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Abstract. As it is well-known, the numerical simulation in fluid mechanics is quite
difficult specially when the velocity of the fluid is important. These problems are reflected
in the appearance of numerical oscillations when Finite Element approaches with Galerkin
weighting are used. In last years, some alternative formulations have been proposed in or-
der to overcome these problems: Streamline Upwind Petrov Galerkin Methods, Space-time
Galerkin Least Squares Methods, Subgrid Scale Methods, Characteristic Galerkin Method,
etc. In this paper, we focuse our attention in the advective-diffusive transport differential
equation, and its application to engineering problems. Thus, we present a brief review
of the causes of appearance of these numerical oscillations and a short revision of the
numerical schemes proposed for the stabilization of advective-dominant problems. Then,
a numerical formulation based on a Petrov Galerkin scheme and a procedure to obtain
stabilization parameters for 1D, 2D and 3D problems are proposed. Finally, we present
different numerical test problems, and we show the feasability of this formulation with
its application to an engineering problem: the evolution of a water pollutant spilt in a
harbour area.
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1 INTRODUCTION

Numerical simulation in Fluid Mechanics is quite difficult particularly in situations in
which the velocity field of the fluid is elevated. The Finite Element Method, which has
been successfully applied to a great deal of problems in Computational Mechanics, presents
serious troubles in the resolution of high-advective fluid problems [1, 2]. These problems
are reflected in the appearance of important oscillations of the solution in some areas of
the domain.

In order to understand the key of this behaviour, we focuse our attention in the advective-
diffusive transport differential equation (which can also be interpreted as the linear version
of the Navier-Stokes equations). In this way, we can study these phenomena of the nu-
merical oscillations in a linear problem. In this paper, we firstly revise their origin, and
review alternative approaches proposed to Galerkin formulation to overcome this pro-
blem. Moreover, a new procedure to obtain stabilization parameters in Petrov-Galerkin
formulations [3, 4] is proposed. We present different advective-diffusive and high-advective
test problems, solved by different numerical techniques. On the other hand, we study the
application of these techniques to the solution of a practical engineering problem: the
evolution of a water pollutant spilt in a harbour area (in the example presented in this
paper, we analyze a 2d problem, so it is assumed that the concentration of the pollutant
is fixed along the water column of each point of the domain [5, 6]).

2 MATHEMATICAL MODEL OF THE PROBLEM

2.1 General statement of the physical problem

There are two different processes in transport phenomena in fluid media. The first one is
the so-called diffusion, and it can be described by the parabolic equation

99
= =V (KV0) (1)

where ¢ is the transported unknown and K is the diffusion tensor of the fluid. The second
process appears when the fluid moves: any substance within it will be carried along or
“convected”, by the mainstream velocity. This is the convection or advection process,
which can be described in a 1D problem by the hyperbolic equation:

do o
ot +Cax B

being ¢ the fluid velocity. It is obvious that the dominance of one effect over the other

0 (2)

will determine whether the transport is mainly due to diffusion or to advection.

Taking into account both processes and considering an isotropic medium, the advective-
diffusive transport problem is given by the partial differential equation

88_(f+u.v¢:V-(kV¢) inQ t>0 (3)
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Figure 1: Diffussion and Advection processes in transport phenomena.

with the following boundary and initial conditions

Vo -n=0 inl'y; Vop-n=q inls;
Vo -n=~v—a¢ inly;

¢(wvo>:f(w>v$€Qv (4)

being I'y, I'y and I'g different portions of the boundary I' where the conditions defined in
(4) are prescribed, so that I'y UT'y U T3 = T'. In general, v, k, a, ¢ and f(z) are time and
position dependants data.

2.2 Variational statement of the problem

In this section we present a numerical approach using the Finite Element Method with
Galerkin weighting for the transport problem. First, it is necessary to define a variational
formulation of (3) and (4), that can be set as follows: find ¢ so that this boundary-value
problem is satisfied in the meaning of weighted-residuals

/{aa—f+u-v¢—V~(kV¢)}wdQ+ (Vo n—7+ad}unda=0, (5
Q f 1)

for all tests functions w and wy, in ©Q and I'y [8]. A weak variational statement may be
readily obtained by integration by parts of the diffusion term in the standard weighted-
residual statement (5):

/ {w8—¢ +wu-Vo +kVo- Vw} ) + / apkwdly = / ~vykwdTy. (6)
0 at Ia Iy

Next, it is necessary to introduce a discrete approach to the solution of the problem, and
a partition of the domain € in e elements 27 UQoU Q3U...UQ, so that ;N =0 (i # j)
must be performed; therefore we obtain a finite element discretization €2, of domain .
The next step is to define a basis of local shape functions p; so that

0~ o(x.t) = Z¢j(f)pj(><)- (7)
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Finally, we must define n test functions w; to obtain a linear system of n equations with
n unknowns. This linear system is the discrete approach to the boundary-value problem
defined in (3) and (4). If a Galerkin weighting scheme is applied (p; = wj, j = 1,n), the
weak variational statement leads to the following system of linear equations:

d¢ B
BE+A¢—C, (8)

being

B;j = [fQ, pip; th],
Ajj = {fgh(u-ij)pi th] + [k: thij -Vpi th] + [ak szhpipj d,th],

C; = |:’y]< fFQh pidrgh] (9)
fori,j =1,2..n

Equations (8) and (9) represent the approach to the solution of a transport problem
using a Finite Element formulation with Galerkin weighting. As we shall see, the choice
of this weighting scheme produces high-oscillating numerical solutions in high-advective
problems.

3 ORIGIN OF THE OSCILLATING BEHAVIOUR

For high-advective problems, it can be demonstrated [8, 9, 10] that the numerical scheme
obtained with a Galerkin weighting is unable to propagate precisely both the frecuency
and the amplitude of an eigenfunction of the analytical solution of certain problems.
This frequency and this amplitude arises as a consequence of the existence of complex
eigenvalues associated to a certain eigenfunction. These complex eigenvalues are the origin
of the apperance of the numerical oscillations. Now, we will ilustrate the appearance of
these complex eigenvalues and its influence in the problem [8].

Using Taylor series expansions we obtain the next fully discrete forward system for the
problem (8)

ot + At) — ¢(t)
(s

) + Ag(t) = c(t) + 0(At), (10)

that, if we do #/ = t and #+/*1 = ¢+ 4+ At, can be rewritten as
¢ =(1-AtB7IA)Y + AtBTI¢. (11)
In order to simplify our analysis, we will consider the homogeneous equation (¢ = 0).

Thus, the solution in a time step j + 1 can be obtained from the solution in a time j
multiplied by the factor

(I - AtB™'A). (12)
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We can analyse the temporal evolution of ¢ by defining a norm to the factor (12). This
norm can be set in terms of the eigenvalues of B™'A [8]. Since the complete development of
this analysis is too cumbersome to be explicited in this paper (it can be found in [8, 9, 10,
11]), we will show their influence in a particular case. In the following example it is shown
that, in high-advective problems, the eigenvalues of this matrix can be complex values,
and therefore the numerical solution will present spurious oscillations. If one considers a
1D case with linear finite elements (with a mesh size h), then the following expresions to
the matrices defined in (9) are obtained

h 12 1 u | —1 1 k 1 -1
B_Ell 2]’ A‘E[—1 1]+E[—1 1]‘

If we study the steady-state response of the problem, the elemental matrices defined in
(13) produce

(13)

-1 1 0 1 -1 0 b1 e
-1 0 1 -1 2 -1 b
+1 0 =1 0 cl o =1 2 -
2 0 1 h 2 -1 0 -
1 -1 2 -1
L 0 -1 0 -1 1 /1L én ] Cn

(14)

As it can be seen, the matrix of system (14) is the result of assembling the diffusive
and advective terms of matrix A defined in (13). The advective component yields a non-
symmetrical matrix, with many ceros in the main diagonal. This matrix is the origin of the
appearance of the complex eigenvalues when advection is more important than diffusion.
This circumstance is shown in the next three cases corresponding to a mesh of 7 linear
elements, in which we have computed all eigenvalues for different Péclet numbers:

1. Diffusive problem. 2. Advective problem

u=2, k=5, h=1,Pe=04 u=12, k=5 h=1,Pe=25
" A1 ] [18.828 " A1 ] 700.0 +0.00i T
Ay 16.109 Ay 10.0 — 4.14i
A3 12.180 A3 10.0 — 1.48i
A= | 7820 M| = [100+148i | (15)
A5 3.891 A5 10.0 — 5.98i
Ao 1.172 A6 10.0 + 5.98i
A7 | 0.000 ] A7 | 10.0 + 4.14i |




C. A. Figueroa, I. Colominas, G. Mosqueira, F. Navarrina, M. Casteleiro

3. High-advective problem.
u=40, k=5, h=1,Pe=140

A1 ] 7 00.0 + 0.00i ]
Ay 10.0 + 34.89i
A3 10.0 — 34.89i
M| o= | 10.0+24.15i (16)
A5 10.0 — 24.15i
A6 10.0 + 8.62i

By | 10.0 — 8.62i |

If we pay attention to equation (14), we can see that remeshing the domain (i.e., adopting
a smaller size of element h) is a straightforward way to stabilize the problem, since the
diffusive component becomes more important. Obviously, this remeshing procedure would
imply a hughe increase of computational cost in practical cases, so it isn’t a good solu-
tion. For this reason, some alternative formulations have been proposed to obtain stable
numerical schemes. All of them establish different kinds of weighting, trying to enhance
the diffusive term, i.e. the symmetrical part of the equation.

4 ALTERNATIVE FORMULATIONS TO THE PROBLEM

In last years, different alternative schemes to the Galerkin weighting have been pro-
posed to stabilize the numerical formulation of the transport equation. Some of these
are: Streamline Upwind / Petrov-Galerkin (SUPG) [12], Space-time Galerkin/least-squares
(ST- GLS) [13],Characteristic Galerkin Method (CG) [14], Subgrid Scale Method (SGS)
[15] and Taylor-Galerkin Method (T'G) [16]. Basically, all these methods consist of the
addition of a stabilizer term to the Galerkin formulation. Thus, the variational statement
of problem (6)

do - - 5
/ {wh,a_(f +wpu - Vo +kVe - th} s, + / apkwpdly, = / Ykwpdl'y, , (17)
Qp 7 r r

2p, 2p

is modified by an additional term of the general form [17]

/Q Plwn) R (p)dS, (18)

where P(wy) is an operator which is applied to the test functions, 7 is a stabilization
parameter, and R(pp) is the residual of the differential equation:

Rim) = 22 40 V6 - V- (kV3) (19)



C. A. Figueroa, I. Colominas, G. Mosqueira, F. Navarrina, M. Casteleiro

Most classical stabilization methods for the transport equation problem fall within the
previous framework. For example, Petrov-Galerkin formulations introduce this stabiliza-
tion term by upwinding the test functions against the current lines; thus, in the 1D case,
for a linear element, test functions w;(¢) and trial functions p;(€) can be defined as

Nol— DN

pi(§) = 5(1=¢) wi(§) = 5(1-¢) - FA+ (L =¢)

pi(§) = (20)

g
0o
—
i
S~—
Il
Nl— N

p2(§) = 5(1+¢) 1+&)+F1+6A-¢)

where « is a scaling factor that specifies the amount of upwind bias desired (upwind
parameter), as it is shown in figure 2.

Figure 2: Standard piecewise-linear basis functions and quadratically based test functions
for Petrov-Galerkin approaches.

At present, the development of a general method for computing these parameters as a
function of the velocity flow is still an open field of study. Thus, some methods propose
to compute this parameter by imposing exact nodal solutions [3, 4, 18], and other seek
for the reduction of oscillations by the comparison of results obtained from a poor mesh
with those obtained from an enriched mesh, or even by means of smoothing procedures

19].

A new method for computing these stabilization parameters will be presented below. This
method is based on the analysis of the eigenvalues of elemental matrices, according to the
ideas presented before. However, we will show first how the introduction of a bias in
the test functions stabilizes the numerical model. Thus, if we consider a 1D case with
linear elements and the test functions defined in (20), we obtain the next system of linear
differential equations [8]:
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¢ ~d¢ - .
(BE + uAq ¢ + k?A2¢> +a (BE + uA ¢ + k?A2¢> =c. (21)

It is very interesting the analysis of elemental matrices ]§, 111 and :&2 associated to the
cuadratic bias, that are given by

i
A5 = [ay,], =0 (24)

Note that elemental matrix (23) is a new advective contribution to the term appeared in
(13). This is a symmetrical matrix which will contribute to stabilize the non-symmetrical
matrix (13). Likewise, the new diffusive contribution given by (24) is equal to zero, so it
does not perturb the symmetrical matrix (13). It is important to notice that this analysis
can also be made [3, 4] for high-order elements and 2D and 3D problems, obtaining similar
conclusions.

Therefore, our goal is the development of numerical formulations that produce stable
schemes by the appropiate weighting of the elemental advective and diffusive matrices by
means of suitable stabilization parameters.

5 BASIS OF THE PROPOSED METHOD TO COMPUTE
STABILIZATION PARAMETERS

If we do not consider the terms of (9) associated to the flux prescribed in the boundary,
then we obtain

Aij = [/ (u-Vp;)pi th} + {/ kVp; -Vp; dQp| . (25)
Qn Qp,

Thus, each elemental matrix is the sum of an advective term (which yields non- symmet-
rical matrices) and a diffusive term (which yields symmetrical matrices). These elemental
matrices may have complex eigenvalues in high-advective problems, so their assembling
will produce an ill-conditioned problem which present an oscillating solution.
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Different formulations are used to overcome this problem. For example, the Petrov-
Galerkin formulation modifies the Galerkin space of weighting functions by introducing
an upwinding bias in the trial functions. This modification seeks for the stabilization of
the non-symmetrical matrices associated to advection, just like it was shown in (21)-(24).
Now the matter is to determine the amount of this bias.

The method we propose for the calculation of these parameters is the following: Firstly,
elemental matrices are computed adopting for the stabilization parameter a null value
(so, we obtain a Galerkin formulation). Next, the computation (or estimation) of the set
of eigenvalues {)\;} of each elemental matrix A, is performed. If all of these eigenvalues
are real numbers, then the stabilization parameter is equal to zero. However, if it should
not be so, then it is necessary to increase the value of the stabilization parameter since
no complex eigenvalues in the elemental matrices appear. That is, we pretend to find

{ac} / Im{\ [A]} =0, i=1,..n Ve, (26)

being {a.} the set of stabilization parameters of each element.

In this point, it is important to note an essential characteristic of this method: it is
absolutely general and independent of the dimension of the problem. The stabilization
parameters are not computed in an heuristic way, and it also works if internal fonts and
reactive terms are considered in the transport differential equation. Consequently, it is
a general methodology, very simple from a conceptual point of view, that stabilizes the
numerical model of the problem by analyzing only its elemental matrices.

At present, we have obtained very promising results in the cases studied until now [8, 10,
20], and we are developing a method for the computation of these parameters using the
information contained in the eigenvalues for 2D and 3D problems. Next, we present a 1D
high-advective example in which is shown the feasability of the proposed method.

6 1D NUMERICAL EXAMPLE

We consider the 1D numerical test defined by (see figure 3):

d 9* d
oz ox oz
¢ (0)=¢ 7 ‘ ‘ ‘ ‘ ‘ ‘ 1 €— O (L)=h[¢, -o(L)]

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

N

/
7

Figure 3: Domain and boundary conditions of the test problem.
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The discretization parameters for this problem are as follows:

Number of elements = 10 Number of nodes per element = 3

b0 = 0.001 ¢1 = 0.005 h=10 Diffusion & = 0.002

The velocity field considered in this problem is represented in the next figure

Figure 4: Velocity profile for the test problem.

This velocity profile yields the next distribution of Péclet numbers, that as it can be seen,
they are very elevated at the end of the domain

Velocidad | Numero de
Elemento ,

elemental Péclet
1 0.01250 2.18750
2 0.07250 12.68750
3 0.19250 33.68750
4 0.37250 65.18750
5 0.61250 107.18750
6 0.91250 159.68750
7 1.27250 222.68750
8 1.69250 296.18750
9 2.17250 380.18750
10 2.71250 474.68750

Figure 5: Distribution of Péclet numbers for the test problem.

Results obtained with different formulations are presented below, comparing them with
the exact solution to the problem. This exact solution has been obtained by using a very
dense mesh (1000 elements) and a Galerkin weighting scheme.

The formulations that have been used are:

1. Galerkin formulation

2. Petrov-Galerkin formulation with "classical” determination of stabilization parameters.
3. Petrov-Galerkin formulation with the proposed method for computing parameters.

In figure 6, it can be seen that oscillations in the Galerkin solution are very elevated, as it
was foreseeable. This approximation is extremely poor. In the ”clasical” Petrov-Galerkin

10
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approximation the computing of the stabilization parameters was made by means of the
known expression [18]:

uh Pe

1
a = coth(y) — —, =95 = 5

v

¥ (28)

Results obtained with this formulation are much better than the previous ones. The sta-
bilization parameter defined in (28) is obtained as a result of imposing that the nodal
equations of the discrete system obtained from the finite element method have no trun-
cation errors [18].

0.001025— 0.001025—
21
0.001020— 0.001020—
0001015 0001015|
0001010 0001010
0.00100. v V 0001005 DN /
0.001000— 0001000
0.000995 <
T T T T T T T T T I T I T | 0.00099. T T T T T T T T T T T T T ]
000 MO0 20030 A0 300G 700 000 L0 200 300 400 500 600 700
Galerkin ———————o— Petrov-Galerkin con obtencién de parametros convencional
. Solucion exacta
Solucion exacta
0.001025—
1.60 —
0.001020— i
1.20 —|
0.001015—
i o A
0.001010—
¢ 0.80 —
0.001003 ﬁkﬂ‘\/ i
0.40 —
0.001000—
0.000995 — T T T T T T
000 100 200 300 400 500 600  7.00 0.00 L B B . |
x 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
X
——e———e&— Petrov-Galerkin con obtencion de parametros propuesta
Solucion exacta Pardmetro de estabilizacion o para cada elemento del dominio

Figure 6: 1D test problem: Results obtained with different formulations.

11
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In the case of the proposed method the computation of the stabilization parameters has

been done by using 3-nodes cuadratic elements, which shape and test functions are given
by:

(Pl(f) — 5(52_ 1)

pi(€) = q pa(e) = M (29)

(p3(8) = (1-€%)

(i) = 61 o — ¢

wi (&) = wo(€) = 5(527+1> —a(8—¢) (30)

(w3(€) = (1 - &%) +a(e® —¢)

Figure 6 shows the values of the stabilization parameter o and results obtained with
the proposed method. As it can be seen, results are as good as ones obtained with the

"classical” formulation, or even better. The reduction of the oscillations is very important
and the value of the stabilization parameter is greater in those areas of the domain where
the velocity is more elevated. In this example, we remark the great advantage of this
formulation that it does not depend on any heuristic method for parameters computing,
since a systematic analysis is performed of each elemental matrix.

7 2D APPLICATION EXAMPLE

In this section we will solve a 2D transport problem defined by equations (3) and (4) in
a domain ) defined by the harbour area of the Port of La Corunna. The problem to be
solved is the evolution of a water pollutant accidentally spilt in the harbour area. First
of all, it is necessary to bound somehow a semi-infinite domain. Considering this, the
open-to-sea-boundary has been defined by an arc from the end of the dyke to the extreme
of Darsena de Oza’s wharf (see figure 7). As we shall see, the boundary conditions must
be imposed carefully in this portion of the domain [21].

The solution to this problem will be obtained by using a finite element approach, which it
is more adecquate than other numerical formulations (e.g., finite differences) [22] since it
allows to deal with more complex domains and boundary conditions. The finite element
mesh used and its characteristics are represented in figure 7.

7.1 Description of boundary conditions

Once it has been defined the domain and its finite element approximation, it is necessary
to specify the boundary conditions (4) to be applied in each portion of the boundary. The

12
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boundary finite elements of fig. 7 are divided into three groups, according to the different
boundary conditions applied. These groups are as follows:

a) Elements located in the wharves (I'1). In these elements, a condition of null normal
flux is imposed. This assumes that there is no gain nor lost of pollutant concentration

across the wharves. So,

Von=22_0 i, (31)
on

] Puerto

V’\) ~ e de La Coruiia
[/ ~

\ / \
\ / .
\ / ~_/ Muelle del Centenario

\N Pantalanes Petroleros
-

e

Ciudad

de La Coruiia /Nm ena de Oza
\
|

Numero de elementos: 2499

N
>~
0 10 200 0w \ @ Numero de nodos por elemento: 4

\ Numero total de nodos: 2692

Figure 7: Domain of the problem: the harbour area of the Port of La Corunna. Finite
element mesh obtained whith GEN4U system [23].

b) Elements located in the point of pollutant-spilling (I';). A Neumann condition is
applied in this portion of the boundary, so the flux of contaminant is prescribed as follows:

ng-n:a—d):q in [’y (32)

on

c) Elements located in the open-to-sea-boundary (I's). As it has been remarked before,
this is a portion of the bondary that requires a special care. We must be able to impose
a condition that simulates the effects of the rest of the ocean in the harbour area [8]. It
is easy to understand that the ocean works as a spillway for the pollutant spilt in the
harbour, and so it prevents from an indefinite increasing of concentration into the harbour
area. This condition may be prescribed of many different ways. We have decided to impose
a simple mixed boundary condition to try to reproduce this circumstance. This condition

is as follows:

13
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V(b-n:%:’y—cub in I's (33)
on

where v and a are known data, which will be considered time independants.

7.2 A low-advective transport problem

In this section a low advective problem is solved. This means that advective processes are
less important than diffusive processes. First, we must specify the velocity field u(z, y, )
considered, which should be obtained in practice (as parameters of the boundary con-
ditions) by means of experimental measures. However, in the example presented in this
paper, we have defined it analytically (see fig. 8), only by considering the condition of
incompressible flow: V - 4 = 0. This field of velocity has been considered steady in time.
The parameters used to solve the problem are defined below.

[IV||max=0.59

e

Iave

S

~
x

Figure 8: Velocity field analitically defined.

- Difussion k£ = 10 V<.

- Maximum Péclet number Pe = 1.9 | taking the average length of the diagonals of the
elements as the characteristic dimension.

- I'y boundary conditions:

- Oil Harbour (area of spilling)

=5 (34)

14
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- I's boundary conditions:

Vé-n=v—ap=5—050 (35)

Results obtained for the steady-state response of this problem are shown in fig. 9. This
figure presents also the results for the same problem, but considering no advection. As it
can be seen, the presence of advection modifies in a very important way the distribution
of water pollutant. It is also worthy to remark the increase of the pollutant concentration
values all over the domain, due to the addition of the advective effects to the diffusion
processes.

a)
940
l 835.55
3
- 62666
52022
a1
y 313.33
20088
104.44
.0.0093
b)
940
l 835.55
3
62666
52222
y 40777
31333
20888
Z0 x l 10444
-0.0093

Figure 9: a) Solution to the pollutant spilling problem considering no advection pro-
cesses. b) Solution to the pollutant spilling problem considering the field of velocity
defined in fig. 8. (Maximum Péclet number=1.9).

7.3 A high-advective transport problem

In this section we will solve a very similar problem to the previous one, but adopting a
bigger maximum Péclet number. Thus, we are dealing with a problem in which the impor-
tance of the advective processes is much bigger. These problems, as we have already seen

15
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Figure 10: Solution to the pollutant spilling problem in the high-advective case (Maximum
Péclet number=19). Below, detail of the zone with important oscillations in the numerical
solution (it is also the zone of maximum advection).

and it is widely referenced in the bibliography [18, 9, 10], present a noticeably oscillatory
behaviour, if a Galerkin weighting scheme is used. For this analysis of this example, the
same field of velocity (fig. 8) will be used, and the parameters considered are the following:

- Diffusion £k =1 VQ.
- Maximum Péclet number Pe = 19.
- I's boundary conditions:

- Oil Harbour

9o
=5 36
. (36)
- I's boundary conditions:
Vo-n=~v—-—ap=5—-0.5¢ (37)

Solution to this problem (i.e. the evolution of the concetration of the pollutant) is pre-
sented in figure 10. It is important to notice the existence of important oscillations in the

16
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numerical solution in those areas of the domain where advection is more important. It
can also be seen that concentrations are more elevated than in the previous problem, due
to a bigger presence of advection. The appearance of these oscillations emphasizes again
the poor performance of the Galerkin weighting shemes to solve high-advective transport
problems. As we have already seen, there are alternative formulations [8, 17, 19, 24] which
are more suitable for these problems. At present, we are developing a extension of the for-
mulation explained in section 5, in order to compute the stabilization parameters required
in Petrov-Galerkin formulations for 2D and 3D cases. This will allow us to stabilize the
numerical model of problems such as those presented in this section.

8 CONCLUSIONS

In this paper, a new method for computing stabilization parameters required in Petrov-
Galerkin weighting formulations has been proposed. These parameters are computed ana-
lyzing the eigenvalues of the elemental matrices of the FE discretization, by imposing that
these matrices have no complex eigenvalues.

This general methodology is applicable to 1D, 2D and 3D problems and no heuristic
arguments are used to obtain the stabilization parameters, what makes it more attractive.
These parameters are computed during the integration and the assembly of the elemental
matrices.

Results obtained in 1D problems are excellent and very promising, and they can assure a
good performance of this method in 2D and 3D cases. However, the computational cost
increases since the analysis of the eigenvalues of each elemental matrix of the discretization
must be performed. At the present time, we are working in the development of numerical
formulations that allow us to reduce the computing effort by re-using the information
contained in the eigenvalues of a certain element and its adjacent ones.

Finally, it has been presented an application to an engineering problem. It has been studied
the evolution of a water pollutant spilt in a harbour area. A discussion of the suitability of
the boundary conditions have been made. Two different problems have been solved using
a Galerkin weighting scheme. It can be seen that, as the Péclet number increases, the well-
known numerical oscillations appear in those areas of the domain where the advection is
more important.
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