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ABSTRACT ultra-wideband (UWB) technology enables centimeter-level localization systems based on
the accurate estimation of the actual distance between transmitter and receiver, by means of the precise
estimation of the signal time-of-flight. However, this is only possible when correctly detecting the first path
of the incoming signal instead of a bounce or a reflection, which becomes challenging in non line-of-sight
(NLOS) situations. There are many different approaches in the literature to alleviate the wrong detection of
the first incoming UWB signal path. One of them considers machine learning techniques to design classifiers
capable of distinguishing between line-of-sight (LOS) and NLOS propagation from available signal features.
However, the performance and complexity of the obtained classifiers depend largely on the size of the
input data associated to such features. Thus, features such as the channel impulse response (CIR) produce
large amounts of data, yielding very complex classifiers. In this paper, we propose using a downsampled
power delay profile (PDP) as an alternative feature consisting of input data much smaller than the CIR,
although sufficiently representative, hence resulting in a lower computational cost while exhibiting a similar
classification performance. Furthermore, another of the tasks addressed in this work is the study of the impact
on the classification results of using a dataset for training where the samples of each class are not balanced
from the point of view of energy. Finally, this work also studies how the classifiers based on the CIR or
the PDP improve their performance when considering additional signal features such as the estimated range
value or its energy level.

INDEX TERMS Channel impulse response, power delay profile, convolutional neural network, deep
learning, indoor localization, non line-of-sight, ultra-wideband, ranging, received signal strength.

I. INTRODUCTION
Indoor positioning has experienced great advances in recent
years, driven by an increasing number of commercial
technology solutions capable of achieving positioning
with centimeter accuracy. One of the radio technologies
that achieves the best results in terms of precision is
UWB, above others traditionally used [1], [2]. Among the
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commercial implementations of UWB for localization pur-
poses, the DW1000 integrated circuit (IC) fromDecawave [3]
stands out for its high availability in many devices. Nowa-
days, this chip has become almost a de facto standard both
at the enterprise-level (indeed, Decawave has more than 50
related partners [4]) and at the research-level (searching for
the term ‘‘DW1000’’ in Google Scholar yields almost 8000
different results).

The DW1000 implements the ultra-wideband (UWB)
IEEE802.15.4-2011 standard, which details the mechanisms
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and protocols needed to operate with UWB in ranging
tasks (distance estimation). In order to obtain signal syn-
chronization and estimate the distance between transmitter
and receiver, the DW1000 IC implements a threshold-based
energy detection mechanism consisting in accumulating
energy at the receiver until exceeding a certain predefined
threshold value. In situations with a clear line-of-sight (LOS)
between transmitter and receiver, the energy of the originally
emitted signal is detected and the first path of the incoming
signal is accurately detected. However, in non line-of-sight
(NLOS) situations, the original signal can be attenuated or
blocked completely, so that the energy exceeding the detec-
tion threshold in the receiver might not correspond to that
of the first path, but that of a bounce or a delayed reflec-
tion, yielding an erroneous estimation of the signal time of
flight (ToF), which later translates into an error in the range
estimation much higher than that in the LOS case. Many
different works in the literature try to differentiate the signals
received under LOS propagation conditions with respect to
those corresponding to NLOS. In general, selectively dis-
carding the estimates coming from NLOS propagation con-
ditions yield a significant improvement of the positioning
accuracy.

There are several approaches to this LOS-NLOS classifi-
cation problem, including those proposed by the authors in
previous works. More specifically, in [5], [6] we consider
classical machine learning techniques and shallow neural
networks to attempt this classification. For this purpose, sev-
eral measurement campaigns were carried out with devices
equipped with the DW1000 IC to obtain a sufficient set of
training samples. Later, the performance of these systems
was analyzed when classifying the measurements coming
from a different scenario. On that occasion, and in order
to implement the classification system in computationally
reduced devices, it was decided to use only received signal
strength (RSS) moving averages and range estimation as the
training features. In addition, to carry out the classification
in real time, the idea of using the channel impulse response
(CIR) samples to feed the training process was discarded due
to the long time required to extract the CIR measurements
corresponding to the ranging processes between the trans-
mitter device and all the possible receiver nodes deployed in
the environment and needed to generate a position estimate.
However, the LOS-NLOS classification directly from theCIR
samples is also useful in scenarios where either that real-time
restriction is not present, or the hardware device allows for
obtaining and processing the CIR faster than the DW1000.

Although in this work we focus on approaches based on
machine learning, it is necessary to emphasize that there are
several other parallel approaches also based on the CIR but
using the samples in a different way. For example, with more
heuristic and deterministic algorithms [7]–[9], or employing
statistical analysis [10]. Other related works do not directly
employ the CIR, but features derived from the signal such as
its energy, the signal detection time instant [11]–[13], or even
additional data such as sensor acceleration values [14]. Others

approach the problem exclusively from the simulation point
of view [15], [16].

In addition, it is also worth mentioning that these tech-
niques can be applied in other radio technologies [17], [18],
although this work is focused on UWB.

Regarding the LOS-NLOS classification problem with
UWB, there are some authors that have considered the use
of the CIR samples together with machine learning or deep
learning techniques to find a solution. In these cases, the pro-
cess typically consists in employing all the samples from the
CIR directly as training features [19], yielding classifiers with
a high computational cost due to the large number of data
samples provided by the CIR.A possible approach to alleviate
this problem consists in employing only a subset of the CIR
samples [20].

However, as in any other process where automatic learning
techniques are used, in this case the initial data is the key
to obtain representative results that can be exploited in final
applications. Thus, both [19] and [20] used for their results
the same dataset ( [21]). This dataset contains 42000 samples
extracted from a DW1000 module in LOS and NLOS situa-
tions captured in different indoor locations. These locations
include two offices, a small apartment, a kitchen with living
room, a bedroom, a small workshop, and a boiler room.
The dataset is perfectly balanced, with 50% of samples from
each of the classes. In addition, in order to avoid possible
biases induced by the different locations, the set of samples
is randomized. The dataset does not include absolute posi-
tion references, but it includes the values provided by the
DW1000 after a regular ranging operation, such as the range
estimation itself, the CIR samples or the index within the
CIR where the first path of the UWB signal was detected.
This same dataset has been used in the present work, so that
the results obtained with the features introduced could be
compared with all the other works based on these same
measurements.

Similarly, the neural architecture used in this work is very
close to that presented in [19], [20]. In this way we guarantee
that the differences observed between the different proposals
are due exclusively to the set of features selected, since both
the training data and the algorithms are the same.

In this article we present three main contributions. First,
we perform a comparison in the classification of LOS-NLOS
measurements using a downsampled version of the PDP ver-
sus using the complete CIR or only a part of it. The idea of this
experiment was to check if similar results could be obtained
while reducing the input size of the neural network. Section II
details the experiment and the results obtained.

The second contribution is to analyze the impact of using
the CIR to classify when both classes have a very different
level of energy in their samples. Section IV describes the
problem and shows the classification results after applying a
normalization and noise removal process on the CIR samples.

Finally, the third contribution is to show the performance of
a classification system based on the CIR samples when two
additional features are added: the range value itself and the
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energy value of the samples. SectionV shows the experiments
performed and the results obtained.

II. USING THE PDP AS TRAINING SET
This section introduces the use of the PDP samples instead
of those from the CIR to perform the training of a multilayer
convolutional neural network capable of classifying the UWB
measurements captured under LOS or NLOS propagation
conditions. The samples employed are those corresponding to
the dataset available in [21], originally created by the authors
of the paper [20]. This dataset includes 42000 UWB mea-
surements obtained in up to 7 different indoor locations, and
it has the same number of measurements for both of the LOS
and NLOS classes. Notice that, although obtaining the CIR
is typically a hardware-dependant task requiring low-level
software development, computing the PDP from the CIR is
a generic operation that does not depend on the hardware.

Section II-A details the processing of the CIR samples
to obtain the PDP, while Section II-B shows the details of
the considered convolutional neural network (CNN) and the
selection mechanism for the training and test sets.

A. TRAINING FEATURES
The DW1000 stores, for each measurement, 992 samples
for the 16MHz mean pulse repetition frequency (PRF),
or 1016 samples for the case of 64MHz mean PRF [22].
For the dataset considered in [21], a 64MHz mean PRF was
set, hence, for each measurement, we have 1016 valid CIR
samples. TheDW1000 provides the real and imaginary values
for the CIR samples. However, the considered dataset [21]
only provides the modulus of the samples, which is defined
for a given measurement as

|h[n]|, n ∈ Z and 0 ≤ n < 1016. (1)

The selected training features derived from the CIR and
considered in this work are defined as described below.

1) ALL THE CIR SAMPLES (AS IN [19])
The idea considered in [19] consists of using all the CIR
samples as training features in the same way as Eq. (1).

2) FIRST 152 SAMPLES OF THE CIR AFTER THE FIRST PATH
(AS IN [20])
As noted in [20], most of the information about the propaga-
tion characteristics is contained in the 152 samples of the CIR
starting at the one corresponding to the first path. Thus, if the
first path starts at index n0, then the training feature is

|h[n]|, n ∈ Z ∧ n0 ≤ n < n0 + 152 (2)

where we assume that n0 ≥ 0 and n0 + 152 < 1016.
For each measurement, the index of the first path is also

stored by the DW1000 in an internal register which can be
accessed later. Although this value could be used to extract
the most representative set of samples from the CIR, in our
case we decided to use a different algorithm. The reason is

that the DW1000 uses a threshold algorithm to decide which
is the first sample of the first path. In an LOS scenario this
method works well, but in NLOS scenarios it may sometimes
not detect that first path correctly if its energy level is low.
That is why, since in our study we do not have the immediacy
requirements that the algorithm implemented in the chip has,
we decided to perform a CIR processing to try to detect more
accurately that first significant sample.

For that matter, we employed a similar method to the one
proposed in [23] to calculate the so-called rise time feature.
This value is defined as follows:

trise = tL − tH (3)

where tH corresponds to the instant when the signal exceeds
a high level based on the maximum value of the sig-
nal, and tL corresponds to a later instant when the signal
goes below another threshold dependent on the noise level.
Mathematically:

tL = max{t : |r(t)| ≥ ασn} (4)

tH = min{t : |r(t)| ≥ βrmax} (5)

being r(t) the received signal, σn the standard deviation of the
thermal noise, rmax = max{|r(t)|}, and α and β two constants
selected empirically. Thus, similarly to [23], but in discrete
time, we obtain nH as

nH = min{n : |h[n]| ≥ βhmax} (6)

where hmax = max{|h[n]|} is the maximum amplitude of the
CIR, and β ∈ [0, 1] is a parameter used to select the threshold
to detect the first path based on the maximum value of h[n].
The value of β is chosen empirically and in our case we used
β = 0.4, manually inspecting the results to check that the
first path was accurately detected. It should be also noted that
the CIRs have a small rise time nr from its actual start to the
detected index nH. Therefore, in order to include this rise time
in the selected CIR samples, n0 is obtained as

n0 = nH − nr. (7)

In our case, we use a value nr = 3, which was also chosen
empirically by inspecting the results.

Fig. 1 shows an example of the CIR for one measurement
where the two estimates of the beginning of the first path have
been marked: the one returned by the DW1000 and the one
generated by our algorithm. It can be seen how in this case
the estimate included in the measurements does not include a
previous sample that is clearly above the noise level.

3) DOWNSAMPLED PDP (PROPOSAL)
Although most of the CIR information is contained
in 152 samples (see Eq. (2)), we can reduce this number even
further while retaining a similar performance, hence speeding
up the training time of the network. This is feasible because:
1) closely spaced CIR samples use to be highly correlated,
and 2) even though the CIR may exhibit rapid variations,
which reduce the correlation of closely spaced samples in
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FIGURE 1. First path detection using the value given by the DW1000 and
usign a different offline detection algorithm.

some cases, we assume that both the amplitude and the overall
shape of the CIR play a more important role in our case.

To do this, we consider the PDP, which gives us the average
power of the channel impulse response as a function of the
delay. In our case, we can obtain the PDP as the squared
modulus of the CIR, i.e., |h[n]|2. Therefore, to reduce the
input size of the neural network, we propose as a training
feature a downsampled version of the PDPwith a given factor
L. The proposed feature considers the average of the PDP
over equispaced intervals, defined as follows:

p[m] =
1
L

L−1∑
n=0

∣∣h[n0 + mL + n]∣∣2, 0 ≤ m < b152/Lc (8)

To select the L value with the best result, a comparison was
made between different values. Details of this comparison are
shown in Section IV, since the results of this comparison are
closely related to the energy normalization process described
in that section. Note that the number of samples in this
proposal depends on the factor L, and this value corresponds
to b152/Lc. Thus, for example, for L = 5 the number of
samples is 30.

Fig. 2 shows, for an exemplary measurement, the PDP,
|h[n]|2, and the corresponding downsampled PDP, p[m], for
L = 7.

B. NEURAL NETWORK TOPOLOGY AND PARAMETERS
A neural network architecture similar to the one proposed in
[20] was generated to evaluate the impact of using the PDP
instead of the CIR in the training. Based on the description
proposed in [20], a CNN was built with the architecture
shown in Fig. 3. Note that, although not shown in Fig. 3,
several batch normalization layers were used between each
layer to speed up and to facilitate the training. Note also that
the design of the neural network is not an objective of this
paper, insteadwe try to replicate the structure used in the other
works in order to obtain comparable results.

As shown in Fig. 3, the neural network consists of several
convolutional layers. The idea of each of these layers is to

FIGURE 2. |h[n]|2 and p[m] from a given measurement with n0 = 743.

extract the relevant features from a section of the input signal
(in this case the CIR or PDP samples) and provide them to
the next layer where the process is repeated. In our case,
the activation function of each neuron in these layers was a
rectified linear unit (ReLU). This function is defined as:

f (x) = max(0, x) (9)

Another layer type used in the network is the Reshape layer,
whose mission is to transform the shape of a matrix into
another different shape. It is used only to adapt the output
of one layer to the expected input of the next one.

A spatial reduction layer is typically placed in a CNN
after several convolutional layers. In this work, as in the
reference architecture described in [20], a Max Polling layer
was considered to output themaximum input value depending
on the size of the window selected.

Finally, a Dense layer of multiple neurons fully connected
is added to the stack. Its mission is to perform the actual
classification using the features extracted by the previous
convolutional layers.

The network implementation was done using Tensorflow
version 2.2.0 [24], a free, open source Python library capable
of running on different operating systems. A PC runningWin-
dows 10 LTSC on an AMD Ryzen 5 3600 processor, 16GB
of RAM, and an NVIDIA GeForce GTX 1660 Ti GPU was
used for testing. The implementation was configured to use
theGPU, so the times presented in the results section are those
obtained with it. In an attempt to minimize the possibility of
overfitting, an iterative mechanism was designed consisting
of the following steps:

1) Of all the samples, 60% were assigned to the training
set, 20% to the validation set, and the remaining 20%
to the test set, ensuring that all sets contained the same
amount of samples from each class (LOS and NLOS).

2) The training phase was performed using the training
set. 20 epochs and a batch size of 64 samples were
considered.
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FIGURE 3. Network architecture using all the CIR samples. Question
marks indicate the input size that depends on the training set size.

3) After the training was completed, the time spent was
saved and the network was tested using the test set. The
results were also recorded.

This process was repeated N times and, finally, the results
were averaged. For this experiment a value of N = 10
was set. The entire software implementation created for these
experiments is publicly available [25].

As an illustration of the training process, and following
the approach in [26], Fig. 4 shows the evolution of the loss
function with respect to the epoch index for both the training
and validation sets. This example corresponds to one of the
repetitions using the PDP.

III. RESULTS CONSIDERING PDP
The first experiment consisted on comparing the effect of
considering the PDP samples versus employing all the sam-
ples from the CIR [19] or only the first 152 samples after
the detection of the first path [20]. The CNN was trained

FIGURE 4. Evolution of training and validation loss by epoch, using the
PDP with L = 5.

FIGURE 5. F1-score results using all the CIR measurements (labeled as
‘‘cir’’), the first 152 samples of the CIR after the detection of the first path
(labeled as ‘‘cir[152]’’), and the PDP with L = 5 (labeled as ‘‘pdp(L = 5)’’).
10 repetitions. Numbers next to the boxes correspond to the mean value.

using each of these sets separately. Fig. 5 shows the results
for the three sets of features seen in Section II-A (i.e. all CIR
Samples, CIR; First 152 samples, CIR[152]; and Downsam-
pled PDP with L = 5) after repeating the training and test
processes 10 times for each of the different sets of features.
The F1-score is a common metric in the literature, by relating
in a single value the indicators of precision and recall, and is
defined as

F1 = 2 ·
precision · recall
precision + recall

(10)

where precision = tp/p and recall = tp/f , with tp being the
set of true positives, p being the union of the true positives
and the false positives, and f the union of the true positives
and the false negatives.

For this comparison a value of L = 5 was used to generate
the PDP. The choice of this value is detailed in Section IV.
With regard to the results shown in Fig. 5, it can be seen
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that, despite obtaining close values in all three cases, using
all the CIR samples as training features yields the worst and
most variable results. The reason for this lies in the fact that
most of the CIR samples are just noise, and the actual CIR
information is contained only in the samples following the
arrival signal. This set of sampleswith significant information
is however very reduced in comparison to the total number of
CIR samples captured. Thus the remaining samples (which
do not provide any useful information) cause the deterioration
of the classifier performance. This can be easily verified by
comparing the value obtained with that of the case where only
the first 152 samples from the CIR are used from the first
path. In the latter case, a higher and more precise (with lower
variance) F1-score value is shown in Fig. 5. Consequently,
the training result is more predictable, no matter how the
samples are distributed in the training and test sets. When
considering only the first 152CIR samples the results in Fig. 5
are quite similar to those obtained in [20], in which the
obtained F1-score value was 87.6 and falls within the range
obtained in the present experiment (see Fig. 5). This also
indicates that the CNN considered reproduces the one used
in [20] obtaining similar results.

Regarding the use of the PDP, the results shown in Fig. 5
are on par with those obtained using only the first 152 CIR
samples. However, it is important to remember that in this
experiment the PDP only contains 30 samples, which will
have a positive influence on the computational cost and there-
fore on the time needed to train and run the network.

Fig. 6 shows the training times averaged over the different
executions of the experiment. The time corresponding to the
PDP case also includes the time necessary to extract the PDP
from the CIR. This time, in the same machine where the
simulations were carried out, was 9.807 s. Fig. 6 shows that,
in spite of this extra time, the final result is the lowest of the
three variants. Obviously, training with all the samples from

FIGURE 6. Training time using all the CIR samples, the first 152 CIR
samples after the detection of the first path, and the PDP with L = 5. 20
epochs and 32000 samples. Numbers next to the boxes correspond to the
mean value.

the CIR is themost expensive approach, whereas doing it with
only 152 samples reduces the time considerably. Training
using only the 30 samples of the PDP is the fastest approach
and, since it does not worsen the classifier performance with
respect to the other two approaches, it is the best alternative
in this case.

IV. EFFECT OF THE DIFFERENT ENERGY LEVELS OF EACH
CLASS ON THE RESULT
In order to choose a suitable L value when generating the
PDP, classification tests were carried out with different values
of this parameter. The results (Fig. 7) did not show sig-
nificant differences, despite the fact that the final number
of samples went from 30 (L = 5) to only 3 (L = 40).
This counter-intuitive result indicated that some other factor
outside the simple relationship between the CIR samples was
being overlapped. Thus, a comparisonwasmade by analyzing
the energy level of all the samples for each of the two classes,
LOS and NLOS. The results can be seen in Fig. 8. Clearly,

FIGURE 7. F1-score results using PDP and different L values. No energy
normalization. Numbers next to the boxes correspond to the mean value.

FIGURE 8. Measurements energy distribution in both classes.
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the energy distribution is very different in both classes, which
makes the classifier use this underlying information as a main
feature when classifying, obtaining an overfitting for this
dataset. Probably, this distribution is a consequence of the
way in which the NLOS samples were obtained, maybe with
an obstacle in between (i.e. a wall).

In order to be able to observe the results without this
effect, we decided to perform an energy normalization to the
CIR. However, note that normalizing the CIR energy has the
unwanted effect of changing the noise power, which could be
also used by the classifier. To avoid this problem, we decided
to also remove the noise samples, leaving only those samples
with a value above a certain threshold.

It should be noted that, for this particular dataset, the detec-
tion value of the first path stored in the measurements, as well
as the one calculated by us, is always above the 700-th
sample, so we can consider that the first samples of the CIR
always correspond to noise. Thus, we considered the first
500 samples of the CIR to obtain the noise power estimation.
Using 500 samples allows us to obtain a good estimation of
the noise power and ensures that we are only taking noise
samples and not samples where the actual CIR is present.
Thus, for each CIR measurement |h[n]|we estimate the noise
power as

σ 2
n =

1
500

500−1∑
n=0

|h[n]|2. (11)

Then, for each measurement |h[n]|, we calculated the nor-
malized and noise-free CIR as∣∣h̃[n]∣∣ = {|h[n]|/Eh if n ≥ n0 ∧ n ≤ nL

0 otherwise
(12)

where Eh is the energy of the CIR, calculated without the
effect of the noise estimated in Eq. (11), as

Eh =
1016−1∑
n=500

(
|h[n]|2 − σ 2

n
)

(13)

n0 in Eq. (12) is the index of the first path as defined in Eq. (6),
and nL in Eq. (12) is the instant when the signal exceeds the
threshold of the noise, defined in a similar way as tL in Eq. (4):

nL = max{n0 ≤ n < 1016 : |h[n]| ≥ ασn} (14)

where α is a parameter used to select the threshold to detect
the last index n where the CIR power is still significantly
higher than the noise power. In our case we empirically set
α = 6 by manually inspecting the results to check that the
noise samples were successfully detected and removed.

Fig. 9 shows the classification results with PDP and dif-
ferent L values after energy normalization. In this occasion
we observed that the F1-score values decrease as the number
of input features decrease. Thus, with the value of L = 5
(which gives 30 samples) the best result is obtained, whereas
with L = 40 (only 3 samples) the worst result is obtained.

Regarding the training time, Fig. 10 shows the results per
execution for the different values of L. As expected the time

FIGURE 9. F1-score results using PDP and different L values. Energy
normalized. Numbers next to the boxes correspond to the mean value.

FIGURE 10. Training time using PDP and different L values. Energy
normalized. Numbers next to the boxes correspond to the mean value.

increases as the number of input features increase, however,
it can be seen that the differences are small with the dataset
used. In view of these data, it is clear that with the energy
of the CIR normalized and eliminating the noisy samples,
the best results will always be obtained with the smallest
value of L, that is, with the highest number of samples. Thus,
for the comparison of Section II we decided to select the value
of L = 5, since this was the smallest L value among all the
analyzed ones.

V. RESULTS CONSIDERING ADDITIONAL FEATURES
In the second experiment, the objective was to test the perfor-
mance of the classifier by adding a number of extra features
in addition to the PDP or the two CIR variants. Based on a
previous work ( [27]), where these properties demonstrated
to contain enough information to make a good classification
when using shallow neural networks, two of the chosen fea-
tures were the range value returned by the DW1000 chip and
the RSS estimation. However, on this occasion and since we
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FIGURE 11. Network architecture using PDP and extra features. Question
marks indicate the input size that depends on the training set size.

have the samples from the CIR, we decided to replace the RSS
estimate with the energy extracted from these samples. Thus,
a new experiment was carried out in which the following
features were added to those already analyzed previously:
• Range: The distance estimation obtained by the
DW1000.

• Energy: The energy of the CIR, i.e., the zero-th order
moment of the PDP, as shown in Eq. (13).

A. NEURAL NETWORK TOPOLOGY AND PARAMETERS
For this second experiment, we decided to create a new
differentiated neural network to handle the new features.
Although a CNN is useful for treating information spatially

FIGURE 12. F1-score results using additional features. Energy normalized.
10 repetitions using extra features. Numbers next to the boxes
correspond to the mean value.

or temporally related (as is the case with the CIR or the PDP
samples), it is not the best solution for features that do not
have these properties. This is why the new neural networkwas
designed with two different branches: a first one composed
of several convolutional layers to treat the CIR/PDP samples
(similar to Section II-B), and a different branch composed
of a full connected layer whose input corresponds to the two
extra features. The final network design is shown in Fig. 11.
To carry out the training and test of this network, each sample
of the training set was separated into two parts, each one
corresponding to one of the two branches of the network.
Obviously, the LOS/NLOS class value was common to both.

B. RESULTS
Fig. 12 shows the results obtained in terms of the F1-score
with the three different variants: the whole CIR plus the extra
features, the first 152 CIR samples after detecting the first
path plus the extra features, and the PDP plus the extra fea-
tures. Note that the F1-score values for the three variants have
improved substantially from the results of the first experiment
seen in Fig. 5. Thus, when considering all the CIR samples,
the F1-score value improves from 0.835 to 0.883; when 152
samples are employed, the improvement goes from 0.861 to
0.889; and finally, an improvement from 0.855 to 0.886 is
observed for the PDP case. Therefore, adding the extra fea-
tures allows for increasing the classifier performance. On the
other hand, as in the first experiment (Fig. 5), almost the same
values are obtained for the variants using the PDP and the 152
CIR samples since both have similar information, although
the PDP requires only 30 samples (with L = 5).
Regarding the training time, in this second experiment all

the values increase in all the three cases because a more
complex network with a greater number of parameters is
being employed. Such time increase is also related to the
number of features handled, hence the faster variant (using the
PDP) increases by only 61.9 s with respect to the version that
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FIGURE 13. Training time using additional features. 20 epochs and 32000
samples using extra features. Numbers next to the boxes correspond to
the mean value.

does not use the extra features. The variant that uses the 152
CIR samples suffers a slighter increase, with a final difference
of 179, 7 s. Finally, the slower variant employing all the CIR
samples is the one that suffers the largest increment with
1474.9 s more than the version without the extra features.
In view of this data, we can conclude that additional training
features, such as range and energy enables for improving the
classifier performance at the expense of a increase of the
training time, which depends on the total number of features
considered.

VI. CONCLUSION
A series of experiments to test two hypotheses related to the
classification of UWB measurements into LOS and NLOS
according to its propagation conditions was carried out using
deep learning mechanisms. On the one hand, one of the ques-
tions to be analysed was the impact of considering a down-
sampled version of the PDP as a source of information in the
learning process instead of directly using the CIR samples.
For this purpose, an experiment was carried out in which the
same CNN was trained with three variants of the same set of
samples: using all the CIR samples, considering only a subset
of these containing most of the information, and employing
the PDP samples. The results obtained showed that the use
of a downsampled PDP offers similar or superior classifier
performance than the other alternatives, but requiring less
training time.

Another point of interest in this work was to analyze the
impact that an unbalanced energy distribution in the classes
has on the final classification result.We analyzed the problem
showing the values before and after a process of energy
normalization and noise removal, checking substantial varia-
tions in the final results of the F1-score. This shows us that
for the particular case of LOS-NLOS classification of UWB
measurements using the CIR or its derivatives, it is not only
sufficient to have a balanced dataset in terms of the number
of measurements of each class, but it is also necessary that the

energy level is similar in both classes. Otherwise the energy
level itself is sufficient to make a satisfactory classification
that canmask the real contribution of the relationship between
the CIR samples.

Another question to which this work was intended to
answer is whether the performance in the classification using
the CIR or the PDP samples could be improved by adding
to the training set other additional data derived from the
CIR, such as the range or the energy. The results obtained
in this case showed an improvement in the performance with
respect to the first experiment at the cost of an increase in the
computational cost.

Although the considered dataset was useful to compare
the results with other works based on these data, the con-
clusions obtained cannot be generalized without performing
new experiments considering a different set of measurements.
As demonstrated in the present work, the measurements
of the considered dataset can be classified at some degree
only by their differences with respect to their energy level,
beyond the possible relationship between the different paths
observed in the CIR. Thus, it becomes mandatory for a
future work to obtain a more balanced dataset in which the
range and variety of measurements (for example, with long
distance LOS samples), allows for assessing the contribu-
tion of each information source to the final classification
result.
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