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Abstract. The emergence of the Industry 4.0 trend brings automation and data exchange to industrial manufacturing. Using
computational systems and IoT devices allows businesses to collect and deal with vast volumes of sensorial and business
process data. The growing and proliferation of big data and machine learning technologies enable strategic decisions based
on the analyzed data. This study suggests a data-driven predictive maintenance framework for the air production unit (APU)
system of a train of Metro do Porto. The proposed method assists in detecting failures and errors in machinery before they reach
critical stages. We present an anomaly detection model following an unsupervised approach, combining the Half-Space-trees
method with One Class K Nearest Neighbor, adapted to deal with data streams. We evaluate and compare our approach with
the Half-Space-Trees method applied without the One Class K Nearest Neighbor combination. Our model produced few type-I
errors, significantly increasing the value of precision when compared to the Half-Space-Trees model. Our proposal achieved
high anomaly detection performance, predicting most of the catastrophic failures of the APU train system.

Keywords: Anomaly Detection, Data Streams, Unsupervised Learning, One Class Classification, Predictive Maintenance

1. Introduction

Predictive maintenance (PdM) is a method that uses real-time analytic tools to assess collected data
from various parts of one industrial machine [1]. The goal is to detect malfunctions as quickly as possible
and fix them before they lead to a catastrophic failure. Anomaly detection lies at the core of PdM, with
the primary focus on finding anomalies in the working components of machines at early stages and
alerting supervisors to carry out maintenance activities [2].

This work describes a data-driven predictive maintenance system to detect anomalies on an Air Pro-
duction Unit (APU) installed on trains of Metro of Porto. The goal is to identify as early as possible
potential failures and notify the maintenance team of an anomaly (undetectable with traditional mainte-
nance criteria), avoiding the inconvenience of removing a train from the operation and saving time and
money for the company.

The data is collected from the APU using a set of analogic sensors and reading directly from the APU
control system some digital signals that control the state of the APU. We receive the data in regular time
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intervals, and the learning process extracts information in near real-time to build a predictive model. The
model can send an alarm to the maintenance teams, allowing timely intervention on the train.

In this work, we propose an online predictive model capable of dealing with incoming stream data
with adaptive learning properties. Since the data incoming from the sensors is endless and received as a
continuous flow, we choose to deepen the data stream mining topic, where the methods’ computational
resources are limited (memory, computational power, processing time). These methods are based on
incremental learning as data is induced incrementally and contemplate a forgetting mechanism to deal
with limited memory. They differ from batch learning models such as Deep Neural Networks, which are
static, computational power is usually a must to get the best fitting in data, and the learning process is
performed offline.

Furthermore, we followed a semi-supervised learning approach since we did not know when train fail-
ures occurred at the beginning of the project.Therefore, we have combined two methods, the Half Space
Trees (HS-Trees) algorithm for one-class anomaly detection in evolving streams [3] and an adaptation of
the K-Nearest Neighbour [4, 5] capable of doing one-class classification in streaming data.

The main idea of our proposal is to use HS-Trees as the primary anomaly detector method to filter
the incoming data. HS-Trees sends the observations detected as anomalies to the One-Class K-Nearest
Neighbour method to reduce false positives. Our model presented high-performance results, detecting
most of the catastrophic failures and producing fewer false positives compared to the HS-Trees method.

The paper is organized as follows: we provide an overview of the related work in the context of
anomaly detection in Section 2. Section 3 describes the algorithms implemented in our proposal for fault
detection using an semi-supervised learning approach. Section 4 describes the data used, the problem
definition and the detailed description of our proposal. Section 5 presents the anomaly detection results
of our model. Finally, Section 6 points out the conclusions, remarks, and future works.

2. Related Work

Using sensors to monitor industrial equipment combined with the emergence of high-speed networks
like 5G and computational systems allowed the development and adaptation of machine learning tech-
niques to anomaly detection and predictive maintenance. In this section, we will present some studies
regarding these two topics.

Maintenance in industrial equipment and repair procedures are typically responsive to a not-predicted
issue. Since malfunctions in equipment affect the safety, availability, and environment, the authors in [6]
proposed a real-time monitor to schedule monitoring tasks. These tasks obtain sensor information, mea-
sure the state and condition of several components, and determine when the most appropriate moment
is to apply a preventive maintenance action (predictive maintenance) on the equipment. The predictive
maintenance topic has been attracting growing interest over the last years with several proposals explor-
ing different machine learning methods for predictive maintenance or anomaly detection [6–18]. More
recently, a survey proposed by [19] analyses all the related work regarding the usage of machine learning
techniques for predictive maintenance on the railway industry.

Industrial equipment often lacks sufficient and diverse anomalous data to build a binary classification
system. Thus many of the predictive maintenance models rely on unsupervised anomaly detection al-
gorithms, which are responsible for determining whether an observation of the sensor deviates from the
normal state of the equipment [20, 21]. Detecting the presence of anomalies in real-time provides valu-
able insights and knowledge about the equipment to make a rigorous assessment of possible maintenance
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interventions. There are several works in the literature related to the topic of predictive maintenance in
railway systems, and they can be organized into supervised or unsupervised learning approaches:

Supervised Learning
Rabatel et al. [7] explored the application of sequential patterns to correctly identify normal and ab-

normal data generated by a set of sensors installed in three key train components.
Li et al. [8] proposed a five-step predictive maintenance framework. The first step is the feature ex-

traction of the dataset containing information about bearings on the train. The second step is reducing
dimensional space using the Principal Component Analysis. The model adopted was the Support Vector
Machine. Finally, a confidence level for alarm prediction was defined, and a rule simplification divides
the feature space into non-overlapping small grids.

In terms of predicting failures on door trains, Manco et al. [11] developed an application to predict and
explain door failures using an outlier detection method. Pereira et al. [9] developed a failure detection
system for classifying irregular open/close cycles within trains based on the difference between the inlet
and outlet pressure in specific intervals of the cycle. More recently, Ribeiro et al. [10] explored data-
driven PdM based on anomaly and novelty detection implemented to predict failure in the automatic
door system. The results showed that a low-pass filter could significantly reduce the number of false
alarms.

Fumeo et al. [22] described a condition-based maintenance algorithm that explores the online support
vector regression algorithm to predict the remaining useful life of the railway vehicle. In particular, the
authors aim to detect failures on the axle bearings as soon as possible.

Wan-Jui Lee [12] used the Linear Regression model to describe two different compressor operations
(idle and running time). The authors used logistic functions to define the boundaries of the two classes
or compressor operations modes. The system is used for air leakage detection by anomaly detection
in a train’s braking pipes. They used a density-based clustering method with a dynamic threshold to
distinguish anomalies.

Bukhsh et al. [15] explored the usage of tree-based models like Random Forest, Decision trees, or XG-
Boost to predict the status of railway switches. Additionally, the authors explored the Local Interpretable
Model-Agnostic Explanations (LIME) to explain the possible reasons for the malfunction. Kalathas and
Papoutsidakis [18] applied two well-known classification algorithms, the J48 and M5P, to monitor the
health state of traction and braking subsystems of the Greek Railway. Adopting tree algorithms helps
the maintenance teams understand the reason for the malfunction.

Kang et al. [13] described a system that uses a Bayesian statistical learning model to represent the
expected behaviour of the train in terms of speed. The study’s main objective was to capture changes
and anomalies in the trains’ speed to detect some malfunctions as early as possible.

Barros et al. [16] proposed adopting a rule-based system to detect anomalies on a train compressor
unit. This system monitored several analogical and digital variables and then used a low pass filter to
smooth the analogical signals and count the number of peaks in a time window. The rules were designed
based on the maintenance teams’ expertise to define the compressor units’ normal state.

Unsupervised Learning
Salierno et al. [17] proposed architecture for predictive maintenance on the railway domain. The pro-

posed architecture is to predict failures in the interlocking railway system of the Italian Railway. The
authors adopted a Long Short Term Memory model to capture abnormal patterns of the interlocking
system.
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Davari et al. [23] describe a sparse autoencoder (SAE) network for predictive maintenance on a metro
railway domain. The proposed autoencoder is designed to predict failures on the air compressor subsys-
tem to remove the train from circulation safely.

Chen et al. [14] presented a predictive system for the compressor air unit. The authors used a re-
current neural network using Long Short-Term Memory architecture for failure prediction. The authors
compared their method with the random forest method, and the results showed that the neural network
proposal was more stable when compared with the Random Forest.

All the described related works (summarized in table 1) rely on identifying the normal state of the
system/component, considering as possible anomalies the observations that do not have the same familiar
patterns. Different machine learning models or techniques were applied depending on the context and
characteristics of the equipment.

Our approach differs from the state of the art because it relies on machine learning techniques to
identify abnormal patterns correctly. The supervised approaches presented in this section do not work
in real-time because we do not know the ground truth. When we compare with unsupervised learning
approaches, where some authors look to the autoencoders’ higher values of reconstruction error to signal
an anomaly, we suffer from a false positive alarms problem. Our method relies on a semi-supervised
learning algorithm, HS-Tree, which learns a single class and classifies all the other classes as an anomaly.

If the output of one observation is positive for an anomaly, we use a kNN algorithm to see if the
observation is distant from known normal observations of the air compressor unit. The ablation study in
this manuscript shows a significant improvement in the evaluation metrics.

Table 1
Related Work Comparison

Target System Model Explainable Model Evaluation Metric
[7] Train Sequence Patterns No Recall & Precision
[11] Doors Outlier No AUC
[9] Doors LPF No False Alarm Rate & Impostor Pass Rate
[10] Doors LPF No Reduced False Alarm Rate & Reduced

Impostor Pass Rate & Detection Error
[12] Air Compressor Linear Regression No RMSE & Confusion Matrix
[13] Train Bayesian Model No Error
[14] Air Compressor RNN / LSTM No F-Measure & AUC & Accuracy & Re-

call & Precision
[16] Air Compressor Rule-based No F-measure
[15] Railway switches XGB / RF / DT Yes Accuracy & F-Measure & Kappa
[18] Railway switches J48 / M5P Yes Recall & Precision & Matthews Corre-

lation Coefficient
[8] Bearings SVM No Accuracy & Recall & Precision
[22] Axle bearings SVR No Mean Absolute Percentage Error
[17] Interlocking LSTM No Error
[23] Air Compressor SAE No F-measure
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3. Background

This section presents the algorithms employed to build the proposed model and detect the train sys-
tem’s catastrophic failures.

3.1. Half Space Trees

Half-Space-Trees (HS-Trees) is a one-class anomaly detector algorithm built to deal with data stream-
ing environments [3]. HS-trees is an ensemble that learns incrementally as the data arrives, capable of
performing unsupervised learning in evolving data. The basic concept of this algorithm is to create bi-
nary trees by partitioning data into sub-spaces or regions. When generating a tree, the algorithm selects
a random dimension and splits it into disjoint, equal-volume halves, thus creating the left and right side
child nodes. This process is repeated until the tree reaches a maximum depth (user-specified parameter).
Therefore, any data point in the domain travels a single path from the tree’s root to the leaves going
through the different sub-spaces. Although the data is splitted into density sub-spaces, this algorithm
differs from clustering algorithms such as SOM (self-organizing map) [24] since HS-trees output are
scores of anomalous values estimated by the density regions, SOM computes clusters regions through
distance based-techniques. The HS-trees captures the mass in each node, representing the number of
data points, and uses it to profile each data point’s anomaly estimation.

The data-stream is partitioned into windows of equal sizes, named reference window and latest win-
dow. In reference window the algorithm learns the mass profile (r value stored in each node) to infer
the anomaly scores of new data points arriving in the latest window [3]. According to the mass profile
values, a data point is considered normal for high mass regions, while anomalous data points fall into
low mass regions. Also, the latest window (l value stored in each node) records the mass profile, and
once this window is full, that is, after a set of data points are recorded in the new mass profile, the latest
window, overrides the old mass profile and becomes the reference window. Thus reference window al-
ways keeps the latest mass profile, used to evaluate the new data that arrives in the stream. This process
repeats until the end of the stream.

Fig. 1. HS-trees example by [25] and a recorded latest mass profile. The left image represents the data partitioned, and the right
image the HS-tree generated.

Figure 1 shows a representation of a HS-tree. The HS-tree partitions the domain dimensions with
range values [0,1] on the left side, where dots represent data points. The right side of Figure 1 shows
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an HS-tree with a three-depth level. The inner nodes contain information regarding the splitting values
and which dimension was partitioned, leaves contain mass profile values of the latest window. Also,
it is possible to observe the mass profile value stored in the root’s right child (l = 9). This value is
incremented by one when a newly arrived data point traverses it on its path to a leaf.

To make the algorithm more robust, t ∈ N > 0 HS-trees are created and combined to form an en-
semble algorithm, reducing the spread or dispersion of predictions, thus, improving performance. Also,
a random perturbation is assigned to each feature space when split in the tree’s root, providing diversity
to the algorithm.

Each tree in the ensemble computes a score for each data point independently regarding the anomaly
score. The computed score allows the new arrival data point to traverse through the tree’s nodes until it
reaches the leaves or a node with a mass profile equal to or less than a user-determined value s denoted
by the size limit (minimum mass required in a node). The final anomaly computed score is the sum of
all anomaly scores of the HS-trees.

3.2. One-Class K Nearest Neighbour

The One-Class K Nearest Neighbour (OCKNN) [5] is an adaptation of the original K-Nearest Neigh-
bour algorithm [4] for supervised learning using distances between neighbours to classify the data. The
K in OCKNN is the number of nearest neighbours, the core deciding factor. This algorithm is a lazy
learning algorithm since it does not learn in the training phase, where all data points are used at the time
of prediction. This algorithm only stores or memorises the data points in the training phase and waits
until classification is performed. It is named One-Class since it requires only one class in the training
phase. After memorising all data points, in the prediction phase, the algorithm uses a user-specified
distance metric such as euclidean, Manhattan, Chebyshev, Minkowski, Minkowski or Mahalanobis to
compute distances between points in the domain space. The mean distance between the new data point
and its k nearest neighbours from the training set is calculated.

The mean distance value of each data point to its k neighbours represents the anomaly score. An
anomalous classification is made if a distance value for a specific data point is more significant than a
d ∈ R > 0 distance threshold (user-specified parameter).

Fig. 2. OCKNN illustration example in two dimensional space, where k = 1; d1, d2, d3 are distances of points A, B and C
respectively, to their nearest neighbour; dx is the distance threshold to consider a given data point to be anomalous.

It can be observed in Figure 2 how the OCKNN algorithm works for one neighbour (K = 1). The
black dots within the drawn area represent the normal data points. The stars (A and C) are data points
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classified as anomalous since distance d1, and d3 are more significant than the distance threshold dx,
while data point B is classified as normal as distance d2 is minor than dx.

4. Methodology

4.1. Problem Definition

The Air Production Unit (APU) is part of a compressed air system, which produces pressurizing air
from an electric motor. The electrical current consumed by the motor is converted into kinetic energy.
The compressed air system is a crucial component of the train and delivers essential pressurized air to
several clients like pneumatic suspension, oil injection on the rail to reduce the friction and noise on the
curves, and injection of sand to gain traction rails, and finally, connect other trains. Applying predictive
maintenance here is essential to predict the equipment failure before it happens, decreasing costs and
optimizing the service.

4.2. Trains Data

The data acquisition system collects information from several analogical sensors and digital signals
generated by the APU control system. Based on the failure history of the train fleet, it is possible to
identify the critical components of the system that generate the majority of the failures. These critical
components are: (i) electrical valve; (ii) pressure valve; (iii) oil leaks; (iv) electrical motor; (v) pressure
switches; and (vi) drying towers. The sensors and places to install them were strategically defined,
considering the output of the failure history study. Figure 3 shows an overview of the train system.

Fig. 3. Train System: dark arrows represent the pneumatic system, dashed arrows the control system and the thin black arrows
the sensors

The data acquisition system communicates with a cloud server that receives the data from the sensors
with 1 Hz of sampling frequency. The system stores the data collected from the sensors and respective
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timestamps to a data logger file, and every five minutes, the file is sent to the server using the TCP/IP
protocol application.

The considered analogical sensors were the following.

• TP2 - Measures the pressure on the compressor.
• TP3 - Measures the pressure generated at the pneumatic panel.
• H1 - This valve is activated when the pressure read by the pressure switch of the command is above

the operating pressure of 10.2 bar.
• DV pressure - Measures the pressure exerted due to pressure drop generated air dryers towers, and

when it is equal to zero, the compressor is working under load.
• Motor Current - Measures the current of one phase of the three-phase motor, which should present

values close to 0 A when the compressor turns off, close to 4 A when the compressor is working
offloaded and close to 7 A when the compressor is working under load. When the compressor starts
to work, the motor current presents values close to 9 A.

• Oil Temperature - Measures the temperature of the oil present on the compressor
• Flowmeter - Measures the airflow that leaves the APU for Reservoirs

The considered digital sensors were the following.

• COMP - The electrical signal of the air intake valve on the compressor. It is active when there is no
admission of air on the compressor, meaning that the compressor turns off or working offloaded.

• DV electric - the electrical signal that commands the compressor outlet valve. When it is active, it
means that the compressor is working under load; when it is not active, it means that the compressor
is off or offloaded.

• TOWERS - Defines which tower is drying the air and which tower is draining the humidity removed
from the air. When it is not active, it means that tower one is working; when it is active, it means
that tower two is working.

• MPG - Is responsible for activating the intake valve to start the compressor under load when the
pressure in the APU is below 8.2 bar. Consequently, it will activate the sensor COMP, which as-
sumes the same behaviour as MPG sensor.

• LPS - Is activated when the pressure is lower than 7 bars.
• Oil Level - Detects the oil level on the compressor and is active (equal to one) when the oil is below

the expected values.

4.3. Proposed model

For our proposal, we only considered the analogical sensors data arriving in the stream recorded at
each second. Figure 4 illustrates our anomaly detection model for predicting catastrophic failures.

Before feeding HS-Trees algorithm, we aggregated the data in minutes through the timestamp feature.
This operation extracted each sensor’s mean, median, standard deviation, and variance. Our experiences
found that the information extracted by each minute was sufficient to prevent the HS-Trees algorithm
from losing performance, thus optimizing the data processing time as it computes fewer records.

After running several experiments with HS-Trees, we noticed that this method was generating a large
number of false positives since only 4% of data was reported as a failure, while HS-Trees was detecting
around 25% of failures. To tackle this problem, we adopted the OCKNN algorithm to deal with data
arriving continuously. The idea is that the OCKNN evaluates each anomaly detected observation from
HS-Trees to check if it was detected correctly.
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Fig. 4. Proposed methodology

Data points are updated in the OCKNN training set if HS-Trees inferred these points as normal data.
The update process considers the maximum and minimum distances to neighbour’s values captured
during the stream. Distant normal points to its neighbours are added to the training set while neighbour
points with the lowest distance are removed. This update mechanism showed high-performance results
as stacking points with high distances present high sensitivity when detecting anomalous data.

In the case of HS-Trees inferred points as anomalous, the OCKNN method calculates the distance from
each arriving data point to its closest neighbour to verify whether they are at an abnormal distance. To
better understand our model, it is presented in Algorithm 1 the pseudo-code implementation.

Before starting the data stream, initial parameters and data structures were defined: A set of initial
training data with 1400 records for the OCKNN method, which represents a whole day stack (24h) from
a period that we know there was no anomaly in the train system; a K number of neighbours to compute
distances to the arriving data points from which we only used 1 neighbour; a distMax variable to record
the maximum distance to its neighbour set as 0 (lowest value to be replaced in the first iteration) and a
distMin variable to record the minimum distance to its neighbour set as 9999 (a high value to be replaced
in the first iteration). The output of our model returns a list of TimeStamp values that indicate when an
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Algorithm 1: Pseudo-code for HS-trees with OCKNN approach.
Input : Di ← OCKNN set of initial training points

Ds ← Data Stream
distMax ←Maximum distance to neighbours
distMin ←Minimum distance to neighbours
K ← Number of OCKNN neighbours

Output: S ← Anomalies TimeStamp
S ← 0, Di ← 1400, distMax ← 0, distMin ← 9999, K ← 1, OCKNN. f it(Di);
 while Ds continues do

Receiving the next streaming point x;
dist← OCKNN.ComputeDistance(x);
distPercentile← distMean + zS core ∗ distS T D;
predict← HS Trees.predict(x);
if predict == anomaly then

if dist > distPercentile then
S .append(x.Timestamp);

end
if dist > distMax then

distMax = dist;
end

end
if predict == normal then

if dist < distMin then
distMin = dist;
distMinIndex = closestNeighbour.index;

end
if dist > distMax ∗ 0.75 then

Di.drop(x[distMinIndex]);
Di.append(x);
OCKNN. f it(Di);
distMax = 0;
distMin = 9999;

end
end
HS Trees.partialFit(x);

end
Result: S

anomaly has occurred in the APU train system.
The data stream cycle starts in Line 2, where variable x is assigned to each arrival data point. The

algorithm starts by computing the distance to the nearest neighbour, in line 8. Then it computes the
distance percentile, which is used as a threshold to identify anomalies (line 5), employing a Zscore
table value of 2.326 representing percentile 99%, which means detecting 1% of observations with high
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distance to neighbours. Then, the HS-Trees method starts by inferring the arrival data point (line 6),
checking if it corresponds to an anomaly (line 7). If the data point is considered anomalous, it validates if
the distance to its neighbour is greater than the threshold percentile (line 8). If confirmed, the TimeStamp
value is stored in the list S (line 9). Also, the algorithm records the distMax assigning its value to the
nearest neighbour distance of the current data point if that distance is greater than the previous distMax

value.
In case HS-Trees infers the arrival data point as normal behaviour (line 12) the algorithm assigns

distMin and distMinIndex as the current data point distance to its neighbour and the neighbour id respec-
tively only if that distance is less than previous distMin value. The next validation is performed to update
the OCKNN training set with points identified as a normal activity of the train system by the HS-Trees if
it matches a certain condition. The data is incremented in the OCKNN training set if the current normal
data point distance to its neighbour is greater than the third quartile of distMax value. The algorithm
also discards from OCKNN training set the nearest neighbour data point with the lowest distance. Then,
distMax and distMin values are reset. These operations are listed from line 16 to 21. Finally, HS-Trees is
incrementally fitted for each data point in order to build the mass profile used to estimate anomalies (line
22).

As anomalous events are rare, we define a threshold value representing 1 % of the arriving data with
the highest distance values to its nearest neighbour. This threshold parameter value allowed our method
to detect most anomalous periods generating few type I and II errors. Figure 5 shows the anomalous
data points detected by our method in one of the performed experiments. Distance values equal to zero
represent data points classified as normal behaviour, while distance values greater than zero are the
anomalies detected by our method. The colours represent the real meaning of the data. In red are the
data points that correspond to the real anomalies, and in blue, the data points that correspond to the real
normal behaviour of the train system.

Fig. 5. Anomalies detected by our method

It can be seen in Figure 5 a set of normal values detected as anomalies probably due to the initial fit of
the HS-Trees model to the data distribution. The model classifies fewer observations as anomalous from
mid-March, identifying practically part of all anomalous periods with only a few examples represented
by normal activity (false negatives). This model was developed with python, using the implementation of
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the HS-Trees algorithm from the scikit-multiflow1 library [26] and the implementation of the K Nearest-
Neighbour algorithm from the scikit-learn2 library [27] adapted to work as one class classification with
online data.

5. Model Evaluation

In this section, we evaluate our model and report the result of our experiments. We evaluated the
model’s effectiveness using data from a train in operation in 5 months of 2020, with some catastrophic
failures reported during that period. The data contains 21 periods reported as anomalous. Some last a
few minutes, others a couple of hours.

5.1. Evaluation Procedure

In order to evaluate the performance of our approach, five experiments were carried out with some
state-of-the-art anomaly detection algorithms in the context of data streams, using the data from the ana-
logical sensors present in the APU system. Therefore, the mean, median, standard deviation and variance
from the DV_pressure, TP2, TP3, H1, Oil_temperature, Motor_current and mode were used. The last
feature concerns the status of the train. This feature has three states: in progress, stopped, and under
maintenance. Maintenance status data has been discarded as tests are performed on the trains, causing
the APU system to generate anomalous values, misleading the model’s predictions. It is also important
to mention that all data were normalized using the standard window scaling technique, which standard-
izes features by removing the mean and scaling to unit variance. The mean and standard deviation are
computed on a given window frame.

Regarding the algorithms, we tested our approach (HSTreeOCKNN) against anomaly detection
methods for data streams such as: Half-Space-Trees (HSTrees) [3], XStream [28], Isolation Forest
(IForestASD) [29] and ExactStorm [30].

To assess the models, we verified that the detected anomalies were within the reported anomalous
period, as shown in Figure 6. If for a given model, there is an overlap in its output to the ground truth
(in that anomalous period is detected more than one anomaly), then all observations from that period are
counted as anomalous (True Positive) in the model’s output. Note that the results of our methodology
were validated by experts at Metro do Porto.

Fig. 6. Models Validation approach.

We performed several experiments to adjust the hyperparameters reaching the settings in Table 2.

1https://scikit-multiflow.github.io/
2https://scikit-learn.org/stable/
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Table 2
Selected hyperparameters

HSTreeOCKNN HSTree IForestASD XStream ExactStorm
N Estimators (Chains) 15 15 25 15 -
Window Size 400 400 400 400 400
Depth 10 10 - 7 -
size limit 75 75 - - -
Max Radious - - - - 0.15
N Components - - - 20 -

We used the accuracy, Precision, Recall, and F1 metrics for model evaluation, giving the necessary in-
formation to analyze the type I and type II errors. We can know how many observations from both classes
(normal and abnormal) were correctly identified with accuracy. Equation 1 shows accuracy formulation,
being:

• True Positive (TP) - The number of observations correctly identified as an anomaly;
• False Positive (FP or Type I error) - The number of observations classified as an anomaly but

corresponding to normal activity;
• True Negative (TN) - The number of observations correctly identified as normal activity;
• False Negative (FN or Type II error) - The number of observations classified as a normal activity

but corresponding to anomalies;

accuracy =
T P + T N

T P + FP + T N + FN
(1)

precision =
T P

T P + FP
(2)

recall =
T P

T P + FN
(3)

F1score = 2 ∗ recall ∗ precision
recall + precision

(4)

Regarding the precision and recall metrics in equation 2 and 3, both measure the rate of FP and FN,
respectively. For instance, a high recall value means low FN, while a small precision indicates high FP
values. To analyze the balance of these two metrics, we compute the F1 score as the harmonic mean of
Precision and Recall. While it is possible to take a simple average of the two scores, harmonic means are
more resistant to outliers. Thus F1 score in equation 4 is a balanced metric that appropriately quantifies
the correctness of models.
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Fig. 7. Performance results of the methods using the metrics Accuracy (a), Precision (b), Recall (c) and F1 Score (d)
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5.2. Discussion

First, we start by analyzing the results of the models in Figure 7(a) where metric accuracy was used.
We can observe that our model was the best, reaching an accuracy of around 98%, followed by the
XStream algorithm that achieved a 1% lower accuracy when compared to our approach. IForestASD
was ranking third with an accuracy of 92%, while ExactStorm and HSTree performed worst with
an 87% and 85% accuracy respectively. A high accuracy value was expected since failures were rare,
representing only 4% of all data. However, this information is vague and insufficient to analyze the types
of errors generated by the models.

Analyzing the remaining metrics, it can be seen in Figure 7(b) the percentage of type I errors gen-
erated by the models. In this case, the XStream was the best model with 87% precision, followed by
HSTreeOCKNN achieving 82%. As OCKNN receives the output of HS-Trees to train and validate
anomalies, we know a priori that there would be an increase in performance due to the elimination
of false positives by the OCKNN. Therefore was expected an increase in the precision metric by our
method, which is visible in Figure 7(b), representing a 55% higher value if we only used HS-Trees
model to tackle this problem. The other models presented a poor performance, with values below 30%
precision, which means that these models misclassified most observations as anomalous.

Analyzing Figure 7(c) concerning recall metric, the results presented by the models are much better
(except for the IForestASD), meaning all methods generated low type II errors. The models should
generate less FN than FP since these errors indicate that an anomaly was mistaken for normal activity
in the APU train systems. Failure to classify anomalous activity into normal activity will cause the train
to run into a catastrophic failure, leading to high repair costs and the sporadic closure of the railway.
As it can be seen, HSTree could detect almost every anomaly with a high cost of FP (Figure ??).
HStreeOCKNN was placed in second with 93% of recall, a small cost of generating FN compared to
HStree in order to get a higher precision value. XStream did a decent job with a 79% recall value. At
last, ExactStorm with 56% recall followed by IForestASD detecting only a few anomalies.

To analyze the balance between precision and recall metrics, we can observe Figure 7(d), which
presents the model’s performance evaluated by the F1 score metric. Therefore, our approach was the
best, achieving 87% F1 score, followed by XStream as it was observed in Figures 7(b) and 7(c), it had
a slightly lower type I error rate than the HSTreeOCKNN model, but with a significantly higher type
II error rate. HSTree shows a poor F1 score due to the high type I error rate, while IForestASD and
ExactStorm presented the worst performance in both precision and recall metrics.

6. Conclusions

Predictive Maintenance enables more efficient, longer-term planning for maintenance operations and
makes it easier to allocate maintenance resources and define operational maintenance goals. One of the
most promising aspects of the railway industry’s transformation is Predictive Maintenance through data
collected on the equipment during operation to identify failures in real-time. Therefore, repairs can be
adequately planned without unexpectedly taking trains out of service for emergencies or unnecessary
routine Maintenance.

This paper presents a data-driven predictive maintenance framework for the APU train system of
Metro of Porto. We used the HS-Trees method combined with OCKNN to build a predictive model
capable of detecting catastrophic anomalies and dealing with streaming data.
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Our empirical study shows that the use of HS-Trees provided significant performance improvements
when used in conjunction with OCKNN. The proposed predictive model obtained high anomaly de-
tection performance while maintaining fewer false positives and negatives compared to State-of-the-art
methods. Distances from neighbours are a viable solution to reduce false positives for this problem. For
future work, we intend to test the robustness of our model when drift occurs in data. This phenomenon is
represented by a significant change in the data distribution, i.e., degradation as the train components age.
Also, we will evaluate this methodology in other real-case scenarios related to Predictive Maintenance.
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