
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-05939-8

1 3

PARamrfinder: detecting allele‑specific DNA methylation
on multicore clusters

Alejandro Fernández‑Fraga1 · Jorge González‑Domínguez1 · María J. Martín1

Accepted: 27 January 2024
© The Author(s) 2024

Abstract
The discovery of Allele-Specific Methylation (ASM) is an important research field
in biology as it regulates genomic imprinting, which has been identified as the cause
of some genetic diseases. Nevertheless, the high computational cost of the bioin-
formatic tools developed for this purpose prevents their application to large-scale
datasets. Hence, much faster tools are required to further progress in this research
field. In this work we present PARamrfinder, a parallel tool that applies a statistical
model to identify ASM in data from high-throughput short-read bisulfite sequenc-
ing. It is based on the state-of-the-art sequential tool amrfinder, which is able to
detect ASM at regional level from Bisulfite Sequencing (BS-Seq) experiments in the
absence of Single Nucleotide Polymorphism information. PARamrfinder provides
the same Allelically Methylated Regions as amrfinder but at significantly reduced
runtime thanks to exploiting the compute capabilities of common multicore CPU
clusters and MPI RMA operations to attain an efficient dynamic workload balance.
As an example, our tool is up to 567 times faster for real data experiments on a
cluster with 8 nodes, each one containing two 16-core processors. The source code
of PARamrfinder, as well as a reference manual, is available at https://​github.​com/​
UDC-​GAC/​PARam​rfind​er.

Keywords  Allele-specific methylation · High performance computing · MPI ·
OpenMP · RMA · Dynamic load balancing

 *	 Alejandro Fernández‑Fraga
	 a.fernandez3@udc.es

	 Jorge González‑Domínguez
	 jgonzalezd@udc.com

	 María J. Martín
	 mariam@udc.com

1	 Computer Architecture Group, CITIC, Universidade da Coruña, A Coruña, Spain

https://github.com/UDC-GAC/PARamrfinder
https://github.com/UDC-GAC/PARamrfinder
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05939-8&domain=pdf

	 A. Fernández‑Fraga et al.

1 3

1  Introduction

Methylation is an epigenetic procedure that modifies the DNA by adding a methyl
group (an alkyl derived from methane) to a DNA nucleotide. Methylation analysis is
key for biologists as it is associated with different biological functions, and abnor-
mal methylation levels can indicate the presence of certain diseases. One of these
biological functions is genomic imprinting, a process by which only one copy of a
gene in an individual is expressed; while, the other copy is suppressed. Most genes
require a biparental contribution for their correct development; thus, the occurrence
of genetic imprinting has been identified as the cause of some genetic diseases, such
as the Prader–Willi [1], Angelman [2] or Beckwith–Wiedemann [3] syndromes.

Imprinted gene expression is regulated by Alele-Specific Methylation (ASM),
a particular type of methylation that occurs when DNA methylation patterns are
asymmetrical between alleles. Because of this, the identification of Allelically
Methylated Regions (AMRs) has gained attention in the last years, as it provides
interesting biological insights.

amrfinder [4] is a cutting-edge tool to discover ASM based on data from Bisulfite
Sequencing (BS-Seq) experiments. It has shown high sensitivity, specificity and
control of type I errors, while it is, up to our knowledge, the only freely available
software that is capable of detecting ASM at regional level without Single Nucle-
otide Polymorphism (SNP) information for an individual sample. In addition,
amrfinder is part of MethPipe [5], a pipeline of tools for methylation analysis that
is highly referenced in the literature. This made it the choice to perform interesting
biological studies in fields such as early human development [6], genetic–epigenetic
interactions [7] or the building of allele-specific epigenome maps [8]. On top of that,
amrfinder has been successfully utilized in several recent studies, demonstrating its
continued relevance and effectiveness in the field of epigenetics [9–11].

Although these analyses that identify AMRs can obtain interesting biologi-
cal insights for understanding the role of DNA methylation in genomic imprint-
ing, they come with a steep computational cost. This is the main drawback of
amrfinder, as it requires a high runtime to process large input datasets. In this
paper we present PARamrfinder, a tool that is able to accelerate the identification
of AMRs on modern multicore clusters. The high performance of the tool has
been achieved by implementing a series of optimization, including:

•	 A profiling of the sequential tool which lead to a sequential optimization of its
main bottleneck to half its cost.

•	 A identification of the load balancing issue of the application by spotting the
different causes.

•	 The implementation of different workload distribution algorithms.
•	 A comparison of the efficiency of these algorithms in dealing with the load

balancing problem.
•	 The development of parallel I/O algorithms.
•	 The elimination of the two new performance bottlenecks that arose by apply-

ing several parallelization techniques.

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

Thanks to these contributions, the novel tool obtains the same highly accurate bio-
logical results as amrfinder, but in a significantly shorter time. It uses an efficient
hybrid approach that combines Message Passing Interface (MPI) [12] processes and
OpenMP [13] threads. The rationale behind this hybrid approach is that these analy-
ses are mostly performed on HPC multicore clusters, a kind of system where MPI
and OpenMP usually obtain the best performance [14]. Each MPI process launches
multiple threads to efficiently exploit the cores available on each node and take
advantage of the Hyperthreading technology supported by many CPU architectures.
In addition, MPI Remote Memory Access (RMA) operations are used to build a
dynamically balanced workload at the process level.

The rest of the paper is organized as follows. Section 2 presents the state of the
art. Section 3 introduces some background concepts about the original amrfinder
tool that are necessary to understand the goal of this work and the implementation
of our method. Section 4 describes the parallel implementation of PARamrfinder.
Section 5 provides the experimental evaluation in terms of runtime and scalability.
Finally, concluding remarks are presented in Sect. 6.

2 � Related work

There has been a great effort for many years in the development of tools to detect
ASM regions for datasets obtained from different types of biological technologies,
such as microarrays that genotype bisulfite-converted DNA [15], lower resolution
capture technologies such as Methyl-Binding Domain (MBD) sequencing [16] or
Methylated DNA ImmunoPrecipitation (MeDIP) sequencing [17]. However, cur-
rently the most popular and widely used technology is high-throughput short-read
BS-Seq [18], as it has the ability to detect ASM at the single nucleotide level.

Even though, most of the tools that detect ASM based on BS-Seq do so by asso-
ciating this data with heterozygous SNPs. Some examples are Bis-SNP [19], Alle-
lonome.PRO [20] or CGmapTools [21]. These approaches that depend on genotypic
data present an important limitation: They are blind to some portions of ASM, since
imprinted methylation is not necessarily associated with genotypic variation.

Only a few tools overcome this limitation. amrfinder [4] is one of them, as its
model is genotype-independent, and so it is widely applicable to the identification
of ASM in the context of imprinting. allelicmeth [4] is another tool from the same
authors which does not rely on SNP data, and differs from amrfinder in that it pro-
vides an ASM score for each CpG site, instead of identifying AMR. Another tool
that stands out is DAMEfinder [22], as it can run in two modes, SNP-based and
tuple-based, hence does not necessarily depend on SNP data. However, the purpose
of this tool is not to identify ASM over a sample, but to discover different patterns
of ASM over samples of two conditions (treatments, diseases,...). Due to its purpose,
this method depends on the availability of data from multiple samples of the two
conditions.

Up to our knowledge, there is no previous work focused on accelerating the
identification of ASM with High Performance Computing (HPC) techniques.
Nevertheless, we can find in the literature other bioinformatics tools that are

	 A. Fernández‑Fraga et al.

1 3

able to efficiently exploit the computational capabilities of multicore clusters.
Some examples are pIQPNNI [23], that uses MPI to infer maximum-likelihood
phylogenetic trees from DNA or protein data with a large number of sequences;
MPIGeneNet [24], that includes MPI routines and OpenMP directives to construct
genetic networks; or ClustalW-MPI [25], which applies MPI to reduce the execution
time for aligning multiple protein or nucleotide sequences. These previous tools
have been used by biologists to complete experiments on large real-world datasets
in reasonable time, proving that a tool as PARamrfinder can be attractive for the
scientific community.

3 � Background: amrfinder

amrfinder [4] is a publicly available software (as part of the MethPipe pipeline1) for
identifying AMRs in mammals, in which methylation occurs mainly in CpG sites
(fragments of DNA where a cytosine (C) nucleotide is followed by a guanine (G)).
The tool identifies those regions from BS-Seq data, a method by which genomic
DNA is treated with sodium bisulfite and then sequenced, providing single-base
resolution of methylated cytosines in the genome. Upon sequencing, unmethylated
cytosines are converted to thymidines (T); while, methylated cytosines remain as
cytosines (C). The tool is able to achieve high accuracy and low false discovery rate
(less than 0.01 in all the tested cases) by applying both a single-allele and a allele-
specific model to the data and comparing the likelihood of these models to deter-
mine the presence of ASM. The single-allele model assumes that the set of reads
mapped to an interval represent one single methylation pattern; while, the allele-
specific model assumes that these reads represent two distinct methylation patterns,
both of them constituted by roughly the same proportion of the reads (as the alleles
themselves are present in equal proportions). The parameters of these models are
iteratively adjusted to fit the data.

amrfinder is a command-line tool written in C++ that admits several configura-
tion parameters (e.g., the maximum number of iterations used for fitting the models)
and obtains the biological input data from text files. Concretely, the inputs are:

>chr1
taaccctaaccctaaccctaaccctaaccctaaccctaaccctaacccta
accctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac
cctaacccaaccctaaccctaaccctaaccctaaccctaaccctaacccc

Sequence identifier

Sequence representation

(a) Example of FASTA file

�

T N Nchr10

Chromosome name CpG site position CpG-only sequence

62
N T N Tchr10 62
N T T Tchr10 62
N T N N T Nchr10 67
N T C C N T Nchr10 68
N N T N T T Nchr10 69

(b) Example of epiread file

Fig. 1   Example of amrfinder input file formats

1  http://​smith​labre​search.​org/​softw​are/​methp​ipe/

http://smithlabresearch.org/software/methpipe/

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

•	 A reference genome, contained in a series of FASTA files, to which the results
must be aligned. Figure 1a shows as example a fragment of a dataset that follows
the FASTA format. This format is used to store text-based sequences of nucleo-
tides or amino acids represented using single-letter codes. Each sequence begins
with a greater-than character (">") followed by a description of the sequence, all
in a single line. The next lines contain the sequence itself, which is represented
by a series of characters, each representing a single nucleotide. In the case of
amrfinder, these sequences are the chromosomes of the reference genome.

•	 An epiread file, which contains the input reads in a compressed format, indicat-
ing only the methylation state for each CpG site. Figure 1b shows an example
of an epiread file, where each row is dedicated to one read and consists of three
columns. The first column is the chromosome of the read, the second is the num-
bering order of the first CpG in the read, and the last is the CpG-only sequence of
the read.

Algorithm 1   amrfinder’s workflow

	 A. Fernández‑Fraga et al.

1 3

Algorithm 2   Pseudocode of the amrfinder’s processing phase

Algorithm 1 illustrates the workflow that follows amrfinder to identify AMRs in
the reads of the epiread file. The tool works with one chromosome at a time, so the
first step consists in bringing the input reads of one chromosome to memory (Line
4). Once all the reads from the chromosome are ready, the main computation of the
tool is executed, the identification phase, which produces the list of AMRs (Line 5).
This process is repeated chromosome by chromosome until all the reads from the
epiread file have been processed. After that, amrfinder runs several post-process-
ing steps over the identified AMRs to ensure the accuracy of its results, merging
regions close to each other and excluding intervals overlapping large subunit riboso-
mal RNA. Most of these post-processing steps are lightweight in terms of execution
time. The only exception is the mapping of the ARMs to the reference genome (Line
8), which is expensive both in terms of CPU and I/O resources, as it requires FASTA
files containing the reference genome (several GBs) to be read to memory so that
their data can be traversed to find the right mapping of AMRs.

As previously mentioned, the main bottleneck of the tool is in the identifica-
tion phase (Lines 3–5 in Algorithm 1). Algorithm 2 details how this phase works.
Chromosomes are read into memory one by one (Line 2) and, for each one, all CpG
site positions are traversed using a fixed-width (fixed number of CpG sites) slid-
ing window (Line 4). Figure 2 shows the behavior of this window, which is moved

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

one position each time. For each position, the reads bounded by the current window
are selected (Line 6). If that window does not contain a minimum number of reads,
those reads are discarded (Line 8). Otherwise, they are processed using the statisti-
cal models (Lines 9–11). In case ASM is ascertained, the region is added to the list
of AMRs (Lines 13–14).

amrfinder provides two types of information per identified region: the bounds
where it was observed and a false discovery rate provided by the probability models.

4 � Implementation

PARamrfinder is a novel tool to accelerate the identification of AMRs that provides
exactly the same output results as amrfinder (and thus its high accuracy) but at sig-
nificantly lower runtime thanks to exploiting the computational capabilities of mul-
ticore clusters. The parallel tool has been implemented using MPI and OpenMP
trying to achieve the lowest possible runtime on this sort of systems. In addition,
PARamrfinder keeps the same configuration mechanism as amrfinder in order to
simplify its adoption by those biologists who are already familiar with the original
tool. More information about this configuration procedure can be found in the refer-
ence manual that is available in the public repository of PARamrfinder.

4.1 � Sequential optimization of the statistical models

Before starting the parallel implementation, a code analysis was carried out to
ensure the original tool was a right and effective baseline for the novel parallel
tool. However, this analysis pointed out that the original implementation for the
fitting of the statistical models was inefficient. In particular, some costly compu-
tations that were needed throughout this fitting stage (mostly the calculation of
logarithms, a particularly expensive operation) were being discarded and com-
puted back several times. To avoid that inefficient behavior, a new technique, that
we have named ComputeAndStore, was implemented. It consists in performing
all the computations the first time they are required, and storing the results in a

Fig. 2   Example of the sliding window behavior using a size of 8. Shaded, the window initially at position
62. Bordered, the window moving one position to analyze the next interval

	 A. Fernández‑Fraga et al.

1 3

buffer. If the results of these computations are required again, a simple and fast
access to the buffer is enough to fulfill these requests.

4.2 � Load balancing issues

In addition to the inefficient fitting method, amrfinder comes with severe load
balance issues that makes it inadequate for a naive parallel implementation and it
becomes a challenge to achieve an efficient data and workload distribution. The
reason is that different regions might need extremely different computation times
for their analyses.

First of all, most of the regions do not have enough information to make the
analysis meaningful. Thus, many of them will be discarded without even hav-
ing to execute the computationally expensive models (Algorithm 2, Line 8). This
divides the regions into two very distinct groups. On the one hand, the regions
that will not be analyzed and which have a near-zero associated execution time
and, on the other hand, the regions that will be analyzed and need a relatively
high execution time.

Second, even within the regions that will be analyzed, there is also a large
imbalance in the workload associated with each of them. This imbalance is due to
two factors:

•	 The amount of information in the region. Regarding this factor, not all the
regions have the same amount of reads associated with them. Also, each read
does not need to contain information about every CpG site in the region. There-
fore, the amount of information in the region is not a constant, but rather a varia-
ble that depends on the number of reads and the number of CpGs represented on
them. There exists a direct relationship between the total number of reads corre-
sponding to each of the CpGs associated to a region (amount of information) and
the execution time of that region. In consequence, the execution time of a region
can be predicted beforehand based on the amount of information it contains.

•	 The number of iterations it takes for the statistical models to converge. This fac-
tor also follows a direct relationship with the execution time of a region. How-
ever, it is unpredictable and remains unknown until the model fitting process
is completed. Thus, it is not possible to estimate the execution time of a region
based on the number of iterations since this information is not known in advance.

Moreover, it is common for a few small groups of regions to contain a huge
amount of information (up to five orders of magnitude larger than the median).
We have called them elephant regions, and their analyses represent a relevant per-
centage of the total runtime of the program. The management of the elephant
regions is a key factor in the performance of the parallel implementation since
they can easily generate a great unbalance in the workload that can become the
bottleneck of the execution if they are not properly managed.

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

4.3 � Parallel implementation of the identification phase

PARamrfinder includes two levels of parallelism in order to exploit the computa-
tional capabilities of current multicore clusters when accelerating the identification
of AMRs. First, MPI routines are used to distribute data and workload among pro-
cesses that are placed on different nodes. As seen in Sect. 3, amrfinder must perform
the same operations on different regions. PARamrfinder distributes those regions
among the MPI processes. Second, each MPI process spawns several OpenMP
threads that run on different cores of the node. The regions assigned to each process
are distributed among the OpenMP threads. As different regions can have different
computational load, a dynamic scheduling policy is used to guarantee a good load
balance among the threads. Figure 3 provides a graphical overview of the two-level
parallel implementation applied in PARamrfinder. For simplicity, multithreading is
only illustrated on the processing phase. However, the pre-processing and post-pro-
cessing phases also use threads, as will be discussed in Sects. 4.4 and 4.5.

Even though a pure MPI program could take advantage of all the cluster hard-
ware, this hybrid approach has several benefits:

•	 Improvement of the memory management, as threads belonging to the same pro-
cess can access the same shared memory structures; while, MPI processes would
need copies of the structures for each process, leading to memory overheads.

•	 Fewer synchronizations are required, as threads do not need to communicate
through message passing.

•	 Possibility of exploiting Hyperthreading in modern CPUs, a technology that
facilitates more efficient utilization of processor’s resources by enabling multiple
threads to run on one physical core. Two concurrent threads per CPU core are
common, but some processors support up to eight concurrent threads per core.

Nevertheless, due to the issues discussed in Sect. 4.2, an efficient distribution
of the workload at the process level is not trivial. The original amrfinder works

Fig. 3   Workflow of PARamrfinder 

	 A. Fernández‑Fraga et al.

1 3

chromosome by chromosome, i.e., it gets all reads belonging to a chromosome,
figures out the regions, analyzes them, and goes to the next chromosome. This
means that only one chromosome is kept in memory at a time. Although this
is the best choice for the original tool, it is not for PARamrfinder, as it needs to
obtain information about all the regions beforehand to make a good distribution of
the workload. Then, the parallel tool starts with a pre-processing step to know the
total number of regions to analyze, as well as the amount of information contained
in each of them. This pre-processing was designed in such a way that it does not
introduce significant overhead in the execution. To accomplish this, a sort of loop
fission is applied to the main loop of Algorithm 2 (Line 2), splitting it into two parts:

•	 A pre-processing loop, removing the computationally expensive instructions
from the original loop. In this step the regions without enough information are
filtered out. Additionally, for those regions that pass the filter, useful data such as
their amount of information on their bounds is already precalculated and stored
in memory.

•	 A computation loop, where the models are executed for the regions that contain
enough information.

The pre-processing loop provides the parallel tool with the necessary information to
try to get a fair workload balance. The next sections describe several balancing strat-
egies based on this information.

4.3.1 � Pure block distribution

As a first step, a naive approach was tested. Thanks to the pre-processing loop, the
total number of regions to analyze is known. The tool uses this information to evenly
distribute them among the MPI processes, each one receiving a contiguous block of
regions to analyze. All regions, initially held in the memory of the root process, are
statically distributed among processes before starting the computation loop using
MPI_Scatter. After the computation loop, when all AMRs are correctly identified,
processes synchronize and gather the results in the root process using MPI_Gather.

A contiguous block distribution is more appropriate than a cyclic one as contigu-
ous regions have contiguous reads and, then, it is enough for each MPI process to
store a single block of reads. This helps to improve data locality and prevents pro-
cesses from having to access blocks of data that are separated from each other by an
offset, which would lead to performance degradation.

Due to the reasons explained in Sect. 4.2, different regions will have huge dif-
ferences in their computational cost. This generates situations where, although the
number of regions is evenly distributed, the workload is not.

4.3.2 � Cost‑based block distribution

The previous approach could present, depending on the input dataset, severe
workload imbalance at the process level, which can lead to huge performance

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

degradation and inefficiencies. To improve the load balance, a static cost-based
distribution was designed.

In this distribution the cost of each region is assigned according to its amount of
information. That is, instead of receiving blocks with the same amount of regions,
processes receive blocks of variable size but with the same total amount of informa-
tion. This way, each MPI process is expected to have a similar total workload to
distribute among its OpenMP threads.

For the implementation, the root process has to perform a linear iteration through
the regions to figure out the boundaries of the blocks, as their sizes differ and are
unknown in advance. As each process receives now a variable number of regions,
they are distributed among processes using MPI_Scatterv and, after the computation
loop, the results are gathered using MPI_Gatherv.

Figure 4 shows an example to compare the performance of the pure block
distribution and the cost-based one, using four regions with variable execution
time (represented by the vector Regions). The first one distributes two elements to
each process, without focusing on the execution cost, which leads to P1 remaining
idle from t = 6 to t = 14 . The cost-based distribution, though, takes into account
this factor, giving only one element to P0 and three to P1, which results in both
processes ending the execution at t = 10.

This new approach has a great impact in reducing the imbalance due to the ele-
phant regions, as it takes into account their high amount of information. However, it
does not achieve fully balanced distributions for a couple of reasons. First, the cost
estimation, although accurate, is not exact, so this source of imbalance is reduced,
but not eliminated. Second and more important, the approach does not take into
account the imbalance caused by the number of iterations needed to fit the models
(see Sect. 4.2).

4.3.3 � Dynamic distribution

A new dynamic distribution was designed to cope with the workload imbalance due
to the fact that some regions need more iterations to converge.

The main idea behind this approach is to assign small blocks of regions on
demand, minimizing synchronization among MPI processes and communication
overheads. Passive RMA communications were used for this purpose. Three struc-
tures are allocated in the RMA shared memory of the root process:

Fig. 4   Example comparing the performance of the pure block distribution and the cost-based one

	 A. Fernández‑Fraga et al.

1 3

•	 A portion of shared memory to contiguously store the blocks of regions.
•	 A shared array to store the results of the computations.
•	 A shared index initialized to zero that points to the next block to analyze.

After the initialization, all processes enter a loop where they get the current index
and increment it to the next position using MPI_Fetch_and_Opt. If the index is
within bounds, the process gets the block of regions from RMA memory using
MPI_Get, computes its results, and stores them back at the right offset of the output
RMA buffer using MPI_Put.

Nevertheless, a naive implementation of this algorithm does not lead to a perfor-
mance improvement, as elephant regions still provoke workload imbalance. Firstly,
the runtime of blocks containing these regions is much higher than the rest, and one
single elephant block can fill the whole execution time of the tool in a single pro-
cess. In addition, if any of these elephant blocks is computed at the end of the distri-
bution, it creates a situation where only one process works; while, the rest are idle.

To deal with this problem, the dynamic distribution is performed in two steps.
First, blocks containing elephant regions are distributed using a small block size to
ensure that these regions do not overload a particular process during its whole runt-
ime. Also, these elephant regions are first assigned to the processes, as they are the
ones that take most time, and finding one at the end of the execution would lead to
massive imbalances. Finally, the remaining regions are distributed among the pro-
cesses using a larger block size.

The size of the blocks will have a great impact on the performance of the tool.
Too small blocks lead to communications overheads. To the contrary, too large
blocks increase the potential imbalance among them. Due to these reasons the block
size is calculated at runtime to make the program flexible and able to deal with dif-
ferent datasets and configurations. It takes into account the amount of processes and
the total cost of the dataset, guaranteeing a minimum amount of blocks per process
and trying to split every dataset into roughly the same number of blocks, both to
ensure that low-cost datasets are distributed with a sufficiently fine granularity, and
also that the more expensive datasets do not waste time with needless communica-
tions and synchronizations that do not improve the balance. In addition, to ensure
that each block takes a reasonable time to be processed, the threads-per-process ratio
is also taken into account by enlarging the block size proportionally to the number
of threads used for each block.

4.4 � Parallel input

A benchmarking of a preliminary version of PARamrfinder pointed out that the
input read and the pre-processing loop became a bottleneck when the identification
phase was split among several processes and threads and significantly degraded the
overall performance of the program. Therefore, these phases were redesigned with
parallel computing in mind.

First, MPI-I/O functions were used to parallelize the input phase, allowing
each process to read from a certain offset. The input format (see Fig. 1b) is very

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

appropriate for parallel processing in the pre-processing phase, since each process
is only interested in a block of consecutive reads (rows) that must be mapped into a
series of consecutive regions. Therefore, in PARamrfinder each process only reads a
block of rows that it must map into regions to run through the pre-processing phase.
However, this approach presents four main drawbacks:

•	 Not all rows have the same length.
•	 The number of rows in a file is not known in advance.
•	 The mapping of reads into regions is not a one-to-one, but a many-to-many map-

ping.
•	 The first and last regions in a process might be duplicated and incomplete as they

might lack information from reads owned by adjacent processes.

Algorithm 3   PARamrfinder’s parallel input

Algorithm 3 shows the pseudocode of the parallel implementation for the input
phase that solves all the pointed problems. First of all, PARamrfinder gets in advance
the size of the input file (in bytes) and then distributes them among processes try-
ing to generate a fair distribution of reads (Lines 1 and 2). To ensure that each pro-
cess does not miss any information related to its regions, an overlapping technique
is implemented: assuming p processes, process n ∈ [0, p-1] reads its block and some
extra final bytes to ensure that it is able to correctly process all the regions (Line 3),
even those that may share information with process n+1. This solves the problem of
incomplete regions, but not the problem of duplicate regions. To avoid this, process
n removes its last regions until it finds one that may not be complete on process n+1
(Line 4). Then, process n shares this window with process n+1 (Line 5) and process
n+1 removes its first regions until it finds one that is not complete on process n
(Line 6). Finally, all the regions are gathered in a vector on the root process (Line 7)
to be processed in the identification phase as explained in Sect. 4.3.

Figure 5 shows an example of the distribution of the reads in an epiread file
between two processes using this algorithm. In the figure both processes P0 and P1
have assigned a block of four reads each. However, with this read distribution, none
of them is able to correctly identify the selected window (the one shadowed in blue,
which covers CpG positions 62–69), as both miss part of the reads associated with
the window. The additional overlapping solves this issue for P0, as it now has all

	 A. Fernández‑Fraga et al.

1 3

the reads it needs, but not for P1, which still misidentifies this region. P0 then must
communicate to P1 that it has identified this window correctly so P1 should drop it
to avoid duplicates.

4.5 � Parallel post‑processing

After the identification phase, the tool runs several post-processing steps over the
identified AMRs (see Sect. 3). As already mentioned, the most time-consuming
of these steps is the mapping of these AMRs to the reference genome. In fact, it
became the main bottleneck after the parallelization of the input phase. Therefore, it
was parallelized as well, as shown in Algorithm 4.
Algorithm 4   PARamrfinder’s parallel post-processing

The objective is to distribute the AMRs among processes and threads so they can
be mapped in parallel. However, the reading of the reference genome is as time-con-
suming as this mapping, so the input operations of the FASTA files also need to be
performed in parallel to get rid of the bottleneck. Since each process works with a

N

T

N

T

T

T

T

N

N

N

N

N

N

N

T

N

T

N

C

T

T

N

N

T

T

T

T

T

N

C

T

N

N

N

T

T

CpG site position
R

ea
ds

N

N N

N

N

6362 6966 7264 7067 7365 7168 74 75

P0
reads

P0
overlapping

P1
reads

Fig. 5   Example distribution of an epiread file containing eight reads with parallel MPI I/O. A block
with the first four reads is assigned to P0; while, another block with the four last ones is assigned to P1.
Framed with a dashed line, the first two reads belonging to P1 are also assigned to P0 as overlapping
between the processes. Shadowed in blue, a window covering the CpG positions 62 to 69, with whom six
reads have associated CpGs

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

subset of the AMRs, it only needs to read a subset of the chromosomes of the reference
genome. Nevertheless, the location of each chromosome in the input file is not known
in advance. Therefore, the reference genome must first be scanned to identify the loca-
tion of each chromosome (Line 1). If all chromosomes are stored in a single FASTA
file, each process will scan a block of it. If each chromosome is stored in a different
FASTA file, these files are distributed and scanned in a round-robin fashion among the
processes. After this initial scanning, processes share their information (first they share
the number of chromosomes that they have identified, using MPI_Allgather, and then
they share the actual information, using MPI_Allgatherv), so all of them can locate all
the chromosomes (Line 2). These two steps grant processes direct access to any par-
ticular subset of chromosomes so they can read them to memory without any additional
overhead. Once this objective is achieved, the AMRs are distributed among the pro-
cesses (Line 3). Next, each process maps its AMRs to its subset of chromosomes using
all its threads concurrently (Line 4). Finally, the AMRs are gathered back on the root
process (Line 5) so that the next post-processing step can be performed.

4.6 � Parallel implementation overview

After the implementation of these parallel techniques, the structure of PARarmfinder is
significantly different than that of the original sequential tool. Figure 6 shows this new
structure. PARamrfinder can be divided into four phases.

1.	 Pre-processing This phase is in charge of reading the input epiread file to mem-
ory using MPI-IO. After that, the raw text is parsed to the adequate data structure
using all the processing elements (i.e., processes and threads). Finally, these reads
are used to pre-process and filter the regions that will be computed in the next
phases, also using all the available processing elements.

2.	 AMR identification During this phase the candidate regions are distributed
among the processing elements, so that each one executes the models for each of
the assigned regions to determine if there is ASM in them. When all the results
are computed, the root process gathers them.

3.	 Post-processing This phase is in charge of executing several post-processing
steps over the AMRs identified in the previous phase. Most of them have a low
computational cost and are executed sequentially. The only exception is the map-
ping of the AMRs to the reference genome, which is executed in parallel. As a first
step, MPI processes read the reference genome from the FASTA files to memory.
Then, the AMRs are distributed among processes and threads and mapped to the
reference genome in parallel.

4.	 Output After the post-processing, the root process sequentially writes the results
to the output file.

	 A. Fernández‑Fraga et al.

1 3

5 � Experimental evaluation

The experimental evaluation of PARamrfinder has been performed in terms of
execution time, scalability and memory consumption, as our tool provides the same
AMRs as amrfinder, whose high accuracy has been proved in [4]. This equality has
been proved by comparing the raw results for each execution of the parallel tool
with a reference obtained from the execution of the original amrfinder using the

PARamrfinder
1.- Pre-processing

3.- Post-processing

4.- Write the results to output file

2.- AMRs identification

1.1.- Read file to memory

1.2.- Parse raw text to epireads

1.3.- Parse epireads to regions

3.1.- Read FASTA files to memory

3.2.- Align AMRs to reference genome

Sequential phase

MPI parallel phase

MPI+OpenMP parallel phase

Fig. 6   Parallel structure of PARamrfinder 

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

same input data and the same configuration. In addition a validation data set has
been added to the tool repository2 with the reference output, in order to facilitate
the validation of the tool by the community. Consequently, this section provides a
performance comparison of both tools on an 8-node cluster with a total of 256 CPU
cores (32 cores per node). Each node has two sixteen-core Intel Xeon Silver 4216
Cascade Lake-SP processors with support for Hyperthreading (up to two logical
threads per CPU core), and 256 GB of memory. The nodes are interconnected
through a low-latency and high-bandwidth InfiniBand EDR network. Regarding
software, both amrfinder and PARamrfinder were compiled with the GNU GCC
compiler v.8.3.0, and the latter is linked to the OpenMPI library v.4.0.5.

Four different real biological datasets were used for this experimental evaluation,
which are named according to the SRA id of their related sample. The ERS2586503
dataset is used to investigate the epigenetic phenotype of sessile serrated adenomas/
polyps [26]. The ERS4575883 dataset provides information related to the detection
of individual molecular interactions of transcription factors and nucleosomes with
DNA in vivo [27]. The ERS7819375 dataset brings treatment-resistant cells in breast
cancer [28]. These three datasets have been obtained from the NCBI public reposi-
tory of SRA data,3 while the ERS208315 dataset has been generated by the Blue-
print Consortium from venous blood data4

The datasets are provided as raw FASTQ data [29]; thus, they must be converted
to the epiread files required by amrfinder. The steps recommended by the MethPipe
authors were followed. First, the FASTQ reads were mapped to the reference genome
with the abismal [30] tool. After that, the SAM [31] file produced went through sev-
eral MethPipe-specific steps:

1.	 The utility tool format_reads was used to adapt the format to the pipeline.
2.	 The external command samtools sort [32] was used to sort the reads by chromo-

some and position.
3.	 The MethPipe tool duplicate-remover was used to remove duplicated reads.
4.	 Finally, the methstates tool was used to convert the resulting sam file to the

epiread format.

For dataset ERS208315, as the raw data were provided as unaligned BAM [31], a
couple extra steps were needed. First, the uBAM files were converted to FASTQ with

Table 1   Datasets specification

Dataset Ref. genome Size Ref. genome Size epiread file #Reads

ERS2586503 hg19 3.0 GB 984 MB 52,837,538
ERS4575883 mm10 2.7 GB 2.0 GB 117,430,460
ERS7819375 mm38 2.6 GB 1.6 GB 97,424,137
ERS208315 hg38 3.1 GB 9.1 GB 574,149,340

2  https://​github.​com/​UDC-​GAC/​PARam​rfind​er
3  https://​www.​ncbi.​nlm.​nih.​gov/​sra
4  https://​ega-​archi​ve.​org/​datas​ets/​EGAD0​00010​02523

https://github.com/UDC-GAC/PARamrfinder
https://www.ncbi.nlm.nih.gov/sra
https://ega-archive.org/datasets/EGAD00001002523

	 A. Fernández‑Fraga et al.

1 3

the command samtools bam2fq. Then, the FASTQ file was processed as the others
but adding an additional step: the samtools merge command had to be used before
methstates as this dataset is composed of several runs.

Table 1 summarizes the characteristics of these datasets. It includes information
about the reference genomes, the size of the derived epiread files and the number of
reads inside these files. Note that the epiread files can reach up to several gigabytes
and hundreds of millions of reads.

5.1 � Experiments with the sequential tool

The first step of the experimental evaluation checks the impact of the sequential
optimization presented in Sect. 4.1. The original amrfinder has been compared to
an optimized sequential version, which consists of the same implementation as the
original amrfinder, but with a slightly modified fitting function that uses the Com-
puteAndStore technique. The performance of the two versions has been measured
using the default parameters and changing the value of the maximum number of
iterations to fit the models (option -i in the command line). The tool has been tested
with a maximum of 10 (default), 100 and 1000 iterations, to see the impact of this
optimization as the execution of the statistical models gains relevance. Table 2
shows the execution time of the tool with and without the optimization. Some exe-
cution times are not shown in the table as they exceed the maximum execution time
allowed in the cluster (72 h). The execution time with the optimization is always
lower than the one without the optimization, achieving a reduction of around one
half of the original time. Remark that these experiments were all carried out on a
single core of the cluster as both implementations are sequential.

Table 2   Execution times for the
original and optimized version
of amrfinder (in seconds) and
speedup varying the maximum
number of iterations to fit the
statistical models

Dataset Version -i 10 -i 100 -i 1000

ERS2586503 Original 4,152 26,484 153,887
Optimized 1,890 11,069 63,342
Speedup 2.20 2.39 2.43

ERS4575883 Original 8,124 58,332 –
Optimized 3,718 25,964 167,814
Speedup 2.18 2.25 –

ERS7819375 Original 4,031 12,191 45,779
Optimized 2,349 6,786 25,525
Speedup 1.72 1.80 1.79

ERS208315 Original 4,152 26,484 –
Optimized 1,890 11,069 –
Speedup 2.20 2.39 –

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

5.2 � Evaluation of the parallel I/O optimizations

Table 3 shows the execution times (in seconds) obtained by PARamrfinder in the
pre-processing and post-processing phases when using the parallel optimizations
presented in Sect. 4.4 and 4.5, and compared to a sequential counterpart for a vary-
ing number of cores. During these phases, the main source of data to be processed
are the epiread file and the FASTA files respectively, both depicted in Fig. 1, whose
size for every dataset has been specified in Table 1. Concretely, the table shows the
baseline times for both phases and the parallel times when using from one whole
node (32 cores) to eight nodes (256 cores). Remark that Hyperthreading is enabled,
allowing 64 threads per node (two logical threads per core). The maximum number
of iterations to fit the statistical models is left as default, as it does not affect these
phases. As the structure of the pre-processing phase has been modified from the
original tool (see Sect. 4.4), using it as a baseline would be unfair. Instead, for this
experiment the baseline is the execution time of PARamrfinder with one process and
one thread. For the post-processing phase the baseline is the execution time of this
phase on the original tool using the same configuration.

These results are satisfactory, as the bottleneck of both the pre-processing and
the post-processing phases are eliminated and the execution times are reduced from
hundreds to less than five seconds in almost all the cases. There is even one positive
exception: the execution time of the pre-processing phase of the dataset ERS208315,
which scales much better than the other cases. This happens because the sequential
time of this stage is much higher that the rest, and, when parallelized using all the
256 cores, this phase still takes more than 15 s to execute, so the synchronizations
and overheads introduced in the parallel version have its impact thinned out.

5.3 � Evaluation of the load balancing algorithms

A key point in the performance of PARamrfinder is its ability to balance the work-
load. As it was explained in Sect. 4.3, three different algorithms have been imple-
mented in the parallel tool to distribute the regions among the MPI processes.

Table 3   Execution times (in
seconds) for the pre-processing
and post-processing phases
of PARamrfinder (in seconds)
varying the number of cores

Dataset Phase Baseline 32c 64c 128c 256c

ERS2586503 Pre-proc 134.69 7.65 4.93 3.18 1.81
Post-proc 146.56 6.64 3.90 2.52 1.99

ERS4575883 Pre-proc 236.43 12.88 8.97 5.48 2.88
Post-proc 81.44 5.33 3.45 2.16 1.65

ERS7819375 Pre-proc 202.49 12.80 8.27 5.53 3.07
Post-proc 68.99 6.13 3.27 2.06 1.51

ERS208315 Pre-proc 3,068.30 100.53 53.37 29.1 15.20
Post-proc 173.31 11.81 7.46 4.66 3.51

	 A. Fernández‑Fraga et al.

1 3

1.	 Pure block distribution Contiguous blocks with the same number of regions are
distributed among MPI processes.

2.	 Cost-based distribution Contiguous blocks of regions are distributed among
MPI processes. The number of regions per block depends on their computational
cost.

3.	 Dynamic distribution Blocks of regions are distributed among MPI processes
dynamically, as they are processed, using RMA shared memory.

Figure 7 shows the speedups obtained by the three algorithms when using 256
cores, 10 and 1000 maximum iterations to fit the statistical models, and all the
datasets available. All executions have taken advantage of Hyperthreading, with
two logical threads per CPU (512 logical threads in total). From now on, all
executions will take advantage of Hyperthreading. The baseline is the execution
time of the original tool with the sequential optimization explained in Sect. 4.1.
As the base execution time of the ERS208315 dataset cannot be computed for
1000 maximum iterations due to the execution time limit of 72 h, a reference
execution time has been estimated for that dataset assuming a speedup of 32x for
the execution of PARamrfinder with a dynamic distribution using 32 cores (one
whole node) and 1000 maximum iterations.

The dynamic algorithm provides the best performance in all cases, close to
ideal speedups for three datasets with the maximum of 1000 iterations (x254.1
on ERS2586503, x254.2 on ERS4575883, x257.3 on ERS208315). It is also
remarkable that it is the most consistent algorithm, as the other ones are more
sensitive to the specific characteristics of the dataset. For example, the static
algorithms significantly reduce their performance for dataset ERS7819375
even with a maximum of 1000 iterations. This can be explained by a couple of
factors. First, most of the regions in this dataset need a low amount of iterations
to fit the statistical models, which makes the difference between these regions
and the ones that require the maximum number of iterations bigger than in the
other datasets. In addition, the average region in this dataset contains 2–40 times
less information than the ones in other datasets; while, the elephant regions
contain 2–5 times more information. This means that elephant regions gain

Fig. 7   Speedup of PARamrfinder over amrfinder (optimized) using three load balancing algorithms, 10
and 1000 maximum iterations, the different datasets and eight nodes of the cluster (256 cores)

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

even more relevance and become the bottleneck of the execution if not treated
carefully. However, the dynamic algorithm is able to overcome these factors and
still achieves high speedup values. Therefore, this will be the algorithm included
in the final version of the parallel tool, and the one used in the scalability
experiments presented in the next section.

5.4 � Scalability of PARamrfinder

The scalability test started by analyzing performance within one node, using
one process per CPU and 2, 4, 8 and 16 cores per process (32 cores in total).
This two-processes per node configuration was chosen because it is the one that
provides the best performance in one node, as it improves memory bandwidth as
well as locality, and will be maintained when increasing the number of nodes.
Figure 8 shows the speedups obtained by PARamrfinder when using 10 and
1000 maximum iterations to fit the statistical models, all the datasets available,
the dynamic distribution and a varying number of cores within one node. The
baseline is again the execution time of the original tool with the sequential
optimization.

It can be seen that PARamrfinder scales well with the number of cores,
maintaining superlinear speedups when filling a node for datasets ERS2586503

Fig. 8   Speedup of PARamrfinder over amrfinder optimized using 10 and 1000 maximum iterations for
the different datasets varying the number of cores in a single node

Fig. 9   Speedup of PARamrfinder using 10 and 1000 maximum iterations for the different datasets
varying the number of nodes. The baseline is the execution time of PARamrfinder on a whole node

	 A. Fernández‑Fraga et al.

1 3

and ERS4575883 for 1000 maximum iterations. It can also be noted that the
speedups obtained by the tool are much higher when using 1000 maximum
iterations than when using 10 maximum iterations, which implies that the tool
performs better for heavy workloads. This is because the tool’s pre-processing
and post-processing phases gain relevance when the workload is smaller, and they
do not scale as well as the identification phase with the dynamic distribution. In
addition, the execution time of the tool for 10 maximum iterations gets reduced
to less than two minutes for most of the datasets, so small overheads also gain
relevance in these reduced runtimes.

Figure 9 shows the speedups obtained by PARamrfinder when using 10 and 1000
maximum iterations to fit the statistical models, the dynamic distribution, all the
datasets available and 1, 2, 4 and 8 nodes. The baseline is the execution time of the
parallel tool in one node. These results prove that PARamrfinder scales well with the
number of nodes, and that its scalability is consistent for all the datasets.

Most of parallel bioinformatics applications only implement a multithreaded par-
allelization. If their users have access to a cluster, they can launch multiple jobs,
one per node, and each job focused on analyzing a different dataset. This way they
would have several nodes of the cluster working at the same time. The difference
between this approach and a tool as PARarmfinder is that our tool, thanks to the
MPI processes, can use all the nodes to collaborate on the analysis of the same data-
set. To further justify the impact of MPI in the performance of the tool, it has been
compared to the previously explained approach: an scenario with four different jobs
executed simultaneously on different nodes, each one over a different dataset and
exploiting the whole node thanks to the OpenMP implementation and Hyperthread-
ing. The wall time of that experiment has then been compared against executing
PARamrfinder using four nodes on the four datasets, one after another. The results
can be extracted from fourth and fifth columns of Table 4, which shows the execu-
tion times of each dataset in both scenarios. For the OpenMP-only scenario the total
execution time is the runtime of the biggest dataset (16,408 s). On the other hand,
the execution time of the MPI+OpenMP version of the tool is the addition of the
runtimes of each of the datasets (5,787 s). That is, the hybrid version of PARam-
rfinder is 2.84 times faster than the OpenMP-only execution in this scenario.

These experimental results prove that PARamrfinder can be useful for scientists
in order to dramatically reduce the runtime needed to identify AMRs. Table 4
provides a summary of this runtime reduction when using 1000 maximum iterations

Table 4   Execution times
(in seconds) of amrfinder
and PARamrfinder using
different resources for 1000
maximum iterations to fit
the statistical models. Every
execution of PARamrfinder uses
Hyperthreading with two logical
threads per core

Dataset amrfinder PARamrfinder

1 core 1 core 32 cores 128 cores 256 cores

(1 node) (4 nodes) (8 nodes)

ERS2586503 123,887 51,474 1542 404 202
ERS4575883 – 136,364 3901 980 509
ERS7819375 38,779 20,261 728 185 94
ERS208315 – – 16,408 4218 2089

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

to fit the statistical models. It shows that PARamrfinder is faster than the original
amrfinder even when using the same hardware (one core) due to two reasons. On
the one hand, PARamrfinder can take advantage of Hyperthreading on that core by
launching two logical threads. On the other hand, the ComputeAndStore technique
presented in Sect. 4.1 reduces the execution time almost to half in every situation.
Furthermore, the new parallel tool allows the completion of analyses that were not
possible with the original tool. For instance, amrfinder was not able to work over
the ERS4575883 and ERS208315 datasets in the maximum of three days allowed
by the cluster. Nevertheless, PARamrfinder finishes these analyses in less than 9 and
45 min, respectively, using eight nodes. Finally, PARamrfinder is highly flexible and
has been focused on maintaining high performance in every dataset, no matter how
initially unbalanced it is.

5.5 � PARamrfinder memory requirements

In addition to the performance evaluation, the memory usage of PARamrfinder has
been analyzed, as it can be a critical factor in the execution of bioinformatics and
high performance applications. The memory consumption of the tool using eight
nodes and two processes per node has been measured and compared to the mem-
ory consumption of the original tool during the different stages of the execution. So
the maximum memory requirements of the tool is the memory consumption of the
phase with the highest memory usage (not the accumulation of all the memories, as
after each phase, the main memory buffers are freed).

Table 5 shows the memory consumption of amrfinder and PARamrfinder during
the different execution stages for the four datasets. Results for PARamrfinder indi-
cate the maximum memory consumption per process for each phase. For the original
tool, the pre-processing and processing phases are overlapped, as it pre-processes

Table 5   Memory consumption
(in GBs) for the pre-processing,
processing and post-processing
phases of PARamrfinder
compared with amrfinder 

Results for PARamrfinder indicate the maximum memory consump-
tion per process for each phase

Dataset Phase amrfinder PARamrfinder

ERS2586503 Pre-proc 0.51 0.32
Proc 0.49
Post-proc 3.0 3.0

ERS4575883 Pre-proc 0.75 0.69
Proc 0.49
Post-proc 2.7 2.7

ERS7819375 Pre-proc 0.59 0.59
Proc 1.63
Post-proc 2.6 2.6

ERS208315 Pre-proc 3.48 3.52
Proc 2.26
Post-proc 3.1 3.1

	 A. Fernández‑Fraga et al.

1 3

and then processes one chromosome at a time. Because of this only one memory
consumption value is shown for these two phases. During these phases amrfinder
mainly uses memory to store the epiread file and the resulting AMRs for each chro-
mosome. That is, the memory requirements of the tool are directly proportional to
the number of reads for a chromosome in the epiread file and the number of CpG
positions in that chromosome (positions the window has to scan per AMR). Some-
thing similar happens with PARamrfinder during the pre-processing phase, except
for a pair of differences. First, a raw block of the input file is brought to memory
by each process, which means a memory overhead. Second, a chromosome is not
needed to be fully processed by one process, so it can be split among several pro-
cesses, potentially reducing the memory requirements. Regarding the processing
phase of PARamrfinder, the main memory consumption is only on the root process,
which keeps a buffer with all the regions of all the chromosomes that have to be
processed and another to store the results. However, only a small part (a few MB at
most) of the epiread file is brought to memory by each process, so the memory over-
head is reduced during this phase. Finally, note that on both tools these buffers are
freed, keeping only the identified AMRs for the post-processing phase. During this
phase the results have to be mapped to the reference genome, so the FASTA files
have to be read. The memory consumption of amrfinder and each process of PARa-
mrfinder is equal, as both tools bring all the FASTA files to memory at some point.

These results show that, for small and medium datasets, the memory bottleneck
of PARamrfinder is the post-processing phase, which is the same as the original tool.
However, as the size of the epiread file increases, the memory bottleneck of PARa-
mrfinder becomes the pre-processing phase, as holding the reads in memory leads
to a bigger requirement than storing the reference genome. Anyway, in all scenarios
the maximum memory requirements per process of PARamrfinder are equal or just
slightly higher than those of the original tool.

6 � Conclusions

Nowadays, one interesting goal in DNA methylation studies consists in detecting
AMRs under different biological conditions, which can help to understand the func-
tion of genomic imprinting. However, these analyses may take a huge time for large
or even medium size datasets. In this work we have presented PARamrfinder, a par-
allel application that obtains the same biological results as the popular amrfinder
tool, but at significantly reduced runtime thanks to exploiting the hardware of mod-
ern multicore clusters.

PARamrfinder is based on a hybrid MPI/OpenMP parallel implementation, which
brings significant benefits, such as the capability to use Hyperthreading, efficient
memory management and fewer required synchronizations among processing
elements. The parallel tool is able to obtain great scalability thanks to its dynamic
workload balance both at the process and the thread levels. In addition, the dynamic
distribution at the process level has been implemented with a minimum overhead

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

as it uses MPI RMA operations to reduce the impact of communications and
synchronizations.

The experimental evaluation was performed on a cluster with eight nodes, each
one with 32 CPU cores (a total of 256 cores), using four representative datasets
with real biological data and different characteristics. PARamrfinder is faster than
amrfinder in all scenarios, even using the same hardware resources (one core). Its
impact is more remarkable for a large number of resources, being able to reduce an
execution from several days (more than 72 h) to less than nine minutes.

As future work we plan to apply similar parallel approaches to other stages of the
MethPipe pipeline, so that the different stages could be integrated in order to exploit
altogether the resources of a multicore cluster.

Acknowledgements  This study makes use of data generated by the Blueprint Consortium, the consortium
of researchers that was funded by the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 282510 BLUEPRINT.

Author Contributions  Conceptualization contributed by JGD, MJM; methodology contributed by AFF;
formal analysis and investigation contributed by AFF; writing—original draft preparation contributed by
AFF; writing—review and editing contributed by JGD, MJM; supervision contributed by JGD, MJM;
funding acquisition contributed by MJM.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work was supported by the Ministry of Science and Innovation of Spain (PID2019-104184RB-
I00 and PID2022-136435NB-I00 / AEI / 10.13039/501100011033), PID2022 also funded by “ERDF
A way of making Europe”. It was also supported by the Ministry of Universities of Spain under grant
FPU21/03408, and by Xunta de Galicia and FEDER funds (Centro de Investigación de Galicia accredita-
tion 2019–2022 and Consolidation Program of Competitive Reference Groups, under Grants ED431G
2019/01 and ED431C 2021/30, respectively).

Availability of data and materials  The datasets ERS2586503, ERS4575883 and ERS7819375 used in this
study are available in the National Center for Biotechnology Information (NCBI) SRA repository (https://​
www.​ncbi.​nlm.​nih.​gov/​sra/?​term=​ERS25​86503+​AND+​Illum​ina+​HiSeq+​4000%​5BTit​le%​5D, https://​
www.​ncbi.​nlm.​nih.​gov/​sra/?​term=​ERS45​75883 and https://​www.​ncbi.​nlm.​nih.​gov/​sra/?​term=​ERS78​
19375, respectively).), while the dataset ERS208315 has been provided by the Blueprint Consortium
under request.

Declarations 

Conflict of interest  The authors declare that they have no competing interests.

Ethics approval  Not applicable.

Consent for publication  The authors have gone through the publication policies and have submitted the
manuscript accordingly.

Code availability  The source code of the PARamrfinder tool is available at https://​github.​com/​UDC-​GAC/​
PARam​rfind​er.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended

https://www.ncbi.nlm.nih.gov/sra/?term=ERS2586503+AND+Illumina+HiSeq+4000%5BTitle%5D
https://www.ncbi.nlm.nih.gov/sra/?term=ERS2586503+AND+Illumina+HiSeq+4000%5BTitle%5D
https://www.ncbi.nlm.nih.gov/sra/?term=ERS4575883
https://www.ncbi.nlm.nih.gov/sra/?term=ERS4575883
https://www.ncbi.nlm.nih.gov/sra/?term=ERS7819375
https://www.ncbi.nlm.nih.gov/sra/?term=ERS7819375
https://github.com/UDC-GAC/PARamrfinder
https://github.com/UDC-GAC/PARamrfinder

	 A. Fernández‑Fraga et al.

1 3

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M (1989) Genetic imprinting suggested by
maternal heterodisomy in non-deletion Prader–Willi syndrome. Nature 342(6247):281–285

	 2.	 Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic
imprinting and neurodevelopmental phenotypes. Trends Neurosci 34(6):293–303

	 3.	 Weksberg R, Smith AC, Squire J, Sadowski P (2003) Beckwith–Wiedemann syndrome demonstrates
a role for epigenetic control of normal development. Human Mol Genet 12(suppl_1):61–68

	 4.	 Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD (2012) Genomic landscape of human
allele-specific DNA methylation. Proc Natl Acad Sci 109(19):7332–7337. https://​doi.​org/​10.​1073/​
pnas.​12013​10109

	 5.	 Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013)
A reference methylome database and analysis pipeline to facilitate integrative and comparative
epigenomics. PLoS ONE 8(12):81148

	 6.	 Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, Kikuchi H, Yoshida H, Tanaka
A, Suyama M, Arima T (2014) Genome-wide analysis of DNA methylation dynamics during early
human development. PLoS Genet 10(12):1–12. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10048​68

	 7.	 Do C, Shearer A, Suzuki M, Terry MB, Gelernter J, Greally JM, Tycko B (2017) Genetic-epigenetic
interactions in cis: a major focus in the post-GWAS era. Genome Biol. https://​doi.​org/​10.​1186/​
s13059-​017-​1250-y

	 8.	 Onuchic V, Lurie E, Carrero I, Pawliczek P, Patel RY, Rozowsky J, Galeev T, Huang Z, Altshuler
RC, Zhang Z, Harris RA, Coarfa C, Ashmore L, Bertol JW, Fakhouri WD, Yu F, Kellis M, Gerstein
M, Milosavljevic A (2018) Allele-specific epigenome maps reveal sequence-dependent stochastic
switching at regulatory loci. Science 361(6409):3146. https://​doi.​org/​10.​1126/​scien​ce.​aar31​46

	 9.	 Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F (2023) Comparative analysis reveals epigenomic
evolution related to species traits and genomic imprinting in mammals. Innovation 4(3)

	10.	 Marshall H, Jones AR, Lonsdale ZN, Mallon EB (2020) Bumblebee workers show differences in
allele-specific DNA methylation and allele-specific expression. Genome Biol Evol 12(8):1471–1481

	11.	 Benton MC, Lea RA, Macartney-Coxson D, Sutherland HG, White N, Kennedy D, Mengersen
K, Haupt LM, Griffiths LR (2019) Genome-wide allele-specific methylation is enriched at gene
regulatory regions in a multi-generation pedigree from the Norfolk Island isolate. Epigenetics
Chromatin 12(1):1–10

	12.	 Message Passing Interface Forum (2021) MPI: A Message-Passing Interface Standard Version 4.0.
https://​www.​mpi-​forum.​org/​docs/​mpi-4.​0/​mpi40-​report.​pdf

	13.	 Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.
IEEE Comput Sci Eng 5(1):46–55

	14.	 Reyes-Ortiz JL, Oneto L, Anguita D (2015) Big data analytics in the cloud: Spark on hadoop vs
mpi/openmp on beowulf. Procedia Comput Sci 53:121–130

	15.	 Tycko B (2010) Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet 19(R2):210–
220. https://​doi.​org/​10.​1093/​hmg/​ddq376

	16.	 Zhang Y, Rohde C, Reinhardt R, Voelcker-Rehage C, Jeltsch A (2009) Non-imprinted allele-specific
DNA methylation on human autosomes. Genome Biol 10:1–11

	17.	 Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graef S, Johnson N, Herrero J,
Tomazou EM et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA
methylome analysis. Nat Biotechnol 26(7):779–785

	18.	 Zhou Q, Guan P, Zhu Z, Cheng S, Zhou C, Wang H, Xu Q, Sung W-K, Li G (2021) ASMdb: a
comprehensive database for allele-specific DNA methylation in diverse organisms. Nucleic Acids
Res 50(D1):60–71. https://​doi.​org/​10.​1093/​nar/​gkab9​37

	19.	 Liu Y, Siegmund KD, Laird PW, Berman BP (2012) Bis-SNP: combined DNA methylation and
SNP calling for Bisulfite-seq data. Genome Biol 13(7):1–14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.1201310109
https://doi.org/10.1073/pnas.1201310109
https://doi.org/10.1371/journal.pgen.1004868
https://doi.org/10.1186/s13059-017-1250-y
https://doi.org/10.1186/s13059-017-1250-y
https://doi.org/10.1126/science.aar3146
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1093/hmg/ddq376
https://doi.org/10.1093/nar/gkab937

1 3

PARamrfinder: detecting allele‑specific DNA methylation…

	20.	 Andergassen D, Dotter CP, Kulinski TM, Guenzl PM, Bammer PC, Barlow DP, Pauler FM, Hudson
QJ (2015) Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput
sequencing data. Nucleic Acids Res 43(21):146. https://​doi.​org/​10.​1093/​nar/​gkv727

	21.	 Guo W, Zhu P, Pellegrini M, Zhang MQ, Wang X, Ni Z (2017) CGmapTools improves the precision
of heterozygous SNV calls and supports allele-specific methylation detection and visualization in
bisulfite-sequencing data. Bioinformatics 34(3):381–387. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btx595

	22.	 Orjuela S, Machlab D, Menigatti M, Marra G, Robinson MD (2020) DAMEfinder: a method to
detect differential allele-specific methylation. Epigenet Chromatin 13(1):1–19

	23.	 Minh BQ, Vinh LS, Von Haeseler A, Schmidt HA (2005) pIQPNNI: parallel reconstruction of large
maximum likelihood phylogenies. Bioinformatics 21(19):3794–3796

	24.	 Gonzalez-Dominguez J, Martin MJ (2017) MPIGeneNet: parallel calculation of gene co-expression
networks on multicore clusters. IEEE/ACM Trans Comput Biol Bioinf 15(5):1732–1737

	25.	 Li K-B (2003) ClustalW-MPI: ClustalW analysis using distributed and parallel computing.
Bioinformatics 19(12):1585–1586

	26.	 Parker HR, Orjuela S, Martinho Oliveira A, Cereatti F, Sauter M, Heinrich H, Tanzi G, Weber
A, Komminoth P, Vavricka S et al (2018) The proto CpG island methylator phenotype of sessile
serrated adenomas/polyps. Epigenetics 13(10–11):1088–1105

	27.	 Sönmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L, Schübeler D, Benes V, Molina
N, Krebs AR (2021) Molecular co-occupancy identifies transcription factor binding cooperativity
in vivo. Mol Cell 81(2):255–267

	28.	 Radic Shechter K, Kafkia E, Zirngibl K, Gawrzak S, Alladin A, Machado D, Lüchtenborg C, Sévin
DC, Brügger B, Patil KR et al (2021) Metabolic memory underlying minimal residual disease in
breast cancer. Mol Syst Biol 17(10):10141

	29.	 Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res
38(6):1767–1771

	30.	 Sena Brandine G, Smith AD (2021) Fast and memory-efficient mapping of short bisulfite
sequencing reads using a two-letter alphabet. NAR Genom Bioinform 3(4):115

	31.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
Subgroup GPDP (2009) The sequence alignment/Map format and SAMtools. Bioinformatics
25(16):2078–2079. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btp352

	32.	 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T (2021)
McCarthy, S.A., Davies, R.M., Li, H.: Twelve years of SAMtools and BCFtools. GigaScience
10(2).https://​doi.​org/​10.​1093/​gigas​cience/​giab0​08

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1093/nar/gkv727
https://doi.org/10.1093/bioinformatics/btx595
https://doi.org/10.1093/bioinformatics/btx595
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/gigascience/giab008

	PARamrfinder: detecting allele-specific DNA methylation on multicore clusters
	Abstract
	1 Introduction
	2 Related work
	3 Background: amrfinder
	4 Implementation
	4.1 Sequential optimization of the statistical models
	4.2 Load balancing issues
	4.3 Parallel implementation of the identification phase
	4.3.1 Pure block distribution
	4.3.2 Cost-based block distribution
	4.3.3 Dynamic distribution

	4.4 Parallel input
	4.5 Parallel post-processing
	4.6 Parallel implementation overview

	5 Experimental evaluation
	5.1 Experiments with the sequential tool
	5.2 Evaluation of the parallel IO optimizations
	5.3 Evaluation of the load balancing algorithms
	5.4 Scalability of PARamrfinder
	5.5 PARamrfinder memory requirements

	6 Conclusions
	Acknowledgements
	References

