

This is a portion of the ACCEPTED VERSION of the following published document:

Carlos Eiras-Franco, David Martínez-Rego, Leslie Kanthan, César Piñeiro, Antonio
Bahamonde, Bertha Guijarro-Berdiñas, and Amparo Alonso-Betanzos. 2020. Fast
Distributed kNN Graph Construction Using Auto-tuned Locality-sensitive Hashing. ACM
Trans. Intell. Syst. Technol. 11, 6, Article 71 (October 2020),
https://doi.org/10.1145/3408889

Link to published version: https://doi.org/10.1145/3408889.

General rights:

 © 2020 Authors|ACM. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
ACM Trans. Intell. Syst. Technol. 11, 6, Article 71 (October 2020).
https://doi.org/10.1145/3408889.

https://doi.org/10.1145/3408889
https://doi.org/10.1145/3408889
https://doi.org/10.1145/3408889

Fast distributed kNN Graph construction using auto-tuned
Locality Sensitive Hashing

CARLOS EIRAS-FRANCO∗ and DAVIDMARTÍNEZ-REGO, Research Center on Information and
Communication Technologies (CITIC) - Universidade da Coruña.
LESLIE KANTHAN, Department of Maths and Computer Science - University College London.
CÉSAR PIÑEIRO, Centro de Investigacion en Tecnoloxías da Informacion (CiTIUS) - Universidade de
Santiago de Compostela
ANTONIO BAHAMONDE, Department of Computer Science - Universidad de Oviedo.
BERTHA GUIJARRO-BERDIÑAS and AMPARO ALONSO-BETANZOS, Research Center on
Information and Communication Technologies (CITIC) - Universidade da Coruña.

The k nearest neighbors graph is a popular and powerful data structure that is used in various areas of Data
Science, but the high computational cost of obtaining it hinders its use on large datasets. Approximate solu-
tions have been described in the literature using diverse techniques, among which Locality Sensitive Hashing
is a promising alternative that still has unsolved problems. We present Variable Resolution Locality Sensitive
Hashing, an algorithm that addresses these problems to obtain an approximate k nearest neighbors graph at a
significantly reduced computational cost. Its usability is greatly enhanced by its capacity to automatically find
adequate hyperparameter values, a common hindrance to LSH-based methods. Moreover, we provide an im-
plementation in the distributed computing framework Apache Spark that takes advantage of the structure of
the algorithm to efficiently distribute the computational load across multiple machines, enabling practition-
ers to apply this solution to very large datasets. Experimental results show that our method offers significant
improvements over the state-of-the-art in the field and shows very good scalability as more machines are
added to the computation.

CCSConcepts: •Computingmethodologies→Machine learning algorithms;MapReduce algorithms;

Additional Key Words and Phrases: Big Data, scalability, k nearest neighbors, Locality Sensitive Hashing,
AutoML

ACM Reference format:
Carlos Eiras-Franco, DavidMartínez-Rego, Leslie Kanthan, César Piñeiro, Antonio Bahamonde, BerthaGuijarro-
Berdiñas, and Amparo Alonso-Betanzos. 2019. Fast distributed kNN Graph construction using auto-tuned
Locality Sensitive Hashing. ACM Trans. Intell. Syst. Technol. -, -, Article 1 (September 2019), 18 pages.
https://doi.org/-

1 INTRODUCTION
Data science has drastically gained popularity in the last few years thanks, in part, to the enormous
amount of data that is available, what is commonly known as Big Data [28]. This phenomenon has
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.

1:2 Eiras-Franco, et al.

increased the reach of the results and predictions made by machine learning algorithms, but it also
has forced researchers to devise new ways to process data at such scale. The ability to work, as the
amount of data grows, is known as scalability and new algorithms and revisions of existing ones
have been created having scalability as a primary goal.

A crucial strategy for dealing with Big Data is distributed computing. It consists of dividing the
work at hand across multiple computational units, accelerating the response time and distributing
the storage load. This approach gained significant traction with the introduction of the Map Re-
duce paradigm [16], an abstraction presented by Google in 2008 that facilitates the distribution of
computations as long as they conform to two very general types of processing, namely, Map and
Reduce operations. An open-source implementation of these idea was soon launched under the
name Apache Hadoop [20]. Later on, more specialised frameworks were developed, among which
Apache Spark [35], that was developed with the objective of maintaining reusable data in mem-
ory as long as possible and providing a flexible programmer API, is probably the most popular.
The success of these frameworks and its suitability for data science led to the creation of power-
ful libraries such as Mahout [21] for Hadoop and MLLib [29] for Spark, that contain distributed
implementations of Machine Learning (ML) algorithms.

A popular data structure that is widely used in Machine Learning but missing from these li-
braries is the k nearest neighbors graph (kNNG), which is a representation of all elements of a
dataset D as a directed graph in which for n data points, D = {x1, x2, ...xn}, edges (xi , xj) indi-
cate that xj is amongst the k most similar elements to the point xi under a specified similarity
measure σ (xi , xj). This data structure allows one to easily navigate elements that are similar to
each other. This is useful in areas such as Data Mining [15], Computer Graphics [32] and Machine
Learning, specifically outlier detection [26], feature selection [27] and classification [14]. Despite
being a conceptually simply idea, the computational cost necessary to obtain the kNNG by brute
force is high, since it requires performing n(n − 1)/2 pairwise comparisons, which amounts to
O(n2) time complexity. As a result, there have been attempts to obtain algorithms that compute
this graph at a lower cost.

In this paper, we present a novel approach to compute an approximate version of the kNNG
that is based on Locality Sensitive Hashing (LSH) [3] schemes. LSH is a technique designed to
speed up the retrieval of points in a dataset that are similar to a query point by pre-building a
data structure. The main idea behind LSH is that if two points are close in the original space,
they will continue to be so after a projection, which is used to group points that are similar. LSH-
basedmethods leverage this property to efficiently compute an approximatekNNG, but havemany
dataset-dependent hyperparameters that can greatly affect their performance. In general, Machine
Learning application to real world problems has been a challenge, in part due to the need of tuning
these hyperparameters in many ML algorithms. Automating this process offers the advantages of
producing faster and simpler solutions for non-practitioners, as they do not need to be an expert
to make use of ML models and techniques. Besides, requiring minimum human intervention, is
a desirable feature and a competitive advantage over many of the state-of-the-art methods when
learning from large-scale datasets as, in these cases, it may not be easy or even feasible to tune
many hyperparameters due to the long computational times it would require. This work offers
three main contributions:

(1) we present a LSH-based algorithm that can automatically tune the involved hyperparame-
ters efficiently without user intervention.

(2) an iterative, multi-resolution focus is used to shed unnecessary computations, reducing com-
putational complexity, and to ensure good accuracy of the approximate kNNG regardless of
the dataset.

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:3

(3) the presented algorithm is structured to enable parallel computation, and we provide a dis-
tributed implementation in Apache Spark which can use a computer cluster to run this al-
gorithm on very large datasets.

Our experimental results show that the proposed algorithm offers important improvements over
the current state-of-the-art alternative algorithms that make it a ready solution for the problem at
hand.

The rest of this paper is organized as follows: in Section 2 we discuss the state of the art in the
field, in Section 3 we describe the presented algorithm, while in Section 4 we report the exper-
iments performed to assess the validity of our proposal. Finally in Section 5 we summarize our
conclusions and we reflect on which future developments of the algorithm could be made.

2 RELATED WORK
The great number of applications of the kNNG and the complexity of its calculation has motivated
researchers to obtain efficient variations of the kNN algorithm. The literature reflects solutions
that are computationally effective under certain conditions. When the dimensionality of the input
space is small, the use of multidimensional binary search trees named k-d trees has been proven
fast [8], but this solution rapidly becomes inefficient as the dimension of the input space grows
(curse of dimensionality). An effective approach has also been proposed for when the similarity
metric used is the cosine similarity [2], which first computes an approximation of the graph and
then refines it by using the theoretic properties of this particular similarity measure.

However, so far the only way to cope with general metrics and high dimensional datasets at
a reasonable computational cost is to build an approximate version of the kNNG, managing the
tradeoff between the computational effort invested and the accuracy of the obtained graph with
respect to its exact counterpart. Different approaches have been proposed using a number of
techniques to reduce computational complexity. Some success was achieved by using divide-and-
conquer based approaches that include the use of recursive inexpensive bisection steps [12, 33] that
still amount to a high, although reduced with respect to the original, computational complexity.

2.1 Local-search methods
Local search approaches in this context take advantage of the fact that the neighbor of a neigh-
bor is likely to also be a neighbor. Updating the nearest neighbors list for a point with the near-
est of the neighbors of its neighbors is called a neighbor descent approach. The seminal work
for this approach is NN-Descent [17], which starts with a random kNNG which is iteratively re-
fined by performing neighbor descent steps until the graph converges to a state that is not sig-
nificantly changed by performing additional iterations. The results of these local search methods
suffer when the dataset has high intrinsic dimensionality, and are prone to converging to local
optima. Moreover, they become computationally costly for large values of k. Several modifica-
tions of NN-Descent have been proposed to address these shortcomings [10, 22], but so far none
of them has given a universal solution. Still, neighbor descent can be an effective tool to increase
the accuracy of an approximate kNNG, and many algorithms resort to it by either providing a
good initialization for the descent steps or by using a single descent step to refine an approxi-
mate kNNG calculated using other techniques. One recent such method is EFANNA [22], which
applies a divide-and-conquer approach to derive binary trees that in turn are employed to obtain
an approximate graph that is used as the starting point for NN-Descent.

Finally, the application of LSH enables a generic strategy for approximating the kNNG under
any similarity measure [36]. Since this approach is the base of our proposal, we will analyze both
its theoretical foundations and the existing methods that use it in the next subsection.

1:4 Eiras-Franco, et al.

2.2 kNNG using Locality-Sensitive Hashing
The use of LSH for the construction of the kNN graph is based on its ability to group elements
that are similar. In particular, the main idea underlying LSH is that if two points are similar, they
will continue to be so after a projection. This idea is used to reduce the search space for a given
query point, that is, given x, when trying to retrieve its k nearest neighbors the use of LSH allows
to search only points that are likely to be similar to x instead of the whole dataset D. This is
accomplished with a Locality-Sensitive Hash function, that is, a function that maps elements from
a high-dimensional space, which is generally sparse, to a lower-dimensional more dense space
and does so in a manner such that elements that are close in the input space are mapped to the
same point of the image space with a high probability. A family of hash functions H is called
(r ; cr ; P1; P2)-sensitive with respect to a given similarity measure σ if for any two points p, q ∈ ℜd :

σ (p, q) ≤ r −→ Pr (h(p) = h(q)) ≥ P1 (1)
σ (p, q) > cr −→ Pr (h(p) = h(q)) ≤ P2 (2)

with h ∈ H . Specifically, given p, q ∈ ℜ d if σ (p, q) ≤ r , that is, the distance between the points
is less than the sensitivity radius r , they will be considered similar and the random hash func-
tion h will produce a collision, that is, assign them the same value, with a probability at least P1.
Conversely, if σ (p, q) > cr , p and q will not be considered similar and the probability of h assign-
ing them the same value will be lower than P2. If P1 >> P2 then those points that are given the
same hash value will be very likely to be similar in the input space. Moreover, if a point is given
a hash value h(x) then most elements similar to x will be given the same hash value. These two
characteristics make LSH very useful for reducing the search space to elements that are similar
to the query. In some cases P1 is just slightly larger than P2; a common approach to increase this
difference consists in concatenating several hashing function values [3]. Additionally, in order to
increase the number of collisions it is also a common practice to generate several hash keys for
each point using various hashing functions from H .

As mentioned above, this technique was originally used to perform similarity between queries
in sublinear time [3, 13] by constructing a data structure that organizes the input data according
to the values assigned by the LSH function. Specifically, a group of hashing functions is computed
and the hash values of existing points in the dataset are stored. For a given query point, only
those elements of the dataset that share the same hash value (i.e. very likely to be similar) are
compared to it, greatly reducing the number of pairwise comparisons and, therefore, reducing the
computational complexity. Despite this being the usual approach to leveraging LSH, there is still
some degree of uncertainty given its dependence on probabilities P1 and P2. The data structures
and the query methods used in LSH are an active area of research [13]. As a result, the optimal
way of exploiting LSH still remains an open problem.
The described scheme is used to tackle two problems closely related to kNNG construction.

The first one i s named nearest neighbor s earch [33], which consists i n r etrieving the k nearest
neighbors in a dataset D to a query point p not present in the dataset, and has been successfully
used in fields such as search engines [23], image search [24], computational linguistics [31] and
computational biology [11], working even on cross-modal data [25]. The second one is spherical
range reporting [1, 30], that requires retrieving all points x ∈ D such that σ (x, p) < r for a given
query point p not in D and a threshold value r . Still, computing the kNNG entails a different
set of restrictions from the aforementioned problems. Mainly, the focus for approximate kNNG
algorithms is obtaining a graph as accurate as possible in the least possible amount of time so
that additional processing can be done using it as a starting point. The data structure built in the
process is discarded, which is a contrast to nearest neighbor search and spherical range reporting,

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:5

in which besides accuracy, both the size of the resulting data structure and the speed of each
query answer (i.e. the effectiveness of the data structure) need to be taken into account, but the
time invested in computing the structure is not crucial. Therefore, it may be advisable in such
problems to invest some more time in computing a finely tuned data structure. These differences
make the adaptation of algorithms that solve nearest neighbor search or spherical range reporting
to tackle kNNG construction non trivial. Up to the authors knowledge, so far only one work, by
Zhong et al. [36], has used LSH to compute the kNNG. This algorithm first splits data into groups
of similar elements using LSH, then computes the pairwise similarities of the elements in each of
these groups, which are used to build a partial graph for each group. These partial graphs are finally
merged, producing an approximate kNNG. This process is repeated for several iterations, merging
the resulting graphs. Finally, the obtained graph is refined with a neighbor descent step. This
algorithm has many dataset-dependent hyperparameters that need to be tuned, which complicates
the obtention of good results, a common theme to LSH methods [18]. Additionally, datasets that
have very uneven density of elements in different regions may obtain poor performance.

Our approach is based on the algorithm proposed by Zhong et al., but it addresses the mentioned
shortcomings: iterative processing at decreasing resolutions ensures sensibility to regional density
changes and an automatic hyperparameter tuning procedure manages to obtain good results re-
gardless of the characteristics of the dataset. Moreover, we structured the algorithm so that it has
many parts that can be computed in parallel and can be implemented following the MapReduce
paradigm. Also, we provide an implementation in the distributed computation framework Apache
Spark, which can use a cluster of computers to perform the computation, amounting to a great
scalability of the method.

3 IMPLEMENTING THE ALGORITHM
We present Variable Resolution LSH (VRLSH)1, an algorithm that uses LSH repeatedly to explore
groups of similar points that increase in size at each step. Additionally, the points that have been
sufficiently explored are removed from the dataset at each step. This iterative approach is a ma-
jor difference with the existing LSH based algorithm [36], and it enables the proposed algorithm
to adapt its exploration to the density of each region of a dataset without affecting the overall
computational cost.

VRLSH works as described in Algorithm 1. First, every element x of the dataset D is given
a hash value h(x) using a LS hashing function that will produce collisions for elements with a
similarity value larger than a given resolution. After that, elements with the same value of h(x)
are grouped, forming buckets of points with a high probability of being similar. A kNN subgraph is
computed for each of these buckets by computing all possible pairwise distances and linking each
element in the bucket to its k nearest neighbors. Afterwards, overlapping subgraphs are merged,
forming an approximate kNNG. At this step, all points that have already been involved in a fixed
number of pair-wise computations (CMAX in Algorithm 1) are removed from the dataset. The line
of reasoning for this step is that, since all points compared to a given one, x, are very likely to
be similar to it, thanks to the LSH filtering performed, once a point has been involved in a large
number of such comparisons, it will be very probable that all of its k nearest neighbors will have
already been compared to it. Moreover, all points for which x is one of their k nearest neighbors
will be very likely to have also been involved in those pairwise comparisons and one can, therefore,
remove said point x from the dataset. Finally, the resolution is decreased so that in the following
iteration the similarity threshold is lower, that is, points that were not considered to be similar
in the current step because they are too different may be considered to be similar with a lower

1Spark implementation available for download at https://github.com/eirasf/KNiNe

1:6 Eiras-Franco, et al.

resolution. The process is then repeated on until the simplified dataset D ′ is empty or has very
few elements or all of its elements end in the same bucket. After that, the elements that ended up in
the graph with less than k neighbors are returned to the dataset. This can occur when an element
is removed from the dataset for having been involved in more than CMAX comparisons; CMAX is
always selected to be larger than k , but since the elements involved in the comparisons can not
be recorded, some comparisons can be repeated, and, in rare cases, this can amount to a number
of relevant comparisons lesser than k . A closing step is performed in the algorithm if needed, for
the rare cases when very few points are left in the simplified dataset. If that is the case, instead
of continuing the hashing process which would, presumably, yield few meaningful collisions, it is
preferable to compare these points to the neighbors of its neighbors in the partial approximated
graph, that is, perform a local search using neighbor descent, step that is described from line 10
on. Finally, the full approximate graph is refined in all cases with a neighbor descent step, which,
as stated in Section 2, is a common approach to increase the accuracy of the approximate graph.

Managing the resolution of the similarity function as described allows the algorithm to process
mostly small buckets of elements that are very likely to be close, avoiding performing numerous
unnecessary pairwise comparisons. The mentioned dataset simplification step manages to keep
the number of elements in each bucket small when the resolution is decreased. Using these two
innovations, VRLSH manages to compare each point x to points that are very likely to be near
neighbors, which works towards the accuracy of the approximated kNNG, while maintaining the
number of pairwise comparisons low, which leads to low computational cost.

The resulting algorithm is a good fit for parallel computation, which t ransforms i t in a very
scalable solution. The hashing step can be performed in parallel across several computing units,
then the data can be distributed so that each computing node calculates the subgraph for a subset
of the resulting buckets. This parallel processing speeds up the computation substantially. The
addition of a registry that records the pairwise distances that have already been computed would
allow the avoidance of duplicate calculations, but it would also impact the memory usage and,
more importantly, it would diminish the suitability for distributed computation, so we opted not
to include it.

3.1 Hyper-parameter tuning
As mentioned in Section 2, state-of-the-art LSH methods are hindered by the number of hyper-
parameters that need to be tuned for the LSH scheme to be efficient. The optimal value for these
hyperparameters varies with the dataset, which further complicates its calculation. This consti-
tutes a problem for all LSH algorithms. Although there has been some work aimed at tuning the
hyperparameters in the particular case of nearest neighbor search problems [7, 18], the current
research in the field offers no general solution for this problem. The process of hyperparameter
tuning is even more important in the case of kNNG construction since, as stated in Section 2, it
is a one-shot algorithm that attempts to speed up a computationally costly process and any time
devoted to hyperparameter tuning decreases the temporal efficiency of the method, making the
algorithm less valuable. This is a contrast to LSH algorithms tackling nearest neighbor search for
which the main goal is speed and accuracy at query time and, consequently, those algorithms can
spend more time in hyperparameter tuning. We present a fast hyperparameter tuning process that
performs a guided search of the hyperparameter space until finding a suitable set of values. In the
next subsections we describe how each hyperparameter is managed and we detail the complete
process.

3.1.1 Resolution. Although in many cases setting an initial resolution R of 0.1 is a valid value
that will trigger the creation of aptly-sized buckets [19], this may not be the case for some datasets,

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:7

Algorithm 1: Pseudo-code for VRLSH algorithm.
Input: D,k←Set of points, Number of neighbors to be obtained
Input: R0 ← Initial resolution
Input: CMAX ←Max number of comparisons per element
Output: G← Graph containing the k nearest neighbors for each point

1 G ← ∅ , D ′← D, R ← R0
2 while |D ′ | > k and |buckets | > 1 do
3 hashElems ← LShash(D ′,R)

4 buckets ← hashElems .дroupByHash()

5 foreach b in buckets do
6 if (b .size > 1) then G ← G ∪ exactKNN (b .elems,k) end

end
7 D ′← D ′ −G .дetNodesW ithAtLeastComparisons(CMAX)

8 decrease R

end
9 D ′← D ′ ∪G .дetNodesW ithFewerNeiдhborsThan(k)

10 if |D ′ | > 1 then
11 foreach p in D ′ do
12 if |p.neiдhbors | = 0 then
13 p.neiдhbors ← randomSample(D,k)

end
else

14 p.neiдhbors ← topK(k,p.neiдhbors ∪ neiдhborDescent(p,G))

end
end

end
15 G ← neiдhborDescent(G)

which may end up creating buckets with too many (or too few) elements, which would amount to
a great number of unnecessary pairwise comparisons (or unnecessary iterations of the algorithm),
resulting in extra computational cost. To address this problem, we added a quick estimation pro-
cedure that, given a desired initial bucket size, obtains a suitable R0 value. First, with R0 set to
0.1, the whole dataset is hashed and the size of the resulting buckets is checked. If they contain
too few or too many elements, the resolution is halved or doubled, respectively, and the process
is repeated. If two R0 values are found to be one too small and the other too large then a binary
search is performed. This process is stopped as soon as a suitable R0 value is found. Although
this procedure may require a sizeable number of hashing and grouping steps, it can be performed
rapidly since these operations are carried out in parallel across the computing nodes. The resulting
execution time of this procedure is very small, compared to the total execution time of the kNNG
computation, and the impact of using a R0 of the correct size in the total time of the algorithm can
be considerable. Therefore the use of this tuning procedure is very advisable.

3.1.2 Hyperparameters for Euclidean distance as a similarity measure. Also, in the particular
case of using the Euclidean distance as a similarity measure, the family of locality sensitive hashing
functions that is normally used is based on performing random projections of the datapoints. In
this case, hash keys are vectors calculated using Equation 3 where R is the resolution and Mi

1:8 Eiras-Franco, et al.

is a projection matrix that is obtained as explained hereafter. For a given sample x ∈ ℜd each
component c of the key is calculated as the integer part of the dot product x · wc + bc where wc
is a vector with d components randomly sampled from a N (0, 1) and bc is a scalar bias sampled
in the same way. For ease of notation, the corresponding α w vectors and α biases that determine
a hash are joint into a matrix M

(d+1)×α
|mi, j ∼ N(0, 1). Equation 3 can be interpreted as projecting

the samples onto a random hyperplane and segmenting the projected vectors according to their
length.

hashi(x) = f loor ((x, 1) ·Mi · R) (3)
A fixed number β of such hashes are calculated for each element, as described in Equation 4, to

ensure that there are enough meaningful collisions.

Keys(x) =
{
hash0(x), hash1(x), . . . , hashβ (x)

}
(4)

This formulation introduces two additional hyperparameters: α (or key length), representing
the length of the hashes, and β (or number of tables) which accounts for the number of hashes
generated per element. The effect of these hyperparameters in the performance of the algorithm
can be characterized as follows: alpha affects the size of the buckets since it dictates how many
projections determine a hash. A large α will produce hashes that are very specific and, therefore,
generate fewer collisions than a small α , although the elements assigned to the same bucket will
have a higher probability of being similar for larger values of α . We would, then, prefer to use the
largest value of α that produces a suitable number of collisions. The effect of β is increasing the
number of collisions by assigning several hashes to each element.

In order to tune these hyperparameters with the initial resolution, we use a procedure described
in Algorithm 2, that extends the above-mentioned. We empirically discovered that setting the β
hyperparameter to a fixed constant value and then tuning α and R was the more suitable choice.
When providing a value for β we should take into account the fact that high dimensional spaces
are more sparse than low dimensional spaces and, consequently, a higher β is needed in order to
produce enough collisions as the dimension of the space grows. Therefore, we opted for a simple
logarithmic formula depending on the input dimension d and set β =

(
log2 d

)2. Additionally, a
suitable value for the α hyperparameter is estimated as α0 = ceil

(
log2

(n
d

))
+ 1, formula inspired

by the work of Zhong et al. [36]. Then a binary search for a suitable α is performed in the range
[α0/2, α0 ∗ 1.5], selected to tolerate some variation in the found α while maintaining it close to
α0. This search corresponds to the loop on line 4. To conduct this search, R is set to R = 0.1
and the hashing and counting procedures described for the resolution hyperparameter tuning are
performed. If any α value in that range produces buckets of the desired size, then all three hyper-
parameters have been set. Otherwise, a suitable R is searched using the procedure described at the
beginning of this section (which is represented in the pseudocode by the function findResolution)
and once that value is set, the search for α in the aforementioned range is repeated. This procedure
yields a combination of the three hyperparameters that configures LSH to produce buckets of the
desired size, and does so without having much impact in the execution time of the method, since
the operations involved are much less costly than the numerous pairwise distance measurements
involved in the iterations of the main algorithm.

3.1.3 CMAX and desiredSize . Finally, the algorithm has another hyperparameter named CMAX
that represents the number of comparisons in which an element of the dataset should be involved
for it to be removed from the dataset in a simplification step. This ensures that every element in
the final graph will be compared to, at least, CMAX other elements. The closely related desiredSize

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:9

Algorithm 2: Pseudo-code for the hyperparameter tuning procedure.
Input: D,k←Set of points, Number of neighbors to be obtained
Input: desiredSize ←Desired bucket size
Output: R0 ← Initial resolution
Output: α , β ←Euclidean distance LSH hyperparameters.

1 R ← 0.1 , β ← (log2(D .dimension))2

2 minS ← desiredSize ∗ 0.5 ,maxS ← desiredSize ∗ 1.5
3 α0 ← ceil(loд2(|D |/D.dim)) + 1 , le f tα ← α0 ∗ 0.5 , riдhtα ← α0 ∗ 1.5
4 while True do
5 currentα ← (le f tα + riдhtα)/2
6 hashElems ← EucLShash(D,R,α , β)

7 sizes ← hashElems .countByHash()

8 if sizes .max ∈ [minS,maxS] then
9 return R, currentα , β

end
else

10 if sizes .max < minS then
11 riдhtα ← currentα

end
else

12 le f tα ← currentα

end
13 if le f tα >= riдhtα then
14 R ← f indResolution(currentα , β ,minS,maxS)15 le f tα ← α0 ∗ 0.5 ,

riдhtα ← α0 ∗ 1.5
end

end
end

hyperparameter indicates how large the buckets generated by the LSH procedure should be. In
Section 4 we detail the experiments performed in order to determine how to handle these two
hyperparameters.

4 EXPERIMENTAL DESIGN AND RESULTS
In order to verify the validity of our approach we performed various sets of experiments on three
real-world datasets, listed in Table 1. These datasets, representing audio signals, 3D shapes and im-
ages, respectively, were selected because they were employed by other authors in previous works
to benchmark the approximate kNNG-building algorithm NN-Descent [17] and an LSH approach
to the nearest neighbor search problem [18].

We used three performance measures in our experiments. The first one is related to the accuracy
of the computed graph for which we employed the recall measure, defined as the ratio of common
edges between the approximate and the exact graphs with respect to the total number of edges.
This metric is the most usual when assessing the quality of the retrieved k nearest neighbors
[4]. Secondly, we gauged the performance of the algorithm by counting the number of pairwise
computations performed and dividing that number by the number of pairwise computations that

1:10 Eiras-Franco, et al.

Dataset Size Dimensionality
Audio 54387 192
Shape 28775 544
Corel 662317 14
Table 1. Datasets used in the study.

16 32 64 128 256
0

0.25

0.5

0.75

1

CMAX

Re
ca
ll

Audio

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.25

0.5

0.75

1

CMAX

Re
ca
ll

Shape

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

Sc
an

ra
te

Audio

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

Sc
an

ra
te

Shape

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

Fig. 1. Recall vs CMAX for Audio and Shape datasets and Scan rate vs CMAX for those same datasets, using
desiredSize = 4 ·CMAX in both cases.

the naïve algorithm would use, which is n(n − 1)/2 where n is the number of elements of the
dataset. This metric, known as scan rate, is also most commonly used in the literature. Finally, to
measure more precisely the quality of the approximate graphs by making a difference between
graphs containing the same number of mistakes, we added an additional measure that quantifies
those mistakes: the mean error (ME) in the distance of the retrieved neighbors, defined as

ME =

∑n
i=0

∑k
j=0 σ (pi ,n(pi)j) − σ (pi ,n

∗(pi)j)

n · k
(5)

where n(p)k represents the k-th neighbor of p in the approximate graph and n∗(p)k represents the
k-th neighbor of p in the exact graph.

4.1 Handling CMAX and desiredSize
As mentioned in Subsection 3.1, CMAX establishes a threshold to the number of comparisons per
element. Once an element is compared to candidate neighbors more than CMAX times, it will be
removed from the dataset, working on the assumption that it has been compared to enough ele-
ments as to have a high probability of having encountered its k nearest neighbors. To observe the
effect of C MAX in the obtained recall and scan rate we ran the algorithm using different values of
CMAX for the Audio and Shape datasets. The results of these experiments are showed in Figure 1.

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:11

16 32 64 128 256
0

0.25

0.5

0.75

1

CMAX

Re
ca
ll

Audio

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.25

0.5

0.75

1

CMAX

Re
ca
ll

Shape

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

Sc
an

ra
te

Audio

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

Sc
an

ra
te

Shape

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

Fig. 2. Recall vs CMAX for Audio and Shape datasets and Scan rate vs CMAX for those same datasets, using
desiredSize = 0.8 ·CMAX in both cases.

The recall of the obtained graphs has a positive dependence onCMAX . AsCMAX grows, the recall
grows linearly in both datasets. This is consistent with the expected effect: the larger CMAX is,
the more accurate the resulting graph will be, since there are more possibilities of finding the k
nearest neighbors in a larger set of elements, but also the costlier the computation will be, since
a larger number of pairwise comparisons will be performed. This can be appreciated in the plots
that represent the Scan rate vs CMAX . Moreover, this dependency is superlinear, that is, the scan
rate grows at an increasing and faster rate than CMAX . It can be seen, in consequence, that this
parameter manages the balance between accuracy and computational cost that is intrinsic to this
problem. It is important to note that sinceCMAX has a stronger effect on the scan rate than on the
recall of the graph, it is not advisable to use large values for CMAX since the computational cost
would become too large. We decided to allow the user to modify this hyperparameter to manage
the balance between precision and speed of computation, but we have, nonetheless, provided a
default value CMAX = 10 · k (truncated to a max of 250 except for k > 225 in which case it is
CMAX = 1.1 · k) which we empirically found to offer a suitable balance.

On the other hand, the desiredSize hyperparameter, which is highly related to CMAX , indicates
how large the buckets created in the LSH steps should be. Its relation with CMAX determines how
many hashing steps will most elements in the dataset endure. If desiredSize is much smaller than
CMAX , elements will need to be hashed several times until they reach the necessary number of
comparisons. Conversely, if desiredSize is larger thanCMAX , many elements will undergo a single
hashing and grouping step. To analyze this behaviour we ran the mentioned experiment with
two values for desiredSize , representing two different configurations: desiredSize = 4 · CMAX ,
which should force many elements to be discarded for having enough comparisons after a single
hashing step, depicted in Figure 1 and desiredSize = 0.8 ·CMAX , shown in Figure 2, which should
keep elements for a longer number of iterations of the hashing step before removing them in a
simplifying step.

1:12 Eiras-Franco, et al.

Method Approach Hyperparameters Values used
VRLSH LSH-based α , β , R Automatically tuned
FastKNN LSH-based α , β , blockSz, iterations 20, 1, 100, 20

NN-Descent Local search Samplerate 1

EFANNA Divide-&-conquer
+ Local search

#trees,depth, iterations,
L, check, S

8, 8, 8, 30, 25, 10

Table 2. Methods compared in the study.

These experiments show that using desiredSize = 4 ·CMAX offers predictable results in terms of
scan rate, while the computational effort required for the computation becomes much more vari-
able when desiredSize = 0.8 ·CMAX . Moreover, scan rates are slightly higher when desiredSize =
0.8 ·CMAX , but contrary to the expected behaviour, this increase in computational effort does not
revert in higher recall values; on the contrary, the recall values for the graphs obtained are slightly
lower than those obtained when desiredSize = 4 · CMAX . These results can be explained because
the increased number of iterations required for each element whendesiredSize = 0.8·CMAX results
in more comparisons σ (p, q) being repeated for the same values of p and q, as described in Section
3, resulting in turn in more elements accumulating purposeless repeated computations that count
towards the CMAX threshold and amount to more elements being left without k neighbors after
the LSH loop. These points need to be added for completion in the final steps of the algorithm,
in the process described from line 9 on in Algorithm 1. Since these steps are more costly and do
not benefit from the locality-sensitive reduced search space generated with the LSH steps, the
scan rate increases without a significant improvement of the recall. Therefore, we decided to set
desiredSize = 4 ·CMAX , to ensure the predictability of the results and optimize the use of the LSH
steps.

4.2 Performance of the method
In order to establish the fitness of the proposed method compared to the current state of the art for
this problem, we performed another set of experiments in which the results obtained by VRLSH
were compared to those of other methods capable of computing an approximate kNNG on high
dimensional datasets using generic distance metrics, in particular using the Euclidean distance.
The following methods were selected:
• NN-Descent [17]2, which is the most representative of the local-search methods and also has
the advantage of having only one hyperparameter.
• FastKNN [36], which is the only previously available LSH-based method and, therefore, the
most similar algorithm to VRLSH in the literature.
• EFANNA [22]3, which is an approximate nearest neighbor search algorithm that contains a
module to compute an approximate kNNG.

A summary of the characteristics of these methods is listed on Table 2. For each of them we selected
the hyperparameter values recommended by their authors.

The measurements of the computational cost shown in Table 3 show a clear disparity between
NN-Descent and the rest of the methods. VRLSH, FastKNN and EFANNA4 require a scan rate
that remains nearly constant regardless of the number of neighbors. This is in contrast with NN-
Descent, which requires a scan rate that grows very fast as the number of neighbors is incremented,
2Implementation available at https://code.google.com/archive/p/nndes/
3Implementation available at https://github.com/ZJULearning/efanna
4The available EFANNA implementation failed to complete the process for Corel with k = 64

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:13

Data Method k
2 4 8 16 32 64

Audio

VRLSH 0.031 0.024 0.027 0.034 0.062 0.177
NNDES 0.001 0.007 0.022 0.067 0.214 0.762
FastKNN 0.037 0.037 0.038 0.0415 0.052 0.083
EFANNA 0.050 0.050 0.050 0.050 0.050 -4

Shape

VRLSH 0.029 0.030 0.030 0.045 0.115 0.306
NNDES 0.002 0.014 0.039 0.120 0.382 1.471
FastKNN 0.069 0.069 0.071 0.075 0.088 0.119
EFANNA 0.065 0.065 0.065 0.065 0.065 -4

Corel

VRLSH 0.003 0.003 0.003 0.003 0.006 0.015
NNDES 0.000 0.001 0.002 0.007 0.023 0.077
FastKNN 0.003 0.003 0.003 0.003 0.004 0.006
EFANNA 0.003 0.003 0.003 0.003 0.003 -4

Table 3. Scan rate required by the compared methods while calculating the kNNG with different values of
k on the studied datasets.

making its use unadvisable for large values of k . This constitutes an important disadvantage for
NN-Descent when k > 16. Moreover, its recall (shown in Table 4) only becomes competitive when
k >= 8. Both shortcommings restrict the use of this algorithm to very specific values of k . Among
VRLSH, FastKNN and EFANNA, FastKNN shows inferior performance in terms of recall, especially
for small values ofk . Finally, while EFANNA displays spectacular performance forAudio and Shape
datasets, its very low recall on Corel highlights its greatest hindrance, which is the possibility of
converging to local optima. Moreover, since EFANNA is designed for the nearest neighbor search
problem (which, as stated in Section 2.2, demands more careful model fitting than approximate
kNNG computation), it has many hyperparameters that are hard to tune, further complicating its
use for kNNG construction. In contrast, VRLSH shows consistent high accuracy and small scan
rate regardless of k for all datasets, while also presenting the important advantage of having no
hyperparameters to tune by the user. Moreover, the values of the error shown in Table 5 indicate
that the inaccuracies contained in the approximate kNNG computed by VRLSH are small, with
exact neighbors being replaced only by points that are close nearby.

Figure 3 enables the comparison of all methods. It is worth noting that the scan rate is a mea-
sure relative to the square of the number of elements in the dataset, so a percent point in scan
rate represents an amount of computation that depends on the dataset size. This means that for
large datasets, a difference of a single percent point can represent significant time, while for small
datasets the scan rate can approach 1, even for approximate methods. This effect can be noticed on
the scan rates measured, which are significantly larger in the case of the smallest dataset (Shape)
compared to the largest dataset (Corel). Moreover, in small datasets the scan rate of an approximate
method can become larger than 1, which implies that it would be advisable to use the naïve method
of computing the exact graph. For such small datasets we recommend calculating the exact graph
and we provided a multithreaded implementation of the naïve method in our code. Conversely,
for the large datasets that our proposal is intended for, the advantage in terms of scan rate that
our method offers becomes very significant, since it represents a great amount of calculations.

1:14 Eiras-Franco, et al.

Data Method k
2 4 8 16 32 64

Audio

VRLSH 0.848 0.821 0.847 0.883 0.924 0.960
NNDES 0.002 0.429 0.892 0.982 0.998 1.000
FastKNN 0.698 0.717 0.778 0.849 0.915 0.959
EFANNA 0.997 0.996 0.995 0.993 0.962 -4

Shape

VRLSH 0.908 0.886 0.894 0.905 0.954 0.935
NNDES 0.003 0.641 0.958 0.994 0.998 0.999
FastKNN 0.796 0.821 0.865 0.909 0.954 0.976
EFANNA 0.993 0.994 0.995 0.994 0.961 -4

Corel

VRLSH 0.896 0.932 0.922 0.946 0.972 0.989
NNDES 0.000 0.419 0.950 0.996 0.999 0.999
FastKNN 0.545 0.574 0.648 0.739 0.813 0.859
EFANNA 0.078 0.098 0.121 0.148 0.174 -4

Table 4. Recall of the approximate kNNG calculated by the compared methods with different values of k on
the studied datasets.

Data Method k
2 4 8 16 32 64

Audio

VRLSH 0.012 0.020 0.017 0.013 0.009 0.004
NNDES 0.852 0.109 0.009 0.001 0.000 0.000
FastKNN 0.204 0.194 0.179 0.161 0.140 0.118
EFANNA 0.000 0.000 0.000 0.000 0.176 -4

Shape

VRLSH 0.001 0.001 0.000 0.000 0.000 0.000
NNDES 0.102 0.007 0.000 0.000 0.000 0.000
FastKNN 0.104 0.118 0.130 0.141 0.151 0.161
EFANNA 0.000 0.000 0.000 0.000 0.008 -4

Corel

VRLSH 0.001 0.001 0.001 0.001 0.000 0.000
NNDES 0.892 0.022 0.000 0.000 0.000 0.000
FastKNN 0.190 0.197 0.203 0.208 0.214 0.221
EFANNA 0.222 0.218 0.212 0.206 0.384 -4

Table 5. Mean distance error of the approximate kNNG calculated by the compared methods with different
values of k on the studied datasets.

4.3 Scalability of the method
Finally, to measure the scalability of the method and the provided distributed implementation in
Apache Spark, we performed the same computation by varying the number of computing nodes.
These experiments were run in a computer cluster formed by 8 machines with 12 computing cores
each. The technical specifications of each node are listed on Table 6. The Spark version used was
2.4.0, on Hadoop 3.0.0-cdh6.1.0. The operating system of the machines was CentOS Linux release
7.4.1708.

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:15

2 4 8 16 32 64
0

0.5

1

Sc
an

ra
te

Audio

VRLSH
NN-Descent
FastKNN
EFANNA

2 4 8 16 32 64
0

0.5

1

1.5

2
Shape

2 4 8 16 32 64
0

2

4

6

8
·10−2

Corel

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

Re
ca
ll

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

k

M
ea
n
er
ro
r

2 4 8 16 32 64
0

5 · 10−2

0.1

0.15

k
2 4 8 16 32 64

0

0.5

k

Fig. 3. Scan rate / Recall / Mean error vs number of neighbors plots for Audio, Shape and Corel datasets.

Table 6. Computer cluster overview:

8 nodes with the following characteristics:
Processor: 2 × Intel Xeon E5-2620 v3 at 2.40Ghz
Cores: 6 per processor (12 per node)
Threads: 2 per core (24 total per node)
Storage: 12 × 2TB NL SATA 6Gbps 3.5" G2HS
RAM: 64 GB
Network: 1x10Gbps + 2x1Gbps

To ascertain the suitability of the method for processing large datasets, we used a dataset with
more examples for this experiment. In particular, we selected the Higgs dataset5 [5], which de-
scribes measurements of particle collisions and consists of 11 million examples with 28 attributes.
With such a large number of elements, calculating the exact kNNG is completely out of reach, and
calculating an approximation is the only option. To measure the scalability of our algorithm, we
calculated the approximate 4NNG for the Higgs dataset several times using a growing number of
computing nodes, and recorded the execution time invested in the calculation. For all these experi-
ments we usedCMAX = 32. The results, listed on Table 7, show that the distributed implementation
providedmanages to harness the computational power of the available machines, obtaining almost
5Available for download at https://archive.ics.uci.edu/ml/datasets/HIGGS

1:16 Eiras-Franco, et al.

VRLSH
units Time (s) Scan rate Ops/s Speed-up

1 7390 1.98 ·10−4 1.62 ·106 1.00
2 3972 1.93 ·10−4 2.94 ·106 1.82
4 2045 2.09 ·10−4 6.17 ·106 3.81

Table 7. Scalability vs number of computational units for the computation of the approximate 4NNG for
the Higgs dataset. The speed-up listed is the ratio between the operations per minute obtained and the
operations per minute performed with a single computational unit (12 cores).

linear speed-up, that is, accelerating the execution in proportion to the number of cores available.
This feature enables the user to analyze very large datasets in a reasonable time as long as enough
computational units are available.

5 CONCLUSIONS AND FUTURE WORK
In this paper we present VRLSH, a kNNG approximation algorithm which produces high recall
graphs using a low scan rate irrespective of the number of neighbors selected, thus obtaining a
good approximation of the exact graph at a much lower computational cost. The kNNG can be
obtained without adjusting any hyperparameters, thanks to the automatic tuning procedure built
into the method. This automatic feature can handle the hyperparameters of the algorithm and,
additionally, those required by the Euclidean distance similarity measure, which is very frequently
used. This solves the problem of hyperparameter tuning common to other LSH-based solutions.
Additionally, we provide a distributed implementation of this algorithm in Apache Spark (available
for download at https://github.com/eirasf/KNiNe), which exploits the structure of the algorithm to
provide a distributed solution that can handle datasets with a large number of elements by using
several computational units. This enables practitioners to tackle large datasets that are out of reach
for other state-of-the-art methods. Our experimentation shows that our proposed method offers
significant advantages over the previously available alternatives for kNNG computation.
In the future we will explore the possibility of using memory-efficient registers such as Bloom

filters [9] to keep track of the pairwise computations that have been performed, thus helping to
avoid the repetition of computations. Adapting this algorithm to similar problems such as nearest
neighbor search and spherical range reporting is also a research avenue of great interest. Lastly,
advances in automated parameter tuning over a pareto frontier by implementing multi objective
genetic algorithms [6, 34] can be used to further optimize the parameters of the proposed algo-
rithms to improve both accuracy and speed.

ACKNOWLEDGMENTS
This research has been supported in part by the Spanish Ministerio de Economía y Competitivi-
dad (project TIN 2015-65069-C2-1-R and 2-R), partially funded by FEDER funds of the EU and by
the Xunta de Galicia (projects ED431C 2018/34 and Centro singular de investigación de Galicia,
accreditation 2016-2019).

REFERENCES
[1] Thomas D Ahle, Martin Aumüller, and Rasmus Pagh. 2017. Parameter-free locality sensitive hashing for spherical

range reporting. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
239–256.

[2] David C Anastasiu and George Karypis. 2015. L2knng: Fast exact k-nearest neighbor graph construction with l2-norm
pruning. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM,

Fast distributed kNN Graph construction using auto-tuned Locality Sensitive Hashing 1:17

791–800.
[3] Alexandr Andoni and Piotr Indyk. 2006. Near-optimal hashing algorithms for approximate nearest neighbor in high

dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE, 459–468.
[4] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2017. ANN-Benchmarks: A benchmarking tool for

approximate nearest neighbor algorithms. In International Conference on Similarity Search and Applications. Springer,
34–49.

[5] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. 2014. Searching for exotic particles in high-energy physics with
deep learning. Nature communications 5 (2014), 4308.

[6] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T Barr. 2018. Darwinian data structure selection. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 118–128.

[7] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-tuning indexes for similarity search. In
Proceedings of the 14th international conference on World Wide Web. ACM, 651–660.

[8] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9
(1975), 509–517.

[9] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7 (1970),
422–426.

[10] Brankica Bratić, Michael E Houle, Vladimir Kurbalija, Vincent Oria, and Miloš Radovanović. 2018. NN-Descent on
High-Dimensional Data. In Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics.
ACM, 20.

[11] Jeremy Buhler. 2001. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioinformatics 17, 5
(2001), 419–428.

[12] Jie Chen, Haw-ren Fang, and Yousef Saad. 2009. Fast approximate kNN graph construction for high dimensional data
via recursive Lanczos bisection. Journal of Machine Learning Research 10, Sep (2009), 1989–2012.

[13] Graham Cormode, Anirban Dasgupta, Amit Goyal, and Chi Hoon Lee. 2018. An evaluation of multi-probe locality
sensitive hashing for computing similarities over web-scale query logs. PloS one 13, 1 (2018), e0191175.

[14] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification. IEEE transactions on information theory
13, 1 (1967), 21–27.

[15] Belur V Dasarathy. 2002. Data mining tasks and methods: Classification: nearest-neighbor approaches. In Handbook
of data mining and knowledge discovery. Oxford University Press, Inc., 288–298.

[16] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM
51, 1 (2008), 107–113.

[17] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th international conference on World wide web. ACM, 577–586.

[18] Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. 2008. Modeling LSH for performance tuning.
In Proceedings of the 17th ACM conference on Information and knowledge management. ACM, 669–678.

[19] Carlos Eiras-Franco, Leslie Kanthan, Amparo Alonso-Betanzos, and DavidMartınez-Rego. 2017. Scalable approximate
k-NN Graph construction based on Locality Sensitive Hashing. In ESANN 2017 proceedings, European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning.

[20] Apache Foundation. 2019. Apache Hadoop Project. http://hadoop.apache.org/. (2019). Accessed: 2019-09-01.
[21] Apache Foundation. 2019. Apache Mahout Project. http://mahout.apache.org/. (2019). Accessed: 2019-09-01.
[22] Cong Fu and Deng Cai. 2016. Efanna: An extremely fast approximate nearest neighbor search algorithm based on

knn graph. arXiv preprint arXiv:1609.07228 (2016).
[23] Taher Haveliwala, Aristides Gionis, and Piotr Indyk. 2000. Scalable techniques for clustering the web. (2000).
[24] Shiyuan He, Bokun Wang, Zheng Wang, Yang Yang, Fumin Shen, Zi Huang, and Heng Tao Shen. 2019. Bidirectional

Discrete Matrix Factorization Hashing for Image Search. IEEE transactions on cybernetics (2019).
[25] Mengqiu Hu, Yang Yang, Fumin Shen, Ning Xie, Richang Hong, and Heng Tao Shen. 2018. Collective reconstructive

embeddings for cross-modal hashing. IEEE Transactions on Image Processing 28, 6 (2018), 2770–2784.
[26] K Ismo et al. 2004. Outlier detection using k-nearest neighbour graph. In null. IEEE, 430–433.
[27] Igor Kononenko. 1994. Estimating attributes: analysis and extensions of RELIEF. In European conference on machine

learning. Springer, 171–182.
[28] Viktor Mayer-Schönberger and Kenneth Cukier. 2013. Big data: A revolution that will transform how we live, work,

and think. Houghton Mifflin Harcourt.
[29] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman,

DB Tsai, Manish Amde, Sean Owen, et al. 2016. Mllib: Machine learning in apache spark. The Journal of Machine
Learning Research 17, 1 (2016), 1235–1241.

1:18 Eiras-Franco, et al.

[30] Ninh Pham. 2016. Hybrid LSH: Faster near neighbors reporting in high-dimensional space. arXiv preprint
arXiv:1607.06179 (2016).

[31] Deepak Ravichandran, Patrick Pantel, and EduardHovy. 2005. Randomized algorithms and nlp: using locality sensitive
hash function for high speed noun clustering. In Proceedings of the 43rd annualmeeting on association for computational
linguistics. Association for Computational Linguistics, 622–629.

[32] Jagan Sankaranarayanan, Hanan Samet, and Amitabh Varshney. 2007. A fast all nearest neighbor algorithm for
applications involving large point-clouds. Computers & Graphics 31, 2 (2007), 157–174.

[33] JingWang, JingdongWang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li. 2012. Scalable k-nn graph construction
for visual descriptors. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 1106–1113.

[34] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep parameter optimisation. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation. ACM, 1375–1382.

[35] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster comput-
ing with working sets. HotCloud 10, 10-10 (2010), 95.

[36] Yan-Ming Zhang, Kaizhu Huang, Guanggang Geng, and Cheng-Lin Liu. 2013. Fast kNN graph construction with
locality sensitive hashing. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 660–674.

	PortadaRUC_ACM.pdf
	This is a portion of the ACCEPTED VERSION of the following published document:
	General rights:

