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Nonparametric Conditional Risk Mapping
Under Heteroscedasticity

Rubén Fernández-Casal , Sergio Castillo-Páez , and
Mario Francisco-Fernández

Anonparametric procedure to estimate the conditional probability that a nonstationary
geostatistical process exceeds a certain threshold value is proposed. The method consists
of a bootstrap algorithm that combines conditional simulation techniques with nonpara-
metric estimations of the trend and the variability. The nonparametric local linear esti-
mator, considering a bandwidth matrix selected by a method that takes the spatial depen-
dence into account, is used to estimate the trend. The variability is modeled estimating
the conditional variance and the variogram from corrected residuals to avoid the biasses.
The proposed method allows to obtain estimates of the conditional exceedance risk in
non-observed spatial locations. The performance of the approach is analyzed by simu-
lation and illustrated with the application to a real data set of precipitations in the USA.
Supplementary materials accompanying this paper appear on-line.

Key Words: Bootstrap; Conditional simulation; Local linear estimation; Bias correc-
tion.

1. INTRODUCTION

Risk maps containing the probabilities that a certain variable of interest exceeds a given
threshold or permissible value in an area of study are usually employed by environmental
agencies to control different pollution levels (in soil, air or water) or to alert population
of possible natural disasters (earthquakes, floods, etc.). The estimation of these exceeding
probabilities using simple and reliable statisticalmethods is, therefore, an important practical
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Figure 1. Spatial locations and observed values of the total precipitations (square-root of rainfall inches) during
March 2016 recorded over 1053 locations on the continental part of USA .

issue. The resulting estimatedmaps can help governments to make decisions and to organize
prevention policies in the near future.

In this paper, we develop a nonparametric methodology to produce risk maps and apply it
to a data set containing the total precipitations (square-root of rainfall inches) during March
2016 recorded over 1053 locations on the continental part of the USA. (Fig. 1 contains the
observed values). The goal is to estimate the conditional probability of occurring a total
precipitation larger than or equal to a threshold value, which could have a direct application
in agriculture or in flood prevention, for example.

Different geostatistical techniques have usually been employed to approximate exceeding
probabilities. These methods include traditional approaches, such as the indicator kriging
(IK) (e.g., Goovaerts et al. 1997) or the disjunctive kriging (DK) (e.g., Webster and Oliver
1989), ormore recent procedures, such us those based on analysis of compositional data (e.g.,
Tolosana-Delgado et al. 2008). The IK consists in the application of the ordinary kriging
linear predictor to indicator functions of the data. Although it is perhaps the most popular
approach in this context, it has some drawbacks. First, the discretization of the data can
lead to a loss of information. On the other hand, the estimated probabilities could be greater
than one or negative. Moreover, it could present order-relation problems (see, e.g., Chilès
and Delfiner 2012, Sect. 6.3.3). Some of these issues can be avoided with the use of the so-
called simplicial indicator kriging (Tolosana-Delgado et al. 2008). This method employs a
simplex approach for compositional data to estimate the conditional cumulative distribution
function. Another alternative to the IK is the DK, a nonlinear estimation technique which
usually assumes a Gaussian isofactorial model for the geostatistical process. However, there
is no empirical evidence to recommend the DK in preference to the IK, or the opposite (Lark
and Ferguson 2004).

The approaches previously described usually suppose stationarity and a parametric
model. Therefore, if the assumed model is not appropriate, the conclusions drawn may
be unreliable or even wrong. To avoid these problems, alternatively, nonparametric tech-
niques could be used. For instance, García-Soidán andMenezes (2017) proposed two kernel-
based estimators to approximate the local distribution under homoscedasticity. In this line,
Fernández-Casal et al. (2018) proposed an unconditional bootstrap method to estimate the
spatial risk, without assuming any parametric form for the trend function nor for the depen-
dence structure of the process. They consider a homoscedastic model and used local linear
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estimates of the trend and the variogram, jointly with a procedure to correct the bias intro-
duced by the direct use of the residuals in the variogram estimation. On the other hand, this
nonparametric procedure was extended to a heteroscedastic context in Castillo-Páez et al.
(2020). In both cases, although the use of nonparametric methods avoids misspecification
problems, they focus on the estimation of the unconditional probability that the variable
under study exceeds a threshold. Note that, as the replicas obtained by unconditional simu-
lation will not necessarily match the observed sample values (see, e.g., Chilès and Delfiner
2012, Chapter 7), a direct comparison of these procedures with the ones described in the
previous paragraph is not entirely appropriate, since they aim at the estimation of conditional
exceeding probabilities.

In the present work, we propose a bootstrap method to estimate threshold exceeding
conditional probabilities under heteroscedasticity of the spatial process. This approach uses
the unconditional bootstrap method introduced in Castillo-Páez et al. (2020) as part of
its implementation. The new procedure generates conditional replicates matching up the
observed values at the sampled locations. The conditionalization of simulations is equivalent
to choose among all possible unconditional simulations of the spatial process, those that
coincide with the values obtained at the observation locations (Journel 1974).

The remainder of the paper is organized as follows. InSect. 2, the spatialmodel considered
in this research is presented.Additionally, the nonparametric estimators for themean or trend
function, the variance and the variogram employed in the conditional bootstrap method are
introduced. In Sect. 3, the bootstrap algorithm to estimate the conditional risk is described
(specifically, in Sect. 3.2). In this procedure, a slight modification of the bootstrap method
proposed in Castillo-Páez et al. (2020) to approximate the unconditional risk (also discussed
in Sect. 3.1) is used. A simulation study for assessing the performance of the new approach,
considering stationary and nonstationary processes, under regular and non-regular sampling
designs, is provided in Sect. 4. Section5 discusses the application of the methods to the
precipitation data introduced above. Finally, Sect. 6 contains some conclusions and finals
remarks.

2. NONPARAMETRIC MODELING

Suppose that
{
Y (x), x ∈ D ⊂ R

d
}
is a spatial heteroscedastic process which can be

modeled as follows:

Y (x) = μ(x) + σ(x)ε(x), (1)

whereμ(·) and σ 2(·) are the trend and variance functions, and ε(·) is a second-order station-
ary process with zero mean, unit variance and correlogram ρ(u) = Cov [ε(x), ε(x + u)],
for x and x + u ∈ D. No specific forms will be assumed for μ(·), σ 2(·) and ρ(·), although
they should be smooth functions to be consistently estimated.

The goal is to estimate nonparametrically the conditional probability

rc(xeα,Y) = P
[
Y (xeα) ≥ c | Y]

, (2)
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where Y = [Y (x1), . . . ,Y (xn)]t are observed values of the process at certain sample loca-
tions, c is a threshold (critical) value, and

{
xeα

}n0
α=1 is a set of unobserved estimation locations.

It must be taken into account that the spatial dependence of the process Y depends on the
variance and the correlogram of ε. For instance, the covariance matrix of the observations
Y can be expressed as:

� = DRD,

whereD = diag [σ(x1), . . . , σ (xn)] andR is the correlation matrix of the (unknown) errors
ε = [ε(x1), . . . , ε(xn)]t . The latter matrix is usually estimated from the semivariogram
γ (u) = 1

2Var [ε (x) − ε (x + u)] = 1 − ρ(u)

The first step in the proposed approach consists in the nonparametric estimation of
the trend, the variance and the dependence of the spatial process. Different nonparamet-
ric approaches have been used for the estimation of the model components, including kernel
methods, splines or wavelets techniques. For instance, a comprehensive revision of trend
estimation approaches can be found in Opsomer et al. (2001). In that paper, the authors
focus on the framework of regression models with correlated homoscedastic errors. Non-
parametric methods for the estimation of the functional variance have mainly based on the
approximation of themean of the squared residuals (see e.g., Fan andYao 1998, for the inde-
pendent case). In this line and among the available literature, we may highlight the works
of Ruppert et al. (1997), who proposed a degrees-of-freedom correction of the bias due to
the preliminary estimation of the trend with uncorrelated errors, and Vilar-Fernández and
Francisco-Fernández (2006), who studied the properties of the squared residual estimator
for one-dimensional correlated data. In the present paper, assuming model (1), a similar
procedure to that proposed in Fernández-Casal et al. (2017) is used to nonparametrically
estimate the model components.

To estimate the trend μ(·), we consider a kernel-based method called the local linear
estimator. This approach has shown a very good performance from a theoretical and a
practical point of view (e.g., Fan and Gijbels 1996). In the spatial framework, given a
sample {[xi , Y (xi )]}ni=1, the local linear estimator of μ(x) is given by:

μ̂H(x) = et1
(
Xt
xWxXx

)−1 Xt
xWxY ≡ stx,HY, (3)

where e1 is a vector with 1 in the first entry and all other entries 0, Xx is a matrix whose
i-th row is [1, (xi − x)t ], Wx = diag [KH(x1 − x), . . . , KH(xn − x)], with KH(u) =
|H|−1 K (H−1u), being K a multivariate kernel function, and H is a d × d nonsingular
symmetricmatrix called thebandwidthmatrix.Note that μ̂H(x) is a linear smoother, since the
estimated values at the sample locations can be expressed as μ̂ = [

μ̂H(x1), . . . , μ̂H(xn)
]t =

SHY, being SH the smoothing matrix whose i-th row is equal to stxi ,H (the smoother vector
for x = xi ).

On the other hand, the usual nonparametric procedure for estimation of the small-scale
structure of the process is carried out from the residuals r = (r1, . . . , rn)t = Y − SHY. A
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variance estimate is obtained by linear smoothing the squared residuals {[xi , r2i ]}ni=1,

σ̂ 2
r,H2

(x) = stx,H2
r2, (4)

where r2 = (
r21 , . . . , r2n

)t
and H2 is the corresponding bandwidth matrix. Likewise, a

(pilot) residual semivariogram estimate γ̂ε̂(·) is obtained by linear smoothing the sample
semivariances

{(
||xi − x j ||,

[
ε̂(xi ) − ε̂(x j )

]2) : 1 ≤ i < j ≤ n
}

(5)

of the (estimated) standardized residuals ε̂ = [ε̂(x1), . . . , ε̂(xn)]t = D̂−1
0 r, being D̂0 =

diag
[
σ̂r,H2(x1), . . . , σ̂r,H2(xn)

]
. In this case, assuming isotropy for simplicity, it would

only be necessary to consider a scalar bandwidth parameter h3.
Bandwidth parameters play an important role in the performance of the previous local

linear estimators, since they control the shape and the size of the local neighborhoods used
to obtain the corresponding estimates, determining their smoothness. When the data are
spatially correlated, as it is assumed in the present paper, we recommend the use of the
“bias corrected and estimated” generalized cross-validation (CGCV) criterion, proposed in
Francisco-Fernández and Opsomer (2005), to select the matricesH andH2, by minimizing

CGCV(H) = 1

n

n∑

i=1

⎡

⎣Y (xi ) − μ̂H(xi )

1 − 1
n tr

(
SHR̂

)

⎤

⎦

2

and

CGCV(H2) = 1

n

n∑

i=1

⎡

⎣
r2i − σ̂ 2

r,H2
(xi )

1 − 1
n tr

(
SH2R̂r2

)

⎤

⎦

2

,

respectively, where tr(A) stands for the trace of a square matrix A, and R̂ and R̂r2 are esti-
mates of the correlation matrices of the observations and of the squared residuals, respec-
tively. A simpler approximation of the covariance matrix of the squared residuals �r2 can
be obtained under the assumptions of normality and zero mean for the residuals. In that
case,

�r2 = 2�r � �r,

where � represents the Hadamard product and �r = Var(r) (Ruppert et al. 1997). Finally,
the bandwidth parameter h3 for the computation of the residual semivariogram estimate
γ̂ε̂(·) can be selected as the minimizer of the cross-validation relative squared error

n−1∑

i=1

n∑

j=i+1

[ (
ε̂(xi ) − ε̂(x j )

)2

2γ̂ −(i, j)
ε̂

(||xi − x j ||
) − 1

]2

,
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where γ̂
−(i, j)
ε̂

is the estimate obtained when excluding the pair (i, j) in (5).
Nevertheless, it is well known that estimates based on direct use of residuals underesti-

mate the variability of the spatial process:

�r = � + SH�StH − �StH − SH�

(see, e.g., Cressie 1993, Sect. 3.4.3, for the linear case under homoscedasticity). Equiva-
lently,

Var (ri ) = σ 2(xi ) (1 + bii ) ,

Var
[
ri/σ(xi ) − r j/σ(x j )

] = Var
[
ε(xi ) − ε(x j )

] + bii + b j j − 2bi j ,

where bi j is the (i, j)-th element of

B = D−1 (
SH�StH − �StH − SH�

)
D−1,

a square matrix representing the bias due to the direct use of the residuals. As it may
have a significant impact on risk assessment, a slight modification of the iterative procedure
proposed in Castillo-Páez et al. (2020) is used to obtain approximately unbiased estimates of
the variance σ 2(·) and the error variogram γ (·). Startingwith the residual estimates, σ̂ 2

r,H2
(x)

and γ̂ε̂(·). At each iteration, the biasmatrixB is approximated by B̂ = D̂−1(SH�̂StH−�̂StH−
SH�̂)D̂−1. Then, an updated estimate σ̂ 2(·) is computed by replacing r2i by r2i /(1+ b̂i i ) in

(4), and a “corrected” γ̂ (·) is derived by substituting [
ε̂(xi ) − ε̂(x j )

]2 for
[
ε̂(xi ) − ε̂(x j )

]2−
b̂i i − b̂ j j + 2b̂i j in (5).

Note that the pilot local linear variogram estimates, γ̂ε̂(·) and γ̂ (·), obtained with the
above procedure are not necessarily conditionally negative definite functions and cannot be
directly used for prediction or simulation. Valid variogram estimates are obtained by fitting
“nonparametric” isotropic Shapiro–Botha models (Shapiro and Botha 1991) to the pilot
estimates (see e.g., Fernández-Casal et al. 2017, Sect. 4, for a description of this algorithm),
which will be denoted by γ̄ε̂(·) and γ̄ (·), respectively.

3. UNCONDITIONAL AND CONDITIONAL BOOTSTRAP
ALGORITHMS

In this section, the bootstrap algorithm to estimate the conditional risk under heteroscedas-
ticity is presented. Thismethod is based on a general conditional simulationmethod combin-
ing unconditional simulations with kriging predictions (see, e.g., Chilès and Delfiner 2012,
Sect. 7.3.1). In a first step, the bootstrap algorithm studied in Castillo-Páez et al. (2020),
and described below, is used to generate the unconditional replicas.

3.1. UNCONDITIONAL BOOTSTRAP ALGORITHM

The present bootstrap algorithm is used to generate unconditional replicates Y ∗
NS(x

e
α) at

the different estimation locations
{
xeα : α = 1, . . . , n0

}
, following these steps:
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1. Using the procedure described in the previous section:

(a) Obtain μ̂H(·), the corresponding residuals r, the initial σ̂ 2
r,H2

(x) andfinal σ̂ 2(·)
variance estimates, as well as the initial γ̄ε̂(·) and final γ̄ (·) semivariogram
estimates.

(b) Construct the matrix R̂0 from the residual variogram γ̄ε̂(·) and obtain the
Cholesky decomposition R̂0 = L0Lt

0.

(c) Compute R̂α corresponding to xeα using γ̄ (·), and Lα such that R̂α = LαLt
α .

(d) Construct the “uncorrelated” errors e = L−1
0 D̂−1

0 r and standardize them.

2. Generate the unconditional bootstrap replicas as follows:

(a) Obtain independent bootstrap residuals of size n0 from e, denoted by e∗.

(b) Compute the unconditional bootstrap residuals ε∗
NC = Lαe∗.

(c) ) Construct the unconditional bootstrap replicas

Y ∗
NC (xeα) = μ̂H(xeα) + σ̂ (xeα)ε∗

NC (xeα), α = 1, . . . , n0,

being ε∗
NC (xeα) the α-th component of the vector ε∗

NC .

The previous algorithm produces bootstrap replicas that have their mean and variance–
covariance matrix equal to the corresponding estimates of the spatial process Y (·) (see, e.g.,
Cressie 1993, Sect. 3.6.1). However, as these replicas mimic an unconditional realization of
the process and their values at the observation positions are random, theywill not necessarily
match the observed values Y at the sample positions (for more details, see e.g., Chilès
and Delfiner 2012, Chapter 7 ). Therefore, this algorithm is appropriate for estimating
the unconditional risk, P

[
Y (xeα) ≥ c

]
, but should not be used for the estimation of the

conditional risk (2), unless it is modified properly, for example, as shown below.

3.2. CONDITIONAL BOOTSTRAP ALGORITHM

Next, the proposed bootstrap algorithm to estimate the conditional risk (2) is described.
The procedure uses unconditional replicas generated with the previous algorithm, although
it would not be necessary to obtain replicas of the whole process (Step 2-c above), only of
the heteroscedastic errors

δ∗
NC (xeα) = σ̂ (xeα)ε∗

NC (xeα).

First of all, we will describe the principle of conditional simulation from a theoretical
point of view. For this, wewould have to assume that the components ofmodel (1) (the trend,
the variance and the variogram) are known, and the true errors ε = [ε(x1), . . . , ε(xn)]t are
observed. Obviously, these assumptions are unrealistic in a practical situation. In fact, as
described below, the theoretical components will be replaced by their estimates when using
these ideas in the bootstrap method. The conditional simulation of the error at a location xeα
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(see, e.g., Journel 1974) is based on the trivial decomposition

δ(xeα) = δ̂(xeα) +
[
δ(xeα) − δ̂(xeα)

]
, (6)

where δ̂(xeα) is the simple kriging prediction at xeα computed from δ = [σ(x1)ε(x1), . . . ,
σ (xn)ε(xn)]t . The idea is to substitute the unknown kriging error (the second term on
the right-hand side of (6)) by a simulation of this error, obtained from an unconditional
simulation δNC (x) of the error process. Then, a conditional simulation of this error is:

δCS(xeα) = δ̂(xeα) +
[
δNC (xeα) − δ̂NC (xeα)

]
, (7)

where δ̂NC (xeα) is the kriging prediction at xeα obtained from the unconditional simulations
δNC (xi ), i = 1, . . . , n, at the sample locations. Proceeding in this way, it is easy to ver-
ify that δCS(xi ) = δ(xi ) and, in the case of simple kriging, Var [δCS(x)] = σ 2(x) and
Corr[δCS(x), δCS(x + u)] = ρ(u) (see, e.g., Chilès and Delfiner 2012, Sect. 7.3.1). These
properties guarantee that the simulations reproduce the second-order structure of the spatial
process (and the complete distribution if, for instance, Gaussian errors are assumed). Note
also that the simple kriging predictor is not being used because of its properties as an optimal
linear predictor. It is simply a tool to incorporate the conditional covariances, assuming that
they are known, in the matrix computations.

In the bootstrap world, the estimates of the model components play the role of the
theoretical ones (the trend, the variance, the variogram and the true errors are known)
and the previous results can be applied. Taking this into account, the proposed bootstrap
algorithm to estimate the conditional risk is as follows:

1. Generate the unconditional bootstrap replicates at the estimation locations δ∗
NC (xeα),

α = 1, . . . , n0, as well as in the sample locations δ∗
NC (xi ), i = 1, . . . , n.

2. Using simple kriging, obtain the predictions δ̂(xeα) and δ̂∗
NC (xeα) from the observed

residuals r(xi ) and the unconditional heteroscedastic errors δ∗
NC (xi ), respectively.

3. Calculate the conditional bootstrap heteroscedastic errors

δ∗
CS(x

e
α) = δ̂(xeα) +

[
δ∗
NC (xeα) − δ̂∗

NC (xeα)
]
.

4. Construct the conditional bootstrap replicates Y ∗
CS(x

e
α) = μ̂H(xeα) + δ∗

CS(x
e
α).

5. Repeat steps 1 to 4 a large number B of times, to get Y ∗(1)
CS (xeα), . . . ,Y ∗(B)

CS (xeα).

6. Finally, estimate the conditional probability (2) by:

r̂c(xeα,Y) = 1

B

B∑

j=1

I

[
Y ∗( j)
CS (xeα) ≥ c

]
, (8)

where I(·) represents the indicator function.
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4. SIMULATION STUDIES

In this section, the heteroscedastic conditional bootstrap procedure described in the previ-
ous section is numerically analyzed considering different scenarios. The R (R Development
Core Team 2023) package npsp (Fernandez-Casal R 2023) was employed to carry out the
simulation experiments. In each case, N = 1000 samples following the model (1) were
generated on regular grids in the unit square of sizes n1 = 15 × 15, 20 × 20 and 30 × 30.
The top right diagonal sites were set as the estimation locations xeα , α = 1, . . . , n0, and the
remaining ones as the observation sample xi , i = 1, . . . , n (note that n = n1 − n0). For
example, Fig. 2a shows the estimation (triangles) and observation (circles) locations for the
case of n1 = 20 × 20.

In order to take into account the effect of the functional form of the components
of the model (1), the following theoretical trend and variance functions were consid-
ered: μ1(x1, x2) = 2.5 + sin(2πx1) + 4(x2 − 0.5)2 (nonlinear trend; see Fig. 2b),
μ2(x1, x2) = 5.8(x1 − x2 + x22 ) (polynomial trend), μ3(x1, x2) = 2 (constant trend),
σ 2
1 (x1, x2) = ( 1516 )

2[1 − (2x1 − 1)2]2[1 − (2x1 − 1)2]2 + 0.1 (nonlinear variance; see
Fig. 2c), σ 2

2 (x1, x2) = 0.5(1 + x1 + x2) (linear variance) and σ 2
3 (x1, x2) = 1 (constant

variance, i.e., homocedastic case). The random errors ε(x) were generated through a multi-
variate normal distribution with zero mean, unit variance and an isotropicMatérn variogram
model given by:

γ (u) = c0 + (1 − c0)

[
1 − 1

2ν−1
(ν)

(
3
||u||
a

)ν

Kν

(
3
||u||
a

)]
, (9)

where c0 denotes the nugget (1 − c0 is the partial sill), a is a scale parameter (proportional
to the practical range), and Kν is the second kind modified Bessel function of order ν,
being ν a smoothness parameter. In order to analyze the effect of the spatial dependence,
the following parameters have been considered: c0 = 0, 0.2, 0.4, 0.8, a = 0.3, 0.6, 0.9 and
ν = 0.25, 0.5, 1. Parameter ν determines the shape of the semivariogram at small lags. For
instance, γ (·) corresponds to an exponential model when ν = 0.5 (being a its practical
range). Figure2d shows the theoretical semivariograms corresponding to c0 = 0.2, a = 0.6
and the different values ν considered.

To apply the conditional bootstrap algorithm described in Sect. 3.2, firstly, it is necessary
to estimate the trend μ(·). For this, we employed the local linear estimator (3), with a
multiplicative triweight kernel. To avoid the bandwidth selection effect in the results, the
bandwidth HMASE minimizing the mean average squared error,

MASE(H) = 1

n
(SHμ − μ)t (SHμ − μ) + 1

n
tr(SH�StH),

where μ = [μ(x1), . . . , μ(xn)]t , was employed for trend estimation. An analogous
approachwas applied to selectH2 for the variance estimation. This also considerably reduced
the computing time, as the smoothing matrices SH and SH2 only needed to be computed
once. Note that these optimal bandwidths cannot be used in practice, since their calculations
depend on the unknown trend μ(·) and covariance matrix �. In that case, we recommend
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Figure 2. a Sample and estimation locations (circles and triangles, respectively) for n1 = 20 × 20, b theoretical
nonlinear trendμ1(x1, x2), c theoretical nonlinear variance σ 2

1 (x1, x2), and d semivariogrammodels for c0 = 0.2,
a = 0.6 and ν = 1 (dashed), ν = 0.5 (solid), ν = 0.25 (dotted line) .

the use of the CGCV criterion (described in Sect. 2) that provided very similar results to
those obtained with HMASE in some simulation experiments (but it required a much longer
computation time because, in addition to the selection of the bandwidths, the corresponding
smoothing matrices must be computed in each iteration).

Once that the trend estimate μ̂HMASE(x) is obtained, the iterative algorithm described in
Sect. 2 is employed to obtain the final variance estimates σ̂ 2(·), the residual semivariogram
γ̄ε̂(·) and its bias-corrected version γ̄ (·).

Next, at each simulation the algorithm proposed in Sect. 3 was applied with B = 1, 000
bootstrap replicas. For each α = 1, . . . , n0, the conditional probabilities rc(xeα,Y) were
estimated by r̂c(xeα,Y), given in (8), considering threshold values c = 2, 3 and 4. At each
estimation location xeα , α = 1, . . . , n0, the squared errors

[
r̂c(xeα,Y) − rc(xeα,Y)

]2 were
computed to evaluate the performance of the proposed procedure.

Note that, taking into account that the responses are normally distributed, the theoretical
probabilities rc(xeα,Y) can be obtained as:

1 − �

[
c − ŶSK (xeα)

σ̂SK (xeα)

]

,



66 R. Fernández-Casal et al.

Table 1. Mean, median and standard deviations of the squared errors (×10−2) of the conditional probability
estimates, for μ1 (nonlinear), σ 2

1 (nonlinear), c0 = 0.2, a = 0.6, and ν = 0.5

n1 = 15 × 15 n1 = 20 × 20 n1 = 30 × 30
c Mean Median SD Mean Median SD Mean Median SD

2 0.35 0.06 0.74 0.29 0.05 0.62 0.21 0.04 0.45
3 0.66 0.03 3.58 0.46 0.02 2.44 0.28 0.01 1.36
4 0.11 0.00 0.73 0.08 0.00 0.73 0.05 0.00 0.39

Figure 3. Boxplots of the theoretical (a) and estimated (b) conditional probabilities of exceeding a threshold of
c = 3 using the bootstrap method, for μ1 (nonlinear), σ 2

1 (nonlinear), n1 = 20 × 20, c0 = 0.2, a = 0.6 and
ν = 0.50, at the different estimation locations xeα , α = 1, . . . , 11 .

being � the standard normal cumulative distribution function, ŶSK (xeα) the simple kriging
prediction ofY (xeα), obtained using the theoretical trend and covariancematrix, and σ̂ 2

SK (xeα)

the corresponding simple kriging variance.
For the sake of brevity, only some representative results are shown here. For example,

Table 1 shows the mean, median and standard deviations of the squared errors (×10−2)
of the estimates obtained with the proposed bootstrap approach, for μ1 (nonlinear), σ 2

1
(nonlinear), c0 = 0.2, a = 0.6, ν = 0.5, and the different threshold values and sample
sizes considered. It can be observed that, for the different values of c, the mean squared
error (MSE) decreases as the sample size n increases, suggesting the consistency of the
conditional probability estimator.

The good performance of the proposed approach can also be observed in Fig. 3. It contains
boxplots of the theoretical (left panel) and estimated (right panel) conditional probabilities
of exceeding a threshold of c = 3 at the estimation locations xeα , using the proposed method
and considering μ1 (nonlinear), σ 2

1 (nonlinear), n1 = 20 × 20, c0 = 0.2, a = 0.6 and
ν = 0.5. A very similar pattern of the corresponding boxplots for the theoretical and the
estimated conditional risks at all estimation locations is observed in this figure.

The effect of the spatial dependence was also studied by comparing the results obtained
with the different values for a and c0. In general, an interaction in the effect of these
parameters was observed. For example, Table 2 shows that, for a given level of nugget
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Table 2. Mean, median and standard deviations of the squared errors (×10−2) of the conditional probability
estimates, for μ1 (nonlinear), σ 2

1 (nonlinear), n1 = 20 × 20, c = 3 and ν = 0.5

a = 0.3 a = 0.6 a = 0.9
c0 Mean Median SD Mean Median SD Mean Median SD

0 0.57 0.03 2.39 0.51 0.01 2.60 0.40 0.00 2.34
0.2 0.48 0.03 2.29 0.46 0.02 2.44 0.41 0.01 2.30
0.4 0.43 0.03 2.40 0.43 0.02 2.40 0.42 0.02 2.36
0.8 0.44 0.04 2.44 0.43 0.04 2.47 0.44 0.04 2.48

effect, the error means decrease as the practical range increases. As expected, this effect
decreases when the nugget is larger (lower spatial dependence), resulting in similar errors
with the different range values.

Additionally, in the case of a stationary process considering μ3(·) and σ 2
3 (·), the IK

method, briefly mentioned in the Introduction, was also used to estimate the conditional
exceeding probabilities and compared with the method proposed in this paper. In the IK
method, only the observed values of the indicator variable I{Y (x0)≥c} are considered and,
assuming that they are stationary, ordinary kriging is performed to compute predictions at
the estimation locations, since

P [Y (x0) ≥ c | Y] = E
[
I{Y (x0)≥c} | Y]

,

(see, e.g., Chilès and Delfiner 2012, Sect. 6.3.3, for further details). In practice, this para-
metric approach was implemented using the geoR package (Ribeiro et al. 2020), fitting
an exponential variogram model to the indicator variable (assuming a constant trend). The
performance of this method was compared with that obtained by the proposed approach in
this scenario. Note that the nonparametric procedure was applied assuming (wrongly) the
presence of non-constant trend and variance functions.

As an illustrative example of the comparison results, Table 3 shows a summary of the
squared errors (×10−2) of the estimates obtained with the IK and the proposed approach
(denoted by NP in this table), for n1 = 20 × 20, a = 0.6, c0 = 0.2 and different values
of ν. In general, the errors obtained by the proposed method are lower than those provided
by the IK approach. This could be because of another limitation of the IK method, due to
the loss of information by using only the discretized response values (see, e.g., Tolosana-
Delgado et al. 2008). Therefore, evenwhen a non-constant trend and variance are incorrectly
assumed, the nonparametric proposed method seems to be a better alternative for estimating
the conditional probability.

As a final study, the case of irregular samplingwas analyzed. The previous scenarios were
considered, but now n1 spatial locationswere randomly generated following a bidimensional
uniform distribution over the unit square. The same n0 estimation locations as in the regular
sampling designwere chosen. In general, very similar results to those achieved under regular
design were obtained, although the errors were slightly smaller with the irregular design.
For instance, Table 4 shows the MSE for n1 = 20 × 20, c0 = 0.2, a = 0.6, c = 3 and
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Table 3. Mean, median and standard deviations of the squared errors (×10−2) obtained with the IK and the
proposed (denoted byNP)methods, forμ3(·) = 2 (constant), σ 2

3 (·) = 1 (homoscedastic), n1 = 20×20,
c0 = 0.2, a = 0.6 and the different ν values

Method IK NP
ν c Mean Median SD Mean Median SD

2 0.88 0.39 1.29 0.22 0.07 0.42
0.25 3 0.60 0.20 1.13 0.12 0.03 0.34

4 0.13 0.01 0.58 0.02 0.00 0.15
2 1.07 0.42 1.64 0.23 0.06 0.49

0.5 3 0.73 0.14 1.55 0.13 0.01 0.40
4 0.16 0.00 0.81 0.03 0.00 0.23
2 0.85 0.25 1.52 0.17 0.03 0.49

1 3 0.56 0.05 1.44 0.10 0.01 0.36
4 0.12 0.00 0.70 0.03 0.00 0.29

Table 4. Averaged squared errors (×10−2) of the conditional probability estimates under irregular sampling, for
n1 = 20 × 20, c0 = 0.2, a = 0.6 and c = 3

σ 2
1 (nonlinear) σ 2

2 (linear) σ 2
3 (constant)

ν (Matérn model) 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

μ1 (nonlinear) 0.50 0.46 0.39 0.21 0.18 0.14 0.23 0.20 0.16
μ2 (polynomial) 0.16 0.14 0.10 0.09 0.09 0.09 0.07 0.07 0.08
μ3 (constant) 0.12 0.13 0.11 0.13 0.15 0.16 0.12 0.13 0.15

the different values of the smoothness parameter ν. As it can be seen, by increasing the
smoothness of the process ν the errors tend to be smaller (similar results are observed in
Table 3). Additionally, errors tend to be larger when more complex models are considered.

5. APPLICATION TO PRECIPITATION DATA

In order to illustrate the performance in practice of the proposedmethodology, the precip-
itation data set briefly mentioned in the Introduction is considered. This data set is supplied
with the R package npsp. The trend and variogram estimates were obtained using the itera-
tive algorithm described in Sect. 2. The final trend and variance function estimates are shown
in Fig. 4a, b, respectively. Figure4c shows the pilot residual variogram γ̂ε̂(·) (circles) and
the bias-corrected estimate γ̄ (·) (solid line). Using these estimates, the kriging predictions
were computed (Fig. 4d).

Estimated probability maps were computed for different threshold values (square-root
of rainfall inches), c = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}, by applying the two bootstrap
algorithms (unconditional and conditional) described in Sects. 3.1 and 3.2, respectively,
with B = 1000 bootstrap replicas in each case. For reason of space, only the case of
threshold c = 2.0 is included here (Fig. 5).
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Figure 4. Nonparametric trend estimates (a), conditional variance estimates (b), semivariogram estimates (c),
and kriging predictions (d) of the precipitation data (in root-squared rainfall inches).

Figure 5. Estimated unconditional (a) and conditional (b) risk maps for c = 2.0 .

In Fig. 5, it can be observed that the unconditional bootstrap provides smoother esti-
mates than those obtained with the conditional approach, emphasizing the dominant effect
of the trend estimate (large-scale variability). On the other hand, the conditional map shows
higher variability, reaching the extreme values 0 and 1 at sample locations. These differ-
ences are more evident in the northern regions of the central area of the map, where the
proposed method produces estimates in line with the observed values (shown in Fig. 1), due
to the stronger effect of the spatial dependence (small-scale variability) on the conditional
estimates.

6. DISCUSSION AND FURTHER REMARKS

A bootstrap algorithm to estimate threshold exceeding conditional probabilities under
heteroscedasticity of the spatial process is proposed and numerically analyzed in this paper.
The probabilities are approximated from bootstrap conditional replicates obtained in a two-
stage procedure. In the first step, the unconditional bootstrap method proposed in Castillo-
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Páez et al. (2020) is used. In the second step, the unconditional replicates are combined
with kriging predictions so that the resulting values coincide with the observed values at the
sample locations.

Unlike traditional methods, such as IK or DK, the new approach is designed to be applied
for processes that are not stationary (in the mean or in the variance). Moreover, the new
approach is fully nonparametric and, therefore, problems due to model misspecification are
at least partially avoided. However, to ensure the consistency of the local linear estimator,
smooth functions for the trend, variance and variogram are being implicitly assumed. Addi-
tionally, a “bias-corrected” method to jointly estimate the variance function and the spatial
dependence is employed. In this way, the proposed bootstrap algorithm takes into account
that the variability of the residuals is not equal to that of the true errors. Note that although
the local linear estimator has been considered in this research due to its good properties,
other linear smoothers could also be used.

The complete simulation study shows a good behavior of the new method and its appro-
priate performance in different scenarios, considering several degrees of spatial dependence
and functional forms for the spatial trend and variance. Simulations considering regular
and non-regular designs were performed. The results obtained in both frameworks were
very similar and analogous conclusions could be deduced from them. For this reason, for
the sake of brevity, only some representative scenarios in the case of irregular designs are
included in the paper. Note that the case of non-regular design is also illustrated in the real
data application in Sect. 5. It is important to remark that in the case of non-regular designs
the computational cost of the simulations is much larger, as the optimal bandwidths and the
corresponding smoothing matrices, for trend and variance estimation, have to be computed
in each iteration (see the comments about bandwidth selection in Sect. 4).

The numerical analysis carried out in this research was performed with the statistical
environment R (R Development Core Team 2023), using the functions for nonparametric
regression and variogram estimation supplied with the npsp package (Fernandez-Casal R
2023).
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