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Abstract. Java has been the backbone of Big Data processing for more
than a decade due to its interesting features such as object orienta-
tion, cross-platform portability and good programming productivity. In
fact, most popular Big Data frameworks such as Hadoop and Spark
are implemented in Java or using other languages designed to run on
the Java Virtual Machine (JVM) such as Scala. However, modern com-
puting hardware is increasingly complex, featuring multiple processing
cores aggregated into one or more CPUs that are usually organized as
a Non-Uniform Memory Access (NUMA) architecture. The platform-
independent features of the JVM come at the cost of hardware abstrac-
tion, which makes it more difficult for Big Data developers to take ad-
vantage of hardware-aware optimizations based on managing CPU or
NUMA affinities. In this paper we introduce jhwloc, a Java library for
easily managing such affinities in JVM-based applications and gathering
information about the underlying hardware topology. To demonstrate
the functionality and benefits of our proposal, we have extended Flame-
MR, our Java-based MapReduce framework, to provide support for set-
ting CPU affinities through jhwloc. The experimental evaluation using
representative Big Data workloads has shown that performance can be
improved by up to 17% when efficiently exploiting the hardware. jhwloc
is publicly available to download at https://github.com/rreye/jhwloc.

Keywords: Big Data · Java Virtual Machine (JVM) · Hardware Affinity
· MapReduce · Performance Evaluation

1 Introduction

The emergence of Big Data technologies offers great opportunities for researchers
and scientists to exploit unprecedented volumes of data sources in innovative
ways, resulting in novel insight discovery and better decisions. Distributed pro-
cessing frameworks are the great facilitators of the paradigm shift to Big Data,
as they enable the storage and processing of large datasets and the application
of analytics techniques to extract valuable information from such massive data.

The MapReduce paradigm [5] introduced by Google in 2004 and then pop-
ularized by the open-source Apache Hadoop project [19] has been considered
as a game changer to the way massive datasets are processed. During the past
decade, there has been a huge effort in the development of Big Data frameworks.

https://github.com/rreye/jhwloc


2 R.R. Expósito et al.

Some projects focus on adapting Hadoop to take advantage of specific hardware
(RDMA-Hadoop [16]), or to provide improved performance for iterative algo-
rithms by exploiting in-memory computations (Twister [7], Flame-MR [22]).
Other frameworks have been designed from scratch to overcome other Hadoop
limitations such as the lack of support for streaming computations, real-time
processing and interactive analytics. Many of these frameworks are developed
under the umbrella of the Apache Software Foundation: Storm [10], Spark [24],
Flink [2], Samza [14]. Despite the large amount of existing frameworks, Hadoop
and its ecosystem are still considered the cornerstone of Big Data as they pro-
vide the underlying core on top of which data can be processed efficiently. This
core consists of the Hadoop Distributed File System (HDFS) [17], which allows
to store and distribute data across a cluster of commodity machines, and Yet
Another Resource Negotiator (YARN) [20], for the scalable management of the
cluster resources. New frameworks generally only replace the Hadoop MapRe-
duce data engine to provide faster processing speed.

Unlike the C++-based original MapReduce implementation by Google, the
entire Hadoop stack is implemented in Java to increase portability and ease
of setup. As Big Data users are generally non-expert programmers, the use
of Java provides multiple appealing features for them: object orientation, au-
tomatic memory management, built-in multithreading, easy-to-learn properties,
good programming productivity and a wide community of developers. Moreover,
later Java releases adopt concepts from other paradigms like functional program-
ming. A core feature of Java is cross-platform portability: programs written on
one platform can be executed on any combination of software and hardware with
adequate runtime support. This is achieved by compiling Java code to platform-
independent bytecode first, instead of directly to platform-specific native code.
The bytecode instructions are then executed by the Java Virtual Machine (JVM)
that is specific to the host operating system and hardware combination. Further-
more, modern JVMs integrate efficient Just-in-Time (JIT) compilers that can
provide near-native performance from Java bytecode.

Apart from Hadoop, most state-of-the-art Big Data frameworks are also im-
plemented in Java (e.g., Flink, Storm 2, Flame-MR). Other frameworks rely on
Scala (Spark, Samza), whose source code is compiled to Java bytecode so that
the resulting executable runs on a JVM. However, the platform-independent
feature provided by the JVM is only possible by abstracting most of the hard-
ware layer away from developers. This makes it difficult or even impossible for
them to access interesting low-level functionalities in JVM-based applications
such as setting hardware affinities or gathering topology information for per-
forming hardware-aware optimizations. The increasing complexity of multicore
CPUs and the democratization of Non-Uniform Memory Access (NUMA) archi-
tectures [11] raise the need for exposing a portable view of the hardware topology
to Java developers, while also providing an appropriate API to manage CPU and
NUMA affinities. JVM languages in general, and Big Data frameworks in par-
ticular, may take advantage of such API to exploit the hardware more efficiently
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without having to resort to non-portable, command-line tools that offer limited
functionalities. The contributions of this paper are:

– We present jhwloc, a Java library that provides a binding API to manage
hardware affinities straightforwardly in JVM-based applications, as well as
a means to gather information about the underlying hardware topology.

– We implement the support for managing CPU affinity using jhwloc in
Flame-MR, a Java-based MapReduce framework, to demonstrate the func-
tionality and benefit of our proposal.

– We analyze the impact of affinity on the performance of in-memory data pro-
cessing with Flame-MR by evaluating six representative Big Data workloads
on a 9-node cluster.

The remainder of the paper is organized as follows. Section 2 provides the
background of the paper and summarizes the related work. Section 3 introduces
the jhwloc library and its main features. Section 4 describes a case study of inte-
grating jhwloc in Flame-MR, and presents the experimental evaluation. Finally,
our concluding remarks are summarized in Section 5.

2 Background and Related Work

Exploiting modern hardware platforms requires in-depth knowledge of the un-
derlying architecture together with appropriate expertise from the application
behaviour. Current architectures provide a complex multi-level cache hierar-
chy with dedicated caches (one per core), a global cache (one for all the cores)
or even partially shared caches. Moving a computing task from one core to
another can cause performance degradation because of cache affinities. Simul-
taneous Multithreading (SMT) technologies [6] such as Intel Hyper-Threading
(HT) [13] involve sharing computing resources of a single core between multiple
logical Processing Units (PUs). This fact also means to share cache levels so
that performance may be even reduced in some particular cases. Furthermore,
NUMA architectures [11] are currently widely extended, in which memory is
transparently distributed among CPUs connected through a cross-chip intercon-
nect. Hence, an access from one CPU to the memory of another CPU (i.e., a
remote memory access) incurs additional latency overhead due to transferring
the data through the network. As an example, Figure 1 shows the hierarchical or-
ganization of a typical NUMA machine with two octa-core CPUs that implement
two-way SMT, so 8 cores and 16 PUs are available per CPU. All this complexity
of the hardware topology of modern computing platforms is considered a critical
aspect of performance and must be taken into account when trying to optimize
parallel [18] and distributed applications [23].

Nowadays, the hardware locality (hwloc) project [9] is the most popular tool
for exposing a static view of the topology of modern hardware, including CPU,
memory and I/O devices. This project solves many interoperability issues due
to the amount and variety of the sources of locality information for querying the
topology of a system. To do so, hwloc combines locality information obtained
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Fig. 1: Overview of a NUMA system with two octa-core CPUs

from the operating system (e.g., /sys in Linux), from the hardware itself (cpuid
instruction in x86), or using high-level libraries (numactl) and tools (lscpu).
Moreover, hwloc offers APIs to interoperate with device-specific libraries (e.g.,
libibverbs) and allows binding tasks (e.g., process, thread) according to hardware
affinities (CPU and memory) in a portable and abstracted way by exposing a
unified interface, as different operating systems have diverse binding support. As
a consequence, hwloc has become the de facto standard software for modeling
NUMA systems in High Performance Computing (HPC) environments. In fact, it
is used by most message-passing implementations, many batch queueing systems,
compilers and parallel libraries for HPC. Unfortunately, hwloc only provides C-
based APIs for gathering topology information and binding tasks, whereas the
JVM does not offer enough support for developing hardware-aware applications
as it only allows to obtain the number of cores available in the system.

Overseer [15] is a Java-based framework to access low-level data such as per-
formance counters, JVM internal events and temperature monitoring. Among its
other features, Overseer also provides basic information about hardware topol-
ogy through hwloc by resorting to the Java Native Interface (JNI). Moreover,
it allows managing CPU affinity by relying on the Linux Kernel API (sched.h).
However, the support provided by Overseer for both features is very limited.
On the one hand, topology information is restricted to a few Java methods that
only allow to obtain the number of available hardware resources of a certain type
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(e.g., cores per CPU), without providing any further details about cache hier-
archy (e.g., size, associativity), NUMA nodes (e.g., local memory) or additional
functionality to manipulate topologies (e.g., filtering, traversing). On the other
hand, support for CPU binding is limited to use Linux-specific affinity masks
that determine the set of CPUs on which a task is eligible to run, without pro-
viding convenient methods to operate on such CPU set (e.g., logical operations)
or utility methods for performing more advanced binding operations in an easy
way (e.g., bind to one thread of the last core of the machine). Furthermore, no
kind of memory binding is provided by Overseer. Our jhwloc library allows to
overcome all these limitations by currently providing support for more than 100
methods as the Java counterparts of the hwloc ones.

There exist few works that have evaluated the impact of managing hardware
affinities on the performance of Big Data frameworks. In [1], authors analyze how
NUMA affinity and SMT technologies affect Spark. They manage affinities using
numactl and use hwloc to obtain the identifier of hardware threads. Their results
reveal that performance degradation due to remote memory accesses is 10% on
average. Authors in [4] characterize several TCP-H queries implemented on top of
Spark, showing that NUMA affinity is slightly advantageous in preventing remote
memory accesses. To manage NUMA affinity, they also rely on numactl. However,
both studies are limited to evaluating a single machine, they lack the assessment
of the impact of CPU binding on performance and they do not provide any
useful API for gathering topology information and managing hardware affinities
for JVM-based languages. Hence, our work extends the current state-of-the-art
in all these directions.

3 Java Hardware Locality Library

The Java Hardware Locality (jhwloc) project has been designed as a wrapper
library that consists of: (1) a set of standard Java classes that model hwloc
functionalities using an object-oriented approach, and (2) the necessary native
glue code that interfaces with the C-based hwloc API. In order to do so, jhwloc
uses JNI to invoke the native methods implemented in C. Hence, jhwloc acts
as a transparent bridge between a client application written in any JVM-based
language and the hwloc library, but exposing a more friendly and object-oriented
Java API to developers. One important advantage provided by jhwloc is that it
frees Java developers from interacting directly with JNI calls, which is considered
a cumbersome and time-consuming task. So, our library can be easily employed
in Java applications to perform hardware-oriented performance tuning.

3.1 Java API

Currently, jhwloc provides Java counterparts for more than 100 hwloc func-
tions, covering a significant part of its main functionality. A complete Javadoc
documentation that describes all the public methods together with their pa-
rameters is publicly available at the jhwloc website. Basically, the jhwloc API
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enables Java developers to: (1) obtain the hierarchical hardware topology of key
computing elements within a machine such as: NUMA nodes, shared/dedicated
caches, CPU packages, cores and PUs (I/O devices are not yet supported); (2)
gather various attributes from caches (e.g., size, associativity) and memory infor-
mation; (3) manipulate hardware topologies through advanced operations (e.g.,
filtering, traversing); (4) build “fake” or synthetic topologies that allow querying
them without having the underlying hardware available; (5) export topologies
to XML files to reload them later; (6) manage hardware affinities in an easy way
using bitmaps, which are sets of integers (positive or null) used to describe the
location of topology objects on the CPU (CPU sets) and NUMA nodes (node
sets); and (7) handle such bitmaps by providing advanced methods to operate
over them through the hwloc bitmap API.

It is important to remark that, unlike C, the JVM provides an automatic
memory management mechanism through the built-in Garbage Collector (GC),
which is in charge of performing memory allocation/deallocation without interac-
tion from the programmer. Hence, the memory binding performed by the hwloc
functions that manage memory allocation explicitly (e.g., alloc membind) or mi-
grate already-allocated data (set area membind) cannot be supported in jhwloc.
NUMA affinity management is thus restricted to those functions for performing
implicit memory binding: set membind and get membind. These functions allow
to define the current binding policy that will be applied to the subsequent calls
to malloc-like operations performed by the GC.

3.2 Usage Example

As an illustrative usage example, Listing 1 presents a Java code snippet that
shows the simplicity of use of the jhwloc API. Basic hardware topology informa-
tion such as the number of cores and PUs and the available memory is obtained
(lines 6-11) after creating and initializing an instance of the HwlocTopology class
(lines 1-4), which represents an abstraction of the underlying hardware. Most of
the jhwloc functionality is provided through this class with more than 50 Java
methods available that allow to manipulate, traverse and browse the topology,
as well as to perform CPU and memory binding operations. Next, the example
shows how to manage CPU affinities by binding the current thread to the CPU
set formed by the first and last PU of the machine. As can be seen, the Java
objects that represent those PUs, which are instances of the HwlocObject class,
can be easily obtained by using their indexes (lines 13-15). The CPU set objects
from both PUs are then operated using a logical and (lines 16-17), and the re-
turned CPU set is used to perform the actual CPU binding of the current thread
(lines 18-19). The logical and operation is an example of the more than 30 Java
methods that are provided to conform with the hwloc bitmap API, supported in
jhwloc through the HwlocBitmap abstract class. This class is extended by the
HwlocCPUSet and HwlocNodeSet subclasses that provide concrete implementa-
tions for representing CPU and NUMA node sets, respectively.

More advanced usage examples are provided together with the jhwloc source
code. These examples include NUMA binding, manipulating bitmaps, obtaining
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1 // Create , i n i t i a l i z e and load a topo l o gy o b j e c t
2 HwlocTopology topo = new HwlocTopology ( ) ;
3 topo . i n i t ( ) ;
4 topo . load ( ) ;
5

6 // Get the number o f cores , PUs , and the a v a i l a b l e memory
7 int nc = topo . ge t nbob j s by type (HWLOC.OBJ CORE) ;
8 int np = topo . ge t nbob j s by type (HWLOC.OBJ PU ) ;
9 long mem = topo . g e t r o o t o b j ( ) . getTotalMemory ( ) ;

10 System . out . p r i n t l n ( ‘ ‘# Cores /PUs : ’ ’+nc + ‘ ‘/ ’ ’+np ) ;
11 System . out . p r i n t l n ( ‘ ‘ Total memory : ’ ’+mem) ;
12

13 // Get f i r s t and l a s t PU o b j e c t s
14 HwlocObject fpu = topo . g e t o b j b y t y p e (HWLOC.OBJ PU, 0 ) ;
15 HwlocObject lpu = topo . g e t o b j b y t y p e (HWLOC.OBJ PU, np−1);
16 // Log i ca l ‘ and ’ over the CPU s e t s o f both PUs
17 HwlocCPUSet cpuset = fpu . getCPUSet ( ) . and ( lpu . getCPUSet ( ) ) ;
18 // Bind curren t thread to the re turned CPU se t
19 topo . s e t cpub ind ( cpuset , EnumSet . o f (HWLOC.CPUBIND THREAD) ;

Listing 1: Getting hardware topology information and managing CPU affinities

cache information, traversing topologies, exporting topologies to XML and build-
ing synthetic ones, among other jhwloc functionalities.

4 Impact of CPU Affinity on Performance: Flame-MR
Case Study

This section analyzes the impact of setting CPU affinity on the performance
of Flame-MR, our Big Data processing framework. First, Flame-MR is briefly
introduced in Section 4.1. Next, Section 4.2 describes how jhwloc has been
integrated into Flame-MR to manage CPU affinities, explaining the different
affinity levels that are supported. Section 4.3 details the experimental testbed,
and finally Section 4.4 discusses the results obtained.

4.1 Flame-MR Overview

Flame-MR [22] is a Java-based MapReduce implementation that transparently
accelerates Hadoop applications without modifying their source code. To do so,
Flame-MR replaces the underlying data processing engine of Hadoop by an opti-
mized, in-memory architecture that leverages system resources more efficiently.

The overall architecture of Flame-MR is based on the deployment of sev-
eral Worker processes (i.e., JVMs) over the nodes of a cluster (see Figure 2).
Relying on an event-driven architecture, each Worker is in charge of executing
the computational tasks (i.e., map/reduce operations) to process the input data
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Fig. 2: Flame-MR Worker architecture

from HDFS. The tasks are executed by a thread pool that can perform as many
concurrent operations as the number of cores configured for each Worker. These
operations are efficiently scheduled in order to pipeline data processing and data
movement steps. The data pool allocates memory buffers in an optimized way,
reducing the amount of buffer creations to minimize garbage collection over-
heads. Once the buffers are filled with data, they are stored into in-memory data
structures to be processed by subsequent operations. Furthermore, these data
structures can be cached in memory between MapReduce jobs to avoid writing
intermediate results to HDFS, thus providing efficient iterative computations.

4.2 Managing CPU Affinities in Flame-MR

Flame-MR has been extended to use the functionalities provided by jhwloc to
enable the binding of computational tasks to the hardware processing elements
available in the system (i.e., CPU/cores/PUs). To do so, the software components
that manage such tasks, Worker and thread pool classes, have been modified to
make them aware of the hardware affinity level that is set by the user through
the configuration file of Flame-MR.

When Flame-MR starts a computational task, it first checks the configuration
file to determine if the jhwloc library must be called and, if so, the specific affin-
ity level that must be enforced. Then, the Worker initializes a HwlocTopology
object and uses the set cpubind method provided by jhwloc to bind compu-
tational tasks to the appropriate hardware. The configuration of the Workers
is affected by the affinity level being used, as the number of threads launched
by them to execute map/reduce operations should be adapted to the hardware
characteristics of the underlying system. The intuitive recommendation would
be to create as many Workers as CPUs, and as many threads per Worker as
cores/PUs available in the nodes. The CPU affinity levels currently supported
by Flame-MR through jhwloc are:
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– NONE: Flame-MR does not manage hardware affinities in any way (i.e.,
jhwloc is not used).

– CPU: Workers are bound to specific CPUs. Each JVM process that executes
a Worker is bound to one of the available CPUs in the system using the
jhwloc flag HWLOC.CPUBIND PROCESS. Hence, each thread launched
by a Worker is also bound to the same CPU, which means that the OS sched-
uler can migrate threads among its cores. The mapping between Workers
and CPUs is done cyclically by allocating each Worker to a different CPU
until all the CPUs are used, starting again if there are remaining Workers.

– CORE: map/reduce operations are bound to specific cores. Each thread
launched by a Worker to perform such operations is bound to one of the
available cores in the system using the flag HWLOC.CPUBIND THREAD.
So, the OS scheduler can migrate threads among the PUs of a core (if any).
The mapping between threads and cores is done by allocating a group of
cores from the same CPU to each Worker. Note that the number of threads
used by all Workers executed in a node should not exceed the number of
cores to avoid resource oversubscription.

– PU: map/reduce operations are bound to specific PUs. Each thread launched
by a Worker to perform such operations is bound to one of the available PUs
in the system using the flag HWLOC.CPUBIND THREAD. The mapping
between threads and PUs is done by allocating a group of cores to each
Worker, and then distributing its threads over the PUs of those cores in a
cyclic way. Note also that the number of threads used by all Workers on a
node should not exceed the number of PUs to avoid oversubscription.

It is important to note that all the threads launched by a Worker process
are created during the Flame-MR start-up phase. So, jhwloc is only accessed
once to set the affinity level, avoiding any JNI overhead during data processing.

4.3 Experimental Configuration

Six MapReduce workloads from four domains that represent different Big Data
use cases have been evaluated: (1) data sorting (Sort), (2) machine learning
(K-Means), (3) graph processing (PageRank, Connected Components), and (4)
genome sequence analysis (MarDRe, CloudRS). Sort is an I/O-bound micro-
benchmark that sorts an input text dataset generated randomly. K-Means is
an iterative clustering algorithm that classifies an input set of N samples into
K clusters. PageRank and Connected Components are popular iterative algo-
rithms for graph processing. PageRank obtains a ranking of the elements of a
graph taking into account the number and quality of the links to each one, and
Connected Components explores a graph to determine its subnets. MarDRe [8]
and CloudRS [3] are bioinformatics tools for preprocessing genomics datasets.
MarDRe removes duplicate and near-duplicate DNA reads, whereas CloudRS
performs read error correction.

In the experiments conducted in this paper, Sort processes a 100 GB dataset
and K-Means performs a maximum of five iterations over a 35 GB dataset (N =
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360 million samples) using 200 clusters (K = 200). Both PageRank and Con-
nected Components execute five iterations over a 40 GB dataset (60 million
pages). MarDRe removes duplicate reads using the SRR377645 dataset, named
after its accession number in the European Nucleotide Archive (ENA) [12], which
contains 241 million reads of 100 base pairs each (67 GB in total). CloudRS cor-
rects read errors using the SRR921890 dataset, which contains 16 million reads
of 100 base pairs each (5.2 GB in total). Both genomics datasets are publicly
available to download at ENA website.

The experiments have been carried out on a 9-node cluster with one master
and eight slave nodes running Flame-MR version 1.2. Each node consists of a
NUMA system with two Intel Xeon E5-2660 octa-core CPUs. This CPU model
features two-way Intel HT, so 8 cores and 16 logical PUs are available per CPU
(i.e., 16 and 32 per node, respectively). Each node has a total of 64 GiB of
memory evenly distributed between the two CPUs. The NUMA architecture just
described is the one previously shown in Figure 1, which also details the cache
hierarchy. Additionally, each node has one local disk of 800 GiB intended for both
HDFS and intermediate data storage during the execution of the workloads.
Nodes are interconnected through Gigabit Ethernet (1 Gbps) and InfiniBand
FDR (56 Gbps). The cluster runs Linux CentOS 6.10 with kernel release 2.6.32-
754.3.5, whereas the JVM version is Oracle JDK 10.0.1.

To deploy and configure Flame-MR on the cluster, the Big Data Evaluator
(BDEv) tool [21] has been used for ease of setup. Two Workers (i.e., two JVM
processes) have been executed per slave node, since our preliminary experiments
proved it to be the best configuration for Flame-MR on this system. Regarding
the number of threads per Worker, two different configurations have been eval-
uated: (1) using as many threads per Worker as cores per CPU (8 threads), and
(2) using as many threads per Worker as PUs per CPU (16 threads), thus also
evaluating the impact of Intel HT on performance. Finally, the metric shown
in the following graphs corresponds to the median runtime for a set of 10 exe-
cutions for each experiment, clearing the OS buffer cache of the nodes between
each execution. Variability is represented in the graphs by using error bars to
indicate the minimum and maximum runtimes.

4.4 Performance Results

Figure 3 presents the measured runtimes of Flame-MR for all the workloads
when using different affinity levels and Worker configurations as previously de-
scribed. When running 8 threads per Worker (i.e., not using Intel HT), all the
workloads benefit from enforcing some hardware affinity, although the best level
to use varies for each workload. On the one hand, the performance improvements
for Sort (Figure 3a) and K-Means (Figure 3b) with respect to the baseline sce-
nario (i.e., without using affinity) are lower than for the remaining workloads.
The main reason is that both workloads are the most I/O-intensive codes un-
der evaluation, being clearly bottlenecked by disk performance (only one disk
per slave node is available). This fact limits the potential benefits of using an
enforced hardware placement. Nevertheless, the improvements obtained are up
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Fig. 3: Runtimes of Flame-MR for different workloads and CPU affinity levels

to 3% and 4% using the PU and CPU affinity levels for Sort and K-Means,
respectively. On the other hand, the performance improvements for the remain-
ing workloads (see Figures 3c-3f) are significantly higher: up to 13%, 17%, 16%
and 11% for PageRank, Connected Components, MarDRe and CloudRS, re-
spectively. Although the best affinity level depends on each particular workload
(e.g., CPU for PageRank, CORE for CloudRS), it can be concluded that the
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performance differences between different levels are generally small. Note that
the workloads benefit not only from accelerating a single Worker (i.e., JVM)
using CPU binding, but also from reducing the impact of the synchronizations
among all Workers, performed between the global map and reduce phases for
each MapReduce job. Moreover, this reduction in the runtimes is obtained as
a zero-effort transparent configuration for Flame-MR users, without recompil-
ing/modifying the source code of the workloads.

Regarding the impact of Intel HT on performance (i.e., running 16 threads
per Worker), note that the results for the CORE affinity level cannot be shown
when using two Workers per node since slave nodes have 16 physical cores, as
mentioned in Section 4.3. In the HT scenario, K-Means, MarDRe and CloudRS
take clear advantage of this technology. In the case of K-Means (see Figure 3b),
execution times are reduced with respect to the non-HT counterparts by 16% and
12% for the baseline and CPU affinity scenarios, respectively. The improvements
for these two scenarios increase up to 26% and 32% for CloudRS (Figure 3f),
and 48% and 41% for MarDRe (Figure 3e). However, the impact of HT can be
considered negligible for Sort, as shown in Figure 3a, whereas the performance of
PageRank and Connected Components is even reduced in most scenarios. Note
that using HT technology implies that the two logical PUs within a physical core
must share not only all levels of the cache hierarchy, but also some of the compu-
tational units. This fact can degrade the performance of CPU-bound workloads
due to increased cache miss rates and resource contention, as it seems to be the
case with PageRank. Finally, the impact of enforcing hardware affinity when
using HT can only be clearly appreciated for CloudRS, providing a reduction in
the execution time of 14% when using the CPU affinity level.

We can conclude that there is no one-size-fits-all solution, since the best affin-
ity level depends on each workload and its particular resource characterization.
Furthermore, the impact of managing CPU affinities is clearly much more ben-
eficial when HT is not used. However, the results shown in this section reinforce
the utility and performance benefits of managing hardware affinities in Big Data
JVM-based frameworks such as Flame-MR.

5 Conclusions

The complexity of current computing infrastructures raises the need for carefully
placing applications on them so that affinities can be efficiently exploited by the
hardware. However, the standard class library provided by the JVM lacks sup-
port for developing hardware-aware applications, preventing them from taking
advantage of managing CPU or NUMA affinities. As most popular distributed
processing frameworks are implemented using languages executed by the JVM,
having such affinity support can be of great interest for the Big Data community.

In this paper we have introduced jhwloc, a Java library that exposes an
object-oriented API that allows developers to gather information about the un-
derlying hardware and bind tasks according to it. Acting as a wrapper between
the JVM and the C-based hwloc library, the de facto standard in HPC envi-
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ronments, jhwloc enables JVM-based applications to easily manage affinities
to perform hardware-aware optimizations. Furthermore, we have extended our
Java MapReduce framework Flame-MR to include support for setting hardware
affinities through jhwloc, as a case study to demonstrate the potential benefits.
The experimental results, running six representative Big Data workloads on a 9-
node cluster, have shown that performance can be transparently improved by up
to 17%. Other popular JVM-based Big Data frameworks such as Hadoop, Spark,
Flink, Storm and Samza could also take advantage of the features provided by
jhwloc in a similar way to Flame-MR.

The source code of the jhwloc library is released under the open-source GNU
GPLv3 license and is publicly available together with the Javadoc documenta-
tion at https://github.com/rreye/jhwloc. As future work, we aim to explore the
impact of setting NUMA affinities on JVM performance when using different
garbage collection algorithms. We also plan to extend jhwloc to provide other
functionalities such as gathering information about the network topology.
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