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Abstract

In this contribution we study social network modelling by using human interac-
tion as a basis. To do so, we propose a new set of functions, affinities, designed
to capture the nature of the local interactions among each pair of actors in
a network. By using these functions, we develop a new community detection
algorithm, the Borgia Clustering, where communities naturally arise from the
multi-agent interaction in the network. We also discuss the effects of size and
scale for communities regarding this case, as well as how we cope with the ad-
ditional complexity present when big communities arise. Finally, we compare
our community detection solution with other representative algorithms, finding
favourable results.

Keywords: Social Network; Community Detection; Human social behaviour;
Simulation; Multi-agent systems;

1. Introduction

Network analysis has become an important tool to study systems composed
of interacting agents, such as proteins or human societies[1, 2, 3, 4, 5]. One of
the key ideas in social sciences is the one that we, human beings, are embedded
by our own social nature in a complex web of social relations and interactions.
Traditionally, this hierarchy that we have formed has been modelled as a net-
work, where each person is represented as a node that is connected to others
according to some criteria. Social networks analysis stands as an appropriate

Email addresses: javier.fumanal@unavarra.es (J. Fumanal-Idocin),
amparo.alonso.betanzos@udc.es (A.Alonso-Betanzos), ocordon@decsai.ugr.es (O.
Cordón), bustince@unavarra.es (H. Bustince), maria.minarova@stuba.sk (M. Minárová)



tool to understand many characteristics of the human behaviour, as it seems
that many of us are deeply affected by the social structure in which we take part
[6]. Adjacency matrices are the most common form of network representation
[7]. However, if there is more data available to construct the network, a more
complex model can be used [8]. Depending on the context, different models have
been developed to mimic human behaviour: in an educational organization [9]
and when dealing with conversations [10].

There are many problems related to social networks, such as information dif-
fusion [11], social circles detection [12], coalition formation [13], recommendation
systems [14] or user behaviour prediction [15]. Social networks can also be seen
as multi-agent systems, and it is possible to study their emergent properties
[16]. One key step to analyse a network is to identify its community structure:
the groups of nodes that can be identified as a functional sub-partition of the
graph[17, 18] e.g a group of friends or a protein complex[19]. Communities are
important because we can infere significant knowledge from a node or a set of
nodes if we know whether or not they share the same community and what
kind of community it is. One classical method to develop community detection
is hierarchical clustering [20], although there are many algorithms performing
community detection in a social network that improve the results obtained by
this method. Authors in [21] use a genetic algorithm to identify densely con-
nected groups of nodes. The algorithm in [22] performs an initial community
detection in the most important nodes in the network, and then labels the rest
of them.

Modularity is a measure that quantifies the quality of a graph partition into
different modules. Networks with high modularity have a high number of edges
between the nodes within modules, and a low number of them between nodes in
different modules [23]. There are many modularity-based methods to perform
community detection. The proposal in [24] uses the idea of modularity and it
is much faster than previous algorithms. Authors in [25] propose a modularity
optimization approach to work on large networks, with this being one of the
most extensively used community detection methods.

In this paper, our goal is to solve some of the social network analysis prob-
lems that we have identified both in actor interaction and community detection.
First, current community detection algorithms do not take into account neither
the different nature of the involved human beings when applied to social net-
works, nor the impact to its structure. We have also noted how scale in social
networks can alter its dynamics. Besides, when it comes to community detec-
tion, many of the existing algorithms have problems in densely connected graphs
and the appropriate algorithms are often awfully time consuming [26].

To solve these problems, we studied how human-inspired algorithms can
lead to a better understanding of the structure of a social network and its
communities. In contrast to existing literature, which uses an adjacency matrix
to model a network[27], we propose a set of functions for the sake of better
capturing the relationships between each pair of actors in the social network.
We model an algorithm that forms communities in a similar fashion to real social
networks. Finally, we propose a new representation space for these graphs,
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called “affinities”, that can be calculated from the original adjacency graph.
These affinities model how strong the relationship between two nodes according
to different criteria is. Based on these functions, we have developed a new
algorithm based on the gravitational algorithm described in [28]. We have called
our new algorithm to perform community detection the Borgia Clustering.

Using the affinity functions and the Borgia Clustering, we aim at having
a better understanding of local interactions and how they can affect global
dynamics. Regarding community detection, our target is to obtain a state-of-
the-art algorithm to perform this task. Such algorithm would be able to generate
a dendrogram faithfully reflecting the evolution of the network in the clustering
process and choose the right configuration inside it.

To test the quality of our proposals, we have studied how the new affinities
affect the interaction between actors in some real-world datasets. We have also
tested our community detection method in four different networks.

The rest of the paper is as follows. In section 2 we explain the basics of the
gravitational algorithm and graph theory and we explain what is a T-Norm and
an Overlap. In section 3 we explain the new representation space for social net-
works based on the traditional adjacency matrix used for graph representation.
In section 4 we introduce the Borgia Clustering algorithm, the historical mo-
ment that inspired it, and how it did so. In section 5 we discuss some issues that
we found working with communities of different sizes. In section 6 we test our
algorithm on three real world datasets and in section 7 we compare the quality
of our solution against other representative algorithms. Finally, in section 8 we
summarize the whole work and state some future guidelines.

2. Preliminaries

In this section we will briefly explain some of the already-existing concepts
related to some of the new proposals in this paper:

• The gravitational clustering algorithm.

• Aggregation functions.

• Graph theory.

2.1. Algorithm of Gravitational Clustering

The algorithm of Gravitational Clustering [28] employs the Newton gravita-
tional law within the process of clustering. In this algorithm, each observation
is a particle that attracts the others according to their distances and masses.
When two particles are closer than the collision distance, they are merged into a
single one. Its mass is the sum of those particles and its position is their center
of masses. This process repeats until only one particle exists. This algorithm
results in a dendrogram containing each particle fusion. Finally the most sta-
ble configuration (with the largest lifespan) is taken as the resulting one. The
scheme is as follows:
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We suppose that we have n particles p1, . . . , pn, with their positions s1, . . . , sn ∈
Rn. We also have two parameters: ε, which establishes the collision distance for
two particles, and δ which determines the movement for the fastest particle in
each iteration.

1. Initially we assign a mass (mi) 1 to each particle pi.

2. We fix real positive parameters ε and δ

• We utilize δ for determining the actual time step longitude, dt. It is
the time in which the fastest particle moves..

• If in a moment two particles find themselves in a distance less than ε
we unify them in one particle. The mass of the new resulting particle
is the sum of both masses and its position is their centre of masses.
Likewise in the case of three or more particles.

3. Initial time is set to t = 0.

4. We repeat the following steps (i)-(iv) until a single particle remains.

(i) In each time interval [t, t + dt], for each particle pi we compute its
movement influencing function:

g(i, t, dt) =
1

2
G
∑
j 6=i

mi(t)mj(t)

mi(t)

sj(t)− si(t)
|sj(t)− si(t)|3

dt2 (1)

where G is a positive constant.

(ii) For each particle i, its new position is:

si(t+ dt) = si(t) + g(i, t, dt)

(iii) We increment t to t+ dt.

(iv) If two particles i and j are closer than ε, they are fused as explained
above.

After the algorithm ends, we have just one particle. The duration of the en-
tire process is denoted by T . We measured the duration of each iteration, as
well, with the aim of being able to detect afterwards the most stable configura-
tion. The final result is the configuration that lasted the longest period of the
simulated time.

2.2. Aggregation functions

Definition 2.1. Aggregation functions are used to combine the information of
multiple numerical sources into a single one. A function A : [0, 1]n → [0, 1] is
said to be n-ary aggregation function is said to be a n-ary aggregation function
if the following conditions hold [29]:

• A is increasing in each argument: ∀i ∈ {1, . . . , n}, i < y,A(x1, . . . , i, . . . , xn) ≤
A(x1, . . . , y, . . . , xn)

• A(0, . . . , 0) = 0
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Figure 1: Directed and weighted graph. a. Adjacency matrix of the graph. b. Visual
representation of the graph.

• A(1, . . . , 1) = 1

Definition 2.2. A bivariate aggregation function T:[0, 1]2 → [0, 1] is a t-norm
if, ∀x, y, z ∈ [0, 1], it satisfies the following properties:

• Commutativity: T (x, y)=T (y, x)

• Associativity: T (x, T (y, z)) = T (T (x, y), z).

• Boundary condition: T (x, 1) = x

Two prototypical examples of T-norms are the minimum and the product.

2.3. Graphs

A graph G is represented as G(V,E) where V is a set of vertices and E is a
set of edges that connect some pairs of vertices in the graph G.

There are different kinds of graphs, depending on the information related
to each edge. In case we have some information regarding the strength of the
relationships, we call it a weighted graph. If we do not have such information,
it is called an unweighted graph. Edges can also be undirected, when an edge
between Vi ↔ Vj represents a bidirectional relationship, or directed, when the
edge between Vi → Vj can be different from the edge Vj → Vi.

Graphs can be characterized by using many statistics such as the average
number of connections per node, the average path lengths between nodes, etc.

Graphs can be modelled by using different representations. The most com-
mon ones are the adjacency or connectivity matrix and the adjacency list.

The adjacency matrix A of a graph G is a N × N matrix where N is the
number of nodes in G. Each entry Aij in this matrix corresponds to the value
associated with the Vi → Vj edge. If the graph is unweighed, those values will
be 0 or 1, while if the graph is weighted, those values will be the corresponding
weights for each edge (Fig. 1). The adjacency list is similar to the adjacency
matrix, but instead of storing N × N elements, we store a list for each vertex
containing the rest of nodes which are communicated with it.
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3. Affinity functions as an actor representation

We define “Affinities” as a set of functions of two different actors, Actorx
and Actory, establishing their mutual relation using C:

AC : [Actorx, Actory]→ [0, 1]

Usually, this C is the adjacency matrix that quantifies the relationships in each
pair of actors, although C can be, for example, another affinity matrix, or a
list of them. The affinity between two actors shows how strongly these two are
connected. Since affinities are not necessarily symmetrical, the strength of this
interaction depends on who the sender and receiver are, as happens in human
interaction e.g. unrequited love.

Affinityx,y Formula

Best friend AC(x, y) =
Cx,y∑N

a=1 Cx,a

Best Common friend AC(x, y) = Max{Min(Cx,z, Cy,z)}/
∑N

a=1 Cx,a

Friends forever AC(x, y) =
∑

(
Cx,y(t)∑N

a=1 Cx,a(t)
) 1
|T | , ∀t ∈ T

Social networking AC(x, y) = Mean(A′C(x′, y))
∀x′, such that A′C(x, x′) > 0

Machiavelli AC(x, y) = 1− abs(Ix−Iy)
Max(Ix,Iy)

, Ia = Sum(Degree(x′))

∀x such that C(a, x′) > 0

Table 1: Formula proposed for each of the affinities. C is the adjacency matrix and
N is the total number of actors in C.

We proceed to list some affinity functions:

• Best Friend affinity (BF): the affinity of the actor Actorx over the
Actory is defined as the percentage of the total connectivity of Y that
corresponds to Cx,y.

• Best Common Friend affinity (BCF): the affinity between two ac-
tors is defined as the biggest affinity common to the both of them. It
can be computed using both the adjacency matrix or another previously
calculated affinity.

• Friends Forever affinity (FF): the affinity of two actors reflects the
durability of the relation in time.

• Social Networking affinity (SN): the affinity between two actors,
Actorx and Actory, is based on the affinities of the actors connected to
Actorx with respect to Actory.
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• Machiavelli Affinity (MA): the affinity between two actors is based on
the social structure that is built around the two of them.

All but the Machiavelli affinity are personal affinities. A formula to calculate
each affinity function is in Table 1.

There are, mainly, two types of affinity functions: personal affinities and
structural affinities. Personal affinities stablish the strength of a interpersonal
connection Actorx → Actory using their respective connections and shared
friends. Structural affinities quantify the relationship of a pair of actors based
on the properties of their nodes, such as their degree or betweenness.

One particular difference between these two types is that the expected value
of a personal affinity is affected by degree of an actor, but this does not necessar-
ily happen in structural affinities. This is because the personal affinity functions
behave like a zero-sum game. It can be easily seen in the best friend affinity,
where the higher the number of connections the higher the denominator value
in the expression.

3.1. Effects of different affinity functions in Plato’s Republic

For illustration, we consider the network of word association in classical
literature. In particular, we take Republic, by Plato. We visualize the resulting
network (Figure 2) and the heatmap for the original network (Figure 3) for each
different affinity. In these networks, each node corresponds to a different word
in the original work, and its size is directly proportional to its degree. In the
co-occurrences network (Figure 3a), each edge represents the number of times
when two words appear together in a paragraph, and in the affinity graphs
(Figure 3b-f), each edge is the affinity value for each pair of nodes. For the sake
of clarity, only the 130 most frequent words are present in each network.

We have computed all the different affinities provided in Table 1. Depending
on the affinity function used, the resulting edges and their weights can be very
different. In Table 2 we have computed the five affinities for the entity “Man”,
and we proceed to discuss the results obtained:

1. Best friend affinity: we obtained a network with the same edges as the
original adjacency matrix, but with a weight for each edge. For example,
let us consider the “Man” actor entity. In Table 2 there are the top in-
coming and outgoing BF affinities for the “Man” entity. Outgoing entities
are the same as in the adjacency matrix. However, the incoming edges are
terms that associate exclusively or almost exclusively with this actor. This
happens because “Man” is an actor that appears constantly in the text,
and so it appears mostly with other entities that arise frequently, such as
“Justice” or “State”. However, some less important actors appear almost
entirely associated with “Man”, like “Desire” or “Master”. So, using this
affinity we can easily observe which are the concepts semantically closer
to an actor.

2. Best common friend affinity: this affinity is capable of “deducing” edges
based on the already existing ones in the adjacency matrix. This leads
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to a noticeable increment in the number of edges in the network. The
density of the network corresponding to the original adjacency matrix is
0.0346, while the best common friend shows a density of 0.3437. This is
a consequence of the small world problem [30]. Usually, small nodes are
connected to a high-degree node (hub) and to some other small nodes, so
many pairs of nodes without an edge between them do have a common
connection. Only four actors that were connected in the adjacency matrix
did not share any common association. If we look at Table 2, the column
BCF shows the result of this affinity for the “Man” entity. The outgoing
edges are the same as in the rest of the affinities and the incoming edges
are actors that were very affine to one of the top outgoing affinities of
“Man”. For example, the “Tyrant” actor in the adjacency matrix is only
connected to the “Soul” actor, which is one the top connections of “Man”.
This results in a high BCF affinity value from “Tyrant” to “Man”, as
the only connection of “Tyrant” is also a very important connection for
“Man”.

3. Friends forever affinity: the friends forever affinity is computed by using
the ten different chapters of the book as a time unit. This network is
very different of the other ones, as each pair of actors needs to repeatedly
appear over the whole book in order to have a high affinity value, which
can be more revealing to the nature of the original material than the rest of
affinities. As the book changes the topic in each chapter, the associations
and words not linked to any particular subject are favoured here. For
example, taking the “Man” entity in Table 2, we can see in the column
FF the concept “Evil”, which does not appear in any other of the affinity
functions. The association of the concepts “Evil” and “Man” does not
appear as many times as other important associations, but it is repeatedly
discussed in all of the different chapters of the books, which resulted in a
high FF affinity value.

4. Social networking affinity: we obtained again a network with the same
number of edges as in the best common friend affinity, due to the same
reasons. High values of this affinity reveal local social groups, because
in order to have a high affinity between Actorx and Actory, the majority
of connections of Actorx should have a high previous affinity value with
respect to Actory (Ac’ in the formulation in Table 1). If we look at the SN
column in Table 2, we can see that the outgoing edges are quite similar
to the ones in other affinities, but the incoming edges change significantly.
These edges arise from concepts that are semantically very close to the
“Man” actor. This happens because Actorx, in order to have a high affinity
value with Actory, needs to be connected with other actors connected to
Actory. This results in that in order to have a high affinity with “Man”,
an actor needs to have a high affinity with other actors that also have a
high affinity with “Man”.

5. Machiavelli affinity: nodes are more affine to each other depending on
their importance in the network, so equally important actors in the book,
e.g. Life and Justice, appear very close to each other. The structure of this

8



Outgoing Adj. BF BCF FF SN MA

Top 1 Justice Justice Justice Life Soul Life
Top 2 Life Life Injustice Other State Justice
Top 3 Injustice Injustice Soul One Justice State
Top 4 Soul Soul Life Soul Life Men
Top 5 State State State Evil Injustice Soul

Incoming

Top 1 Justice Master Tyrant Reward Shepherd Soul
Top 2 Life Desire Desire God Medicine Justice
Top 3 Injustice Action Spirit Gold Father Life
Top 4 Soul Word Journey Work Age State
Top 5 State Case Master Protect Enemies Men

Table 2: The effect of different affinity calculations for the “Man” actor in Plato’s
Republic. Each column shows the top values for the adjacency matrix and different affinity
functions for each edge of the “Man” actor.

network is particularly different from the rest of them. This can be clearly
seen in Fig. 2f. The bigger mass contains all the most important actors
in the network, while the other masses refer to less important concepts or
characters that appear in the book. If we look at incoming and outgoing
edges in Table 2, we can see that they are very similar to those in the
adjacency matrix. This is because “Man” is a key concept of this book,
and so are “Life”, “Soul” or “Justice”, which are its higher Machiavelli
affinities. Actors with similar Eigenvector centrality value [31] result in a
high Machiavelli affinity.

4. Borgia Clustering

Using the affinity functions, we have developed a community detection algo-
rithm, the Borgia Clustering, based on an important chapter in the European
history: the 15th-century Italian Wars. In 1497, Cesare Borgia, under the com-
mand of his father, Alexander VI, and as Commander in Chief of the Papal
Army, marched through the centre of Italy, conquering all the territories that
have been traditionally linked to the Papal States [34] (Fig. 4). This thrilling
moment in Renaissance history provided us with not only memorable moments
of unparalleled initiative and wit, but also with an excellent example regarding
human interaction in both personal and communitarian levels.

This algorithm is based on the classical Gravitational Clustering algorithm
[28], which has not previously been applied for community detection. Each actor
starts as a different community that gets closer to the others due to the effect
of an attraction force. Our contention is that the Borgia Clustering force and
particle movement generates communities emulating the dynamics seen during
the XV Italian wars:
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Network representation of the social network for the Plato’s Repub-
lic. a. Co-appearances network. b. Best friend affinity network. c. Best common friend
affinity network. d. Friends forever affinity network. e. Social network affinity network. f.
Machiavelli affinity network. All of them have been drawn using the Force Atlas 2 algorithm
[32]
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Figure 3: Heatmap representation of the social network in Plato’s Republic. a
The original matrix of co-occurrence of each pair of words. b The affinity matrix for the Best
friend affinity. c. The affinity matrix for the Best Common Friend. d. The affinity matrix for
the Friend Forever affinity. e. The affinity matrix for the Social Networking affinity f. The
affinity matrix for the Machiavelli affinity.
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(a) (b)

Figure 4: Italy in times of the Borgias. a. Italy’s lordships before Cesare Borgia’s
campaign as Commander in Chief of the Papal Army. Each colour represents a different
faction. There is a large amount of independent and small counties in central Italy, more
precisely, under de iure territories of the Papal States[33]. b. A portrait of Cesare Borgia
circa 1500.

• All countries aim to grow. Although it may seem a trivial thing, this is
not always the case. Sometimes states prefer to create and maintain a
balance rather than breaking it in its own favour. This means that all the
attractive forces must be non negative, and there must always be at least
one bigger than zero.

• Some parts of Italy are culturally more similar to different countries.
Naples, for example, is much more influenced by the Spanish culture than
Milan, and future dynastic unions and conquests will make evident these
differences. So, the attraction force for a pair of particles must grow with
their affinity.

• The differences in size and power make some alliances more valuable than
others. The Italian republics look for alliances not only in their peninsula
but on the lands of more powerful nations. This behaviour favours the
creation of opposing sides led by great powers, as was the case with the
many Franco-Spanish wars that occurred in the fifteenth and sixteenth
centuries. The attractive force of an actor must grow with their inherent
value and influence in the net.

• There were many countries of different size and importance involved in
that historical event. France and Spain were the biggest ones, followed
by Milan, Venice, Florence and the Kingdom of Naples. There were also
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the Papal States and the “independent lords” in central Italy. Contrary
to naive thinking, the smallest counties were not conquered by the biggest
countries, which are the ones with bigger armies, but by the Papal States.
So, even though more size implies more attractive force, this must not
be the only factor, and the actors size and scale must be also taken into
account.

To represent each actor, we use a combination of the best friend affinity
matrix and the best common friend affinity matrix, and an influence matrix, S,
based on the former. By using the best friend affinity, we favour strong pair-
wise interactions, and with the best common friend affinity, we also favour the
formation of communities whose members share a high number of friends. Also,
each actor has a “social value”, equal to its number of connections, that reflects
its popularity.

The actors attract to each other in a simulation of gravitational-like force,
depending on their social value, affinity and distance. We consider that two
actors a, b collide when the value of S(a, b) is bigger than S(b, b). Then, we
interpret that the actor a has as much influence over the actor b as b has over
itself. In that moment they are fused to form a new community. As a result
of this, the most affine pairs of actors will naturally join first and start forming
communities.

We have decided to construct the Borgia Clustering algorithm by modifying
the classical gravitational algorithm. because it can be easily modified to apply
our three ideas to effectively model our wanted dynamics and still keep the
physical interpretation. To obtain the desired behaviour, we have performed
the following modifications:

1. Particles in the original algorithm have been substituted by actors.

2. We have revamped the attraction force in a way that now it takes the size,
the distance and social value of each actor into account.

3. The collision condition and fusion procedure for two particles has been
adapted to actors.

4. We have replaced the idea of position by the idea of influence. The position
matrix has been substituted by an influence matrix, S.

5. Besides the influence matrix, we keep an Affinity matrix, AC , that con-
tains the affinity for each pair of actors and/or communities alongside the
execution of the algorithm.

Finally, we have also studied how to optimize the delta parameter, which
controls the maximal movement of each particle for each iteration, to speed up
the computation.

4.1. Particle Modification

In social networks, each particle is not a point in the space, but an actor.
Actors have a set of additional properties, usually related to the semantic in-
formation available for each one. The most important one is the connectivity,
which allows us to compute the best friend and best common friend affinity.
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Actors have an initial social value, m, that initially corresponds to its de-
gree, that is similar to the concept of particle mass in the original algorithm.
This allows us to display two well-known social behaviours: popular people are
more socially attractive than people with fewer friends. This fact is called cum-
mulative advantage in network theory [35] (from the physical point of view, a
greater mass implies a greater attractive force). Furthermore, people with few
friends try to hang out with popular people, but not the reverse (greater mass
also implies less movement).

The concept of particle position is substituted for the actor pairwise-influence,
denoted as the matrix S, that is built up by using an affinity matrix. The value
sij reflects the influence that the actor j has over the actor i. The self-influences
(si,i) are set to 1. Actors will interact with each other along time and they will
move closer as time passes due to this interaction. Besides, self-influences will
decrease during the execution of the algorithm.

The matrix AC is initially the same as the matrix S, but AC only changes
its values when two actors collide and form a new community.

4.2. Actor fusion

The condition for checking whether two actors have collided using the Eu-
clidean distance is not good enough in this context due to the curse of dimen-
sionality. Thus, we have used the idea of influence instead of position to check
whether two actors should be fused or not.

Each actor starts as being completely influential over itself. During the
execution of the algorithm, actors attract to each other, causing a reduction in
their own self-influence, and augmenting the influence other actors have over
them. When the influence of one actor over another is greater than the self-
influence of that actor, those actors will collapse into a new community.

The fusion of two actors a, b results in the emergence of a new actor whose
social value is the sum of ma and mb, whose position is their centre of masses
of sa and sb, and whose affinities in the affinity matrix are calculated using
formula (2).

AC(ab) =
maAC(a) +mbAC(b)

ma +mb
(2)

4.3. New attraction formula

We have modified the attraction formula to take into account not only the
mass and distance, but the whole set of characteristics present in each actor.

We take into account the bilateral relationships using the AC and S matrices.
The AC matrix returns the affinity for a pair of actors/communities, and we
use the S to compute the Euclidean distances between them, so that the more
common or similar affinities between two actors are, the higher the attraction
force will be.

We also need to take into account the size of the actor/community. To do
so, we add a “greedy expanse” penalization parameter, p. This p penalizes the
size of the actor in a non-linear way, so that the bigger it gets, the more difficult
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to move. The penalization is computed as 1
mp

x
for each actor x. This idea used

here for the sake of coping with size is what we have called the “Early Roman
policy”, in section 5.

The product of the masses and the AC are aggregated by using a T-norm
as aggregation function [36]. Using a T-norm is important for computational
speed. T-norms are always less than or equal to the minimum function. If the
AC(x, y) = 0, we do not need to calculate the attraction force between x and y
because we know that it must be 0.

The computational cost of the original gravitational algorithm is O(kn2),
where k refers to the number of iterations and n to the number of particles.
Because of the T-norm aggregation, in our case, the cost is O(kl), l representing
the number of edges in the graph. This is a significant result since the maximum
possible value for l in a undirected network is n2 and real networks are usually
sparse. Therefore, the complexity order reduction is actually very large.

As a result, the final formula for the attraction force is the following:

Fxy =
T ((mxmy)c, AC(x, y))

mp
x

,
sx − sy
|sx − sy|3

dt (3)

In it, T stands for a t-norm function, AC for the chosen affinity function, sx
for the influence vector of actor x.

4.4. Choosing a configuration

In the original gravitational algorithm, the configuration with the longest life
in simulated time is chosen as the final one. This criterion is extremely fast to
compute but tends to return a very small number of communities. This happens
because in the last steps of the algorithm we only have a reduced number of
particles that move very slowly because they are very heavy.

There is no problem if the desired number of communities is low (< 5) but in
case we want more, it is necessary to add an extra term to measure the quality,
R, of each configuration, Z:

R(Z) = SimulatedT ime(Z) ∗ log(NumCommunities(Z)) (4)

where q is a partition of the graph. By using this formula, we reward both
stability in time and a higher number of different communities.

It is also possible to specify the exact number of communities wanted.

4.5. Formulation of the algorithm

To sum up, the formulation of the Borgia Clustering algorithm is the follow-
ing one:

1. We assign a social value to each actor equal to its degree in the original
network.
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2. We set t as 0 and the parameter δ. The δ parameter restricts the shift
magnitude in each iteration for the fastest particle. Then, the dt of each
particular iteration is computed based on the movement of the fastest
particle. The rest of particles’ movement is computed based on this dt
value.

3. We compute the affinity matrix, AC . Then, we set the initial influence
matrix, S, equal to AC .

4. Next, clustering and attracting steps alternate alongside with the repeti-
tion of a) - d) steps until all actors are fused into one.

a) The function for driving the movement of each actor i in a time
interval [t, t+ dt] is:

gi(t) =
1

mp
i

∑
j 6=i

T ((mxmy)c, AC(i, j))
sj(t)− si(t)

|sj(t)− si(t)|3
dt (5)

b) The fastest actor is indexed as F

F = arg(max
i
{|gi|(t)}),

dt(t) for the next step is computed from |gF (t)| = δ:

δ =
1

mp
F

∑
j 6=F

T ((mxmy)c, AC(F, j))| sj(t)− sF (t)

|sj(t)− sF (t)|3
|dt⇒

⇒ dt(t) =
δmp

F∑
j 6=F T ((mxmy)c, AC(F, j))| sj(t)−sF (t)

|sj(t)−sF (t)|3 |
(6)

It is apparent that for each t, dt(t) is positive. The influence vector
of each actor i is set:

si(t+ dt(t)) = si(t) +
gi(t)

mi
(7)

c) t← t+ dt(t).

d) The test is executed inspecting whether there are actors i and j that
meet the collision condition (si,j ≥ sj,j). If so, they fuse into one
with new mass and influence vector as described above.

4.6. About the particle system contraction

Since a Markovian process is studied, where only the actual state of the
system is taken into consideration, in order to prove the convergence of the
algorithm it is enough to prove the contractiveness of the particles system. The
authors in [37] proved the convergence of the original gravitational algorithm
using an overlap function, Gs, instead of the product, using this formula for the
attraction force between particles x and y is:

F(x, y) = Gs(mxmy)
sx − sy
|sx − sy|3
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In the case of the Borgia algorithm, the attraction force is the one described
in Eq. 3. All the statements for the original attraction force formula still hold
true for the new one. So, the convergence proof for the Borgia Algorithm is
analogous to that already present in [37].

4.7. Parameter selection

The Borgia Clustering algorithm depends on a number of different parame-
ters:

1. Affinity function: we can choose one or a combination of different affinity
functions. Depending on the chosen one, we obtain different behaviours
e.g. Best Friend affinity favours one-to-one interactions, while the Social
Networking favours local high-density groups to attract.

2. Attraction force: we need to choose a T-norm and an exponent for the
product of the masses. In the case of the T-norm, we can use the product
as a default, and in case of the exponent, c, there are different alternatives:
previous results in [28] indicates that c = 0 or c = 1 gives the best results
in clustering.

3. Greedy expanse penalization factor: the bigger this factor, the harder it is
for big masses to keep growing. Generally speaking, if we want to favour
local interactions, we should set a high value (+5). If we want the big
actors to take the lead in the process we should set a low value (0 or 1).

4.7.1. Affinity selection

We use the affinity function in the Borgia Clustering algorithm to reflect
local pair-wise interactions and local group-level interactions. We reflect both
characteristics using the best friend and the best common friend affinities (using
the formulas in Table 1). By using the former, we can compute how affine two
actors are. Based on the relationship between them; and using the latter, we
can compute their affinity according to the common connections they share. To
take both affinity functions into account, we have used a convex combination of
them:

AC(x, y) = αBestFriendC(x, y) + (1− α)BestCommonFriendC(x, y)

and then we choose and appropriate α. We have tested the effects of different α
using the famous Zachary network [38], the co-occurrences character network of
the Game of Thrones (GoT) novels [39] and the Eurovision voting phase [40].
A detailed description for these networks can be found in Sections 6 and 7.

In Figure 5 we show the corresponding heatmap for each α and in Figure 6
we show the corresponding network representations.

In Fig. 7 We check the effects of different α in the modularity value for the
GoT and the Eurovision voting phase networks using a standard greedy expanse
parameter and the exponent c.

When it comes to the number of communities detected, there is no clear
effect of the affinity used. It seems that using the Common Friend affinity in
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Figure 5: Heatmap representation of the Zachary’s karate social club. The S matrix
of the Borgia algorithm with different α values. a α = 0.0. b α = 0.25 c α = 0.5. d α = 0.75.
e α = 1.0.

(a) (b) (c)

(d) (e)

Figure 6: Network representation of the Zachary’s karate social club Affinity
Matrix. a α = 0.0. b α = 0.25 c α = 0.5. d α = 0.75. e α = 1.0.
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Eurovision, we get bigger communities, but this does not hold up in the GoT
network.

By measuring modularity and modularity density, it seems that a lower α
benefits the modularity density, whilst a bigger value results in a better mod-
ularity. There is no α value that obtains the best results in both measures,
but values in the interval [0.5, 1] apparently give a good result in terms of both
metrics and the number of communities obtained.
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Figure 7: Affinity combination study a. Modularity values and number of communities
for different combinations of Best Friend and Common Friend affinities in the Eurovision voting
network with parameters c = 0, p = 3. b. Modularity values and number of communities for
different combinations of Best Friend and Common Friend affinities in the GoT social network
with parameters c = 0, p = 3. We have standardized the results for each metric.

4.7.2. Greedy expanse parameter selection

We use the greedy expanse parameter, p, to limit the influence of big particles
in the algorithm. The ideal value of the parameter might depend on the topology
of the network and the rest of the chosen parameters. If p is too big, then the
smaller communities will move too quickly, and if it is too small, the bigger
communities will negate the local interactions of the smaller particles. In Fig.
8 we have studied how our algorithm performs using different p and different α
values for the affinity function.

The chosen p value has a significant effect in the final result. Generally
speaking, a correct value should be > 2, since it seems that the number of
communities obtained in the ≤ 2 cases are abnormally high. The tendency in
the modularity values is not so clear alongside p.

4.7.3. Delta parameter

The delta parameter delimits the maximal magnitude of movement for an
actor in each iteration. In the classical gravitational algorithm, this parameter
is a fixed number. However, our experimental tests have revealed that for two
actors to collide for the first time we need much more iterations than for the
rest of the collisions. We have tackled with this problem by setting a different
delta for the first iteration, such that it warrants a collision in the first iteration.
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Figure 8: Greedy parameter modularity study. Modularity [23] and Modularity Den-
sity [41] values and number of communities for different greedy expanse penalization parameter
in the Eurovision voting network (a) and GoT (b). We have used the mean for three different
α (0.5, 0.75, 1.0) in each p.
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Figure 9: Differences in the dynamic and static delta

To do so, we calculate the distances to collide for each pair of actors and then,
set the delta value as the minimum of them.

The higher the delta, the less accurate the gravitational simulation is. The
reason for this is that we only use this form of delta calculation in the the first
iteration. In this moment, actors are far from each other, which makes the
attraction forces very weak.

In Fig. 9 we have studied the differences for four different datasets when
using the static or the dynamic delta. There is no difference in two of them,
while in the other two, only two fusions were different. The final result in all
cases was not affected. However, changes in the execution time are consistently
better (Fig. 10). It is important to note, however, that the simulation process
in the Borgia Clustering can take longer execution time than other community
detection algorithms.
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Figure 10: Execution times for the Borgia Algorithm. a, b. Execution time for
different number of edges in the full Eurovision network [40] (2369 total edges). The red
line shows the mean of 30 executions of the algorithm, alongside the quartile distribution, for
different network sizes. These networks have been obtained by randomly sampling the desired
percentage of edges from the original graph. While (a) shows the times for the static delta,
(b) shows the times for the dynamic delta.

5. The scalability problem

Social groups present lots of emergent properties when the number of people
composing them increases. A group of fifty people is not just ten times a group
of five, because human interaction does not follow a linear behaviour. In the
case of the Borgia Clustering algorithm, we have used what we call “The Early
Roman policy”[42] which aims at curbing the communities’ tendency to grow as
their size increases. In this context, we have implemented this policy by adding
a “greedy expanse” penalization parameter, p, to correctly model the growth of
social groups. This parameter penalizes “greedy” nodes that join too quickly
with others due to their high attraction force. By setting a high p, they become
slower, avoiding other nodes to join with one another so fast.

However, there is more than one way to cope with this additional complexity.
Apart from the greedy expanse penalization, we have also proposed an additional
a set of policies to treat the nodes labelled as too big (formed by the fusion of
many actors) to be treated in the same way as smaller ones, , which emerge
as the result of different phenomena that still exist or have existed in human
societies:

• Naive or linear policy: no difference between big and small communities.

• French or authoritarian policy: based on the famous French absolutist
monarchies [43]. Only the affinities for the biggest actor in the node are
taken into account.

• Early Roman policy: based on the end of the expansion of the Roman
Empire [42]. Communities receive a penalization in their attraction power

21



according to their size. This would be the case of the “greedy expanse”
penalization parameter used in the experimental section.

• Late Roman policy: based on the Diocletian tetrarchy [44]. When a com-
munity is too big, it is divided in half depending on its members’ affinities.

• Greek policy: based on the organization of the ancient Greek world [45].
When two actors are about to form a big node, they are frozen instead
and they cannot have any more attractive interactions between them.

• Aristocratic policy: based on the natural hierarchy formed in many so-
cieties [46]. When a community is too big, it is treated as a smaller
community formed only by the top-k most important members of the
community.

6. Results for real-life networks

In this section we present the results for the community detection in three
different social networks: GoT, Eurovision and the word association network for
Heart of Darkness. The cut for each dendrogram has been obtained by using
the best configuration according to the formula in Eq. 4.

6.1. Game of Thrones

Song of Ice and Fire is a popular fantasy book in the saga written by George
R.R. Martin which, to this day, is constituted by five books. This series of novels
presents a numerous set of interesting characters, most of them members of one
of the dynasties that rule the fantasy world of Westeros.

We used the data in [47], that counts co-occurrences of each character in the
original text, and then we created the adjacency matrix.

To compute the algorithm on Song of Ice Fire network we used α = 0.5,
p = 3 and c = 0.

The result in Figures 11 shows how the characters are grouped around the
different sub-plots in the book. If we look at the dendrogram, we can see that
the characters whose plot is more “stable” (they do not change much from
places or acquaintances) form or join communities faster than those who play
an important role in different places or events in the books.

6.2. Eurovision song contest

Eurovision is a musical contest where 42 countries compete against each
other in order to get the highest score. The participants should judge and give
points to the rest according to the quality of the musical performance. This
is, of course, only the theory, since in practice it is noticeable how cultural and
geographical proximities play an important role in the outcome of the contest.
From the dataset in [40], we have taken not only the last decade of voting, but
also both the whole record of finals voting to study how countries historically
behave when they are voting. These networks are interesting to us because
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Figure 11: Community detection in the GoT network. a. The network formed by the
top-35 most important characters in the book. Each of the five communities is marked with
a different colour. b. The dendrogram formed during the execution of the algorithm. Each
community is marked with same colours as in (a).
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they have very high density (Fig. 12), as they are almost fully connected, and
because we actually have semantic information about each actor. This means
that we can interpret the resulting communities without relying too much on
numerical measures.

In this case, we use the same parameter selection as in the previous case;
α = 1, p = 3 and c = 0.

In the first case, the last decade of Eurovision (Fig. 12a, Fig. 13a), we
have obtained four different communities. At a local level, it seems that strong
cultural and geographical components influence the voting process, e.g Greece
and Cyprus, Spain and Portugal. These components are more relevant in some
communities than in others. There is a community consisting almost exclusively
of countries of Slavic Europe, other has mainly Mediterranean countries, etc.
However, in our time cultural bias is not so pronounced when compared to the
whole historic record of voting.

If we take into account the whole voting record since 1975, we obtain five
communities (Fig. 12b, Fig. 13b). Two of them have a clear cultural resem-
blance between their members: the Nordic countries, and the Spain-France-
Portugal-Andorra axis. There are also two Eastern-Europe groups and a West-
ern one (with some exceptions in them that could be a consequence of a “mi-
gration” effect [48]).

(a) (b)

Figure 12: Networks and community detection in Eurovision contest. a. Last
decade of voting record in Eurovision finals. b Whole voting record in Eurovision finals.

6.3. Heart of Darkness

Heart of Darkness is the famous novel written by Joseph Conrad in 1899.
The story narrates the abuse committed by the Belgium King during the late
19th century. Besides its humanistic interest, this novel presents a mysteri-
ous character, Kurtz, which is particularly interesting for our research. This
omnipresent individual, seen as a demigod by the natives who constantly refer
to him, only makes an appearance in the final stages of the book. We have
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Figure 13: Dendrogram and community detection for the last decade of voting
record in Eurovision finals. a. Dendrogram and community detection for the last decade
of voting record in Eurovision finals. b Dendrogram community detection for the whole voting
record in Eurovision finals.

computed the word association network in the same way as that in section
3. Each node corresponds to a word in the original text and each edge is the
corresponding affinity between two entities, using as C the original number of
co-occurrences for each pair of words in the same paragraph.

We can see the result using Borgia Clustering community detection in Fig-
ure 14. We obtain three different communities. The most notable one is the
“Kurtz” community. It is characterized by the number of words that induce a
moral bias in the reader about this character, such as: “Darkness”, “Devil”, or
“Power”. There are also some other important concepts linked to this charac-
ter: “Knowledge”, “Desire”, “Reason”, “Eloquence”, etc. All of these show the
fascination that his figure inspires in the natives that the first-person narrator
and protagonist encounters through the journey. The “man” community and
the “time” are both semantically more heterogeneous, although the latter one
is mainly composed of terms that describe the place in which the action takes
place.

7. Comparison with other community detection algorithms

Finally, to benchmark our community detection algorithm, we have cho-
sen datasets with ground truth labels: the famous Zachary’s karate club social
network [38], politics books [49], that contains the number of co-purchases of
different books about US politics, football network [17], that represents the
number of matches between each pair of teams, and Dolphins [50] which is a
network that registers the frequency each pair of dolphins played together.

To test the quality of our solution and to study the best parameter selection
in the Borgia Clustering algorithm, we have compared it to other community
detection algorithms: Girvan-Newman [20], Newman greedy modularity opti-
mization [24], the Lovaine algorithm [25], using the eigenvalues of matrices to
detect communities [51], and label propagation [52]. The reported results for
the label propagation method is the median of five executions due to its stochas-
tic nature. We have used the Normalized Mutual Information (NMI) [53] and
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Mod. M. density ARI NMI C

Greedy Mod. 0.3871 0.1868 0.5684 0.4540 3
Girvan-Newman 0.4156 0.2258 0.4070 0.3529 4
Label prop. 0.3956 0.2139 0.6841 0.5750 3
L. eigenvector 0.4012 0.1969 0.4351 0.4172 4
Lovaine 0.4138 0.2296 0.4292 0.3592 4
Borgia C. 0.3693 0.1797 0.8822 0.8324 2
Grav. Clus. 0.0342 0.0555 0.0325 0.0757 3

(a)

Mod. M. density ARI NMI C

0.4954 0.1659 0.4658 0.4149 4
0.5193 0.2011 0.4505 0.4404 5
0.4684 0.1829 0.492 0.4418 4
0.4911 0.1809 0.3211 0.3439 5
0.5175 0.2032 0.3140 0.3397 5
0.3787 0.1362 1.0000 1.0000 2

-0.0010 0.0422 0.0091 0.0115 4

(b)

Mod. M. density ARI NMI C

Greedy Mod. 0.5564 0.2744 0.4844 0.5584 6
Girvan-Newman 0.5996 0.4321 0.7781 0.8014 10
Label prop. 0.5974 0.4027 0.7445 0.7701 9
L. eigenvector 0.4926 0.2593 0.4640 0.5611 8
Lovaine 0.6044 0.4167 0.7070 0.7551 9
Borgia C. 0.6005 0.4909 0.8966 0.8978 12
Grav. Clus. 0.2319 0.0848 0.1202 0.2899 7

(c)

Mod. M. density ARI NMI C

0.5019 0.1739 0.6378 0.4929 4
0.5168 0.1989 0.6823 0.4875 5
0.5106 0.1874 0.6701 0.5088 4
0.4671 0.1439 0.5466 0.4428 4

0.5267 0.1991 0.6463 0.4576 5
0.4994 0.1665 0.6685 0.5649 3
0.0053 0.0646 0.0234 0.0203 2

(d)

Table 3: Results for the Borgia Clustering. a. Zachary Karate club network. Parame-
ters: α = 0.7, p = 3, G(x, y) = 1. b. Dolphin network. Parameters: α = 0.7, p = 3, G(x, y) =
1. c. Football network. Parameters: α = 1, p = 0, G(x, y) = 1. d. Polbooks club network.
Parameters: α = 1.0, p = 0, G(x, y) = 1.

Random Adjusted Index (ARI) [54] to compare the results against ground truth
labels. We have also compared Modularity [23] and Modularity Density [41] for
each solution.

The results are shown in Figure 15 using the Borgia Clustering algorithm in
the ARI and NMI measures. A comparison including modularity and modularity
density can be found in Table 3. Borgia Clustering does not use at all the
concept of modularity, so it was expected to perform worse with respect to
this index compared to the methods that actually optimize this metric: Greedy
Modularity, Girvan-Newman and Lovaine.

In the same table, we also show the results for the traditional gravitational
algorithm that was developed originally for clustering problems [28]. As ex-
pected, this algorithm performs poorly compared to the others, as it was not
specifically designed for this problem. Using the affinity matrices instead of the
adjacency matrices showed no improvement for this algorithm either.

8. Conclusions and future work

In this work we have proposed a new set of functions based on human nature
to represent actors and we have shown the effects that different affinities have on
the same real-work networks. We have discussed the importance of scale in net-
works, and we have applied our ideas to develop a new human-based community
detection algorithm, the Borgia Clustering, based on the centre-Italian wars of
the 15th century. Using this algorithm, we have obtained good results compared
to the most used community detection algorithms up-to-date. We think that
this algorithm can offer significant improvements in very dense networks, when
modularity is not a reliable measure to optimize. Also, this algorithm always
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converges to the same value, so there is no need to run it multiple times to obtain
a valid result. Furthermore, due to the intuitive principles that the algorithm
stands on, we think that results obtained with it can be easily interpretable.

Future research will aim at applying Borgia Clustering in large scale net-
works, studying the constraints and requirements to perform the community
detection process efficiently, in terms of memory and execution time. We also
intend to explore the effects of affinity functions in dynamic environments, where
networks change along time [55], and exploit them with the Borgia Clustering
algorithm.
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Figure 14: Community detection in Heart of Darkness. a. The network resulting from
the top-200 most repeated names in the book. Each one of the five communities is marked
with a different colour. b. AC heatmap and the dendrogram formed during the execution of
the algorithm.
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Figure 15: Comparison of different Community Detection Algorithms. We have
compared the Borgia Clustering algorithm against three modularity optimization methods:
Girvan-Newman, Newman greedy modularity optimization, and the Lovaine algorithm. We
have also compared it against using eigenvalues of matrices to detect communities and label
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