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Abstract Advances in the information technologies have greatly contributed to
the advent of larger datasets. These datasets often come from distributed sites,
but even so, their large size usually means they cannot be handled in a centralized
manner. A possible solution to this problem is to distribute the data over sev-
eral processors and combine the different results. We propose a methodology to
distribute feature selection processes based on selecting relevant and discarding ir-
relevant features. This preprocessing step is essential for current high-dimensional
sets, since it allows the input dimension to be reduced. We pay particular atten-
tion to the problem of data imbalance, which occurs because the original dataset
is unbalanced or because the dataset becomes unbalanced after data partitioning.
Most works approach unbalanced scenarios by oversampling, while our proposal
tests both over and undersampling strategies. Experimental results demonstrate
that our distributed approach to classification obtains comparable accuracy re-
sults to a centralized approach, while reducing computational time and efficiently
dealing with data imbalance.

1 Introduction

Feature selection (FS) is a popular machine learning technique, whereby attributes
that allow a problem to be clearly defined are selected, while irrelevant or redun-
dant attributes are ignored [1]. Traditionally, an FS algorithm is applied in a cen-
tralized manner, i.e., a single selector is used to solve a given problem. However, in
a big data scenario, data are often distributed, and a distributed learning approach
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allows multiple subsets of data to be processed in sequence or concurrently. While
there are several ways to distribute an FS task, the two most common ways are
as follows: (i) an identical FS algorithm is run on data stored together in one very
large dataset and distributed into several processors and the results are combined,
or (ii) an identical FS algorithm is run on data stored in different datasets in
different locations and the results are combined. Several works have contributed
to the development of different approaches to distributed FS. In [2], the authors
proposed a method for distributing the F'S process by features, i.e., using a verti-
cal distribution. A merging procedure then updates the feature subset according
to the improvements achieved in classification accuracy. In testing over several
microarray datasets, a considerable reduction was obtained in the execution time
while performance was maintained or even improved with regard to the standard
centralized approach. In [3], different ways of distributing the data (by features
and by samples) were evaluated to determine to what extent it was possible to
obtain similar results as those obtained using the whole dataset. In [4], distance
correlation was used to evaluate the dependence between the classes and a given
feature subset. A progressively refined feature subset model that uses a proba-
bilistic representation was obtained through repeated extraction and evaluation
steps. In [5], a different perspective for distribution was adopted that achieved
distributed FS using data complexity instead of classification performance as a
measure, obtaining optimal results while reducing the time required.

However, problems may appear when data is distributed into several processors,
including a great imbalance between classes or even non-represented classes in some
data subsets. The class imbalance problem occurs when a dataset is dominated by
a class or classes with significantly more instances than the other classes. The
learning algorithms would be biased toward the majority classes, since the rules to
correctly predict instances are positively weighted in favour of the accuracy metric,
whereas specific rules that predict examples from the minority classes are usually
ignored. This means that minority class instances are more often misclassified than
majority class instances [6]. To compensate for the imbalance problem, different
general approaches can be followed [7]:

— Weight adjustment. This consists of assigning different weights to the in-
stances of the dataset during the training phase, so as to prioritize less well
represented classes in the classification [8].

— Undersampling. This consists of eliminating instances of better represented
classes. Available methods are used to determine the instances that contribute
less as candidates for elimination, such as duplicate instances or instances close
to others [9-11].

— Oversampling. This consists of generating more instances in the less well
represented classes, thus balancing the number of instances in all classes. This
is the method we use in this research, as will be detailed below [12-14].

In recent years, several mixed solutions have been used that combine the basic
approaches above [15]. Most of them employ the synthetic minority oversampling
technique (SMOTE) to generate new samples for minority classes, followed by a
cleaning step aimed at improving results. In [16] the authors propose a solution for
imbalance consisting of combining the neighbour cleaning rule (NCL) and SMOTE
techniques. NCL is used to remove outliers in the majority class while SMOTE is
used to increase sample data in minority classes. Some authors have used combi-



nations of over- and undersampling methods, e.g., [17], who describe the applica-
tion of an editing technique based on the rough set theory (RST) as a new hybrid
method with SMOTE aimed at improving results. Other combinations, such as the
density-based spatial clustering of applications with noise (DBSCAN) algorithm
for undersampling plus SMOTE for oversampling have performed well [18]. Other
authors have combined the borderline synthetic minority over-sampling technique
(BSMOTE) with data cleaning techniques such as Tomek links or Wilson’s edited
nearest neighbour rule (ENN) [19] to propose new support vector machine (SVM)
classification algorithms for unbalanced datasets. The proposed BSMOTE-Tomek
and BSMOTE-ENN hybrid preprocessing algorithms consist of first using SMOTE
on minority samples in the neighbourhood of the borderline, and then removing
redundant training samples to improve data utilization efficiency. Ensemble-based
algorithms have also been popular in solving imbalanced learning [20], with some
proposals adding different ways of adaptively selecting informative instances using
cost-sensitive learning, among others [21].

Although a plethora of methods have separately tackled classification imbal-
ance and FS, fewer methods have jointly considered F'S and imbalance. Yang et al.
[22] proposed iterative ensemble FS that combines filters and balanced sampling
for multiclass classification of imbalanced microarray data using a one-versus-all
(OVA) approach. Their experiments with different state-of-the-art filters — specif-
ically, minimum-redundancy-maximum-relevance (MRMR) and fast correlation-
based filter (FCBF) — and under- and oversampling alternatives show that their
proposal behaves better than the filters alone for multiclass microarrays. Another
work [23] shows that in scenarios such as fraud detection, FS methods are consid-
erably affected by unbalanced datasets, so using undersampling strategies in the
preprocessing step can greatly improve the obtained results. Maldonado et al. [24]
developed a family of embedded methods for backward FS using SVMs, adapted
to select attributes relevant to discrimination between classes under imbalanced
data conditions. The model, applicable to high-dimensional datasets and tested
on several very imbalanced microarray datasets, achieved better predictions with
consistently fewer relevant features.

Scalability is a challenge for both sampling-based and FS techniques and in
terms of both the number of samples and the data dimensionality. One way of
tackling this problem is to distribute the data into several processors or nodes. This
is the approach adopted in our research as described here. Some previous works,
including [4,24] have approached FS for unbalanced high-dimensional datasets,
but their approach lacked the ability to tackle datasets with large numbers of
samples.

In this work we present a methodology for distributed F'S which simultaneously
deals with the problem of heterogeneous subsets. The method can be applied to
the whole dataset, distributed in order to cope with the high dimensionality, and
also when the situation is distributed in origin. In testing our proposal, we used
two alternatives: (i) forcing the partitions of the dataset to maintain the balance
between the classes, and (ii) applying oversampling techniques when the imbalance
is inevitable.

The remainder of the paper is organized as follows. Section 2 provides a short
description of the main characteristics of FS methods. Section 3 describes the
proposed methodology to improve performance in the context of distributed F'S.
Section 4 provides a description of the datasets, filters and classification methods
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used in our study. Section 5 shows the results of applying the methodology to
different datasets, distribution scenarios and resampling approach and also
analyses some research questions in detail. Finally, section 6 includes some final
remarks and proposals for future research.

2 Background

Feature selection (FS), which is the process of identifying and eliminating as much
irrelevant and redundant information as possible [25], is typically applied as a
preprocessing step before classification, although it has also proven to be useful in
other learning tasks such as regression, clustering and anomaly detection.

While different procedures are used to implement FS, all of them have a subset
evaluation task and a stopping criterion. Focusing on subset evaluation, there exist
four main methods, shown in Figure 1:

— Embedded methods. With these methods feature subset evaluation is not a
separate task prior to classification, but is part of the classification algorithm
itself. The application can be as simple as adding or removing features in
response to prediction errors regarding new instances [26,27] or as complex
as adding routines to combine features into richer descriptions, as in ID3[28],
C4.5[29] CART[30]. The advantages of these methods are that they include
interaction with the classification model, are less computationally intensive
than wrappers and detect dependencies between features. As a drawback, FS
depends on the classifier.

— Wrapper methods. These use a previous task to evaluate the feature subset
obtained in each step before the induction phase in a classifier. Wrapper meth-
ods use a predefined algorithm to evaluate the quality of a feature subset, e.g.,
SVM]31], employing the estimated accuracy of the resulting classifier as a met-
ric. Their main advantages are that they interact with the classifier and detect
features dependencies. However, they are computationally expensive and incur
an overfitting risk (when a model is too closely fit to a limited set of data) and
the selection depends on the classifier.

— Filter methods. Like wrapper methods, these perform FS in a prior step
to classification. The main difference is that filters do not use an induction
algorithm to evaluate subsets of features but an independent measure such as
mutual information or correlation. Since they do not use a learning algorithm,
they do not inherit any bias; thus, this model is computationally more efficient
than both wrapper and embedded methods. Filters usually operate in two
phases: (i) they rank features based on certain criteria, and (ii) they select
features with the highest rankings to induce the classification model. The main
advantages are their lower cost and their capacity to handle redundant features
and to generalize. A drawback is that they do not interact with the classifier.

— Hybrid methods. Hybrid models [32] combine the advantages of filters and
wrappers while trying to eliminate their respective limitations as much as pos-
sible. They usually combine two or more F'S algorithms of different conceptual
origins in a sequential manner. A typical example consists of first applying a
less computationally expensive filter to remove some features and then using
a more computationally expensive wrapper for a fine-tuning.
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Fig. 1 Type of FS methods depending on the relation between the evaluation of features and
the classification method.

2.1 Related work

There are several ways to distribute an F'S task [33]. Here we consider data col-
lected together in one very large dataset and then distributed randomly or ho-
mogeneously (the percentages of each class are maintained in the partitions) in
different datasets. An identical F'S method can be run on each partition and the
partial results are combined. The authors of this work have reported previous ex-
perience with methodologies to distribute the FS process. In [34,35] we presented
a parallel framework for scaling up FS, by partitioning the data vertically and
horizontally, that could be used with different filter methods. The basic idea is to
split the data (either by features or by samples) and then apply a filter at each
partition, performing several rounds aimed at obtaining a stable set of features.
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A merging procedure then combines the results into a single subset of relevant
features. More recently, we have included complexity measures to assist the merg-
ing procedure [5]. As for dealing with unbalanced data, in a previous work we
analysed the usefulness of data complexity measures to evaluate the behaviour of
the SMOTE algorithm before and after applying F'S to DNA microarray datasets
[36].

The approach presented here is different than our previous works since it deals
simultaneously with distributed FS and unbalanced data. As mentioned in the
Introduction, there are other works in the literature that combine under and over
sampling techniques to solve the imbalance problem. However, up to our knowl-
edge, this is the first work that applies oversampling (SMOTE, in our case) also
to the majority class, trying to compensate for the noise introduced by SMOTE
in the minority class.

3 Proposed method

Before progressing any further, we define some key concepts related to the method-
ology:

Sample A dataset is defined as a collection of individual data, often called samples,
instances or patterns.

Feature The information about each particular sample is given in the form of
features or attributes.

Repetition The datasets need to be divided into training and test sets, for which
we follow the standard procedure of randomly using 2/3 of samples for training
and 1/3 of samples for testing. To ensure that division is not biased, this
process, called repetition, is repeated a number of times.

Round Once the dataset is divided into training and test sets, we randomly dis-
tribute the training data to different nodes (also called packets). Again, to
ensure that distribution is not biased, the process is repeated several times in
what we call a round.

Packet Each training dataset is divided into a predefined number of nodes or
packets of data to which oversampling and FS techniques are applied.

Our proposed methodology for dealing with both F'S and data imbalance con-
sists of three main steps: (i) partitioning of the data, (ii) application of an FS
method to each partition, and (iii) combining the results. For each iteration (i.e.,
round) of our methodology, the first step is to randomly partition the training
dataset into a number of disjoint packets. Repeating the process in several rounds
r ensures that we have captured enough information for the combination step.
We next apply an oversampling method (if the data are unbalanced) and proceed
with the F'S process in such a way that the features selected to be removed receive
a vote. After the predefined number of rounds, features that have received votes
above a certain threshold are removed, and the remaining feature subset is used
in the training and test sets.

Note that, before starting, to ensure correct validation it is necessary to obtain
training and test sets for each dataset to be tested. Therefore, we randomly divide
each dataset into training and test sets and run several repetitions of this process
(see Figure 2). After division, we start with the methodology as described below.
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Fig. 2 Example of horizontal division of a dataset into train and test datasets, a number of
times called “repetitions”.

3.1 Step 1. Data partitioning

The first step (the core of this work) consists of splitting the data without replace-
ment, assigning groups of n samples to each subset of data. This division can be
done in one of two ways, horizontally or vertically [5,2]. Horizontal partitioning
divides the dataset by instances while keeping all the features, whereas vertical
partitioning divides the dataset by features while keeping all the instances. Hor-
izontal partitioning is useful when the number of instances is much larger than
the number of features, while vertical partitioning is preferred when the number
of features is larger than the number of samples. The number p of packets (or sub-
sets of data) depends on the features/instances ratio (ensuring a minimum of three
packets, for our experiments, as we will see in subsequent sections). As mentioned
above, this first step is repeated over several rounds (r, in this work set to five).
Figure 3 illustrates the procedure of different rounds in which several packets are
formed from the training set.

T

Y 3 oy -
1 i 2 2 2 r
p packets p packets p packets
-t > .4 -t
round 1 round 2 round r

Fig. 3 Train dataset partition in packets (subsets of data).
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One of two main approaches may be followed when partitioning the data:
random partitioning, in data are distributed randomly in the different nodes, or
homogeneous partitioning, in which the proportions of each class in the original
dataset are maintained in each of the newly generated subsets (see an example in
Figure 4, including the centralized scenario, in which all the data is together).

@

(a) Centralized (b) Random partition (c) Homogeneous partition

Fig. 4 Different approaches for partitioning the data

After partitioning, there are two situations in which new subsets of data may be
unbalanced. The first one is when, for a balanced dataset, partitioning is random,
leaving the majority of the samples belonging to the same class in some of the nodes
by chance and thus producing data imbalance. The second situation is when the
dataset is unbalanced before partitioning and the new subsets of data in each node
continue to be unbalanced. In these two cases, applying the SMOTE oversampling
method [12] adds synthetic minority class examples to the original dataset until
the class distribution becomes balanced. The SMOTE algorithm generates the
synthetic minority class examples using original minority class examples in the
following way: it searches for the k nearest neighbours of the minority class sample
to be used as the basis for the new synthetic sample. Next, in the segment that
unites the minority class sample with one or all of its neighbours, a synthetic
sample is randomly taken and is added to the new oversampled dataset. Fig. 5
shows an example of SMOTE synthetic sample generation in the minority class.

Note that SMOTE is typically used to generate synthetic samples in minority
classes only, whereas we propose to also generate synthetic samples in the majority
class, as a means to improve the method and its results.

3.2 Step 2. F'S application

An FS method is applied to each packet p to reduce the dimensionality of the
problem. The features selected to be removed receive votes, a new round is per-
formed leading to a new partitioning of the dataset and other iterations of voting
are completed, until the predefined number of rounds is reached (set to five in this
work). The set of all rounds can be seen as an ensemble, and so a combination of
the partial results is needed, as detailed in the next step.
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Fig. 5 SMOTE in minority class.

3.3 Step 3: Results combination

The features that receive votes above a predefined threshold have to be removed.
Thus, a unique set of features is obtained to train a classifier C' and to test its per-
formance on a new set of samples (test dataset). As described in [34,35], choosing
the threshold of votes is not an easy matter, since it depends on each dataset. Fol-
lowing the recommendations in [37], selecting the number of votes must take into
account two criteria: the training classification error and the percentage of features
retained. Both values should be minimized to the extent possible, in accordance
with minimization of the following criterion:

e[v] < v X error + (1 - 'y) X featPercentage

where a term ~ , introduced to measure the relative importance of both values,
is set to v = 0.75 as suggested in [37], giving more importance to the classification
error. Note that the maximum number of votes is the number of rounds r when
dividing by features and r*p when dividing by samples, so all the threshold values
from 1 to r or 1 to r * p are evaluated. The features with votes above the obtained
threshold are removed from the final subset of features. See an example in Figure
6.

After obtaining the final subset of features to be selected from the whole train-
ing set, SMOTE is applied again if the dataset is still unbalanced and a classifier
is then applied.

To sum up, a pseudo-code for the proposed methodology is given in Algorithm

4 Experimental setup

The goal of the experimental study is two-fold. First, we aim to check if our
distributed FS methodology obtains comparable results to those achieved by a
centralized methodology. Second, we want to test if oversampling methods can
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Features
112[3]4]5

Samples
xIx| | | x| x| X
V7777 I
Y I
packetl packet2 packet3

X —Irrelevant  ? - Doubt V- Relevant

Fig. 6 This is an example in which we have our data divided by samples (in 3 packets), so we
have the same set of features in each packet (all the original features, in this case 5 features)
and feature 1 was marked as not relevant for packets 1, 2 and 3; feature 2 was marked as not
relevant for packet 1, feature 3 was marked as not relevant for packet 2, and features 4 and 5
are not marked as irrelevant for any packet. Our intuition says that, in this case, features 4
and 5 should be relevant and feature 1 should be not relevant, and we will have doubts about
features 2 and 3 (this is why threshold of votes is needed).

improve performance results when FS is applied in a distributed environment and
to check the effect of creating some synthetic samples from the majority class.

Described below are the datasets chosen for testing the distributed approaches,
as well as the filters to perform the FS process. To test the adequacy of our
distributed approach, we use four well-known supervised classifiers, of different
conceptual origins. All the classifiers and filters are executed using the Weka tool,*
using the default values for their parameters. Experiments are performed on an
Intel®Core™™i5-3470 CPU @ 3.20GHz with RAM 4 GB. The code and the results
of the experiments can be found in GitHub.2.

4.1 Datasets

An important issue to correctly validate the proposed methodology is to choose
the appropriate benchmark of datasets. Because we present a distributed method-
ology which can partition the data both by filters and by samples, we consider it
necessary to use datasets with high numbers of samples (standard datasets) and
others with high numbers of features (microarray datasets). The standard datasets
are seven datasets as described in Table 1, available for download from the UCI

1 https://www.cs.waikato.ac.nz/ml/weka/
2 https://github.com/jlmorillo/Heterogeneity_distributed_features
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Algorithm 1: Pseudo-code for proposed methodology

initialize the vector of votes to 0
for each repetition rp do
split dataset into train di- (2/3 of samples) and test die (1/3 of samples) sets
for each round r do
split dataset dir randomly or maintaining the class proportions into
disjoint subsets of data
for each subset (packet) of data p do
if data is unbalanced then
apply SMOTE in minority class
apply SMOTE in majority class
end
apply a feature selection algorithm
increment one vote for each feature to be removed
end

end
remove features which number of votes is above threshold in d¢, and die
classify with obtained subset of features trained on d¢, and applying SMOTE
if data is unbalanced
end

Machine Learning Repository®. The microarray datasets, from cancer classification
research [2], are five datasets as described in Table 2. Those particular datasets
were chosen because they represent different sizes, different numbers and different
distribution of classes, and are also widely used in other research, including in our
own previous work [5,2].

In the standard datasets, partitioning in packets is done horizontally by sam-
ples, while in microarray datasets, partitioning is done vertically by features. In the
latter case, homogeneous partitioning is not applied because all the packets have
the same class distribution (they have all the samples). In both cases, splitting is
made without repetition, so each element is in only one packet.

To determine the number of packets in each dataset (we set three as the min-
imum because we consider that fewer than three packets/nodes is not worthwhile
for a distributed methodology), we calculate proportions, computed as the num-
ber of samples divided by the number of features for the horizontal split, and the
number of features divided by the number of samples for the vertical split. If the
proportion is greater than or equal to three packets, the process stops, otherwise
the denominator (number of elements in each packet) is increased by multiplying
it successively by a factor from a predetermined array [100, 50, 20, 10, 5,2 ,1, 0.5,
0.25] until the condition of three or more packets is met. The pseudo-code of this
process is given in Algorithm 2 and an example is shown in Figure 7.

Tables 1 and 2 show, for each dataset, the number of samples, number of
features, number of different classes, percentage for the top (one) majority class,
percentage for the bottom (one) minority class, imbalance ratio (IR) as the ma-
jority class percentage divided by the minority class percentage, and number of
packets in the distributed split. We consider that a dataset is unbalanced when IR
> 1.

3 http://archive.ics.uci.edu/ml/index.php
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Algorithm 2: Pseudo-code for determining the number of packets for each
dataset

partition=by instances (by default)
proportion = nlnstances / nFeatures
if (proportion > 10000) and (nInstances / 10000) > 3

then
| ndatapartition = 10000
else
if (proportion > 1000) and (nInstances / 1000) > 3
then
| ndatapartition = 1000
else
initial packets of 100 times nFeatures. In each iteration, the vector is
traversed and size of packets decrease until the condition of having at
least three packages is reached or until the vector is finished
vector=[100, 50, 20, 10, 5,2 ,1, 0.5, 0.25]
while vector do
if nInstances/(nFeaturesxvector(i)) > 3
then
ndatapartition=nFeaturessvector(i)
return
end
end
if condition of 3 packets is not reached, partition by features is made
partition = by features
vector=[100, 50, 20, 10, 5 ,2 ,1, 0.5, 0.25]
while vector do
if nFeatures/(nInstancesxvector(i)) > 3
then
ndatapartition=nInstancesxvector(i)
return
end
end
if the 3 packet condition is also not reached with the feature partition, it is
considered the number of instances
ndatapartition = nlnstances;
end
end
Dataset  Samples Features Classes % maj. class % min. class IR Packets
Connect4 67557 42 3 65.83 9.54 6.90 45
Isolet 7797 617 26 3.85 3.50 1.1 3
Musk2 6598 168 2 84.6 15.4 5.49 5
Nomao 34465 120 2 71.4 28.6 2.49 3
Ozone 2536 72 2 97.12 2.88 33.72 4
Spambase 4601 57 2 60.6 39.4 1.53 5
Weight 4024 152 5 34 2.78 12.23 3

Table 1 Standard datasets characteristics.

4.2 Feature Selection filters

From the different categories of F'S methods reviewed in section 2, for this work we
use filters because they are less computationally expensive and are independent
of the induction algorithms. We used several popular filter methods: two ranker
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Fig. 7 Algorithm 2 example for determining the number of packets in a partition by instances.
The dataset contain 2000 instances and 20 features. The process is iterated until the dataset
is divided into three or more packets. In each iteration, the size of packets decreases.

Dataset Samples Features Classes % maj. class % min. class IR  Packets
Brain 21 12625 2 67 33 2.03 9
CNS 60 7129 2 75 25 3 3
Colon 62 2000 2 65 35 1.85 4
Gli85 85 22283 2 69 31 2.22 3
Ovarian 253 15154 2 64 36 1.77 4

Table 2 Microarray datasets characteristics.

algorithms (InfoGain and ReliefF'), a subset method based on correlation between
features (CFS) and, finally, a subset method based on consistency (Consistency).
We thus have representative filters based on mutual information, distance, corre-
lation and consistency. All these filters are available in the popular Weka tool and
are widely used by F'S researchers.

— InfoGain: Information Gain[38] is one of the best known FS methods. It is a
univariate ranker, i.e., it evaluates only one feature at a time. It is based on
the information gain equation by Quinlan [29]:

IG(A|B) = H(A) — H(A|B)

(1)

where H is the entropy, an uncertainty measure of a random feature associated
with information theory [39]. InfoGain computes the information gain (IG)
of each feature with respect to the class. This method obtains an ordered
classification of all features and selects the first § features, where § is a defined
threshold, set in this work, to the number of features selected by CFS.
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— ReliefF: ReliefF [40] is another very commonly used ranker algorithm in FS.
ReliefF derives from Relief [41], which evaluates features by randomly selecting
one instance, searching for the nearest neighbour for the same class and the
opposite class (Relief is valid only in binary classification) and evaluating the
feature values with respect to another closer neighbour’s feature values. The
idea is that relevant features have similar values when they belong to the
same class and different values when they belong to different classes. ReliefF
improves Relief by handling multiclass and noisy data. Again we used as a
threshold the number of features selected by CFS.

— CFS: Correlation-based Feature Selection [25,42] is a F'S method that selects
the best feature subset instead of returning a ranking of all the features. The
goal is to obtain the feature subset that is best correlated with the class con-
taining features that are not correlated among themselves. Irrelevant features
are ignored because they have little correlation with the class. Redundant fea-
tures are also ignored because they have high correlation with one or more
features in the candidate subset of features. Each feature is evaluated individ-
ually and so CFS cannot identify strong relationships, like those reflected, for
example, in parity problems.

— Consistency: Like CFS, this F'S method [43] selects an optimal feature sub-
set, using consistency interpreted as zero inconsistency. The inconsistency rate
compares feature subsets according to the level of consistency with the class.
The consistency measure is monotonic, is always equal or greater for each iter-
ation, is fast, is capable of removing redundant and/or irrelevant features and
is capable of handling some noise. Different feature search strategies can be
followed (exhaustive, complete, heuristic, probabilistic or hybrid), depending
on the number of relevant/irrelevant/redundant/total features.

4.3 Classifiers

Classification is an important machine learning task. Essentially it involves di-
viding up elements so that each one is assigned to one of a number of mutually
exhaustive and exclusive categories known as classes [44]. Of the several classi-
fication algorithms in the literature, for this study we use four classifiers from
different families: two linear (Nalve-Bayes and SVM using a linear kernel) and two
non-linear (C4.5 and 1B1).

— Naive-Bayes uses the Bayes rule defined by Reverend Thomas Bayes (1702-1761)
[44]. Bayesian learning can be seen as the process of finding the most probable
hypothesis given a set of training examples and a priori knowledge about the
probability of each hypothesis. The application of Bayes theorem to classifica-
tion consists of calculating the hypothesis with a higher a posteriori probability.
It is said to be naive because it assumes that the attributes are conditionally
independent on each other given the class. Advantages are its simplicity, effi-
ciency and robustness to noise and irrelevant features. Besides, it only needs a
few instances to estimate the classification parameters. As disadvantages, this
method requires a priori knowledge and is computationally expensive.

— SVM [45] is a type of classifier based on statistical learning techniques. The
original idea of the algorithm is to transform a set of input features X into a
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set of Y vectors of a higher dimension (even of infinite dimension) in which
the problem can be solved linearly, i.e., linear models are used by SVM to
implement nonlinear class boundaries. The SVM algorithm performs very well,
partly because it allows the construction of flexible decision boundaries and also
due to its good generalization capacity. A weak point is its high computational
cost, due to the fact that it needs to handle a large number of coefficients which
greatly increase when the input set is large.

— C4.5 was developed by Quinlan [29] as an extension of Iterative Dicotomiser 3
(ID3), based on decision trees. To construct the best tree, C4.5 iterates using
the feature with the best gain rate, i.e., the relation between the information
gain of a feature and class and the entropy of the feature. Each feature value
makes a new branch where instances are distributed until all the instances
have the same class (leaf). To overcome a possible problem of overfitting with
this strategy, C4.5 uses post pruning after constructing the tree, whereby a
confidence factor deletes branches with little accuracy gain. In this study the
factor is set to 0.5. Afterwards, if so desired, the tree can be converted to easily
understandable rules.

— IB1 is an algorithm part of the Instance Based Learning (IBL) family. In
IBL the training examples are stored verbatim while a distance function is
used to determine which member of the training set is closest to an unknown
test instance. Once the nearest training instance has been located, its class
is predicted for the test instance. The only remaining problem is defining the
distance function, which is quite easy, particularly if the attributes are numeric
[46]. IB1 is limited to looking for the case stored closest to the example to be
classified, generally using an Euclidean distance metric. Like Naive-Bayes, it is
simple and works very well, but may be slow because of the need to store all
training instances.

4.4 Evaluation metrics

The metrics used to evaluate the performance of the different models are classifi-
cation accuracy, kappa statistic, packet filter time and classification time.

Actual class
p n
p | True positive (TP) False positive (FP)
n | False negative (FN) | True negative (TN)
Total P N

Predicted class

Table 3 Confusion matrix.

From the confusion matrix shown in Table 3, classification accuracy is defined
as the percentage of instances that are classified correctly:

TP
TP+ FP (2)

Kappa statistic [47] is an index that compares the agreement between several
experts, considering agreement obtained by chance: values close to 1 indicate total

Accuracy =
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agreement (the ideal value) and values close to 0 indicate agreement similar to
that obtained by chance:

Kappa — Observed Agreement — RandomAgreement 3)
ppa = 1 — RandomAgreement
where TP TN
_ +
ObservedAgreement = TPYTN+FP L FN (4)
and
RandomAgreement — (TN x FP)« (TN + FN)+ (FN +TP)* (FP+ PN) (5)

Total x Total

Classification accuracy and the kappa statistic value are obtained from the
results of the classification process (line 13 of Algorithm 1), the filtering time by
packet, measured in seconds, is obtained from the sum of the oversampling time
for FS plus the FS method application time for each partition (lines 6 to 11 of
Algorithm 1) and, finally, classification time, measured in seconds, is the summed
time to remove features with votes above the threshold, applying SMOTE if data is
unbalanced (lines 12 and 13 of Algorithm 1). The reason to include the kappa value
is because it assesses the quality of the learning, taking into account situations in
which the dataset is unbalanced and the classifier correctly learns majority class
instances but systematically misclassifies minority class instances. In the case of
accuracy and kappa, the higher the value, the better the results, whereas for filter
time by packet and classification time, low values are preferred.

5 Experimental results and Discussion

To evaluate our methodology we compare the results of a centralized scenario
with the distributed (random and homogeneous, see Section 3.1) approaches. The
results for each scenario are also compared for use of SMOTE in the different
approaches. For the standard datasets, the percentage of SMOTE applied in the
minority class is [0, 100, 300, 600 and Auto (i.e., the option to balance minority
and majority classes)| and in the majority class is [0,20,40,100]. For the microarray
datasets with small samples, the percentage in both classes is [0,20,40,100] plus
the Auto option for the minority class. Random undersampling (RUS) was tested
applying SMOTE on the minority class for percentages of [0, 100, 300, 600] for
standard datasets and [0, 20, 40, 100] for microarray datasets with RUS in the
majority class to balance both classes. Because of the high number of combinations
being tested and the different metrics employed, the results of the experiments are
difficult to analyse exhaustively; however, below we analyse results with a view to
answer certain research questions.

5.1 Exploring the accuracy of the different approaches
A summary of accuracy results is summarized in Table 4, which shows the number

of best cases in each distribution and the SMOTE approach. Overall, we can see
that the centralized distribution functions better for the microarrays, while the
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Datasets SMOTE Centralized Random  Homogeneous

Without 27 (37) 35 (53) 56 (69)
Standard Minority 21 (45) 29 (47) 67 (54)
Both 29 (49) 25 (44) 62 (48)
Min-RUS 24 (30) 34 (44) 54 (66)
Without 71 (55) 12 (55)
Microarray ~ Minority 69 (52) 11 (56)
Both 71 (50) 9 (57)
Min-RUS 77 (56) 3 (55)

Table 4 From a total of 112 combinations of 4 classifiers, 4 filters and 7 standard datasets
and 80 combinations of 4 classifiers, 4 filters and 5 microarray datasets, it is shown for each
type of dataset and for each SMOTE scenario, the number of combinations of dataset, filter
and classifier with the best value in accuracy average and kappa average (in brackets) for a
distribution with respect to the other distributions. Combinations with the same maximum
value across multiple distributions are aggregated into the count for each distribution, so the
sum of combinations can be greater than the total number of combinations. The highest average
values for each type of dataset and SMOTE scenario is in bold font and the highest value for
each type of dataset regardless of the SMOTE scenario is also underlined.

distributed approach is a good option for standard datasets, and especially the
homogeneous distribution.

Tables A1, A2 and A3 in the Appendix show more specific results in the form
of detailed accuracy results for data distributions in a very unbalanced standard
dataset (Musk2 - Random), a balanced standard dataset (Isolet - Homogeneous)
and a microarray dataset (Brain - Random), respectively. These tables show the
prediction accuracy for the four classifiers and four filters, comparing different
levels of oversampling (both in minority and majority classes) with the option to
apply oversampling in the minority class and random undersampling in the ma-
jority class. In the case of Musk2 (Table A1), there are some cases for which the
highest accuracy is obtained for the combination of filter, classifier and SMOTE
percentage when no oversampling is applied; however, the highest accuracy for all
combinations (97.36% with random distribution, Consistency filter and C4.5 clas-
sifier) is obtained when SMOTE is applied in both minority and majority classes.
As for Isolet (Table A2), there is no combination of filter and classifier for which
not applying SMOTE performed better than applying SMOTE; in particular, the
highest accuracy for all combinations (96.01%) is obtained for CFS and SVM,
again applying SMOTE in both minority and majority classes. Finally, for the
Brain dataset (Table A3), the highest accuracy (91.43%, with Consistency filter
and C4.5 classifier) is also achieved after applying SMOTE in both minority and
majority classes. Moreover, there is no case in which not using SMOTE was better
than using SMOTE, for all combinations of F'S method and classifier.

In the interest of brevity, the rest of the results for datasets are summarized
in Tables A4 to A9 in the Appendix (for complete results see please GitHub
repository? classification accuracy (Tables A4 and A5), kappa (Tables A6 and A7)
and filter time by packet in seconds (Tables A8 and A9).

Recall that for all measures except filter time by packet higher values are bet-
ter. For each dataset and evaluation metric, the best value for each scenario is

4 https://github.com/jlmorillo/Heterogeneity_distributed_features). In the tables
for standard and microarray datasets in the Appendix, the following information is provided:
mean and standard deviation (top row), maximum value (second row) and (in the lowest row)
the combination that obtained the maximum value for:
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indicated in bold font and the best value of all scenarios is indicated by underlin-
ing. Remember that, for the microarray datasets, homogeneous partitioning is not
applied because the split in data is by features.

These results are analysed in more detail below, but, in general it can be
observed as follows: (i) for accuracy, the distributed scenarios obtain comparable
results to the centralized scenario (in some cases even improving on them, probably
because of the application of a divide-and-conquer strategy, since, in some cases,
the result obtained by the learner is more accurate if focused on a local region of the
data), (ii) for kappa, SMOTE is useful in improving performance for unbalanced
datasets, and (iii) for packet time, the time used was significantly reduced for the
distributed scenarios.

To get more insights on the results, the statistical Friedman test [48] is used
to check for significant differences between distributions and between SMOTE
scenarios. Used for the Friedman test are mean results for all combinations of
dataset, filter, classifier, distribution approach and SMOTE percentages. Executed
for the level of significance o = 0.05, if p < 0.05, the null hypothesis is rejected and
at least one of the variables (distribution or scenario) is statistically significant,
whereas if p > 0.05, the variables are not significantly different. To graphically
summarize these statistical accuracy and kappa comparisons for distributions and
scenarios in standard and microarray datasets, we use a critical difference (CD)
diagram [49]. The axis of a CD diagram represents the average rank of best values
of variables in each combination, with the lowest ranks (1 is the best rank) to the
right side of the figure. Groups of variables that are not significantly different are
connected by a bold line, while the CD value is shown above the graph.

Figures 8 to 14 show statistical comparisons of accuracy and kappa for differ-
ent distributions and SMOTE applications, while Figure 11 shows a comparison
of different SMOTE scenarios. In addition, Figures 12 and 13 show detailed CD
diagrams with different combinations of SMOTE percentages in minority and ma-
jority classes. Below we explain the unexpected result obtained by considering only
the average value for the accuracy ranking.

5.2 Exploring the distributed partitioning consequences for classification

Comparing the two (random and homogeneous) distributed approaches with the
centralized scenario, for the standard datasets, in general, the distributed ap-
proaches have better accuracy averages, as can be seen in Tables 4 and A4 and
Figures 8(a), 9(a) and 14(a). The homogeneous approach seems to achieve higher
accuracy and more stable results (better kappa values), as illustrated in Tables 4
and A6 and Figures 9(b), 9(b) and 14(b). As shown in Table A8, the distributed
approaches considerably reduce the time required to filter the best features; how-
ever, there is an additional cost in calculating a votes threshold to remove irrele-
vant features and this increases the total classification time comparatively to the
centralized approach (as shown in Table 5). The random and homogeneous parti-
tioning approaches are a good solution to reducing computation time (especially
if executed concurrently) without degrading classification performance. For the
microarray datasets in some cases, classification accuracy slightly worsens with re-
spect to centralized distribution after applying random distribution (Tables 4 and
A5 and Figures 8(c), 9(c) and 14(c)), e.g., for Ovarian and Gli 85. This results
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from the fact that a high accuracy value is obtained in the centralized distribution,
probably due to overfitting in datasets with few instances and many features. On
the other hand, on applying a vertical split in random distribution, it is possible
that average accuracy is reduced when features are marked as relevant/irrelevant
in one but not in another packet (because of feature interactions). On the posi-
tive side, in random distribution, computational time is considerably reduced with
respect to the centralized approach, since for this distribution, the reduction in
filtering time (Table A8) is much greater than the increase in classification time
(Table 5), while the kappa value is maintained or even increased (Tables 4 and A7
and Figures 8(d), 9(d) and 14(d)), thus making the solution more stable.

CD

3 2 1
L . . 1

Centralized 25714 1.4286 Random
2 Homogeneous

(a) Accuracy - Standard datasets (p=0.101)

CcD

Centralized 2.7143 1.4286 Homogeneous
1.8571 Random

(b) Kappa - Standard datasets (p=0.049)

CD

2 1
L . ]

Random 2 1 Centfralized

(¢) Accuracy - Microarray datasets (p=0.025)

CD

Random 1.6 1.4 Centralized

(d) Kappa - Microarray datasets (p=0.654)

Fig. 8 Statistical comparison of distributions without applying SMOTE. CD diagram rep-
resent the average ranks of best values of variables in each combination (1 is the best). The
groups of variables that are not significantly different are connected by a bold line.

5.3 SMOTE use: minority class only vs. both minority and majority classes

To analyse the advantages of using versus not using SMOTE, we compare the ac-
curacy results in Tables A4 and A5. In standard datasets, except for Spambase and
Weight, the best average accuracy is obtained without applying SMOTE. Figure
11 shows the ranking of best-case SMOTE scenarios for the different combina-
tions, while Figure 11(a) shows the ranking for accuracy in standard datasets. Not
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Fig. 9 Statistical comparison of distributions applying SMOTE in minority class.

Scenario Standard datasets Microarray datasets
Centralized | Random | Homogeneous | Centralized | Random
Without SMOTE 28.65 38.03 46.03 3.70 7.75
SMOTE Minority 69.53 81.04 105.59 4.10 8.71
SMOTE Both 164.45 164.73 193.36 4.43 9.34
SMOTE Min. - RUS Maj.| 79.21 80.99 81.57 5.10 9.29

Table 5 Average time in seconds needed to remove features with votes above the threshold
and, if data is unbalanced, applying SMOTE and proceeding with classification.

using SMOTE obtains the best results, although those results are not significantly
different from those for SMOTE applied in both minority and majority classes.
Decomposing the CD diagram with the different combinations of SMOTE in mi-
nority class and majority class, as in Figure 12, gives more insights about these
results; it is easily seen that distributions using SMOTE in both classes obtain a
better ranking than not using SMOTE in any class. Note that combinations with
high percentages of SMOTE (e.g., 600) are usually in the last positions of the
ranking (left in the figure).

This difference in the ranking when SMOTE is applied in different percentages

explains why the average results of applying SMOTE are poorer than those without
SMOTE.
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Fig. 10 Statistical comparison of distributions applying SMOTE in both minority and ma-
jority classes.

For example, focusing on the results in Table A3, the average value obtained
without SMOTE is 78.57, compared to an average value of 77.35 for the rest of
combinations of filter-classifier-SMOTE minority class-SMOTE majority class for
the Brain dataset and random distribution, which is apparently a poorer result.
However, if we consider the maximum value for each option, using SMOTE usually
obtains better results than not using SMOTE (even 100 in some cases). For the
microarray datasets, the behaviour is similar, as can be seen in Figure 13.

Comparing the accuracy percentages for SMOTE used in the minority class and
SMOTE used in both the minority and majority classes (Tables A4 and A5 and
Figures 12 and 13), SMOTE for both classes usually obtains good results for both
types of datasets. For standard datasets, a percentage of 100 in the minority class
generally offers better results, so it is not necessary to increase this percentage to
improve the method, as this may even deteriorate performance. This percentage in
the minority class combined with different percentages of SMOTE in the majority
class yields a good ranking position for all distributions, while a high proportion of
SMOTE in the minority class or the balanced Auto option yield poorer rankings.
In contrasts, for microarray datasets, the Auto option yields a better ranking that
is the same as the higher values for SMOTE, even though the trend is not as clear
as for the standard datasets.

The kappa value (Tables A6 and A7 and Figures 11(b) and 11(d)) is also higher
when SMOTE is applied in both classes, and sometimes even in the minority class
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Fig. 11 Statistical comparison on different microarray and standard dataset scenarios.

only, but is never higher when SMOTE is not used; this would confirm that the use
of this oversampling method produces more reliable results. This is a significant
issue for large unbalanced datasets like Connect-4 and Ozone, where the use of
SMOTE versus non-use of SMOTE practically doubles the kappa value. In con-
trast, for balanced datasets like Isolet, kappa values and accuracy averages hardly
vary, as expected. The use of SMOTE implies that more cases have better kappa
values (Fig. 11(b) and Fig. 11(d)); both distributed approaches are statistically
similar, with very good p statistic values.

The filtering time (Tables A8 and A9) is always shorter without using SMOTE,,
as expected, due to the time consumed by the extra layer of SMOTE processing
and especially in large datasets with many features or samples. As expected, and
for the same reason, SMOTE applied to both classes results in a higher filtering
time than SMOTE applied only in the minority class; furthermore, depending
on the dataset and combination, it can be very computationally expensive, e.g.,
for Connect4 and Gli85. Classification time on average (Table 5) shows similar
behaviour as filtering time, with time increasing when distribution is applied, due
to the search for a threshold, and when SMOTE is applied, due to the additional
time required to apply SMOTE.
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Fig. 12 Comparison of accuracy ranking for SMOTE different percentage scenarios on stan-
dard datasets. Each element in the ranking is labelled as SMOTE percentage in minority
class - SMOTE percentage in the majority class or RUS in case of Random Undersampling in
majority class.
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Fig. 13 Comparison of accuracy rankings for SMOTE different percentage scenarios on mi-
croarray datasets. Each element in the ranking is labelled as SMOTE percentage in minority
class - SMOTE percentage in majority class or RUS in case of Random Undersampling in
majority class.

Finally, the best type of distribution for each case does not change whether or
not SMOTE is applied.

5.4 Split: horizontal vs. vertical

As can be seen in Table 4, with respect to the centralized approach, the distributed
approaches with horizontal split (standard datasets) obtain a higher number of
better combinations than the random distribution approaches with vertical split
(microarray datasets). The reason is that, with a vertical split, redundant features
can go in different packages (both would be selected); also it may happen that two
features that are relevant together but not separately (if they fall into different
packages) will not be selected (such as in the classic XOR problem). One solution
is to group the features considering their relevance, ranking the original features
before generating the packets and grouping features sequentially over the ranking,
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in such a way that features with a similar ranking will be in the same packet (as
tested by us in a previous work [2]).

Of the two horizontal split approaches, homogeneous partitioning yielded bet-
ter results than random partitioning, with more combinations of F'S methods ob-
taining better accuracy results and with less deviation.
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Fig. 14 Statistical comparison of distributions applying SMOTE in minority class and Ran-
dom Undersampling in majority class.

5.5 Exploring how filtering and classification methods behave in different
scenarios

Regarding the different F'S methods tested, for filtering methods, Consistency and
CF'S generally obtain the best results for the different distributions and SMOTE
approaches, while only InfoGain shows similar behaviour when SMOTE is applied
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in both classes. For classification methods, C4.5 achieves the best average accu-
racy results, while IB1 is the most stable (with the best kappa value) for almost all
distributions and SMOTE approaches. Finally, for the packet filter time, for hori-
zontal division (standard datasets) and for vertical division (microarray datasets),
the most computationally expensive methods are ReliefF and CFS, with both
filtering methods having quadratic complexity.

5.6 Exploring the benefits to combining undersampling and oversampling
approaches

Finally, we compare the application of SMOTE in both the majority and minority
classes with the application of SMOTE in the minority class and RUS in the ma-
jority class. In this experiment, the samples in the minority class are first increased
by applying SMOTE and then RUS is applied to the samples of the majority class
to balance both classes. Analysing Figure 11 and Tables A4 to A7, the applica-
tion of oversampling combined with undersampling yields poorer accuracy results
than the other scenarios. This is due to the fact that undersampling removes a
large number of samples in order to balance the classes and this causes relevant
information to be lost in obtaining the best features, subsequently affecting the
classification. The kappa value behaves differently for standard and microarray
datasets. For standard datasets, it yields the worst result for all scenarios (the
same as accuracy), whereas the opposite happens for the microarray datasets, be-
cause the number of samples to be removed is small and the classes are completely
balanced, obtaining more robust results. This issue requires further study and
undoubtedly constitutes an interesting line of future research.

6 Conclusions and future work

Our methodology for distributed F'S tries to solve the problem of the heterogeneity
of data in different partitions. We force partitions to maintain the same class dis-
tribution as the original dataset and apply the SMOTE oversampling technique to
both minority and majority classes. From experimental results for seven standard
datasets with a horizontal split and five microarray datasets with a vertical split,
we draw the following conclusions:

— The distributed approach with either random or homogeneous partitioning is
competitive compared with the standard centralized approach and even im-
proves the classification performance in some cases.

— The packet filter time obtains the lowest value for random distributions run-
ning concurrently, thereby considerably reducing processing time, especially
for large datasets with many samples or features.

— Although the classification time is greater for the distributed approach due
to the search for a threshold to eliminate irrelevant features, this increase
is compensated for by the reduction in the filtering time, with the outcome
that the total time decreases for the distributed approaches compared to the
centralized approach.

— Homogeneous partitioning usually obtains better kappa values (more stable
results) than random partitioning and than the centralized distribution.
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— Applying SMOTE in the minority class (i.e., the way SMOTE is normally used)
can improve the quality of learning in unbalanced datasets, but this depends on
the percentage of synthetic samples generated, since in some cases the contrary
effect of a slight decrease in general accuracy is obtained.

— Applying SMOTE in both minority and majority classes (i.e., an innovative
use of SMOTE) can improve on the standard approach, but, as before, this
depends on the percentage applied. Using SMOTE for the majority class as well
as the minority class results in better classification accuracy values irrespective
of dataset type and partitioning approach. This new approach obtains higher
kappa values, which indicates that the method has greater robustness.

— The application of SMOTE in the minority class or SMOTE in both classes
obtains better results than the combination of SMOTE in the minority class
and RUS in the majority class in terms of balancing classes, especially for
unbalanced standard datasets, where the elimination of a large amount of rele-
vant samples prevents best features from being obtained, with the consequent
reduction in accuracy.

As future work, we plan to test other methods to deal with heterogeneity,
such as further undersampling techniques, weighting, etc. We also plan to explore
how to improve vertical divisions and the kind of distribution that simultaneously
makes subsets of samples and features, representing a more challenging scenario.
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