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Abstract 29 
 30 

Biogeochemical cycles and sedimentary records in lakes are related to climate controls 31 

on hydrology and catchment processes. Changes in the isotopic composition of the diatom 32 

frustules (
18

Odiatom and 
13

Cdiatom) in lacustrine sediments can be used to reconstruct 33 

palaeoclimatic and palaeoenvironmental changes. The Lago Chungará (Andean Altiplano, 34 

18º15’S, 69º10’W, 4520 m a.s.l.) diatomaceous laminated sediments are made up of white and 35 

green multiannual rhythmites. White laminae were formed during short-term diatom super-36 

blooms, and are composed almost exclusively of large-sized Cyclostephanos andinus. These 37 

diatoms bloom during mixing events when recycled nutrients from the bottom waters are 38 

brought to the surface and/or when nutrients are introduced from the catchment during periods 39 

of strong runoff. Conversely, the green laminae are thought to have been deposited over 40 

several years and are composed of a mixture of diatoms (mainly smaller valves of 41 

Cyclostephanos andinus and Discostella stelligera) and organic matter. These green laminae 42 

reflect the lake’s hydrological recovery from a status favouring the diatom super-blooms (white 43 

laminae) towards baseline conditions. 
18

Odiatom and 
13

Cdiatom from 11,990 to 11,530 cal years 44 

BP allow us to reconstruct shifts in the precipitation/evaporation ratio and changes in the lake 45 

water dissolved carbon concentration, respectively. 
18

Odiatom values indicate that white laminae 46 

formation occurred mainly during low lake level stages, whereas green laminae formation 47 

generally occurred during high lake level stages. The isotope and chronostratigraphical data 48 

together suggest that white laminae deposition is caused by extraordinary environmental 49 

events. El Niño-Southern Oscillation and changes in solar activity are the most likely climate 50 

forcing mechanisms that could trigger such events, favouring hydrological changes at 51 

interannual-to-decadal scale. This study demonstrates the potential for laminated lake 52 

sediments to document extreme pluriannual events. 53 
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1.- Introduction 76 

Rhythmites are finely laminated sequences (millimetre- to submillimetre thick) made up 77 

of regular alternations of two or three contrasting sediment types called couplets or triplets 78 

(Talbot and Allen, 1996). Rhythmite formation is generally associated with seasonally 79 

heterogeneous sediment supply and a lack of physical or biological reworking processes 80 

(Grimm et al. 1996). Thus, laminated sediments indicate high-frequency environmental change 81 

through time. A number of studies have described laminated lacustrine sediments, but they 82 

have mainly dealt with annual-rhythmites (varves) with different clastic grain-size and/or 83 

biogenic content deposited over different seasons (e.g. Bird et al. 2009). The processes that 84 

lead to rhythmite formation at mid- to high latitudes are often well constrained (e.g. Chang et al. 85 

2003), whereas the biogeochemical processes and climate events which prompt laminated 86 

sediments in tropical lacustrine sediments are often less understood. In these cases, tropical 87 

rainfall regimes associated with intense storms and wind may be responsible for extraordinary 88 

external nutrient loading or upwelling of nutrient rich-waters which trigger phytoplankton blooms 89 

(Talbot and Allen, 1996). These tropical climate regimes follow a seasonal behaviour (e.g. 90 

monsoons), but they can also be highly influenced by climatic multiannual phenomena (e.g. 91 

ENSO). 92 

Changes in the oxygen isotopic composition of the diatom frustules (
18

Odiatom) in 93 

lacustrine sediments are used to infer hydrological variations. For closed lakes in the tropics, 94 

these variations are mostly related to the precipitation/evaporation ratio (P/E), which is, in 95 

general, directly linked to lake level change (Leng and Barker, 2008). The isotope-inferred 96 

reconstructions can thus be used to reveal the climate history of the region (e.g. Barker et al. 97 

2007) although this may be mitigated by biological and sedimentary processes. Besides 98 


18

Odiatom, the isotopic signature of carbon occluded within the diatom silica (
13

Cdiatom), can give 99 

other relevant palaeoenvironmental information, including insights on the lakes’ carbon cycle. 100 

There are few studies of carbon isotopes from organic inclusions within diatom frustules, and of 101 

those published, most have dealt with marine sedimentary records (e.g. Crosta and Shemesh, 102 

2002). Studies on 
13

Cdiatom in lake sediments are now emerging and providing valuable insights 103 

into the complex carbon cycle of lakes (Hurrell, 2010).  104 
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The aim of this paper is to understand high frequency biological, chemical and 105 

sedimentary processes which cause the laminae formation in the sedimentary record of Lago 106 

Chungará, a high altitude tropical lake located in the Central Andes. 
18

Odiatom and 
13

Cdiatom data 107 

from individual laminae are presented for a period between 11,990 and 11,530 cal years BP. 108 

High frequency environmental perturbations brought about by interannual-decadal climatic 109 

events are rarely recorded in lake sediments, and therefore, the laminated sediments are a 110 

good record of their intensity and their effect on lacustrine hydrological and carbon cycles.  111 

2.- Lago Chungará setting 112 

2.1.- Geology, limnology and climate  113 

Lago Chungará (18º15’S, 69º10’W, 4520 m a.s.l.) is a cold-polymictic and oligo- to 114 

meso-eutrophic lake located in the Andean Altiplano (Fig. 1A). The lake sits on the Cenozoic 115 

Lauca Basin surrounded by volcanoes. The Chungará infill mostly comprises organic 116 

diatomaceous sediments with abundant tephra from the Parinacota Volcano, which was active 117 

during most of the Late Glacial and Holocene (Sáez et al. 2007). The lake occupies 21.5 km
2
 118 

and has a maximum water depth of 40 m (Fig. 1B). It is moderately alkaline (pH between 8.99 119 

and 9.30), well mixed (7.6 ppm O2 at 34 m deep), salinity is around 1.2 g·l
-1

, conductivity values 120 

range between 1500 and 3000 S cm
-1

 and waters are of the Na
+
-Mg

2+
-HCO3

-
-SO4

2- 
type (Sáez 121 

et al., 2007). The phytoplankton community is made up of a few major species; diatoms 122 

dominate the cold season, whereas Chlorophyceae are more abundant during the austral 123 

summer (Dorador et al., 2003). Macrophyte communities form dense patches and microbial 124 

colonies in the littoral zone contribute to primary productivity. The local vegetation in the 125 

catchment is characterised by low cover values (<30%), being dominated by grasses, shrubs, 126 

soligenous peatlands, and Polylepis dwarf forests (Moreno et al., 2007). 127 

The lake is considered hydrologically closed as there is no surface outlet and the 128 

residence time of the lake water is approximately 15 years (Herrera et al., 2006). The main inlet 129 

to the lake is the Chungará River (300-460 l s
-1

), whereas evaporation causes the main water 130 

loss (3.10
7
 m

3
·yr

-1
) and represents about 80% of the total outflow. The 

18
O and D composition 131 

of the lake water in 2002 and 2004 (c. –1.4‰ and c. –43.4‰, respectively) diverge significantly 132 
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from the Global Meteoric Water Line (GMWL), the Regional Meteoric Water Line (RMWL, where 133 


18

O c. –14.3‰ and D c. –95‰) and isotope composition of the inflowing water (–12.6‰ and –134 

108.5‰, respectively) (Herrera et al. 2006). The lake water is enriched compared to the 135 

inflowing water (
18

O by +11.2‰ and D by +65‰) due to evaporation. 136 

 The climate in the Lago Chungará region is dominated by semi-arid conditions due to 137 

the influence of the South Pacific Anticyclone (Fig. 1A). The modern mean annual temperature 138 

at Lago Chungará is +4.2ºC, with higher thermal oscillations between day/night (mean 139 

difference = 22ºC) than summer/winter (mean difference = 6ºC). A variable precipitation pattern 140 

dominates this region, where the annual rainfall ranges from 100 to 750 mm yr
-1

 (mean 411 mm 141 

yr
-1

), and more than the 70% of it falls during the austral summer (December–February). At this 142 

time, a strong low pressure region, known as the South American Summer Monsoon (SASM), is 143 

formed over Central South America driving convection and pulling moisture from the equatorial 144 

Atlantic to the Andean Altiplano (Vuille and Werner, 2005) (Fig. 1A). The SASM is a major 145 

component of the climate system over tropical and subtropical South America during the austral 146 

summer and is remotely forced by tropical Pacific SSTs (Vuille and Werner, 2005). At 147 

interannual timescales, El Niño-Southern Oscillation (ENSO) is the most important forcing 148 

causing climatic fluctuations over the tropical Americas as it controls changes in the Pacific 149 

Tropical Sea Surface Temperatures (SSTs) (Vuille et al. 2003) and therefore the evolution of 150 

the SASM. Instrumental data from the Chungará region show a reduction of the precipitation 151 

during moderate to intense El Niño years. However, there is no direct relationship between the 152 

relative El Niño strength and the amount of rainfall reduction (for further details see Valero-153 

Garcés et al., 2003). Moreover, decadal variations in solar activity are related to the 154 

atmospheric circulation (Christoforou and Hameed, 1997) modulating the sign and strength of 155 

the westerly wind flow, which reduces the delivery of the moisture from the east above the 156 

Altiplano (Theissen et al. 2008). Previously published data dealing with the laminated sediments 157 

of Lago Chungará suggest that (at least during the Late Glacial-early Holocene transition) there 158 

is an interaction between the solar activity and ENSO (Hernández et al., 2010). The solar 159 

activity forcing was likely transmitted to the Andean Altiplano via ENSO modulation of the 160 

SASM.  161 
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However, ENSO activity was not regular during the Late Glacial and the Holocene. The 162 

onset of the Holocene is characterised by a weakening and reduction of amplitude of the ENSO 163 

(Rodbell et al. 1999; Moy et al. 2002). The establishment of a long-term La Niña pattern in the 164 

tropical Pacific during this period seems to be a consequence of the ENSO activity reduction 165 

(Koutavas et al. 2002; Hernández et al. 2010). Onset of the present day ENSO conditions 166 

occurred at about 7,000 cal. years BP (Sandweiss et al. 2001; Moy et al. 2002)   167 

2.2.- Sedimentary model 168 

Stratigraphy and facies association for the uppermost part of the Lago Chungará sequence was 169 

established by fifteen Kullenberg cores and seismic imagery (Sáez et al. 2007). Laminated 170 

sediments present in the lowermost recovered unit 1 defined in Sáez et al (2007) were divided 171 

in the subunits 1a and 1b according to its green or brown dominating colour and were correlated 172 

over the lake offshore zone (Fig. 1C). 173 

The chronological model for the sedimentary sequence of Lago Chungará is based on 174 

17 AMS 
14

C dates of bulk organic matter and aquatic plant macrofossils, and one 
238

U/
230

Th 175 

date from carbonates (Moreno et al. 2007; Giralt et al. 2008). The main problems encountered 176 

in the construction of reliable chronological frameworks for the lacustrine sedimentary infill of 177 

most lakes in the Andean Altiplano are the determination of the radiocarbon reservoir effect and 178 

its change through time (Geyh and Grosjean, 2000).  A reservoir effect of 3,260 years was 179 

determined based on AMS 
14

C dating of modern DIC and subsequent correction for 180 

atmospheric thermonuclear bomb tests of the late 1950s  early 1960s (Giralt et al. 2008). 181 

However, due to changes in the volume/surface ratio of the lake that took place during the 182 

deposition of the unit 1 (Hernández et al. 2008), the reservoir effect could have changed 183 

between values of 0 to 3,260 years (Geyh et al. 1998). A mid point value was calculated 184 

between the two extreme reservoir ages and this value was used for constructing the age-depth 185 

model (further details in Giralt et al. 2008 and references therein).The calibration of radiocarbon 186 

dates was performed using CALIB 5.02 software and the INTCAL98 curve.  187 

A petrographical study established a preliminary depositional rhythmite type for those 188 

sediments where rhythmites are composed of variable-thickness couplets of light-white and 189 
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dark-green laminae (Hernandez et al. 2008). According to the chronological model, each 190 

couplet was deposited during time intervals ranging from 4 to 24 years (Hernandez et al. 2008).  191 

3.- Methods 192 

A 43 cm-thick section of the finely laminated greenish sediments from subunit 1a (831 193 

cm to 788 cm core depth) was selected as this had well resolved laminae and abundant diatom 194 

frustules. This section was sampled for 
18

Odiatom, 
13

Cdiatom and %C on diatom-bound organic 195 

matter (%Cdiatom) analyses. These sediments were continuously sampled for thin sections in 196 

order to carry out a detailed petrographical study. Thin sections of 120 mm x 35 mm (30 m in 197 

thickness), with an overlap of 1 cm at each end, were obtained after freeze-drying and balsam-198 

hardening. Detailed petrographical descriptions and lamina thickness measurements were 199 

performed with a Zeiss Axioplan 2 Imaging petrographic microscope. A number of samples 200 

were also selected for observation with a Jeol JSM-840 electron microscope in order to 201 

complement the petrographical study. Moreover, a grey-colour curve was calculated using the 202 

ImageJ software package (Rasband, 1997–2009). The results are presented in a 21 running 203 

mean smoothed curve. 204 

A total of 102 samples were taken and 100 were successfully analysed for 
18

Odiatom. 205 

Additionally, 11 of these samples were also analysed for 
13

Cdiatom and %Cdiatom. Two previous 206 

studies described 
18

Odiatom data from 22 (Hernández et al., 2008) and 40 (Hernández et al., 207 

2010) dark-green sample levels to establish the baseline environmental evolution of Lago 208 

Chungará (Fig. 2).The samples were treated following the method proposed by Morley et al. 209 

(2004) with some modifications (Hernández et al., 2008; Hurrell, 2010). This method involved 210 

chemical attack, sieving, settling and laminar flow separation. The chemical attack followed 211 

standard procedures to remove the carbonates (10% HCl) and organic matter (H2O2), but also 212 

included a further step using concentrated HNO3 to eliminate any remaining organic matter. 213 

Sieving was undertaken at 125, 63 and 38 µm and eliminated resistant charcoal and terrigenous 214 

particles. The settling was performed to separate the remaining particles with different densities. 215 

Finally, gravitational split-flow thin fractionation (SPLITT) was applied to the most problematic 216 

samples which still contained clay or fine tephra particles. Once the samples were purified, they 217 
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were dried at 40ºC between 24h and 48h. Finally, the purity of the samples was checked using 218 

microscopy and SEM to ensure that only isotope signals from the diatom silica components 219 

were obtained.  220 

For 
18

Odiatom analyses the classical step-wise fluorination method was applied to strip 221 

hydrous components from diatom silica before a full reaction with BrF5 (Leng and Barker, 2006; 222 

Leng and Sloane, 2008). The oxygen liberated was then converted to CO2 and normalised 223 

through the laboratory standard (BFC) and the NBS-28 quartz standard, referenced to VSMOW. 224 

A random selection of more than 30 samples were analysed in duplicate or even in triplicate 225 

giving a reproducibility between 0.0‰ and 0.3‰ with a mean value of 0.15‰. Three samples 226 

with a reproducibility >0.3‰ were rejected. Isotope variations of consecutive samples are 227 

between 0‰ and 6.5‰, with a mean value of 1.0‰. Samples with differences <0.15‰ have not 228 

been used because they were considered essentially the same. As a consequence, 81 inter-229 

sample relationships have been studied. 230 

 231 

For δ
13

Cdiatom analysis of diatom-bound organic matter, we used combustion in an 232 

elemental analyser (Costech ECS4010) interfaced with a VG dual inlet isotope ratio mass 233 

spectrometer. The δ
13

Cdiatom values were calculated to the VPDB scale using within-run 234 

laboratory standards calibrated against NBS18 and 19, and additionally cross checked with 235 

NBS22. %Cdiatom analyses were performed by combustion separately in the elemental analyser 236 

calibrated against an Acetanilide standard. Replicate δ
13

Cdiatom and %C analysis of well-mixed 237 

samples indicates a precision of + <0.1‰. All the isotope analyses were carried out at the 238 

NERC Isotope Geosciences Laboratory, British Geological Survey (UK). 239 

4.- Results 240 

4.1.- Laminae biogenic composition 241 

A hundred laminae, from the Late Glacial to early Holocene transition (11,990 - 11,530 242 

cal years BP), have been differentiated and grouped under white, light-green and dark-green 243 

laminae categories according to their diatom composition, organic matter content and colour. 244 



 9 

Nine laminae were undifferentiated because they had mixed features belonging to the three 245 

categories (Fig. 3).  246 

White laminae are formed almost exclusively by diatom frustules of the large (diameter 247 

> 50 m) euplanktonic diatom Cyclostephanos andinus (Fig. 4G). Dark-green laminae, which 248 

have a higher organic matter content probably derived from diatoms and other algal groups, are 249 

made up of a mixture of different diatom species. This mixture is mainly composed of smaller 250 

(diameter < 50 m) Cyclostephanos andinus valves, with Discostella stelligera as co-dominant 251 

species. Subdominant diatom taxa comprise a number of tychoplanktonic (mainly Staurosira 252 

construens aff. venter and Fragilaria spp.) and benthic life forms (including Cocconeis 253 

placentula, Gomphonema minutum, Nitzschia tropica and Opephora sp. aff. mutabilis) (Fig. 4C). 254 

The light-green laminae are made up of components from the white laminae progressively 255 

grading upwards to the typical constituents of the dark-green laminae. Diatoms of the light-256 

green laminae are usually embedded in an organic matrix creating a preferential orientation of 257 

the valves (Fig. 4B and E). Thus, a lower white lamina, an intermediate light-green lamina and 258 

an upper dark-green lamina form a typical sedimentary triplet. These light-green laminae may 259 

be variable in thickness or even absent. The transition between well-defined laminae within the 260 

triplets (from here on called intra-cycle relationships) is gradual, whereas the transition between 261 

different triplets is abrupt (from here on called inter-cycle relationships) (Fig. 4 B, D, F and H).  262 

4.2.- Laminae isotope composition 263 


18

Odiatom values display a large variability, ranging between +40.1‰ and +31.1‰ with a mean 264 

value of +37.5‰ for the whole record (sd = 1.1, n = 97) (Fig. 3). The studied interval shows 265 

three 
18

Odiatom major enrichment trends which coincide with similar trends in the grey-colour 266 

curve (Fig. 5). The %Cdiatom values range from 0.63% in the uppermost sample (rhythmite 48) to 267 

0.32% in the lowermost sample (rhythmite 8) (mean = 0.42%, sd = 0.10, n = 11), whereas 268 


13

Cdiatom values oscillate between –26.1‰ and –29.5‰ (mean = –28.1‰, sd = 0.95, n = 11). 269 

The white laminae generally display lower %Cdiatom and 
13

Cdiatom values than the dark laminae 270 

from the same rhythmite. In addition, there is an increase in the C/Si ratios and 
13

Cdiatom values 271 

throughout the 5 studied intra-cycle relationships (Table 1).  272 
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
18

Odiatom inter-cycle relationships have been studied in 49 cases. From these, 12 cases 273 

could not be taken into account due to the absence of 
18

Odiatom data or because the difference 274 

between the two consecutive isotopic values was below the mean analytical error. Valid 275 


18

Odiatom inter-cycle relationships (n = 37) are characterised by higher oxygen isotope values. 276 

The most common inter-cycle relationship is the dark-green to white laminae (n = 25), and it 277 

shows isotope enrichment (i.e. values increase) in 60% of the cases. Likewise, the difference 278 

between dark-green laminae to undifferentiated laminae shows similar levels of increasing 279 


18

Odiatom, whereas relationships between undifferentiated and white laminae show both 280 

increases and decreases in 
18

Odiatom (Table 2A). 281 

There are 51 valid (out of 62) relationships between laminae that take place within a 282 

rhythmite (intra-cycle relationships). These intra-cycle relationships are dominated by isotope 283 

depletions (values decrease). The most common case shows changes from white to dark-green 284 

laminae (n = 23), where isotope decreases occur in 67% of the cases (Table 2B).  285 

5. - Discussion 286 

5.1.- Biological and sedimentary processes forming rhythmites 287 

The large thickness, the good diatom preservation and the monospecific diatom composition 288 

characterising white laminae suggest that they accumulated during short-term super-blooms, 289 

perhaps of only days to weeks in duration. According to the chronological model, rhythmites are 290 

not a product of annual variations in sediment supply, but due to some kind of multiannual 291 

processes (Hernández et al. 2008).  292 

Any theory of the cause of these short-term super-blooms needs to take into account 293 

the injection of an extraordinary amount of nutrients into the euphotic zone, assuming enough 294 

light irradiance for photosynthesis is available. The two possible mechanisms for this input are 295 

enhanced vertical mixing of the water column that upwells nutrient-rich waters from the 296 

hypolimnion to the lake surface (Margalef, 1978; Winder and Hunter, 2008), and nutrient 297 

injection by increased runoff (Harris, 1986). Turbulence will be, in turn, dependent on both 298 

external forcing such as wind stress, surface heat flux, turbidity currents or river inflow and 299 
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outflow, among others, and lake morphometry constraints (Imboden and Wüest, 1995). 300 

Accordingly we suggest two main scenarios for the formation of the super-blooms in Lago 301 

Chungará: (1) low lake level and/or strong wind episodes that, facilitating turbulence, would 302 

select diatoms over other types of phytoplankton due to their relative buoyancy (Reynolds, 303 

2006); and (2) extraordinary humid events that would increase runoff and therefore external 304 

nutrient loading (Bradbury et al. 2002). The ENSO cyclicity signal recorded at this time in the 305 

Lago Chungará sedimentary record (Hernández et al., 2010) provide support to the existence 306 

and prevalence of one of the two contrasting dry (El Niño) or humid (La Niña) conditions 307 

(Valero-Garcés et al., 2003).  308 

Dark-green laminae represent the baseline lake conditions undisturbed by extreme 309 

events, where complete phytoplankton successions over several years are preserved. These 310 

laminae therefore record the ‘normal’ intra- and inter-annual changes in the water column 311 

mixing regime characterised by the shifting species composition throughout regular annual 312 

phytoplankton cycles. These relatively homogenous structures are marked by skeletons 313 

belonging to several diatom taxa, or simply as organic matter from other algal groups (such as 314 

Chlorophyceae, Cyanobacteria, etc.). Normal seasonal diatom blooms, are manifested in the 315 

dark-green laminae by the abundance of the small Cyclostephanos andinus (< 50 µm), a large 316 

centric diatom whose buoyancy depends on the existence of a turbulent regime. Therefore, 317 

seasonal Cyclostephanos andinus (< 50 µm) blooms reflected in the dark-green laminae could 318 

be triggered by the same, but less intense, processes that prompted the super-blooms of the 319 

larger Cyclostephanos andinus (> 50 µm) that make up the white laminae. The dark-green 320 

laminae are sometimes preceded by light-green laminae indicating that recovery of the baseline 321 

conditions from the super-blooms can be more or less gradual (forming couplets or triplets, 322 

respectively). The  alternations of white and green laminae imply the absence of bioturbation 323 

(Grimm et al., 1996) and therefore would suggest anoxic conditions at the bottom of the lake, in 324 

contrast the lack of internal structures in the dark-green laminae suggest possibly suboxic 325 

conditions. 326 

Flocculation of diatoms by extracellular polymeric substances is a common feature in 327 

the marine realm (Thornton, 2002). This phenomenon occurs towards the end of a diatom 328 
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bloom, due to the onset of nutrient limitation. Diatom aggregation and subsequent rapid 329 

sedimentation of species having any kind of resting cell stages would favour future recruitment 330 

once nutrient resources were again available (Smetacek, 1985). Biosiliceous laminae in marine 331 

sediments have been interpreted as the product of changes in the mass sedimentation of 332 

diatoms by means of the formation of aggregates (Grimm et al., 1996, 1997). At Lago Chungará 333 

a similar phenomenon could have taken place in the formation of the light-green laminae once 334 

the super-blooms of the large (> 50 µm) Cyclostephanos andinus come to an end. Aggregation 335 

of cells enclosed in a gelatinous matrix could therefore have taken place, being rapidly 336 

deposited in the form of the transitional light-green laminae. Although the life cycle details of 337 

Cyclostephanos are far from fully known, the closely related genera Stephanodiscus, to which 338 

Cyclostephanos once belonged (Round et al., 1990), is known to produce resting cells (Sicko-339 

Goad et al., 1989), whose aggregation and rapid sedimentation represents a transition to a 340 

resting phase (Smetacek, 1985; Alldredge et al., 1995). It is therefore likely that the mechanism 341 

of formation of triplets is mediated by processes of self-sedimentation triggered by 342 

Cyclostephanos andinus (Grimm et al., 1997). 343 

 344 

5.2. - 
18

Odiatom, 
13

Cdiatom  and %Cdiatom interpretation  345 

Variation in 
18

Odiatom can result from a variety of processes, such as oxygen isotope 346 

composition of the lake water (
18

Olakewater), temperature, vital effects and post depositional 347 

diagenesis (Leng and Barker, 2006). In hydrologically closed lakes under arid climate conditions 348 

evaporative concentration processes have a much larger effect on 
18

Olakewater than any other 349 

process (Gasse and Fontes, 1992; Leng and Marshall, 2004; Hernández et al., 2010). In these 350 

circumstances, the 
18

Odiatom record can be used as an indicator of changes in the P/E related to 351 

climatic change (Leng and Barker, 2006). 352 

At present, Lago Chungará can be considered a closed lake due to its water residence 353 

time (ca. 15 years), and the fact that 
18

Olakewater is enriched by 14‰ relative to 
18

O of the 354 

isotope composition of the water inputs (precipitation, springs and river) (Herrera et al., 2006). 355 

We assume that this control as remained constant through time and that variations in the 356 


18

Odiatom during Late Glacial-Early Holocene described here must be mainly derived from 357 
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changes in the 
18

Olakewater resulting from shifts in the P/E balance. This P/E control on 
18

Odiatom 358 

has also been implied from other tropical sites, such as lakes from Mount Kenya (Barker et al. 359 

2001), Lake Malawi (Barker et al. 2007), and Lake Tilo in Ethiopia (Lamb et al. 2005). 360 

The organic matter enclosed within diatom frustules contains polysaccharides, proteins 361 

and long-chain polyamines (Kröger and Poulsen, 2008). These substances host carbon which is 362 

protected from post-depositional diagenetic alteration (Des Combes et al., 2008). These carbon 363 

compounds are synthesised from the surrounding waters. Therefore, isotope analysis of the 364 

carbon of these compounds can be used as a proxy for reconstructing the lake’s carbon cycle. 365 

Previously published studies suggest primary productivity and CO2(aq) concentration as the main 366 

factors which determine 
13

Cdiatom in marine environments (Schneider-Mor et al., 2005). 367 

Nevertheless, lake 
13

Cdiatom is likely to be controlled by more complex environmental conditions 368 

making its interpretation less straightforward (Hurrell, 2010). 
13

Cdiatom variations due to the 369 

species effect, cell size, growth rate or/and metabolic pathway are neglected in the present 370 

study because all 
13

Cdiatom analyses were always carried out on similar sized-cells (38-62 µm) 371 

and on the same diatom species (Cyclostephanos andinus).  372 

The carbon isotope values from bulk sediment (
13

Cbulk) in the Lago Chungará 373 

laminated unit range from –21‰ to –19‰ (Pueyo et al., submitted), yielding a difference of 374 

more than 5‰ when compared to the measured 
13

Cdiatom values. Yet, the C/N ratios from bulk 375 

sediments of the laminated unit have values ranging between 7 and 11 (Pueyo et al., 376 

submitted), indicating that the 
13

Cbulk signal would have a mainly algal origin (Meyers and 377 

Teranes, 2001). For this reason, it seems that the 
13

Cdiatom, rather than being mainly affected 378 

by changes in the source of organic matter, is mostly conditioned by changes in dissolved 379 

carbon concentration.   380 

In lakes, it is commonly assumed that the carbon pool in the water becomes enriched in 381 

13
C during the periods of enhanced productivity (Leng et al. 2005; Singer and Shemesh, 1995) 382 

since phytoplankton preferentially use the lighter isotope. Within-lake processes, such as 383 

changes in the mixing regime or organic matter decomposition, can however modify this pattern 384 

(Myrbo and Shapley, 2006; Herzschuh et al. 2010).  Preferential uptake of 
12

C from the 385 
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epilimnion during photosynthesis by phytoplankton and its sedimentation and later release in 386 

the hypolimnion by microbial decomposition results in 
13

C values that are usually higher in the 387 

epilimnion than in the hypolimnion (Cohen, 2003). Lake dynamics, under the effects of external 388 

forcing factors (i.e. wind stress) ultimately controls upwelling of carbon isotope depleted waters 389 

to the surface. Therefore, biological productivity alone is not necessary the main control on 
13

C 390 

values of subsequent organic matter (Myrbo and Shapley, 2006). 391 

Lago Chungará water dynamics are mainly governed by two contrasting situations 392 

(Hernández et al., 2008): (1) background conditions, including periods of lake water 393 

stratification, represented by the dark-green laminae and (2) a water column subjected to 394 

episodes of very strong mixing, which are represented by the white laminae. During the 395 

stratified periods, concentrations of oxygen and other electron acceptors typically decrease in 396 

the hypolimnion, while CO2(aq), CH4, and nutrients accumulate (Bedard and Knowles, 1991). 397 

These dissolved nutrients, as well as the accumulated CO2(aq) and CH4, are released into the 398 

entire lake during mixis (Houser et al., 2003), when the super-blooms that generate the white 399 

laminae occur. Under these circumstances, the light carbon enriched upwelled waters from the 400 

hypolimnion could hinder the effects of enhanced productivity on 
13

C, generating as a result 401 


13

C depleted white laminae. 402 

Hurrell (2010) suggest that %Cdiatom results can be used as indicators of sample 403 

cleanness. Samples with >1% carbon may still contain carbon which is external to the diatom 404 

frustules.  However, it is also possible that the amount of carbon in the frustules varies 405 

according to environmental conditions and species. For example, Crosta et al., (2002) found 406 

that when there are larger quantities of iron in the water, marine diatoms reduce their 407 

consumption of silica relative to carbon. If this is the case, 
13

Cdiatom would change. Our %C 408 

diatom data do not allow further environmental interpretations, but as all values presented here 409 

are <1% they establish evidence that the 
13

Cdiatom reported data are suitable for 410 

palaeoenvironmental reconstructions. 411 

5.3. 
18

Odiatom inter-cycle relationships (white laminae formation) 412 
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
18

Odiatom values through the inter-cycle relationships help to understand the underlying 413 

processes involved in the formation of the white laminae. The super-blooms that produce the 414 

white laminae have to be triggered by an exceptional injection of nutrients into the water column 415 

which may or may not be associated with a water volume change. The start of the rhythmite is 416 

usually accompanied by 
18

Odiatom enrichment (Table 2A), indicating a decrease in the P/E ratio, 417 

which would probably be accompanied by a drop in the lake water level and a remobilization of 418 

nutrients from the hypolimnion (Fig. 6A and B, transition 1). 419 

  420 

Episodes of diatom super-blooms occur throughout the whole studied section, but their 421 

formation is a time scale-dependent process. At decadal-centennial scales, white laminae are 422 

brighter (higher values in the grey colour curve) and thicker (around 6 mm) with higher isotope 423 

oxygen values (up to +39.2‰) than during other laminae deposition periods (Hernandez et al., 424 

2010). Deposition of these white laminae are related to low-stand conditions, as shown in the 425 

uppermost part of the three shallowing upwards trends observed in the 
18

Odiatom record (Fig. 5). 426 

However, at interannual scales, the inter-cycle isotope relationships reveal that changes to both 427 

drier or wetter conditions may trigger the formation of the white laminae, but that falls in lake 428 

level were more likely responsible for the development of the super-blooms (Table 2A). 429 

5.4. - 
18

Odiatom and 
13

Cdiatom intra-cycle relationships (green laminae formation) 430 

The relationship between 
18

Odiatom and 
13

Cdiatom provides a means of better understanding the 431 

environmental processes involved in the origin of the green laminae. 
13

Cdiatom enrichments in all 432 

the studied intra-cycle relationships (Table 1) suggest no or reduced mixing of the water 433 

column. However, according to the 
18

Odiatom data, these more stable water conditions can occur 434 

under two contrasting P/E regimes. The most common intra-cycle relationships which show 435 


18

Odiatom depletions (65%; n = 23) (Table 2B), indicate that the lake tended to progressively 436 

recover to the previous environmental state by means of a gradual increase in water availability 437 

(Fig. 6A and C, transition 2 and 3). Conversely, the relationships which show 
18

Odiatom 438 

enrichments indicate the recovery to a lower lake level after a super-bloom caused by a large 439 

allochthonous nutrient input associated with enhanced rainfall. This is manifested by the 440 

prevalence of 
18

Odiatom depletions that precede those super-blooms (90%; n= 10) (Table 441 
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Additional Material). This model suggests that the green laminae occurred most of the time as a 442 

result of the recovery phase favoured by lake water rise. Finally, when the lake is already in the 443 

recovery phase (transitional and baseline conditions) it may evolve, indistinctly, towards higher 444 

or lower lake water levels, as indicated by the light- to dark-green isotope transitions 445 

(enrichments= 56%; n= 9) (Fig. 6A and C, transition 4). 446 

5.5. - Climate forcing of the laminae formation 447 

Rainfall and temperature oscillations over South America are due to a complex interplay 448 

of large scale ocean-atmosphere processes, such as El Niño Southern Oscillation, the Pacific 449 

Decadal Oscillation, the Southern Annual Mode or the Antarctic Oscillation (Moy et al., 2009). 450 

These large-scale processes play a role on both temperature oscillations at several timescales 451 

and on the amount and distribution of precipitation through changes in the strength and 452 

latitudinal position of the wind belts. Among these large-scale ocean-atmosphere processes, the 453 

interannual climate variability over the Andean Altiplano is mainly related to changes of the SST 454 

at the Tropical Pacific (Garreaud et al. 2003). In addition, high altitude tropical regions are very 455 

sensitive to relatively small changes in radiative forcing. Thus, solar activity has also exerted a 456 

strong influence at different temporal scales, playing a key role at century-scale tropical climate 457 

variability during the late Holocene modulating both precipitation and temperature (Polissar et al 458 

2006; Gray et al. 2010). 459 

In the Andean Altiplano, ENSO involves drier or wetter regional climatic patterns during 460 

El Niño or La Niña phases, respectively (Valero-Garcés et al. 2003; Vuille and Werner, 2005). 461 

However, regionally, dry La Niña years and wet El Niño years are not completely uncommon, 462 

which indicates that the relationship between SSTs in the tropical Pacific and precipitation 463 

anomalies in the central Andes is not straightforward (Garreaud et al. 2003). For instance, 464 

analysis of observed data from the ‘11-year Schwabe cycles’ shows a reduction of precipitation 465 

around the Equator corresponding to anomalously cold SSTs analogous to the pattern that 466 

occurs during La Niña years, with lagged El Niño–like conditions a couple of years later (Meehl 467 

et al., 2008, 2009; Gray et al., 2010). However, there is a significant relationship between 468 

Andean Altiplano precipitation and the zonal winds modulated by decadal and multidecadal 469 

variations in solar activity (Theissen et al. 2008). The sign and strength of these zonal winds 470 
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(easterly/westerly) are also responsible for the climate conditions (wet/dry) in the Andean 471 

Altiplano. 472 

Theissen et al. (2008) proposed that enhanced westerly flow from the tropical Pacific, 473 

which would reduce the delivery of moisture from the east, modulated by decadal and 474 

multidecadal variations in solar activity is the most likely cause of the long-term mid-Holocene 475 

aridity over the Andean Altiplano.  Increases in the solar activity would play a positive feedback 476 

in the enhancing the westerly flow. This hypothesis supports the 
18

Odiatom data from the Lago 477 

Chungará rhythmites showing that the solar activity and its interaction with the ENSO 478 

phenomena were the main processes that ruled the climatic variability of the Andean Altiplano 479 

region at decadal time scale during the Late Glacial-early Holocene transition (Hernández et al., 480 

2010).  481 

The influence of solar activity and ENSO variability on the Lago Chungará sediments 482 

was previously identified by means of a Time-Frequency (TF) analysis (Hernández et al., 2010) 483 

(white colour bands in Fig. 7). As discussed above, rhythmite formation is caused by diatom 484 

super-blooms which in turn are controlled by the degree of mixing and the lake level oscillations. 485 

These factors are directly related to the wind intensity and precipitation, which would primarily 486 

be induced by the complex climate dynamics.  The TF analysis performed in Hernández et al. 487 

(2010) shows that white laminae formation would be mainly influenced by the 11-year Schwabe 488 

cycles (Fig. 7). This decadal solar activity is responsible for the enhancement of the westerlies 489 

over the Altpilano, reducing the delivery of moisture from the east. This has already been 490 

described as the main process responsible for the laminae formation in Lago Titicaca during the 491 

mid-Holocene (Theissen et al. 2008). The interannual and decadal ENSO frequencies might 492 

have also played a role in the laminae formation. The periods with more intense (higher 493 

intensity grey-colour curve values) and better developed (thicker) white laminae  at 11,900, 494 

11,750, and 11,550 cal years BP correspond to periods when both greater solar activity and 495 

ENSO (El Niño-like dry phase) phenomena were recorded (yellow colour bands of Fig. 7).  This 496 

relationship however is not straightforward, since there are intervals where white laminae are 497 

thinner and darker that correspond to higher solar activity and ENSO moments at 11,950, 498 

11,800 and 11,650 cal years BP. These latter periods are however dominated by La Niña-like 499 
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phases of the ENSO which represents more humid conditions over the Andean Altiplano (green 500 

colour bands in Fig. 7). This working hypothesis is supported by the 
18

Odiatom record which 501 

shows lighter isotope values for these periods (Fig. 7). Finally, those periods with the thinnest 502 

and less bright white laminae (11,850, 11,700 and 11,600 cal years BP) correspond to a sharp 503 

decrease of solar activity and ENSO phenonema. This decrease in activity of both phenomena, 504 

and the climate changes that resulted at Lago Chungara, probably restricted the development of 505 

the diatom super-blooms. Hence, the positive feedback of the solar activity and ENSO 506 

phenomena on the local climate could be mainly responsible for the diatom super-blooms and 507 

accumulation of the white laminae. 508 

 509 

6.- Conclusions 510 

The Late Glacial to early Holocene (11,990 and 11,530 cal years BP) rhythmites from 511 

Lago Chungará record multiannual diatom super-blooms lasting from days to weeks (white 512 

laminae) and the lake hydrology recovery towards the baseline conditions throughout several 513 

years of sedimentation (dark-green laminae). Self-sedimentation phenomena taking place 514 

immediately after the diatom super-blooms cannot be discarded as a sign of the end of the 515 

super-bloom (light-green laminae). The diatom super-blooms mainly occurred during episodes 516 

of extreme turbulent conditions affecting the whole water column, this caused by the upwelling 517 

of nutrient-rich hypolimnion waters and/or by injection on nutrients by increased runoff. 518 


18

Odiatom in Chungará lacustrine record can be used as an indicator of change in the 519 

P/E related to Late Glacial-Early Holocene climate variation. 
18

Odiatom indicates that the white 520 

laminae formation was usually favoured by changes from wet-to-dry conditions, whereas the 521 

green laminae formation was especially prompted by lake level rise. Furthermore, the isotope 522 

data also show that at decadal-centennial scales the depositional units which contain better 523 

developed (whiter and thicker) white laminae are related to low-stand conditions. 524 


13

Cdiatom variability is more complex and requires further study. Variability is classically 525 

interpreted as a function of changes in biological productivity, with higher productivity periods 526 



 19 

responsible for higher 
13

C. However at multiannual scales other in-lake process may be more 527 

predominant especially influences of changes in CO2(aq) concentration due to changes in the 528 

water mixing regimes.  529 

The diatom super-blooms were induced by the complex interplay of solar activity and 530 

ENSO variability. The intervals with better developed white laminae correspond to periods of 531 

greater solar activity and El Niño-like dry phases, whereas thinner and darker white laminae 532 

correspond to La Niña-like conditions. Thus, the positive feedback of the solar activity and 533 

ENSO phenomena seems to be the main responsible for the diatom super-blooms and 534 

accumulation of the white laminae. 535 

High resolution isotope analysis of the oxygen and carbon isotopes in diatom silica in 536 

this uniquely laminated sequence has displayed links between limnology, runoff, hydrology and 537 

climate forcing at different time scales.  Solar activity and ENSO phenomena have triggered 538 

nutrient and carbon release from the hypolimnion and sediments that led to diatom super-539 

blooms.  Such phenomena may be found in many lakes, but few preserve evidence in their 540 

sedimentary processes and architecture.  Further work on other parts of this lacustrine record 541 

and in similarly laminated sites may reveal the full impact of these multi-annual events on lake 542 

ecosystems and biogeochemical cycles. 543 

Acknowledgments 544 

The Spanish Ministry of Science and Innovation funded the research at Lago Chungará 545 

through the projects ANDESTER (BTE2001-3225), Complementary Action (BTE2001-5257-E), 546 

LAVOLTER (CGL2004-00683/BTE), GEOBILA (CGL2007-60932/BTE) and CONSOLIDER-547 

Ingenio 2010 GRACCIE (CSD2007-00067). A. Hernández have benefited from a FPI grant from 548 

The Spanish Ministry of Science and Innovation. The Limological Research Center (USA) 549 

provided the technology and expertise to retrieve the cores. We are grateful to CONAF (Chile) 550 

for the facilities provided in Parque Nacional Lauca. The NIGL (UK) funded the isotope 551 

analyses. Chris P. Kendrick is thanked for conducting the carbon isotope measurements. We 552 

also wish to thank Juan J. Pueyo for valuable discussions on the manuscript and Alice Chang 553 



 20 

for her insight on the implications of self-sedimentation processes in the formation of the 554 

laminated sediments. 555 

 556 

 557 
 558 
References 559 
 560 
Alldredge, A.L., Gotschalk, C., Passow, U., Riebesell, U., 1995. Mass aggregation of diatom blooms: Insights from a 561 
mesocosm study. Deep Sea Research Part II: Topical Studies in Oceanography 42, 9-27. 562 
 563 
Barker, P.A., Street-Perrott, F.A., Leng, M.J., Greenwood, P.B., Swain, D.L., Perrott, R.A., Telford, R.J., Ficken, K.J., 564 
2001. A 14 ka oxygen isotope record from diatom silica in two alpine tarns on Mt Kenya. Science 292, 2307–2310. 565 
 566 
Barker, P.A., Leng, M.J., Gasse, F., Huang, Y., 2007. Century-to-millennial scale climatic variability in Lake Malawi 567 
revealed by isotope records. Earth Planet Sci Lett 261, 93-103. doi:10.1016/j.epsl.2007.06.010 568 
 569 
Bedard, C., Knowles, R., 1991. Hypolimnetic O2 consumption, denitrification, and methanogenesis in 570 
a thermally stratified lake. Canadian Journal of Fisheries and Aquatic Sciences 48, 1048–1054. 571 
 572 
Bird, B.W., Abbott, M.B., Kutchko, B., Finney, B.P., 2009. A 2000-year Varve-Based Climate Record from the Central 573 
Brooks Range, Alaska. Journal of Paleolimnology 41, 25–41. 574 
 575 
Bradbury, P., Cumming, B., Laird, K., 2002. A 1500-year record of climatic and environmental change in Elk Lake, 576 
Minnesota III: measures of past primary productivity. Journal of Paleolimnology 27, 321–40. 577 
  578 
Chang, A.S., Patterson, R.T., McNeely, R., 2003. Seasonal sediment and diatom record from late Holocene laminated 579 
sediments, Effingham Inlet, British Columbia, Canada. Palaios 18, 477–494. 580 
 581 
Christoforou, P., Hameed, S., 1997. Solar cycle and the Pacific ‘centers of action’. Geophysical Research Letters 24, 582 
293–296. 583 
 584 
Cohen, A.S., 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York. 585 
 586 
Crosta, X., Shemesh, A., 2002. Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from 587 
the Southern Ocean. Paleoceanography 17. doi:10 1029/2000PA000565.  588 
 589 
Crosta, X., Shemesh, A., Salvignac, M. E., Gildor, H., Yam, R., 2002. Late quaternary variations of elemental ratios 590 
(C/Si and N/Si) in diatom-bound organic matter from the Southern Ocean. Deep-Sea Research Part II -Topical Studies 591 
in Oceanography  49, 1939-1952.  592 
 593 
Des Combes, H. J., Esper, O., De la Rocha, C. L., Abelmann, A., Gersonde, R., Yam, R., Shemesh, A., 2008. Diatom 594 


13
C, 

15
N, and C/N since the Last Glacial Maximum in the Southern Ocean: Potential impact of species composition. 595 

Paleoceanography 23. doi:10.1029/2008PA0001589.  596 
 597 
Dorador, C., Pardo, R., Vila, I., 2003. Variaciones temporales de parámetros físicos, químicos y biológicos de un lago 598 
de altura: el caso del Lago Chungará. Revista Chilena de Historia Natural 76, 15-22. 599 
 600 
Gasse, F., Fontes, J.C., 1992. Climatic changes in northwest Africa during the last deglaciation (16-7 ka BP). NATO ASI 601 
Series 12. Kluwer Academia Publishers, Dordrecht, pp. 295-325. 602 
 603 
Geyh, M., Grosjean, M., 2000. Establishing a reliable chronology of lake level changes in the Chilean Altiplano: 604 
are sult of close collaboration between geochronologists and geomorphologists. Zbl Geol Paläont Teil 1, 985–605 
995. 606 
 607 
Geyh, M., Schotterer, U., Grosjean, M., 1998. Temporal changes of the 

14
C reservoir effect in lakes. Radiocarbon 40, 608 

921–931. 609 
 610 
Giralt, S., Moreno, A., Bao, R., Sáez, A., Prego, R., Valero, B.L., Pueyo, J.J., González-Sampériz, P., Taberner, C., 611 
2008. Statistical approach to distangle environmental forcings in a lacustrine record: the Lago Chungará case (Chilean 612 
Altiplano). Journal of Paleolimnology 40, 195-215. doi: 10.1007/s10933-007-9151-9 613 
 614 
Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, 615 
L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W., 2010. Solar influence on climate. Reviews of 616 
Geophysics 48, RG4001. doi:10.1029/2009RG000282. 617 
 618 
Grimm, K.A., Lange, C.B., Gill, A.S., 1996. Biological forcing of hemipelagic sedimentary laminae: evidence from ODP 619 
site 893, Santa Barbara Basin, California. Journal of Sedimentary Research 66, 613-624.  620 



 21 

 621 
Grimm, K.A., Lange, C.B., Gill, A.S., 1997. Self-sedimentation of phytoplankton blooms in the geologic record. 622 
Sedimentary Geology 110, 151-161. 623 
 624 
Harris, G. P., 1986. Phytoplankton Ecology. Structure, function and fluctuation. Chapman & Hall, Londres, pp. 384 625 
 626 
Hernández, A., Bao, R., Giralt, S., Leng, M.J., Barker, P.A., Sáez, A., Pueyo, J.J., Moreno, A., Valero-Garcés, B.L., 627 
Sloane, H.J., 2008. The palaeohydrological evolution of Lago Chungará (Andean Altiplano, northern Chile) during the 628 
Lateglacial and early Holocene using oxygen isotopes in diatom silica. Journal of Quaternary Science 23, 351–363. doi: 629 
10.1002/jqs.1173   630 
 631 
Hernández, A., Giralt, S., Bao, R., Leng, M.J., Barker, P.A., 2010. ENSO and solar activity signals from oxygen isotopes 632 
in diatom silica during late glacial-Holocene transition in Central Andes (18ºS). Journal of Paleolimnology 44, 413-429. 633 
doi: 10.1007/s10933-010-9412-x 634 
 635 
Herrera, C., Pueyo, J.J., Sáez, A., Valero-Garcés, B.L., 2006. Relación de aguas superficiales y subterráneas en el 636 
área del lago Chungará y lagunas de Cotacotani, norte de Chile: un estudio isotópico. Revista Geologica de Chile 33, 637 
299-325. 638 
 639 
Herzschuh, U., Mischke, S., Meyer, H., Plessen, B., Zhang, C., 2010. Lake nutrient variability inferred from elemental 640 
(C, N, S) and isotopic (δ

13
C, δ

15
N) analyses of aquatic plant macrofossils. Quaternary Science Reviews 29, 2161-2172. 641 

doi:10.1016/j.quascirev.2010.05.011 642 
 643 
Houser, J.N., Bade, D.L., Cole, J.J., Pace, M.L., 2003. The dual influences of dissolved organic carbon on hypolimnetic 644 
metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64, 247–269. 645 
 646 
Hurrell, E, 2010. Climate change and biogeochemical cycles on East African mountains revealed by stable isotopes of 647 
diatom frustules. PhD thesis, University of Lancaster. 648 
 649 
Imboden, D.M., Wüest, A., 1995. Mixing mechanisms in lakes. In: Lerman, A., Imboden, D.M., Gat, J.R. (Eds.). Physics 650 
and Chemistry of Lakes. Springer-Verlag, Berlin, pp. 83-138. 651 
 652 
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T., Sachs, J., 2002. El Niño-like pattern in ice age tropical Pacific sea 653 
surface temperature. Science 297, 226–230. 654 
 655 
Kröger, N., Poulsen, N., 2008. Diatoms: from Cell Wall Biogenesis to Nanotechnology. Annual Review of Genetics 42, 656 
83-107.  657 
 658 
Lamb, A.L., Leng, M.J., Sloane, H.J., Telford, R.J., 2005. A comparison of

18
O data from calcite and diatom silica from 659 

early Holocene in a small crater lake in the tropics. Palaeogeography, Palaeoclimatology, Palaeoecology 223, 290–302. 660 
 661 
Leng, M.J., Marshall, J.D., 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. 662 
Quaternary Science Reviews 23, 811–831. doi: 10.1016/j.quascirev.2003.06.012 663 
 664 
Leng, M.J., Barker, P.A., 2006. A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate 665 
reconstruction. Earth Science Reviews 75, 5–27. doi: 10.1016/j.earscirev.2005.10.001  666 
 667 
Leng, M.J., Lamb, A.L., Heaton, T.H.E., Marshall, J.D.., Wolfe, B.B., Jones, M.D., Holmes, J.A., Arrowsmith, C., 2005. 668 
Isotopes in lake sediments. In: Leng, M.J., (ed.). Isotopes in palaeoenvironmental research. Springer, Dordrecht, pp 669 
147–184. 670 
 671 
Leng, M.J., Sloane, H.J., 2008. Combined oxygen and silicon isotope analysis of biogenic silica. Journal of Quaternary 672 
Science 23, 313–319. 673 
 674 
Margalef, R. 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1, 493-509. 675 
 676 
Meehl, G. A., Arblaster, J. M., Branstator, G., van Loon, H., 2008. A coupled air-sea response mechanism to solar 677 
forcing in the Pacific region. Journal of Climate 21, 2883–2897. doi:10.1175/ 2007JCLI1776.1. 678 
 679 
Meyers, P. A., Teranes, J. L., 2001. Sediment organic matter. In: Last, W. M., Smol, J. P., (eds.) Tracking environmental 680 
change using lake sediments. Volume 2: Physical and Geochemical Methods. Dordrecht, The Netherlands, Kluwer 681 
Academic Publishers, pp 239-270.  682 
 683 
Moreno, A., Giralt, S., Valero-Garcés, B.L., Sáez, A., Bao, R., Prego, R., Pueyo, J.J., González-Sampériz, P., Taberner, 684 
C., 2007. A 13 kyr high-resolution record from the tropical Andes: The Chungará Lake sequence (18 °S, northern 685 
Chilean Altiplano). Quaternary International 161, 4-21. doi: 10.1016/j.quaint.2006.10.020  686 
 687 
Morley, D.W., Leng, M.J., Mackay, A.W., Sloane, H.J., Rioual, P., Battarbee, R.W., 2004. Cleaning of lake sediment 688 
samples for diatom oxygen isotope analysis. Journal of Paleolimnology 31, 391–401. 689 
 690 
Moy, C.M., Moreno, P.I., Dunbar, R.B., Kaplan, M.R., Francois, J.P., Villalba, R., Haberzettl, T., 2009. Climate Change 691 
in Southern South America During the Last Two Millennia. In: Vimeux F, Sylvestre F, Khodri M. (eds.). Past Climate 692 
Variability in South America and Surrounding Regions, Springer, Dordrecht, Netherlands, 3–27. 693 
 694 
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at 695 
millenial timescales during the Holocene epoch. Nature 420, 162–165. 696 



 22 

 697 
Mybro, A., Shapley, M.D., 2006. Seasonal water-column dynamics of dissolved inorganic carbon isotopic compositions 698 
(δ

13
CDIC) in small hardwater lakes in Minnesota and Montana. Geochimica et Cosmochimca Acta 70, 2699-2714. 699 

 700 
Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V., Bradley, R.S., 2006. Solar modulation of Little Ice Age 701 
climate in the tropical Andes. Proceedings National Academy of Sciences 103, 8937-8942. 702 
 703 
Pueyo, J.J., Sáez, A., Giralt, S., Valero-Garcés, B.L., Moreno, A., Bao, R., Schwalb, A., Herrera, C., Klosowska, B., 704 
Taberner, C., Submitted. Carbonate sedimentation and large 

13
C enrichments in moderately alkaline lacustrine records: 705 

the Lake Chungará. Palaeoclimatology, Palaeogeography, Palaeoecology 706 
 707 
Rasband, W.S., 1997-2009. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 708 
http://rsb.info.nih.gov/ij/ 709 
 710 
Reynolds, C.S., 2006. The Ecology of Phytoplankton. Cambridge University Press: Cambridge, UK. 711 
 712 
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., 1999. An 15, 000-year record 713 
of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516–520. 714 
 715 
Round, F.E., Crawford, R.M., Mann, D.G., 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge 716 
University Press, Cambridge. 717 
 718 
Sáez, A., Valero-Garcés, B.L., Moreno, A., Bao, R., Pueyo, J.J., González-Sampériz, P., Giralt, S., Taberner, C., 719 
Herrera, C., Gibert, R.O., 2007. Volcanic controls on lacustrine sedimentation: The late Quaternary depositional 720 
evolution of lake Chungará (Northern Chile). Sedimentology 54, 1191-1222. doi: 10.1111/j.1365-3091.2007.00878.x  721 
 722 
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson III, J.B., Rollins, H.B., Clement, A., 2001. Variation in 723 
Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29, 603– 606. 724 
 725 
Schneider-Mor, A., Yam, R., Bianchi, C., Kunz-Pirrung, M., Gersonde, R., Shemesh, A., 2005. Diatom stable isotopes, 726 
sea ice presence and sea surface temperature records of the past 640 ka in the Atlantic sector of the Southern Ocean. 727 
Geophysical Research Letters 32, L10704. 728 
 729 
Sicko-Goad, L., Stoermer, E.F., Kociolek, J.P., 1989. Diatom resting cell rejuvenation and formation: time course, 730 
species records and distribution. Journal of Plankton Research 11, 375-389.  731 
 732 
Singer, A. J., Shemesh, A., 1995. Climatically linked carbon-isotope variation during the past 430,000 years in 733 
Southern-Ocean sediments. Paleoceanography 10, 171-177.  734 
 735 
Smetacek, V.S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. 736 
Marine Biology 84, 239-251. 737 
 738 
Talbot, M.R., Allen, P.A., 1996. Lakes. In: Reading, H.G. (ed.) Sedimentary Environments: processes, facies and 739 
stratigraphy. Blackwell Science, Oxford, pp. 83-124.    740 
 741 
Theissen, K.M., Dunbar, R.B., Rowe, H.D., Mucciarone, D.A., 2008. Multidecadal- to century-scale arid episodes on the 742 
Northern Altiplano during the middle Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 361–376. 743 
doi: 10.1016/j.palaeo.2007.09.011 744 
 745 
Thornton, D.C.O., 2002. Diatom aggregation in the sea: mechanisms and ecological implications. European Journal of 746 
Phycology 37, 149–161. 747 
 748 
Valero-Garcés, B.L., Delgado-Huertas, A., Navas, A., Edwards, L., Schwalb, A., Ratto, N., 2003. Patterns of regional 749 
hydrological variability in central-southern Altiplano (18º-26ºS) lakes during the last 500 years. Palaeogeography, 750 
Palaeoclimatology, Palaeoecology 194, 319-338.  751 
 752 
Vuille, M., Bradley, R., Werner, M., Keimig, F., 2003. 20th Century Climate Change In The Tropical Andes: 753 
Observations And Model Results. Climatic Change 59: 75–99, 2003. 754 
 755 
Vuille, M., Werner, M., 2005. Stable isotopes in precipitation recording South American summer monsoon and ENSO 756 
variability: Observations and model results. Climate Dynamics 25, 401-413. doi: 10.1007/s00382-005-0049-9   757 
 758 
Winder, M., Hunter, D., 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156, 179-759 
192. 760 
 761 
 762 

 763 

 764 

 765 



 23 

Figure captions 766 

 767 

Figure 1: A. Location of Lago Chungará on a South American rainfall map (mm/year). Main 768 

atmospheric systems are indicated. ITCZ: Intertropical Convergence Zone, SPCZ: South Pacific 769 

Convergence Zone. B. Bathymetric map of Lago Chungará showing the main morphological 770 

units of the lake floor cited in the text and position of the studied core.  The black line indicates 771 

the cross section (C) throughout the lake. C. Cross section of sediment infilling of Lago 772 

Chungará. The position of the studied core is marked with the coring platform; note that the 773 

position of the core is projected to its equivalent position at the lake central plain. Arrows 774 

indicate major hydrological inputs and sedimentary contributions to the lake. Simplified from 775 

Sáez et al. (2007). 776 

 777 

Figure 2: 
18

Odiatom data of Lago Chungará laminated sediments. A. Lago Chungará 
18

Odiatom 778 

data of the green laminae from three intervals representing different hydrological conditions 779 

during the Late Glacial and early Holocene (12,300 – 9,500 cal years BP). These data were 780 

used to establish the major changes in palaeohydrological evolution of the lake (Hernández et 781 

al. 2008). B. 
18

Odiatom data of all the green laminae from the Late Glacial-early Holocene 782 

transition (12,000 – 11,500 cal years BP). These data were used to document the moisture 783 

balance in the region for this period (Hernández et al., 2010). C. 
18

Odiatom data of all the 784 

laminae (green and white) from the Late Glacial-early Holocene transition (12,000 – 11,500 cal 785 

years BP). These data are used in the present work to know the biogeochemical processes 786 

involved in the laminae formation. 787 

 788 

Figure 3: A. Digital XRF ITRAX core scanner image from the selected and sampled interval 789 

indicating the age and its correspondent core depth.  B. The 49 defined cycles composed by 790 

couplet/triplets from 102 sampled laminae. Triplets are in bold. C. The smoothed grey-colour 791 

curve values for the studied interval. D.
18

Odiatom values measured in each lamina. Note the 792 

diatom super-blooms are marked by thicker white laminae and higher values of the grey-colour 793 

curve.  794 

 795 
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Figure 4: A. Digital XRF ITRAX core scanner image of laminated sediments of core 11 796 

corresponding to the sampled interval of Subunit 1a. Note that the lamination is composed by 797 

millimetre thick white laminae and green laminae forming rhythmites.  798 

B. Photomosaic of a thin-section from the laminated sediments of core 11 (red square in 799 

A) showing a triplet rhythmite sequence and the contacts between the laminae (yellow lines): 800 

(H) Abrupt contact between dark-green and white laminae representing the basal contact of a 801 

rhythmite. The arrows indicate the exact position of the contact which can be perfectly traced. 802 

Note the different size of the diatoms; (G) A white lamina formed by skeletons of the large 803 

diatom Cyclostephanos andinus (> 50 um). The excellent preservation of the diatom frustules 804 

can be observed in the image (red arrow). There are no signs of dissolution; (F) Gradual contact 805 

between white and light-green laminae. Note the preferential orientation of de diatoms placed at 806 

the top of the image (light-green lamina); (E) A light-green lenticular and discontinous lamina 807 

made up of a mixture of elements from the white and dark-green laminae. This lamina is usually 808 

made up of complete valves and fragments of Cyclostephanos andinus valves, both showing a 809 

preferential orientation; (D) Gradual contact between light- and dark- green laminae. This 810 

contact is usually characterised by the decreasing upwards size of the diatoms throughout an 811 

intra-cycle. Arrows indicate the different size of the diatoms; (C) A dark-green lamina mainly 812 

made up of Cyclostephanos andinus (yellow arrows) and Discostella stelligera (red arrows). 813 

Note the smaller Cyclostephanos andinus size (diameter < 50m) embedded in an organic 814 

matter matrix. 815 

. 816 

 Figure 5: A. Digital XRF ITRAX core scanner image from the selected interval. B Grey-colour 817 

surface plot elaborated from the digital image. Decadal-scale main grey-colour trends to whiter 818 

values are indicated by means of red arrows. C. 
18

Odiatom record. Decadal-scale main 
18

Odiatom 819 

trends to higher values are indicated by means of blue arrows. Note the good agreement 820 

between both proxies. 821 

 822 

Figure 6: A. Rhythmite log succession showing facies and transitions, indicated by letters and 823 

numbers, respectively. B. The most frequent intercycle relationship scenarios. Transition case 824 

1: From dark-green to white laminae, the white laminae formation (diatom super-blooms) is 825 
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more often favoured by drops of the lake water level (increases in 
18

Odiatom values) and 826 

therefore related to recycling of nutrients from the hypolimnion. C. The most common intracycle 827 

relationship scenarios. Transition case 2: From white to dark-green laminae, the dark-green 828 

lamina formation is usually favoured by rises of the lake level water (decreases in 
18

Odiatom 829 

values). Transition case 3: From white to light-green laminae, the light-green laminae formation 830 

is usually favoured by rises of the lake water level (lower 
18

Odiatom values).  Transition case 4:  831 

From light-green to dark green laminae, the dark-green laminae formation is almost indistinctly 832 

favoured by drops or rises of the lake water level, with a slight predominance of the former as 833 

the 
18

Odiatom show.  834 

 835 

Figure 7: Time–Frequency analysis of the 
18

Odiatom values (based on data in Hernández et al. 836 

2010). Pink indicates high energy, whereas blue displays low energy areas. Red and blue 837 

horizontal bands mark different previously identified frequency bands of the ENSO and solar 838 

activity forcings, respectively (Hernández et al., 2010). White vertical bands show zones 839 

established by Hernández et al. (2010) with major shifts in 
18

Odiatom of dark-green laminae due 840 

to ENSO and solar activity influence. Yellow vertical bands correspond to solar activity and El 841 

Niño-like coupling periods, whereas green vertical bands coincide with solar activity and La 842 

Niña-like periods. Note that yellow bands generally agree with periods of whiter laminae and 843 

higher values of the grey-colour curve and 
18

Odiatom values. By contrast, green bands agree 844 

with intervals of thinner and duller white laminae; and lower grey colour and 
18

Odiatom values.  845 

 846 

Table 1: List of samples where both 
18

Odiatom and 
13

Cdiatom analyses were carried out, including 847 

main sample features.  848 

 849 

Table 2: A. Intercycle isotope relationships between the defined rhythmites. B. Intracycle 850 

isotope relationships between the defined rhythmites.  Relationship types are established 851 

according to the colour of the laminae that are in contact.  852 

 853 

Table additional material: Analysed samples and their features (number, cycle, colour, depth, 854 

age, 
18

Odiatom, 
13

Cdiatom and %Cdiatom. Dark grey stripes indicate not available (na) samples. 855 
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Sample Cycle Colour 
Depth 
(cm) 

Age              
(cal yr BP) 


18

Odiatom 

(SMOW) 


13
Cdiatom 

(PDB) 
%Cdiatom 

        
5 48 Dark-green 789.1 11,543 36.27 -28,99 0,63 
6 48 White 789.5 11,547 38.01 -28,51 0,47 
        

13 43 Dark-green 793.4 11,588 38.07 -26,05 0,57 
14 43 Light-green 794.1 11,595 37.29 -28,30 0,38 
15 43 White 794.5 11,599 38.65 -28,46 0,39 
        

29 37 Dark-green 799.3 11,650 37.67 -27,87 0,40 
30 37 White 799.6 11,653 38.16 -29,01 0,33 
        

77 13 Dark-green 820.5 11,872 38.44 -27,21 0,44 
78 13 White 820.9 11,876 38.91 -29,53 0,32 
        

87 8 Dark-green 824 11,909 38.62 -27,69 0,38 
88 8 White 824.3 11,912 37.03 -28,89 0,32 
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Intercycle relationship types Enrichments (%) Depletions (%) n 

Dark-green to white laminae 60 40 25 

Dark-green to undifferentiated laminae 67 33 6 

Undifferentiated to white laminae 50 50 6 

Total   37 

 

Intracycle relationship types Enrichments (%) Depletions (%) n 

White laminae to light-green laminae 33 67 9 

Light-green to light-green laminae 0 100 1 

Light-green to dark-green laminae 56 44 9 

White laminae to dark-green laminae 35 65 23 

White laminae to dark-green laminae (non-

consecutive laminae, base to top of the rhythmite) 
33 67 9 

Total   51 
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