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ABSTRACT
Quality control of DNA sequences is an important data preprocess-
ing step in many genomic analyses. However, all existing parallel
tools for this purpose are based on a batch processing model, need-
ing to have the complete genetic dataset before processing can even
begin. This limitation clearly hinders quality control performance
in those scenarios where the dataset must be downloaded from
a remote repository and/or copied to a distributed file system for
its parallel processing. In this paper we present SeQual-Stream, a
Big Data tool that allows performing quality control on genomic
datasets in a fast, distributed and scalable way. To do so, our tool
relies on the Apache Spark framework and the Hadoop Distributed
File System (HDFS) to fully exploit the stream paradigm and acceler-
ate the preprocessing of large datasets as they are being downloaded
and/or copied to HDFS. The experimental results have shown sig-
nificant improvements when compared to a batch processing tool,
providing a maximum speedup of 2.7x.
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1 INTRODUCTION
Obtaining DNA sequences from living beings is usually the first
step in the studies developed by biologists and bioinformaticians.
The continuous development of Next Generation Sequencing (NGS)
technologies [14] has led to a vertiginous increase in the amount
of available genomic data. Hundreds of millions of sequences (so-
called reads) can now be generated in a single experiment at a
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drastically reduced cost. However, the accuracy of current NGS
platforms is not high in all cases. The quality of downstream anal-
yses may be affected because of the artifacts introduced in some
DNA fragments during the sequencing process [6, 11], regardless of
the sequencing platform. Therefore, quality control is an essential
preprocessing step for raw NGS data [9], removing or modifying
those input reads that are not considered useful.

In this paper we introduce SeQual-Stream, a parallel tool im-
plemented in Java that allows performing multiple quality control
operations (e.g., trimming, filtering) on large genomic datasets in a
distributed and scalable way. To do so, it takes full advantage of the
Apache Spark Big Data framework [21] together with the Hadoop
Distributed File System (HDFS) [16]. All existing parallel quality
control tools operate on a batch processing model, which means
that they require the entire input dataset before any processing can
begin. This poses a performance constraint, as downloading the
data from a remote repository and copying them to a distributed file
system such as HDFS for parallel processing are costly operations
that significantly delay the start of the quality control. This problem
is especially relevant in the NGS context as the size of the genomic
datasets is continuously increasing, which demands more efficient
processing modes. To overcome this issue, SeQual-Stream has been
implemented upon the Spark Structured Streaming API [19], in
order to apply the quality control operations to the input reads as
the data are being downloaded from a remote location (e.g., a web
repository) and/or copied to HDFS. Up to our knowledge, this is
the first quality control tool that can exploit the stream processing
model to accelerate the preprocessing of raw NGS datasets.

The remainder of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes briefly the imple-
mentation of SeQual-Stream. Section 4 evaluates its performance
compared to a quality control parallel tool that processes data in
batch mode. Finally, Section 5 concludes the paper.

2 RELATEDWORK
There is a wide variety of tools within the context of bioinformatics.
Many of them follow a batch model, such as CloudEC [3] for error
correction or BigBWA [1] for sequence alignment, both of them
relying on the Apache Hadoop Big Data framework [17].

Focusing on quality control tools, all existing approaches are
based on batch processing. Examples of such tools are FASTX-
Toolkit [8] and PRINSEQ [15], which do not even support parallel
processing, whereas QC-Chain [23] and PRINSEQ++ [2] provide
such support through multithreading, and so their scalability is
limited to a single node. SeQual [7] is a quality control tool capable
of scaling out across a cluster of nodes by relying on Spark, greatly
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enhancing performance compared to previous solutions. Neverthe-
less, SeQual is still limited by the batch processing operation mode
it is based on.

3 IMPLEMENTATION
SeQual-Stream is a parallel Java tool that provides a wide set of oper-
ations to apply quality control and preprocessing on raw NGS data.
These operations are grouped into three different categories depend-
ing on the functionality they provide: (1) single filters, responsible
for discarding input sequences that do not meet a certain criteria
(e.g., sequence length), evaluating each sequence independently of
the others; (2) trimmers, operations that trim certain sequence bases
at the beginning or end; and (3) formatters, operations to change
the format of the input dataset (e.g., from DNA to RNA). The tool
can receive as input single- or paired-end datasets [5], supporting
FASTQ [4] and FASTA [22] formats. The input files can be stored
in HDFS or locally. The datasets may be complete or in the process
of being downloaded from a remote server, since SeQual-Stream
can process data as new sequences continue to arrive. Note that in
the case of having the complete files stored locally, they are also
processed in a streaming way as they are copied to HDFS.

The overall dataflow of the tool can be divided into three main
stages as follows:

(1) Reading of the input dataset(s), whichmay be stored in HDFS
or locally and may be in the process of being downloaded.

(2) Processing of the sequences by applying the quality control
operations configured by the user.

(3) Writing of the results to the output files using the path spec-
ified by the user.

The next sections provide more details about the implementation
of each stage.

3.1 Reading of the input datasets
The objective of the first stage is the creation of a Spark Dataset [18]
that represents in a relational table the sequences to be processed
in the next stage. Basically, Structured Streaming operates by in-
dicating a directory in HDFS to be monitored and processing the
files as they are written to it. The problem is that once the available
data of a certain file has been processed, such file is not processed
again even if it is updated with new content. So, it cannot be used
to process large files that are still in the process of downloading.
To overcome this issue, the proposed solution consists of creating a
previous stage in charge of reading the input dataset and generating
new files formed by subsets of the input data (called “subfiles”) that
Structured Streaming is able to process. Note that this reading stage
works iteratively. For example, if there is a subset of sequences
downloaded at a given time from a certain dataset, this stage will
do a first iteration to store those sequences in a new subfile on
HDFS so that Structured Streaming can process it, and then it will
wait for the remaining sequences to be downloaded. After a few
seconds, it will recheck the state of the input dataset and, if new
data is found, the procedure is repeated through a second iteration,
generating a new subfile with new sequences to be processed. In
order to speed up this process, the reading is divided and performed
in parallel in one of the cluster nodes through multithreading.

It is important to remark that only complete sequences are copied
to subfiles. If no more data is available at a given time and the last
sequence is incomplete, only the complete sequences before the
last one (if any) are copied while waiting for new data to arrive.
Therefore, the copy operations cannot be done on a line-by-line
basis, since it is necessary to evaluate if sequences are complete as
they are represented in multiple lines (e.g., at least two for FASTA
format). This process is even more complex for paired-end datasets,
where there are two input files to be downloaded. In addition to
copy only complete sequences, it must be done synchronously in
both files because one of them may have more available data than
the other as download speeds may differ. The solution to this issue
is reading the sequences in pairs (i.e., only if both are complete)
and copy them together within the same subfile.

Once new subfiles are copied to HDFS, Structured Streaming is
able to automatically detect them to allow SeQual-Stream creating
a Spark Dataset of sequences. Although Spark supports several
common file formats (e.g., JSON, CSV), sequence formats cannot be
read directly, and so the standard text-based file format provided
by Spark must be used. In order to differentiate each sequence (or
pair of sequences) and separate them correctly as rows in the Spark
Dataset, an unambiguous separator is added to each one.

3.2 Processing of the sequences
The next stage of the pipeline is the processing of the sequences
contained on a Spark Dataset by applying the quality control oper-
ations selected by the user. The first group of operations consists
of 12 single filters that were implemented using the Spark’s filter
method. Each operation implements the corresponding boolean
function to discard those sequences that do not meet a certain cri-
teria. For example, the Length filter evaluates whether the size of
the sequence is smaller and/or larger than an upper and/or lower
limit configured by the user.

The second and third group of operations (10 trimmers and 3
formatters, respectively) were implemented using the Spark’s map
method, which processes the Dataset by applying a specific function
to each element (i.e., sequence). For example, TrimLeft trims a given
number of bases from each sequence (and their quality scores if
applicable) starting from the left using the Java substring method.

Note that the quality control operations are performed as new
sequences are loaded into the Spark Dataset, so that the processing
stage efficiently overlaps with the reading of the input dataset.

3.3 Writing of the results
After a certain set of operations is performed over the sequences,
they must be written back to HDFS. Due to the distributed nature
of Spark, the output sequences are written throughout different
output files, the main issue being how to keep these sequences
in the same order that the input. When persisting Spark data, the
different output files (or “parts”) are named in alphabetical order
so that the original order is maintained. For example, the first part
file (“part-0000”) may contain the sequences from 1 to 100, the
second one (“part-0001”) from 101 to 200, and so on. The problem
arises when using Structured Streaming, since Spark processes
each subfile independently and does not preserve an alphabetical
naming order between parts generated from different subfiles. A
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Table 1: Hardware characteristics of the cluster nodes

CPU Model 2 × Intel Xeon E5-2660 Sandy Bridge-EP
CPU Speed/Turbo 2.20 GHz/3.0 GHz
#Cores per node 16
#Threads per node 32
Cache L1/L2/L3 32 KiB/256 KiB/20 MiB
Memory 64 GiB DDR3 1600 Mhz
Disk 1 × HDD 1 TB SATA3 7.2K rpm
Networks InfiniBand FDR & Gigabit Ethernet

Table 2: Characteristics of the datasets

Dataset SRR567455 SRR11442499
Tag SRR56 SRR114
Organism Homo sapiens Homo sapiens
#Reads 2 x 251.9 M 2 x 250.3 M
Read length 76 base pairs 99 base pairs
Size 2 x 45 GiB 2 x 62 GiB

naive solution would be using the write timestamp of each part file,
since the first sequences should be processed and written before the
following ones. However, this rule is not consistent because there
is no guarantee that Structured Streaming processes the subfiles in
the same order they were created.

Our solution consists of embedding a custom timestamp in each
sequence during the reading stage so that the order is set from the
very beginning. More specifically, our tool must be able to differen-
tiate each generated subfile during such stage. To do so, a numeric
code that represents each subfile is used as timestamp. Therefore,
SeQual-Stream actually processes a Spark Dataset containing se-
quences tagged with a timestamp. Right before writing the results
to HDFS, this dataset is separated into two columns: the sequences
themselves and their timestamps. This approach allows writing
the results partitioned by the timestamp column, an operation that
consists of gathering the part files containing sequences with the
same timestamp into the same output directory. Those parts are
already sorted alphabetically, thus the global order is ensured.

Regarding the writing operation itself, it is done through a Spark
object called “StreamingQuery” that remains in a loop as long as
there is data to be written. This loop ends when the reading stage
sends a specific signal meaning that there is no more input data,
and when the StreamingQuery has no pending data to write.

4 PERFORMANCE EVALUATION
The experimental evaluation has been conducted on a 17-node clus-
ter consisting of one master and 16 worker nodes. The hardware
characteristics of the nodes are summarized in Table 1. Two pub-
licly available FASTQ datasets have been evaluated, obtained from
the Sequence Read Archive (SRA) [10, 13], a public repository of
genomic data belonging to the National Center for Biotechnology
Information (NCBI) [12, 20]. These datasets present a paired-end
layout, so they consist of two FASTQ files (single-end experiments
use one file). Their characteristics are summarized in Table 2.

The evaluation has been carried out comparatively with SeQual
using two representative quality control operations:

• QUALITY: a single filter that filters sequences based on an in-
dicated maximum and/or minimum mean quality threshold.
A minimum quality of 25 was used in the experiments.

• TRIMRIGHTP: a trimmer that trims sequences according to
an indicated percentage of the total number of bases starting
from the right. A 10% trimming was used in the experiments.

During the experiments the complete input dataset was already
stored in the master node (i.e., it was previously downloaded). In
this scenario, SeQual first requires to copy the dataset to HDFS
for processing it, since data processing can only begin once the
complete dataset was copied. However, SeQual-Stream is able to
read it directly from the local file system of the master node and
start its processing while it is being copied to HDFS.

4.1 Analysis of the results
Table 3 shows the execution times of both tools for all the scenarios
under evaluation. Note that the results for SeQual take into account
the time required to copy the dataset before starting its processing.
As can be observed, the speedups obtained by our tool range from
a minimum of 1.00x up to a maximum of 2.70x, being the average
speedup around 1.45x. In general, the speedup is usually higher
when using a small number of nodes, and it tends to converge to 1
when using 16 worker nodes. The main reason is that there comes
a point where there is so much computational power and disks
on which to spread the write operations, that the processing and
writing of the results are fast enough and the performance limiting
factor is the speed of copying the input files, which will be similar
for both tools.

Overall, the speedups tend to increase noticeably for paired-end
experiments compared to single-end ones. In fact, all speedups
greater than 2x are achieved in the paired-end mode. It is important
to remark that this mode involves copying and processing twice
as much data as single-end. As the amount of input data increases
significantly, the time required to copy them to HDFS, process them
with Spark and write their parts to HDFS also increases propor-
tionally. Therefore, parallelizing all this process through a stream
model is very beneficial and is precisely what was sought after with
the development of this tool.

5 CONCLUSIONS
The large amount of genomic data generated by modern NGS tech-
nologies reinforces the need for bioinformatics tools capable of
reducing the time required for processing them as much as possible.
In this paper we have presented a Big Data tool for quality control of
raw NGS datasets which seeks to reduce processing times through
the use of Apache Spark and its Structured Streaming API. This
combination allows our tool to take full advantage of distributed-
memory systems such as clusters and to further accelerate quality
control by overlapping data processing with downloading and/or
HDFS copying operations.
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Table 3: Runtimes (in seconds) of SeQual and SeQual-Stream using 1, 4 and 16 worker nodes when performing quality control
operations on different single- and paired-end datasets. The last column shows the speedup of SeQual-Stream over SeQual

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY

SRR56
Single 1 1386 927 1.49

4 780 595 1.31
16 522 513 1.02

Paired
1 5312 1967 2.70
4 2043 1102 1.85
16 1024 940 1.09

SRR114

Single
1 2239 1918 1.17
4 1242 941 1.32
16 723 689 1.05

Paired
1 6983 4082 1.71
4 3126 1688 1.85
16 1452 1306 1.11

TRIMRIGHTP

SRR56

Single
1 1682 1062 1.58
4 765 680 1.13
16 521 523 1.00

Paired
1 5850 2259 2.59
4 2280 1463 1.56
16 1051 961 1.09

SRR114

Single
1 2855 1723 1.66
4 1050 909 1.16
16 729 688 1.06

Paired
1 5960 4119 1.45
4 3329 1969 1.69
16 1420 1325 1.07

and by Xunta de Galicia and FEDER funds of the European Union
(Centro de Investigación de Galicia accreditation 2019-2022, ref.
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