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Abstract
The discovery of Allele-Specific Methylation (ASM) is an important research field 
in biology as it regulates genomic imprinting, which has been identified as the cause 
of some genetic diseases. Nevertheless, the high computational cost of the bioin-
formatic tools developed for this purpose prevents their application to large-scale 
datasets. Hence, much faster tools are required to further progress in this research 
field. In this work we present PARamrfinder, a parallel tool that applies a statistical 
model to identify ASM in data from high-throughput short-read bisulfite sequenc-
ing. It is based on the state-of-the-art sequential tool amrfinder, which is able to 
detect ASM at regional level from Bisulfite Sequencing (BS-Seq) experiments in the 
absence of Single Nucleotide Polymorphism information. PARamrfinder provides 
the same Allelically Methylated Regions as amrfinder but at significantly reduced 
runtime thanks to exploiting the compute capabilities of common multicore CPU 
clusters and MPI RMA operations to attain an efficient dynamic workload balance. 
As an example, our tool is up to 567 times faster for real data experiments on a 
cluster with 8 nodes, each one containing two 16-core processors. The source code 
of PARamrfinder, as well as a reference manual, is available at https://​github.​com/​
UDC-​GAC/​PARam​rfind​er.
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1  Introduction

Methylation is an epigenetic procedure that modifies the DNA by adding a methyl 
group (an alkyl derived from methane) to a DNA nucleotide. Methylation analysis is 
key for biologists as it is associated with different biological functions, and abnor-
mal methylation levels can indicate the presence of certain diseases. One of these 
biological functions is genomic imprinting, a process by which only one copy of a 
gene in an individual is expressed; while, the other copy is suppressed. Most genes 
require a biparental contribution for their correct development; thus, the occurrence 
of genetic imprinting has been identified as the cause of some genetic diseases, such 
as the Prader–Willi [1], Angelman [2] or Beckwith–Wiedemann [3] syndromes.

Imprinted gene expression is regulated by Alele-Specific Methylation (ASM), 
a particular type of methylation that occurs when DNA methylation patterns are 
asymmetrical between alleles. Because of this, the identification of Allelically 
Methylated Regions (AMRs) has gained attention in the last years, as it provides 
interesting biological insights.

amrfinder [4] is a cutting-edge tool to discover ASM based on data from Bisulfite 
Sequencing (BS-Seq) experiments. It has shown high sensitivity, specificity and 
control of type I errors, while it is, up to our knowledge, the only freely available 
software that is capable of detecting ASM at regional level without Single Nucle-
otide Polymorphism (SNP) information for an individual sample. In addition, 
amrfinder is part of MethPipe  [5], a pipeline of tools for methylation analysis that 
is highly referenced in the literature. This made it the choice to perform interesting 
biological studies in fields such as early human development [6], genetic–epigenetic 
interactions [7] or the building of allele-specific epigenome maps [8]. On top of that, 
amrfinder has been successfully utilized in several recent studies, demonstrating its 
continued relevance and effectiveness in the field of epigenetics [9–11].

Although these analyses that identify AMRs can obtain interesting biologi-
cal insights for understanding the role of DNA methylation in genomic imprint-
ing, they come with a steep computational cost. This is the main drawback of 
amrfinder, as it requires a high runtime to process large input datasets. In this 
paper we present PARamrfinder, a tool that is able to accelerate the identification 
of AMRs on modern multicore clusters. The high performance of the tool has 
been achieved by implementing a series of optimization, including:

•	 A profiling of the sequential tool which lead to a sequential optimization of its 
main bottleneck to half its cost.

•	 A identification of the load balancing issue of the application by spotting the 
different causes.

•	 The implementation of different workload distribution algorithms.
•	 A comparison of the efficiency of these algorithms in dealing with the load 

balancing problem.
•	 The development of parallel I/O algorithms.
•	 The elimination of the two new performance bottlenecks that arose by apply-

ing several parallelization techniques.
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Thanks to these contributions, the novel tool obtains the same highly accurate bio-
logical results as amrfinder, but in a significantly shorter time. It uses an efficient 
hybrid approach that combines Message Passing Interface (MPI) [12] processes and 
OpenMP [13] threads. The rationale behind this hybrid approach is that these analy-
ses are mostly performed on HPC multicore clusters, a kind of system where MPI 
and OpenMP usually obtain the best performance [14]. Each MPI process launches 
multiple threads to efficiently exploit the cores available on each node and take 
advantage of the Hyperthreading technology supported by many CPU architectures. 
In addition, MPI Remote Memory Access (RMA) operations are used to build a 
dynamically balanced workload at the process level.

The rest of the paper is organized as follows. Section 2 presents the state of the 
art. Section  3 introduces some background concepts about the original amrfinder 
tool that are necessary to understand the goal of this work and the implementation 
of our method. Section  4 describes the parallel implementation of PARamrfinder. 
Section 5 provides the experimental evaluation in terms of runtime and scalability. 
Finally, concluding remarks are presented in Sect. 6.

2 � Related work

There has been a great effort for many years in the development of tools to detect 
ASM regions for datasets obtained from different types of biological technologies, 
such as microarrays that genotype bisulfite-converted DNA  [15], lower resolution 
capture technologies such as Methyl-Binding Domain (MBD) sequencing  [16] or 
Methylated DNA ImmunoPrecipitation (MeDIP) sequencing  [17]. However, cur-
rently the most popular and widely used technology is high-throughput short-read 
BS-Seq [18], as it has the ability to detect ASM at the single nucleotide level.

Even though, most of the tools that detect ASM based on BS-Seq do so by asso-
ciating this data with heterozygous SNPs. Some examples are Bis-SNP [19], Alle-
lonome.PRO [20] or CGmapTools [21]. These approaches that depend on genotypic 
data present an important limitation: They are blind to some portions of ASM, since 
imprinted methylation is not necessarily associated with genotypic variation.

Only a few tools overcome this limitation. amrfinder  [4] is one of them, as its 
model is genotype-independent, and so it is widely applicable to the identification 
of ASM in the context of imprinting. allelicmeth [4] is another tool from the same 
authors which does not rely on SNP data, and differs from amrfinder in that it pro-
vides an ASM score for each CpG site, instead of identifying AMR. Another tool 
that stands out is DAMEfinder  [22], as it can run in two modes, SNP-based and 
tuple-based, hence does not necessarily depend on SNP data. However, the purpose 
of this tool is not to identify ASM over a sample, but to discover different patterns 
of ASM over samples of two conditions (treatments, diseases,...). Due to its purpose, 
this method depends on the availability of data from multiple samples of the two 
conditions.

Up to our knowledge, there is no previous work focused on accelerating the 
identification of ASM with High Performance Computing (HPC) techniques. 
Nevertheless, we can find in the literature other bioinformatics tools that are 
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able to efficiently exploit the computational capabilities of multicore clusters. 
Some examples are pIQPNNI  [23], that uses MPI to infer maximum-likelihood 
phylogenetic trees from DNA or protein data with a large number of sequences; 
MPIGeneNet [24], that includes MPI routines and OpenMP directives to construct 
genetic networks; or ClustalW-MPI [25], which applies MPI to reduce the execution 
time for aligning multiple protein or nucleotide sequences. These previous tools 
have been used by biologists to complete experiments on large real-world datasets 
in reasonable time, proving that a tool as PARamrfinder can be attractive for the 
scientific community.

3 � Background: amrfinder

amrfinder [4] is a publicly available software (as part of the MethPipe pipeline1) for 
identifying AMRs in mammals, in which methylation occurs mainly in CpG sites 
(fragments of DNA where a cytosine (C) nucleotide is followed by a guanine (G)). 
The tool identifies those regions from BS-Seq data, a method by which genomic 
DNA is treated with sodium bisulfite and then sequenced, providing single-base 
resolution of methylated cytosines in the genome. Upon sequencing, unmethylated 
cytosines are converted to thymidines (T); while, methylated cytosines remain as 
cytosines (C). The tool is able to achieve high accuracy and low false discovery rate 
(less than 0.01 in all the tested cases) by applying both a single-allele and a allele-
specific model to the data and comparing the likelihood of these models to deter-
mine the presence of ASM. The single-allele model assumes that the set of reads 
mapped to an interval represent one single methylation pattern; while, the allele-
specific model assumes that these reads represent two distinct methylation patterns, 
both of them constituted by roughly the same proportion of the reads (as the alleles 
themselves are present in equal proportions). The parameters of these models are 
iteratively adjusted to fit the data.

amrfinder is a command-line tool written in C++ that admits several configura-
tion parameters (e.g., the maximum number of iterations used for fitting the models) 
and obtains the biological input data from text files. Concretely, the inputs are:

>chr1
taaccctaaccctaaccctaaccctaaccctaaccctaaccctaacccta
accctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac
cctaacccaaccctaaccctaaccctaaccctaaccctaaccctaacccc

Sequence identifier

Sequence representation

(a) Example of FASTA file

�

T N Nchr10

Chromosome name CpG site position CpG-only sequence

62
N T N Tchr10 62
N T T Tchr10 62
N T N N T Nchr10 67
N T C C N T Nchr10 68
N N T N T T Nchr10 69

(b) Example of epiread file

Fig. 1   Example of amrfinder input file formats

1  http://​smith​labre​search.​org/​softw​are/​methp​ipe/

http://smithlabresearch.org/software/methpipe/
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•	 A reference genome, contained in a series of FASTA files, to which the results 
must be aligned. Figure 1a shows as example a fragment of a dataset that follows 
the FASTA format. This format is used to store text-based sequences of nucleo-
tides or amino acids represented using single-letter codes. Each sequence begins 
with a greater-than character (">") followed by a description of the sequence, all 
in a single line. The next lines contain the sequence itself, which is represented 
by a series of characters, each representing a single nucleotide. In the case of 
amrfinder, these sequences are the chromosomes of the reference genome.

•	 An epiread file, which contains the input reads in a compressed format, indicat-
ing only the methylation state for each CpG site. Figure 1b shows an example 
of an epiread file, where each row is dedicated to one read and consists of three 
columns. The first column is the chromosome of the read, the second is the num-
bering order of the first CpG in the read, and the last is the CpG-only sequence of 
the read.

Algorithm 1   amrfinder’s workflow
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Algorithm 2   Pseudocode of the amrfinder’s processing phase

Algorithm 1 illustrates the workflow that follows amrfinder to identify AMRs in 
the reads of the epiread file. The tool works with one chromosome at a time, so the 
first step consists in bringing the input reads of one chromosome to memory (Line 
4). Once all the reads from the chromosome are ready, the main computation of the 
tool is executed, the identification phase, which produces the list of AMRs (Line 5). 
This process is repeated chromosome by chromosome until all the reads from the 
epiread file have been processed. After that, amrfinder runs several post-process-
ing steps over the identified AMRs to ensure the accuracy of its results, merging 
regions close to each other and excluding intervals overlapping large subunit riboso-
mal RNA. Most of these post-processing steps are lightweight in terms of execution 
time. The only exception is the mapping of the ARMs to the reference genome (Line 
8), which is expensive both in terms of CPU and I/O resources, as it requires FASTA 
files containing the reference genome (several GBs) to be read to memory so that 
their data can be traversed to find the right mapping of AMRs.

As previously mentioned, the main bottleneck of the tool is in the identifica-
tion phase (Lines 3–5 in Algorithm 1). Algorithm 2 details how this phase works. 
Chromosomes are read into memory one by one (Line 2) and, for each one, all CpG 
site positions are traversed using a fixed-width (fixed number of CpG sites) slid-
ing window (Line 4). Figure 2 shows the behavior of this window, which is moved 
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one position each time. For each position, the reads bounded by the current window 
are selected (Line 6). If that window does not contain a minimum number of reads, 
those reads are discarded (Line 8). Otherwise, they are processed using the statisti-
cal models (Lines 9–11). In case ASM is ascertained, the region is added to the list 
of AMRs (Lines 13–14).

amrfinder provides two types of information per identified region: the bounds 
where it was observed and a false discovery rate provided by the probability models.

4 � Implementation

PARamrfinder is a novel tool to accelerate the identification of AMRs that provides 
exactly the same output results as amrfinder (and thus its high accuracy) but at sig-
nificantly lower runtime thanks to exploiting the computational capabilities of mul-
ticore clusters. The parallel tool has been implemented using MPI and OpenMP 
trying to achieve the lowest possible runtime on this sort of systems. In addition, 
PARamrfinder keeps the same configuration mechanism as amrfinder in order to 
simplify its adoption by those biologists who are already familiar with the original 
tool. More information about this configuration procedure can be found in the refer-
ence manual that is available in the public repository of PARamrfinder.

4.1 � Sequential optimization of the statistical models

Before starting the parallel implementation, a code analysis was carried out to 
ensure the original tool was a right and effective baseline for the novel parallel 
tool. However, this analysis pointed out that the original implementation for the 
fitting of the statistical models was inefficient. In particular, some costly compu-
tations that were needed throughout this fitting stage (mostly the calculation of 
logarithms, a particularly expensive operation) were being discarded and com-
puted back several times. To avoid that inefficient behavior, a new technique, that 
we have named ComputeAndStore, was implemented. It consists in performing 
all the computations the first time they are required, and storing the results in a 

Fig. 2   Example of the sliding window behavior using a size of 8. Shaded, the window initially at position 
62. Bordered, the window moving one position to analyze the next interval
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buffer. If the results of these computations are required again, a simple and fast 
access to the buffer is enough to fulfill these requests.

4.2 � Load balancing issues

In addition to the inefficient fitting method, amrfinder comes with severe load 
balance issues that makes it inadequate for a naive parallel implementation and it 
becomes a challenge to achieve an efficient data and workload distribution. The 
reason is that different regions might need extremely different computation times 
for their analyses.

First of all, most of the regions do not have enough information to make the 
analysis meaningful. Thus, many of them will be discarded without even hav-
ing to execute the computationally expensive models (Algorithm 2, Line 8). This 
divides the regions into two very distinct groups. On the one hand, the regions 
that will not be analyzed and which have a near-zero associated execution time 
and, on the other hand, the regions that will be analyzed and need a relatively 
high execution time.

Second, even within the regions that will be analyzed, there is also a large 
imbalance in the workload associated with each of them. This imbalance is due to 
two factors:

•	 The amount of information in the region. Regarding this factor, not all the 
regions have the same amount of reads associated with them. Also, each read 
does not need to contain information about every CpG site in the region. There-
fore, the amount of information in the region is not a constant, but rather a varia-
ble that depends on the number of reads and the number of CpGs represented on 
them. There exists a direct relationship between the total number of reads corre-
sponding to each of the CpGs associated to a region (amount of information) and 
the execution time of that region. In consequence, the execution time of a region 
can be predicted beforehand based on the amount of information it contains.

•	 The number of iterations it takes for the statistical models to converge. This fac-
tor also follows a direct relationship with the execution time of a region. How-
ever, it is unpredictable and remains unknown until the model fitting process 
is completed. Thus, it is not possible to estimate the execution time of a region 
based on the number of iterations since this information is not known in advance.

Moreover, it is common for a few small groups of regions to contain a huge 
amount of information (up to five orders of magnitude larger than the median). 
We have called them elephant regions, and their analyses represent a relevant per-
centage of the total runtime of the program. The management of the elephant 
regions is a key factor in the performance of the parallel implementation since 
they can easily generate a great unbalance in the workload that can become the 
bottleneck of the execution if they are not properly managed.
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4.3 � Parallel implementation of the identification phase

PARamrfinder includes two levels of parallelism in order to exploit the computa-
tional capabilities of current multicore clusters when accelerating the identification 
of AMRs. First, MPI routines are used to distribute data and workload among pro-
cesses that are placed on different nodes. As seen in Sect. 3, amrfinder must perform 
the same operations on different regions. PARamrfinder distributes those regions 
among the MPI processes. Second, each MPI process spawns several OpenMP 
threads that run on different cores of the node. The regions assigned to each process 
are distributed among the OpenMP threads. As different regions can have different 
computational load, a dynamic scheduling policy is used to guarantee a good load 
balance among the threads. Figure 3 provides a graphical overview of the two-level 
parallel implementation applied in PARamrfinder. For simplicity, multithreading is 
only illustrated on the processing phase. However, the pre-processing and post-pro-
cessing phases also use threads, as will be discussed in Sects. 4.4 and 4.5.

Even though a pure MPI program could take advantage of all the cluster hard-
ware, this hybrid approach has several benefits:

•	 Improvement of the memory management, as threads belonging to the same pro-
cess can access the same shared memory structures; while, MPI processes would 
need copies of the structures for each process, leading to memory overheads.

•	 Fewer synchronizations are required, as threads do not need to communicate 
through message passing.

•	 Possibility of exploiting Hyperthreading in modern CPUs, a technology that 
facilitates more efficient utilization of processor’s resources by enabling multiple 
threads to run on one physical core. Two concurrent threads per CPU core are 
common, but some processors support up to eight concurrent threads per core.

Nevertheless, due to the issues discussed in Sect.  4.2, an efficient distribution 
of the workload at the process level is not trivial. The original amrfinder works 

Fig. 3   Workflow of PARamrfinder 
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chromosome by chromosome, i.e., it gets all reads belonging to a chromosome, 
figures out the regions, analyzes them, and goes to the next chromosome. This 
means that only one chromosome is kept in memory at a time. Although this 
is the best choice for the original tool, it is not for PARamrfinder, as it needs to 
obtain information about all the regions beforehand to make a good distribution of 
the workload. Then, the parallel tool starts with a pre-processing step to know the 
total number of regions to analyze, as well as the amount of information contained 
in each of them. This pre-processing was designed in such a way that it does not 
introduce significant overhead in the execution. To accomplish this, a sort of loop 
fission is applied to the main loop of Algorithm 2 (Line 2), splitting it into two parts:

•	 A pre-processing loop, removing the computationally expensive instructions 
from the original loop. In this step the regions without enough information are 
filtered out. Additionally, for those regions that pass the filter, useful data such as 
their amount of information on their bounds is already precalculated and stored 
in memory.

•	 A computation loop, where the models are executed for the regions that contain 
enough information.

The pre-processing loop provides the parallel tool with the necessary information to 
try to get a fair workload balance. The next sections describe several balancing strat-
egies based on this information.

4.3.1 � Pure block distribution

As a first step, a naive approach was tested. Thanks to the pre-processing loop, the 
total number of regions to analyze is known. The tool uses this information to evenly 
distribute them among the MPI processes, each one receiving a contiguous block of 
regions to analyze. All regions, initially held in the memory of the root process, are 
statically distributed among processes before starting the computation loop using 
MPI_Scatter. After the computation loop, when all AMRs are correctly identified, 
processes synchronize and gather the results in the root process using MPI_Gather.

A contiguous block distribution is more appropriate than a cyclic one as contigu-
ous regions have contiguous reads and, then, it is enough for each MPI process to 
store a single block of reads. This helps to improve data locality and prevents pro-
cesses from having to access blocks of data that are separated from each other by an 
offset, which would lead to performance degradation.

Due to the reasons explained in Sect. 4.2, different regions will have huge dif-
ferences in their computational cost. This generates situations where, although the 
number of regions is evenly distributed, the workload is not.

4.3.2 � Cost‑based block distribution

The previous approach could present, depending on the input dataset, severe 
workload imbalance at the process level, which can lead to huge performance 
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degradation and inefficiencies. To improve the load balance, a static cost-based 
distribution was designed.

In this distribution the cost of each region is assigned according to its amount of 
information. That is, instead of receiving blocks with the same amount of regions, 
processes receive blocks of variable size but with the same total amount of informa-
tion. This way, each MPI process is expected to have a similar total workload to 
distribute among its OpenMP threads.

For the implementation, the root process has to perform a linear iteration through 
the regions to figure out the boundaries of the blocks, as their sizes differ and are 
unknown in advance. As each process receives now a variable number of regions, 
they are distributed among processes using MPI_Scatterv and, after the computation 
loop, the results are gathered using MPI_Gatherv.

Figure  4 shows an example to compare the performance of the pure block 
distribution and the cost-based one, using four regions with variable execution 
time (represented by the vector Regions). The first one distributes two elements to 
each process, without focusing on the execution cost, which leads to P1 remaining 
idle from t = 6  to t = 14 . The cost-based distribution, though, takes into account 
this factor, giving only one element to P0 and three to P1, which results in both 
processes ending the execution at t = 10.

This new approach has a great impact in reducing the imbalance due to the ele-
phant regions, as it takes into account their high amount of information. However, it 
does not achieve fully balanced distributions for a couple of reasons. First, the cost 
estimation, although accurate, is not exact, so this source of imbalance is reduced, 
but not eliminated. Second and more important, the approach does not take into 
account the imbalance caused by the number of iterations needed to fit the models 
(see Sect. 4.2).

4.3.3 � Dynamic distribution

A new dynamic distribution was designed to cope with the workload imbalance due 
to the fact that some regions need more iterations to converge.

The main idea behind this approach is to assign small blocks of regions on 
demand, minimizing synchronization among MPI processes and communication 
overheads. Passive RMA communications were used for this purpose. Three struc-
tures are allocated in the RMA shared memory of the root process:

Fig. 4   Example comparing the performance of the pure block distribution and the cost-based one
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•	 A portion of shared memory to contiguously store the blocks of regions.
•	 A shared array to store the results of the computations.
•	 A shared index initialized to zero that points to the next block to analyze.

After the initialization, all processes enter a loop where they get the current index 
and increment it to the next position using MPI_Fetch_and_Opt. If the index is 
within bounds, the process gets the block of regions from RMA memory using 
MPI_Get, computes its results, and stores them back at the right offset of the output 
RMA buffer using MPI_Put.

Nevertheless, a naive implementation of this algorithm does not lead to a perfor-
mance improvement, as elephant regions still provoke workload imbalance. Firstly, 
the runtime of blocks containing these regions is much higher than the rest, and one 
single elephant block can fill the whole execution time of the tool in a single pro-
cess. In addition, if any of these elephant blocks is computed at the end of the distri-
bution, it creates a situation where only one process works; while, the rest are idle.

To deal with this problem, the dynamic distribution is performed in two steps. 
First, blocks containing elephant regions are distributed using a small block size to 
ensure that these regions do not overload a particular process during its whole runt-
ime. Also, these elephant regions are first assigned to the processes, as they are the 
ones that take most time, and finding one at the end of the execution would lead to 
massive imbalances. Finally, the remaining regions are distributed among the pro-
cesses using a larger block size.

The size of the blocks will have a great impact on the performance of the tool. 
Too small blocks lead to communications overheads. To the contrary, too large 
blocks increase the potential imbalance among them. Due to these reasons the block 
size is calculated at runtime to make the program flexible and able to deal with dif-
ferent datasets and configurations. It takes into account the amount of processes and 
the total cost of the dataset, guaranteeing a minimum amount of blocks per process 
and trying to split every dataset into roughly the same number of blocks, both to 
ensure that low-cost datasets are distributed with a sufficiently fine granularity, and 
also that the more expensive datasets do not waste time with needless communica-
tions and synchronizations that do not improve the balance. In addition, to ensure 
that each block takes a reasonable time to be processed, the threads-per-process ratio 
is also taken into account by enlarging the block size proportionally to the number 
of threads used for each block.

4.4 � Parallel input

A benchmarking of a preliminary version of PARamrfinder pointed out that the 
input read and the pre-processing loop became a bottleneck when the identification 
phase was split among several processes and threads and significantly degraded the 
overall performance of the program. Therefore, these phases were redesigned with 
parallel computing in mind.

First, MPI-I/O functions were used to parallelize the input phase, allowing 
each process to read from a certain offset. The input format (see Fig.  1b) is very 
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appropriate for parallel processing in the pre-processing phase, since each process 
is only interested in a block of consecutive reads (rows) that must be mapped into a 
series of consecutive regions. Therefore, in PARamrfinder each process only reads a 
block of rows that it must map into regions to run through the pre-processing phase. 
However, this approach presents four main drawbacks:

•	 Not all rows have the same length.
•	 The number of rows in a file is not known in advance.
•	 The mapping of reads into regions is not a one-to-one, but a many-to-many map-

ping.
•	 The first and last regions in a process might be duplicated and incomplete as they 

might lack information from reads owned by adjacent processes.

Algorithm 3   PARamrfinder’s parallel input

Algorithm 3 shows the pseudocode of the parallel implementation for the input 
phase that solves all the pointed problems. First of all, PARamrfinder gets in advance 
the size of the input file (in bytes) and then distributes them among processes try-
ing to generate a fair distribution of reads (Lines 1 and 2). To ensure that each pro-
cess does not miss any information related to its regions, an overlapping technique 
is implemented: assuming p processes, process n ∈ [0, p-1] reads its block and some 
extra final bytes to ensure that it is able to correctly process all the regions (Line 3), 
even those that may share information with process n+1. This solves the problem of 
incomplete regions, but not the problem of duplicate regions. To avoid this, process 
n removes its last regions until it finds one that may not be complete on process n+1 
(Line 4). Then, process n shares this window with process n+1 (Line 5) and process 
n+1 removes its first regions until it finds one that is not complete on process n 
(Line 6). Finally, all the regions are gathered in a vector on the root process (Line 7) 
to be processed in the identification phase as explained in Sect. 4.3.

Figure  5 shows an example of the distribution of the reads in an epiread file 
between two processes using this algorithm. In the figure both processes P0 and P1 
have assigned a block of four reads each. However, with this read distribution, none 
of them is able to correctly identify the selected window (the one shadowed in blue, 
which covers CpG positions 62–69), as both miss part of the reads associated with 
the window. The additional overlapping solves this issue for P0, as it now has all 
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the reads it needs, but not for P1, which still misidentifies this region. P0 then must 
communicate to P1 that it has identified this window correctly so P1 should drop it 
to avoid duplicates.

4.5 � Parallel post‑processing

After the identification phase, the tool runs several post-processing steps over the 
identified AMRs (see Sect.  3). As already mentioned, the most time-consuming 
of these steps is the mapping of these AMRs to the reference genome. In fact, it 
became the main bottleneck after the parallelization of the input phase. Therefore, it 
was parallelized as well, as shown in Algorithm 4. 
Algorithm 4   PARamrfinder’s parallel post-processing

The objective is to distribute the AMRs among processes and threads so they can 
be mapped in parallel. However, the reading of the reference genome is as time-con-
suming as this mapping, so the input operations of the FASTA files also need to be 
performed in parallel to get rid of the bottleneck. Since each process works with a 
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subset of the AMRs, it only needs to read a subset of the chromosomes of the reference 
genome. Nevertheless, the location of each chromosome in the input file is not known 
in advance. Therefore, the reference genome must first be scanned to identify the loca-
tion of each chromosome (Line 1). If all chromosomes are stored in a single FASTA 
file, each process will scan a block of it. If each chromosome is stored in a different 
FASTA file, these files are distributed and scanned in a round-robin fashion among the 
processes. After this initial scanning, processes share their information (first they share 
the number of chromosomes that they have identified, using MPI_Allgather, and then 
they share the actual information, using MPI_Allgatherv), so all of them can locate all 
the chromosomes (Line 2). These two steps grant processes direct access to any par-
ticular subset of chromosomes so they can read them to memory without any additional 
overhead. Once this objective is achieved, the AMRs are distributed among the pro-
cesses (Line 3). Next, each process maps its AMRs to its subset of chromosomes using 
all its threads concurrently (Line 4). Finally, the AMRs are gathered back on the root 
process (Line 5) so that the next post-processing step can be performed.

4.6 � Parallel implementation overview

After the implementation of these parallel techniques, the structure of PARarmfinder is 
significantly different than that of the original sequential tool. Figure 6 shows this new 
structure. PARamrfinder can be divided into four phases. 

1.	 Pre-processing This phase is in charge of reading the input epiread file to mem-
ory using MPI-IO. After that, the raw text is parsed to the adequate data structure 
using all the processing elements (i.e., processes and threads). Finally, these reads 
are used to pre-process and filter the regions that will be computed in the next 
phases, also using all the available processing elements.

2.	 AMR identification During this phase the candidate regions are distributed 
among the processing elements, so that each one executes the models for each of 
the assigned regions to determine if there is ASM in them. When all the results 
are computed, the root process gathers them.

3.	 Post-processing This phase is in charge of executing several post-processing 
steps over the AMRs identified in the previous phase. Most of them have a low 
computational cost and are executed sequentially. The only exception is the map-
ping of the AMRs to the reference genome, which is executed in parallel. As a first 
step, MPI processes read the reference genome from the FASTA files to memory. 
Then, the AMRs are distributed among processes and threads and mapped to the 
reference genome in parallel.

4.	 Output After the post-processing, the root process sequentially writes the results 
to the output file.
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5 � Experimental evaluation

The experimental evaluation of PARamrfinder has been performed in terms of 
execution time, scalability and memory consumption, as our tool provides the same 
AMRs as amrfinder, whose high accuracy has been proved in [4]. This equality has 
been proved by comparing the raw results for each execution of the parallel tool 
with a reference obtained from the execution of the original amrfinder using the 

PARamrfinder
1.- Pre-processing

3.- Post-processing

4.- Write the results to output file

2.- AMRs identification

1.1.- Read file to memory

1.2.- Parse raw text to epireads

1.3.- Parse epireads to regions

3.1.- Read FASTA files to memory

3.2.- Align AMRs to reference genome

Sequential phase

MPI parallel phase

MPI+OpenMP parallel phase

Fig. 6   Parallel structure of PARamrfinder 
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same input data and the same configuration. In addition a validation data set has 
been added to the tool repository2 with the reference output, in order to facilitate 
the validation of the tool by the community. Consequently, this section provides a 
performance comparison of both tools on an 8-node cluster with a total of 256 CPU 
cores (32 cores per node). Each node has two sixteen-core Intel Xeon Silver 4216 
Cascade Lake-SP processors with support for Hyperthreading (up to two logical 
threads per CPU core), and 256  GB of memory. The nodes are interconnected 
through a low-latency and high-bandwidth InfiniBand EDR network. Regarding 
software, both amrfinder and PARamrfinder were compiled with the GNU GCC 
compiler v.8.3.0, and the latter is linked to the OpenMPI library v.4.0.5.

Four different real biological datasets were used for this experimental evaluation, 
which are named according to the SRA id of their related sample. The ERS2586503 
dataset is used to investigate the epigenetic phenotype of sessile serrated adenomas/
polyps [26]. The ERS4575883 dataset provides information related to the detection 
of individual molecular interactions of transcription factors and nucleosomes with 
DNA in vivo [27]. The ERS7819375 dataset brings treatment-resistant cells in breast 
cancer [28]. These three datasets have been obtained from the NCBI public reposi-
tory of SRA data,3 while the ERS208315 dataset has been generated by the Blue-
print Consortium from venous blood data4

The datasets are provided as raw FASTQ data [29]; thus, they must be converted 
to the epiread files required by amrfinder. The steps recommended by the MethPipe 
authors were followed. First, the FASTQ reads were mapped to the reference genome 
with the abismal [30] tool. After that, the SAM [31] file produced went through sev-
eral MethPipe-specific steps: 

1.	 The utility tool format_reads was used to adapt the format to the pipeline.
2.	 The external command samtools sort [32] was used to sort the reads by chromo-

some and position.
3.	 The MethPipe tool duplicate-remover was used to remove duplicated reads.
4.	 Finally, the methstates tool was used to convert the resulting sam file to the 

epiread format.

For dataset ERS208315, as the raw data were provided as unaligned BAM  [31], a 
couple extra steps were needed. First, the uBAM files were converted to FASTQ with 

Table 1   Datasets specification

Dataset Ref. genome Size Ref. genome Size epiread file #Reads

ERS2586503 hg19 3.0 GB 984 MB 52,837,538
ERS4575883 mm10 2.7 GB 2.0 GB 117,430,460
ERS7819375 mm38 2.6 GB 1.6 GB 97,424,137
ERS208315 hg38 3.1 GB 9.1 GB 574,149,340

2  https://​github.​com/​UDC-​GAC/​PARam​rfind​er
3  https://​www.​ncbi.​nlm.​nih.​gov/​sra
4  https://​ega-​archi​ve.​org/​datas​ets/​EGAD0​00010​02523

https://github.com/UDC-GAC/PARamrfinder
https://www.ncbi.nlm.nih.gov/sra
https://ega-archive.org/datasets/EGAD00001002523
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the command samtools bam2fq. Then, the FASTQ file was processed as the others 
but adding an additional step: the samtools merge command had to be used before 
methstates as this dataset is composed of several runs.

Table 1 summarizes the characteristics of these datasets. It includes information 
about the reference genomes, the size of the derived epiread files and the number of 
reads inside these files. Note that the epiread files can reach up to several gigabytes 
and hundreds of millions of reads.

5.1 � Experiments with the sequential tool

The first step of the experimental evaluation checks the impact of the sequential 
optimization presented in Sect. 4.1. The original amrfinder has been compared to 
an optimized sequential version, which consists of the same implementation as the 
original amrfinder, but with a slightly modified fitting function that uses the Com-
puteAndStore technique. The performance of the two versions has been measured 
using the default parameters and changing the value of the maximum number of 
iterations to fit the models (option -i in the command line). The tool has been tested 
with a maximum of 10 (default), 100 and 1000 iterations, to see the impact of this 
optimization as the execution of the statistical models gains relevance. Table  2 
shows the execution time of the tool with and without the optimization. Some exe-
cution times are not shown in the table as they exceed the maximum execution time 
allowed in the cluster (72  h). The execution time with the optimization is always 
lower than the one without the optimization, achieving a reduction of around one 
half of the original time. Remark that these experiments were all carried out on a 
single core of the cluster as both implementations are sequential.

Table 2   Execution times for the 
original and optimized version 
of amrfinder (in seconds) and 
speedup varying the maximum 
number of iterations to fit the 
statistical models

Dataset Version -i 10 -i 100 -i 1000

ERS2586503 Original 4,152 26,484 153,887
Optimized 1,890 11,069 63,342
Speedup 2.20 2.39 2.43

ERS4575883 Original 8,124 58,332 –
Optimized 3,718 25,964 167,814
Speedup 2.18 2.25 –

ERS7819375 Original 4,031 12,191 45,779
Optimized 2,349 6,786 25,525
Speedup 1.72 1.80 1.79

ERS208315 Original 4,152 26,484 –
Optimized 1,890 11,069 –
Speedup 2.20 2.39 –
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5.2 � Evaluation of the parallel I/O optimizations

Table  3 shows the execution times (in seconds) obtained by PARamrfinder in the 
pre-processing and post-processing phases when using the parallel optimizations 
presented in Sect. 4.4 and 4.5, and compared to a sequential counterpart for a vary-
ing number of cores. During these phases, the main source of data to be processed 
are the epiread file and the FASTA files respectively, both depicted in Fig. 1, whose 
size for every dataset has been specified in Table 1. Concretely, the table shows the 
baseline times for both phases and the parallel times when using from one whole 
node (32 cores) to eight nodes (256 cores). Remark that Hyperthreading is enabled, 
allowing 64 threads per node (two logical threads per core). The maximum number 
of iterations to fit the statistical models is left as default, as it does not affect these 
phases. As the structure of the pre-processing phase has been modified from the 
original tool (see Sect. 4.4), using it as a baseline would be unfair. Instead, for this 
experiment the baseline is the execution time of PARamrfinder with one process and 
one thread. For the post-processing phase the baseline is the execution time of this 
phase on the original tool using the same configuration.

These results are satisfactory, as the bottleneck of both the pre-processing and 
the post-processing phases are eliminated and the execution times are reduced from 
hundreds to less than five seconds in almost all the cases. There is even one positive 
exception: the execution time of the pre-processing phase of the dataset ERS208315, 
which scales much better than the other cases. This happens because the sequential 
time of this stage is much higher that the rest, and, when parallelized using all the 
256 cores, this phase still takes more than 15 s to execute, so the synchronizations 
and overheads introduced in the parallel version have its impact thinned out.

5.3 � Evaluation of the load balancing algorithms

A key point in the performance of PARamrfinder is its ability to balance the work-
load. As it was explained in Sect. 4.3, three different algorithms have been imple-
mented in the parallel tool to distribute the regions among the MPI processes. 

Table 3   Execution times (in 
seconds) for the pre-processing 
and post-processing phases 
of PARamrfinder (in seconds) 
varying the number of cores

Dataset Phase Baseline 32c 64c 128c 256c

ERS2586503 Pre-proc 134.69 7.65 4.93 3.18 1.81
Post-proc 146.56 6.64 3.90 2.52 1.99

ERS4575883 Pre-proc 236.43 12.88 8.97 5.48 2.88
Post-proc 81.44 5.33 3.45 2.16 1.65

ERS7819375 Pre-proc 202.49 12.80 8.27 5.53 3.07
Post-proc 68.99 6.13 3.27 2.06 1.51

ERS208315 Pre-proc 3,068.30 100.53 53.37 29.1 15.20
Post-proc 173.31 11.81 7.46 4.66 3.51
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1.	 Pure block distribution Contiguous blocks with the same number of regions are 
distributed among MPI processes.

2.	 Cost-based distribution Contiguous blocks of regions are distributed among 
MPI processes. The number of regions per block depends on their computational 
cost.

3.	 Dynamic distribution Blocks of regions are distributed among MPI processes 
dynamically, as they are processed, using RMA shared memory.

Figure 7 shows the speedups obtained by the three algorithms when using 256 
cores, 10 and 1000 maximum iterations to fit the statistical models, and all the 
datasets available. All executions have taken advantage of Hyperthreading, with 
two logical threads per CPU (512 logical threads in total). From now on, all 
executions will take advantage of Hyperthreading. The baseline is the execution 
time of the original tool with the sequential optimization explained in Sect. 4.1. 
As the base execution time of the ERS208315 dataset cannot be computed for 
1000 maximum iterations due to the execution time limit of 72  h, a reference 
execution time has been estimated for that dataset assuming a speedup of 32x for 
the execution of PARamrfinder with a dynamic distribution using 32 cores (one 
whole node) and 1000 maximum iterations.

The dynamic algorithm provides the best performance in all cases, close to 
ideal speedups for three datasets with the maximum of 1000 iterations (x254.1 
on ERS2586503, x254.2 on ERS4575883, x257.3 on ERS208315). It is also 
remarkable that it is the most consistent algorithm, as the other ones are more 
sensitive to the specific characteristics of the dataset. For example, the static 
algorithms significantly reduce their performance for dataset ERS7819375 
even with a maximum of 1000 iterations. This can be explained by a couple of 
factors. First, most of the regions in this dataset need a low amount of iterations 
to fit the statistical models, which makes the difference between these regions 
and the ones that require the maximum number of iterations bigger than in the 
other datasets. In addition, the average region in this dataset contains 2–40 times 
less information than the ones in other datasets; while, the elephant regions 
contain 2–5 times more information. This means that elephant regions gain 

Fig. 7   Speedup of PARamrfinder over amrfinder (optimized) using three load balancing algorithms, 10 
and 1000 maximum iterations, the different datasets and eight nodes of the cluster (256 cores)
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even more relevance and become the bottleneck of the execution if not treated 
carefully. However, the dynamic algorithm is able to overcome these factors and 
still achieves high speedup values. Therefore, this will be the algorithm included 
in the final version of the parallel tool, and the one used in the scalability 
experiments presented in the next section.

5.4 � Scalability of PARamrfinder

The scalability test started by analyzing performance within one node, using 
one process per CPU and 2, 4, 8 and 16 cores per process (32 cores in total). 
This two-processes per node configuration was chosen because it is the one that 
provides the best performance in one node, as it improves memory bandwidth as 
well as locality, and will be maintained when increasing the number of nodes. 
Figure  8 shows the speedups obtained by PARamrfinder when using 10 and 
1000 maximum iterations to fit the statistical models, all the datasets available, 
the dynamic distribution and a varying number of cores within one node. The 
baseline is again the execution time of the original tool with the sequential 
optimization.

It can be seen that PARamrfinder scales well with the number of cores, 
maintaining superlinear speedups when filling a node for datasets ERS2586503 

Fig. 8   Speedup of PARamrfinder over amrfinder optimized using 10 and 1000 maximum iterations for 
the different datasets varying the number of cores in a single node

Fig. 9   Speedup of PARamrfinder using 10 and 1000 maximum iterations for the different datasets 
varying the number of nodes. The baseline is the execution time of PARamrfinder on a whole node
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and ERS4575883 for 1000 maximum iterations. It can also be noted that the 
speedups obtained by the tool are much higher when using 1000 maximum 
iterations than when using 10 maximum iterations, which implies that the tool 
performs better for heavy workloads. This is because the tool’s pre-processing 
and post-processing phases gain relevance when the workload is smaller, and they 
do not scale as well as the identification phase with the dynamic distribution. In 
addition, the execution time of the tool for 10 maximum iterations gets reduced 
to less than two minutes for most of the datasets, so small overheads also gain 
relevance in these reduced runtimes.

Figure 9 shows the speedups obtained by PARamrfinder when using 10 and 1000 
maximum iterations to fit the statistical models, the dynamic distribution, all the 
datasets available and 1, 2, 4 and 8 nodes. The baseline is the execution time of the 
parallel tool in one node. These results prove that PARamrfinder scales well with the 
number of nodes, and that its scalability is consistent for all the datasets.

Most of parallel bioinformatics applications only implement a multithreaded par-
allelization. If their users have access to a cluster, they can launch multiple jobs, 
one per node, and each job focused on analyzing a different dataset. This way they 
would have several nodes of the cluster working at the same time. The difference 
between this approach and a tool as PARarmfinder is that our tool, thanks to the 
MPI processes, can use all the nodes to collaborate on the analysis of the same data-
set. To further justify the impact of MPI in the performance of the tool, it has been 
compared to the previously explained approach: an scenario with four different jobs 
executed simultaneously on different nodes, each one over a different dataset and 
exploiting the whole node thanks to the OpenMP implementation and Hyperthread-
ing. The wall time of that experiment has then been compared against executing 
PARamrfinder using four nodes on the four datasets, one after another. The results 
can be extracted from fourth and fifth columns of Table 4, which shows the execu-
tion times of each dataset in both scenarios. For the OpenMP-only scenario the total 
execution time is the runtime of the biggest dataset (16,408 s). On the other hand, 
the execution time of the MPI+OpenMP version of the tool is the addition of the 
runtimes of each of the datasets (5,787  s). That is, the hybrid version of PARam-
rfinder is 2.84 times faster than the OpenMP-only execution in this scenario.

These experimental results prove that PARamrfinder can be useful for scientists 
in order to dramatically reduce the runtime needed to identify AMRs. Table  4 
provides a summary of this runtime reduction when using 1000 maximum iterations 

Table 4   Execution times 
(in seconds) of amrfinder 
and PARamrfinder using 
different resources for 1000 
maximum iterations to fit 
the statistical models. Every 
execution of PARamrfinder uses 
Hyperthreading with two logical 
threads per core

Dataset amrfinder PARamrfinder

1 core 1 core 32 cores 128 cores 256 cores

(1 node) (4 nodes) (8 nodes)

ERS2586503 123,887 51,474 1542 404 202
ERS4575883 – 136,364 3901 980 509
ERS7819375 38,779 20,261 728 185 94
ERS208315 – – 16,408 4218 2089
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to fit the statistical models. It shows that PARamrfinder is faster than the original 
amrfinder even when using the same hardware (one core) due to two reasons. On 
the one hand, PARamrfinder can take advantage of Hyperthreading on that core by 
launching two logical threads. On the other hand, the ComputeAndStore technique 
presented in Sect. 4.1 reduces the execution time almost to half in every situation. 
Furthermore, the new parallel tool allows the completion of analyses that were not 
possible with the original tool. For instance, amrfinder was not able to work over 
the ERS4575883 and ERS208315 datasets in the maximum of three days allowed 
by the cluster. Nevertheless, PARamrfinder finishes these analyses in less than 9 and 
45 min, respectively, using eight nodes. Finally, PARamrfinder is highly flexible and 
has been focused on maintaining high performance in every dataset, no matter how 
initially unbalanced it is.

5.5 � PARamrfinder memory requirements

In addition to the performance evaluation, the memory usage of PARamrfinder has 
been analyzed, as it can be a critical factor in the execution of bioinformatics and 
high performance applications. The memory consumption of the tool using eight 
nodes and two processes per node has been measured and compared to the mem-
ory consumption of the original tool during the different stages of the execution. So 
the maximum memory requirements of the tool is the memory consumption of the 
phase with the highest memory usage (not the accumulation of all the memories, as 
after each phase, the main memory buffers are freed).

Table 5 shows the memory consumption of amrfinder and PARamrfinder during 
the different execution stages for the four datasets. Results for PARamrfinder indi-
cate the maximum memory consumption per process for each phase. For the original 
tool, the pre-processing and processing phases are overlapped, as it pre-processes 

Table 5   Memory consumption 
(in GBs) for the pre-processing, 
processing and post-processing 
phases of PARamrfinder 
compared with amrfinder 

Results for PARamrfinder indicate the maximum memory consump-
tion per process for each phase

Dataset Phase amrfinder PARamrfinder

ERS2586503 Pre-proc 0.51 0.32
Proc 0.49
Post-proc 3.0 3.0

ERS4575883 Pre-proc 0.75 0.69
Proc 0.49
Post-proc 2.7 2.7

ERS7819375 Pre-proc 0.59 0.59
Proc 1.63
Post-proc 2.6 2.6

ERS208315 Pre-proc 3.48 3.52
Proc 2.26
Post-proc 3.1 3.1
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and then processes one chromosome at a time. Because of this only one memory 
consumption value is shown for these two phases. During these phases amrfinder 
mainly uses memory to store the epiread file and the resulting AMRs for each chro-
mosome. That is, the memory requirements of the tool are directly proportional to 
the number of reads for a chromosome in the epiread file and the number of CpG 
positions in that chromosome (positions the window has to scan per AMR). Some-
thing similar happens with PARamrfinder during the pre-processing phase, except 
for a pair of differences. First, a raw block of the input file is brought to memory 
by each process, which means a memory overhead. Second, a chromosome is not 
needed to be fully processed by one process, so it can be split among several pro-
cesses, potentially reducing the memory requirements. Regarding the processing 
phase of PARamrfinder, the main memory consumption is only on the root process, 
which keeps a buffer with all the regions of all the chromosomes that have to be 
processed and another to store the results. However, only a small part (a few MB at 
most) of the epiread file is brought to memory by each process, so the memory over-
head is reduced during this phase. Finally, note that on both tools these buffers are 
freed, keeping only the identified AMRs for the post-processing phase. During this 
phase the results have to be mapped to the reference genome, so the FASTA files 
have to be read. The memory consumption of amrfinder and each process of PARa-
mrfinder is equal, as both tools bring all the FASTA files to memory at some point.

These results show that, for small and medium datasets, the memory bottleneck 
of PARamrfinder is the post-processing phase, which is the same as the original tool. 
However, as the size of the epiread file increases, the memory bottleneck of PARa-
mrfinder becomes the pre-processing phase, as holding the reads in memory leads 
to a bigger requirement than storing the reference genome. Anyway, in all scenarios 
the maximum memory requirements per process of PARamrfinder are equal or just 
slightly higher than those of the original tool.

6 � Conclusions

Nowadays, one interesting goal in DNA methylation studies consists in detecting 
AMRs under different biological conditions, which can help to understand the func-
tion of genomic imprinting. However, these analyses may take a huge time for large 
or even medium size datasets. In this work we have presented PARamrfinder, a par-
allel application that obtains the same biological results as the popular amrfinder 
tool, but at significantly reduced runtime thanks to exploiting the hardware of mod-
ern multicore clusters.

PARamrfinder is based on a hybrid MPI/OpenMP parallel implementation, which 
brings significant benefits, such as the capability to use Hyperthreading, efficient 
memory management and fewer required synchronizations among processing 
elements. The parallel tool is able to obtain great scalability thanks to its dynamic 
workload balance both at the process and the thread levels. In addition, the dynamic 
distribution at the process level has been implemented with a minimum overhead 
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as it uses MPI RMA operations to reduce the impact of communications and 
synchronizations.

The experimental evaluation was performed on a cluster with eight nodes, each 
one with 32 CPU cores (a total of 256 cores), using four representative datasets 
with real biological data and different characteristics. PARamrfinder is faster than 
amrfinder in all scenarios, even using the same hardware resources (one core). Its 
impact is more remarkable for a large number of resources, being able to reduce an 
execution from several days (more than 72 h) to less than nine minutes.

As future work we plan to apply similar parallel approaches to other stages of the 
MethPipe pipeline, so that the different stages could be integrated in order to exploit 
altogether the resources of a multicore cluster.
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