno para obtener el modelo matemático. Se distinguen dos tipos de
condiciones de contorno: las condiciones de contorno esenciales y las naturales. Las con-
diciones de contorno esenciales se basan en la definición del campo de desplazamientos
en una superficie espećıfica del sólido, mientras que las condiciones de contorno na-
turales definen el vector tensión en la superficie sobre la que se aplican las fuerzas
superficiales externas.

Por último, hay que enunciar una ecuación de compatibilidad y otra constitutiva
para completar el modelo matemático. La ecuación de compatibilidad define el campo
de deformaciones en función del campo de desplazamientos, mientras que la ecuación
constitutiva establece el campo tensiones en función del campo de deformaciones.

Como la respuesta estructural no es lineal, un estado de carga dado podŕıa tener
múltiples soluciones. Por lo tanto, la carga total no puede aplicarse en un solo paso
de carga. Si no se tiene en cuenta el orden de aplicación de las cargas externas, puede
obtenerse un comportamiento estructural que no se corresponda con el real. Además,
el principio de superposición que se aplica habitualmente en el análisis lineal deja de
ser válido. Para solventar los problemas que plantea el tratamiento de una respuesta
estructural no lineal, se plantea un proceso de carga incremental.

Además, un procedimiento de carga incremental es un método adecuado, ya que la
forma débil que conduce a la formulación de elementos finitos resulta ser una ecuación
no lineal que depende del campo de desplazamientos. Esta ecuación tiene que resolverse
a través de un método iterativo, que necesita empezar a iterar desde una aproximación
cercana a la solución. La aplicación de una pequeña carga incremental en cada paso
permite adoptar la solución del paso de carga anterior como aproximación inicial a la
solución del paso de carga de actual.

E.11.2. Formulación Lagrangiana total de elementos finitos

La forma original del problema está compuesta por las ecuaciones que componen el
modelo matemático, escritas en términos de los residuos tanto de la ecuación de equili-
brio como de la condición de contorno natural. Esta forma original suele denominarse
forma fuerte, y a continuación se aplica el método de los residuos ponderados para
obtener su correspondiente forma débil.

Bajo los supuestos del análisis no lineal, la forma débil resulta ser Euleriana. Es
decir, está compuesta por integrales definidas sobre el dominio deformado desconocido,
y las magnitudes que intervienen en ella se describen según su descripción Euleriana.
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Este es un problema importante, ya que no se puede realizar un cálculo sobre un domi-
nio material desconocido. Para solventar este inconveniente, la forma débil Euleriana
puede reescribirse en una forma Lagrangiana equivalente.

Según el resultado obtenido, la forma débil Lagrangiana equivalente está compuesta
por integrales definidas sobre la configuración inicial conocida, y las magnitudes se
describen de acuerdo con su descripción Lagrangiana. En la forma débil Lagrangiana
resultante intervienen el segundo tensor de tensiones de Piola-Kirchhoff y la variación
del tensor de deformaciones de Green-Lagrange.

Dado que el segundo tensor de tensiones de Piola-Kirchhoff y el tensor de deforma-
ciones de Green-Lagrange son magnitudes conjugadas, parece razonable adoptar como
ecuación constitutiva la ecuación que define la relación entre ambas magnitudes. Am-
bas magnitudes permanecen constantes si se aplica un movimiento ŕıgido (rotación y/o
traslación) al sólido. Esta es una propiedad importante para abordar un análisis de
grandes desplazamientos, ya que se puede garantizar que no aparecerán tensiones ni
deformaciones adicionales cuando se aplique un movimiento de sólido ŕıgido.

Por lo tanto, se adopta el tensor de deformaciones de Green-Lagrange para des-
cribir el campo de deformaciones, y el segundo tensor de tensiones de Piola-Kirchhoff
representa su correspondiente campo de tensiones. Y la ecuación que define el tensor de
deformaciones de Green-Lagrange en función del tensor gradiente de desplazamiento
se convierte entonces en la ecuación de compatibilidad, mientras que la ecuación que
establece la relación entre el segundo tensor de tensiones de Piola-Kirchhoff y el ten-
sor de deformaciones de Green-Lagrange es la ecuación constitutiva adoptada en este
análisis no lineal.

La forma débil Lagrangiana resulta ser una ecuación no lineal cuya incógnita es
el campo de desplazamiento. Esta ecuación no lineal debe resolverse para obtener el
campo de desplazamiento que experimenta el sólido. Para realizar correctamente el
análisis no lineal se aplica un procedimiento de carga incremental. Las fuerzas externas
se aplican de acuerdo con el proceso de carga incremental, y el dominio material inicial
se convierte en la configuración de referencia con respecto a la cual se definen todas las
variables.

La principal incógnita a obtener es el campo de desplazamiento que experimenta el
sólido. Una vez conocido el campo de desplazamiento, la ecuación de compatibilidad
permite definir su correspondiente campo de deformaciones, y la ecuación constitutiva
conduce al campo de tensiones correspondiente al campo de deformaciones anterior. A
continuación, se puede calcular, si es necesario, la reacción que aparece en la superficie
donde se aplica la condición de contorno esencial.

La ráız de la ecuación no lineal puede obtenerse a través de un método iterativo.
El método Newton-Raphson es una opción adecuada que garantiza la convergencia
cuadrática si la aproximación inicial es cercana a la ráız. Se supone que la carga in-
cremental después de cada paso de carga es tan pequeña que los campos de desplaza-
mientos asociados a pasos de carga consecutivos pueden considerarse lo suficientemente
cercanos. Si se cumple esta suposición, el campo de desplazamiento obtenido en el paso
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de carga anterior puede adoptarse para iniciar el procedimiento iterativo en cada paso
de carga. Esto permite iniciar el método iterativo desde una aproximación cercana a
la ráız, y la convergencia cuadrática debeŕıa estar garantizada.

El procedimiento iterativo se detiene según un determinado criterio, que puede ba-
sarse tanto en la diferencia entre el campo de desplazamiento obtenido tras iteraciones
sucesivas como en el residuo obtenido tras cada iteración.

El método Newton-Raphson conduce a un sistema de ecuaciones lineales que hay
que resolver para obtener el campo de desplazamiento correspondiente a cada paso
del proceso iterativo. La matriz que compone este sistema es la denominada rigidez
tangente, que está compuesta por la suma de dos términos: la componente material
y la geométrica. La componente material depende de las propiedades mecánicas del
material, y la componente geométrica depende tanto del estado tensional como de la
geometŕıa del dominio de referencia.

Una vez resuelto el sistema de ecuaciones lineales, puede actualizarse el campo de
desplazamiento, y debe verificarse el criterio de convergencia. Si se alcanza la conver-
gencia, se detiene el procedimiento iterativo, y el último resultado se adopta como el
campo de desplazamiento correspondiente al paso de carga actual. En caso contrario,
se repite el proceso hasta alcanzar la convergencia.

Cabe señalar que el método Newton-Raphson puede no converger si la matriz de
rigidez tangente es singular. Para hacer frente a estos puntos ĺımite, se han propuesto
técnicas numéricas para superar con éxito estos puntos ĺımite.

E.11.3. Formulación Lagrangiana actualizada de elementos finitos

La formulación Lagrangiana total de elementos finitos se basa en la adopción del
dominio inicial como configuración de referencia a lo largo de todo el proceso de carga
incremental. La forma débil que conduce a la formulación de elementos finitos resulta
ser Lagrangiana. Es decir, está compuesta por integrales definidas sobre la configuración
no deformada que es conocida, y las magnitudes que intervienen en ella se describen
según sus descripciones Lagrangianas.

Sin embargo, ahora se adopta el enfoque actualizado en lugar del total. Según es-
te punto de vista actualizado, el último dominio calculado se convierte en la nueva
configuración de referencia. Una vez resuelto cada paso de carga, el último dominio
calculado se convierte en el de referencia para el siguiente paso de carga.

La obtención de la formulación de elementos finitos correspondiente a este enfoque
actualizado es análoga a la total. La forma débil del paso de carga actual está compuesta
por integrales definidas sobre el dominio material desconocido, y las magnitudes se
describen según su descripción Euleriana. El verdadero reto consiste en reescribir esta
forma débil para obtener integrales definidas sobre el dominio material correspondiente
al paso de carga anterior, que se ha convertido en la nueva configuración de referencia,
aśı como magnitudes descritas con respecto a este dominio. La forma débil resultante
resulta ser una ecuación no lineal que debe resolverse de forma iterativa. La aplicación
de un método iterativo junto con el método de los elementos finitos conduce a la
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obtención de un sistema de ecuaciones lineales, que ha de ser resuelto para obtener el
campo de desplazamientos en cada iteración.

La matriz que define este sistema de ecuaciones lineales es la denominada rigidez
tangente, ya que geométricamente puede interpretarse como la tangente de la respuesta
estructural no lineal. Esta rigidez resulta estar compuesta por la suma de dos compo-
nentes: la componente material y la rigidez geométrica. La componente material de la
rigidez tangente depende de las propiedades mecánicas del material, mientras que la
componente geométrica depende tanto del estado tensional como de la geometŕıa del
dominio de referencia.

La rigidez tangente puede calcularse una sola vez, si se mantiene la misma rigidez
tangente durante todo el proceso iterativo. Este método evita actualizar la rigidez
tangente en cada paso iterativo, por lo que se ahorra una gran cantidad de coste
computacional. No obstante, pueden ser necesarias más iteraciones para alcanzar la
convergencia. Hay que decidir si se aplica este método simplificado o el general. Por
regla general, merece la pena probar el método modificado. Si surgen problemas de
convergencia, hay que tener en cuenta el general, en el que el cálculo de la rigidez
tangente debe llevarse a cabo en cada paso del proceso iterativo.

Tanto el enfoque total como el actualizado conducen a sistemas de ecuaciones linea-
les análogos. No obstante, cabe destacar las siguientes diferencias entre las componentes
de la rigidez tangente:

La componente material de la rigidez tangente es similar a la matriz de rigi-
dez lineal. Sin embargo, las derivadas de las funciones de prueba se toman con
respecto a la geometŕıa del paso de carga anterior, en lugar de tomarse con res-
pecto a la configuración inicial. Además, este término se define mediante el tensor
constitutivo espacial, en lugar del constitutivo lineal.

Además, la rigidez geométrica es bastante similar a la obtenida con el plantea-
miento Lagrangiano Total. Sin embargo, intervienen las tensiones de Cauchy en
lugar de las segundas de Piola-Kirchhoff. Y las derivadas de las funciones de
prueba se toman con respecto a la geometŕıa del paso de carga anterior, en lugar
de tomarse con respecto a la inicial.

Una vez resuelto el sistema de ecuaciones lineales, hay que actualizar el campo de
desplazamientos, y debe verificarse el criterio de convergencia. Si se alcanza la conver-
gencia, se detiene el procedimiento iterativo, y el último resultado se adopta como el
campo de desplazamiento correspondiente al paso de carga actual. En caso contrario,
se repite el proceso hasta alcanzar la convergencia.
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