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Analog Transmission of Correlated Sources over
BC with Distortion Balancing

Pedro Suárez-Casal, Óscar Fresnedo Member, IEEE, Luis Castedo, Senior Member, IEEE,
Javier Garcı́a-Frı́as, Senior Member, IEEE

Abstract—Analog transmission of correlated information over
Gaussian Broadcast Channels (BCs) using analog Joint Source
Channel Coding (JSCC) is addressed. This communication strat-
egy has attractive advantages such as low complexity, minimal
delay, graceful degradation and adaptation to time-varying envi-
ronments. In this work, we focus on the optimization of paramet-
ric continuous mappings that satisfy individual Quality of Service
(QoS) requirements over Gaussian BCs. This optimization is
based on the balancing of the user distortions to ensure the
feasibility of the resulting optimization problems. An analysis of
the overall distortion corresponding to the considered mappings
is carried out to design algorithms that determine the optimal
values for the mappings parameters. Results show that the pro-
posed analog JSCC scheme provides near optimal performance
and an adequate balancing of the individual distortions.

Index Terms—Multiuser channels, Broadcast Channels, Cor-
relation, Mean square error methods

I. INTRODUCTION

Broadcast communication is the transmission of information
from a central node to several devices using a common
channel. Broadcast communication arises in a large number
of scenarios such as the downlink of cellular systems, or
the communication between the control node and a multitude
of sensors in a Wireless Sensor Network (WSN). Traditional
approaches to design schemes that reliably transmit the source
information over a Broadcast Channel (BC) are based on the
source-channel separation [1]. This strategy consists in the
separate optimization of the source and channel encoders. In
the case of Gaussian BCs with a single transmit antenna,
the theoretical optimum sum-rate is achieved by using an
orthogonal channel access or with a scheme based on super-
position coding [2]. When multiple antennas are available at
transmission, the optimal strategy is the non-linear precoding
technique known as dirty paper coding [3].

In general, the use of properly optimized schemes based on
source-channel separation provides near optimal performance,
although they present some limitations. On one hand, since
these schemes require long block sizes at both encoders to
approach the theoretical bounds, their complexity is high
and introduce large latency. On the other, since the encoder
rates depend on the channel conditions, these systems need
to be redesigned on time-varying environments to adapt the
encoders to the fluctuations of the channel conditions. Indeed,
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this approach is not optimal in general in multiuser scenarios,
for example when a source must be reconstructed by multiple
users with different distortions [4], [5].

An alternative strategy consists in the join optimization of
the source and channel encoders into a a single operation.
The transmission of correlated sources over BCs using Joint
Source Channel Coding (JSCC) techniques has already been
studied in several works. The optimization of a bipartite graph
to randomly map the source encoder outputs to the channel
encoder inputs is stated in [6] to ensure the reliable commu-
nication of pairs of correlated samples to two receivers over
BCs. In [7], the same communication problem is addressed
considering an external interference which is known at the
transmitter and is correlated with the source symbols. In this
work, inner and outer bounds for this scenario are derived,
and the design of parametric and non parametric mappings
to achieve such bounds is studied. The use of Hybrid Digital
Analog (HDA) schemes based on the JSCC approach is also
proposed in [8], [9] for the transmission of bivariate Gaussian
sources over bandwidth mismatch BCs. The use of JSCC
techniques has been shown to achieve the optimal performance
also in broadcast networks where two different encoders send
correlated information to several receivers [10].

When the source information is analog, discrete-time
continuous-amplitude samples of the original signal can be
transmitted using analog JSCC techniques. These techniques
are based on the design of continuous space-filling curves that
are employed to map the source symbols into the correspond-
ing channel symbols according to a mapping function [11],
[12], [13], [14]. Over the last years, analog JSCC mappings
have been applied to multiple scenarios such as AWGN and
fading channels [15], [16], MIMO systems [17], multiuser
communications [18], [19] and network coding [20].

In this work, we address the BC transmission of analog
correlated data to two receivers using analog JSCC mappings.
In particular, we focus on the design of 2:1 parametric map-
pings to satisfy individual distortion requirements. In general,
the use of parametric mappings has two main advantages
with respect to the non parametric ones: 1) low-complexity
decoding strategies can be employed at the receivers; and
2) the space-filling curve for the mapping operation can be
adapted to the variations of the channel conditions by updating
its parameters. For parametric mappings, the distortion after
decoding the received symbols can be expressed as a function
of its parameters and, therefore, they can be conveniently
optimized depending on the goal of the BC communication:
minimum sum-distortion, individual distortion targets, max-
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min fairness, balancing of the user distortions, etc. In this
paper, we focus on the last criterion since the idea of distortion
balancing ensures the feasibility of the resulting optimiza-
tion problems [21]. In particular, two different analog JSCC
mappings are considered depending on the SNR regime. On
one hand, given that uncoded schemes have been shown to
achieve the optimal performance for low SNR values for
multiuser communications [18], we study the optimization of
these mappings to support the balancing of the user distortions.
On the other, low-complexity parametric mappings based on
sinusoidal functions [22] are employed in the high SNR
regime.

The main contributions of this work are summarized as
follows:
• Sine-like mappings are updated to satisfy individual

targets and to support the distortion balancing when
correlated data is sent over Additive White Gaussian
Noise (AWGN) BCs. The proposed transformation of the
original mapping is based on incorporating an additional
parameter to satisfy the individual distortion require-
ments.

• The distortion obtained after decoding the received sym-
bols when using sine-like mappings is mathematically
analyzed for the case of bivariate Gaussian sources and
AWGN channels. As a result, an approximation of the
actual distortions is presented and employed to optimize
the mapping parameters for different scenarios using a
searching algorithm.

• A systematic optimization for the parameters of the
uncoded scheme is proposed for the scenarios of interest,
where the goal is the balancing of the individual distor-
tions.

II. SYSTEM MODEL

Let us consider the transmission of analog correlated in-
formation over a Gaussian BC using analog JSCC mappings.
In particular, we focus on the two-user case where the real-
valued source symbols x = [x1 x2]

T are assumed to follow
a bivariate Gaussian distribution, i.e. x ∼ N (0,Cx) with a
covariance matrix Cx = [1 ρ;ρ 1]. The probability density
function (pdf) of x is given by

px(x) =
1√

(2π)2 det{Cx}
exp
(
−1

2
xT C−1

x x
)
. (1)

Each pair of source symbols is first encoded by a 2:1
analog encoder g(·) :R2→R, and the resulting symbol is then
transmitted to the two users over the BC. Hence, the received
signal can be expressed as

y = g(x)1+n, (2)

where y = [y1 y2]
T ∈ R2 stacks the received symbols of the

two users, 1 is the 2×1 vector of ones, and n = [n1 n2]
T ∈R2

represents the AWGN at the receivers, with n∼N (0,Cn) and
Cn = diag

(
σ2

n,1,σ
2
n,2

)
. A global power constraint is imposed

at the transmitter, and therefore the encoding function must be
designed to satisfy the constraint E[g2(x)]≤ P.

At each user, an estimate of its source symbols is calculated
from the received symbol as x̂i = hi(yi), i = 1,2, with hi(·) the

decoding function of each user. The distortion between source
and estimated symbols is measured according to the Mean
Squared Error (MSE) criterion as

ξi = E
[
|xi− x̂i|2

]
i = 1,2. (3)

In this work, we explore the analog transmission of the
source information over Gaussian BCs using analog JSCC
mappings. Such mappings are designed to satisfy a pair
of individual distortion targets such that ξi ≤ εi, where εi
represents the distortion target for the i-th user.

min
g(·),h1(·),h2(·)

ξi, s.t. E[g2(x)]≤ P, ξi ≤ εi, i = 1,2, (4)

This problem is feasible as long as the distortion targets εi
lie on the region of achievable distortions, given a transmit
power P and noise variances σ2

n,1 and σ2
n,2. To guarantee its

feasibility, (4) can be reformulated as a balancing problem to
satisfy scaled versions of the original targets that lie on the
region of achievable distortions, i.e.,

min
g(·),h1(·),h2(·)

b, s.t. E[g2(x)]≤ P, ξi−bεi ≤ 0, i = 1,2,

(5)

where b is a real-valued balancing level and bεi represents
a balanced version of the original targets. Without loss of
generality, we address those cases where the distortion target
for the first user is lower than that of the second user, i.e.,
ε1 ≤ ε2.

A. Distortion bound

The optimal performance of analog systems is given by the
optimal cost-distortion tradeoff, known as the Optimum Per-
formance Theoretically Attainable (OPTA). In the considered
scenario, we define a distortion bound for the balancing prob-
lem based on the characterization for the region of achievable
distortion for the transmission of bivariate Gaussian sources
over BCs [23] .

As mentioned in the previous section, we focus on analog
schemes that satisfy individual distortion targets with an appro-
priate balancing level. Therefore, given a pair of initial targets
ε1 and ε2, all the elements of the set of achievable distortions
that satisfy the balancing criterion are always related by the
ratio k = ε2/ε1. Hence, we restrict the calculation of the
optimal bound to those scenarios where ε2 = kε1. Since we
assume ε2 ≥ ε1, we have k ≥ 1.

Let (D1,D2) be a pair of achievable distortions under
a given power constraint P, and denote its collection as
D(P,ρ,σn1 ,σn2). From the inner bound for the region of
achievable distortions given in [23], and assuming the distor-
tion pairs that satisfy that D2 = kD1, the achievable distortion
for the first user can be written piecewise as in (6). There
Du

1(P,ρ,σn1 ,σn2 ,k) represents the distortion obtained with the
optimal uncoded scheme for a given k, and D+

2 delimits the
distortion for the second user from which the uncoded scheme
is no longer the optimal transmission strategy [23, Eq. (16)]

D+
2 =

(P+2σn2)(1−ρ2)+
√
(P2− (P+2σn2)

2ρ2)(1−ρ2)

2(P+σn2)
.
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Dopt
1 (P,ρ,σ2

n1
,σ2

n2
,k) =



σ2
n1

P+σ2
n1
, P≤ w(ρ,σ2

n1
,σ2

n2
,k)

Du
1(P,ρ,σ

2
n1
,σ2

n2
,k), P≤ 2ρσ2

n2
1−ρ

or Du
1 ≥

D+
2
k

σ2
n2
−σ2

n1
+

√(
σ2

n2
−σ2

n1

)2
+4kσ2

n1

(
P+σ2

n2

)
(1−ρ2)

2k
(

P+σ2
n2

) P >
2ρσ2

n2
1−ρ

and Du
1 <

D+
2
k

(6)

w(ρ,σ2
n1
,σ2

n1
,k) =

−σ2
n2
− (1−ρ2− k)σ2

n1
+
√(

σ2
n2
− (1−ρ2− k)σ2

n1

)2−4kρ2σ2
n1

σ2
n2

2(1−ρ2)
(7)

Dopt
1 (k,ρ,η) =


1

1+η
, η ≤ k−1

1−ρ2

(1+k)(1−ρ2)(2+η)−2ρ

√
kη2(1−ρ2)

2−(1−k)2(1+η)(1−ρ2)
(1+η)((1+k)2−4ρ2k)

, k−1
1−ρ2 ≤ η < u(ρ,k)√

1−ρ2

k(1+η) , η ≥ u(ρ,k)

(8)

This expressions simplify for symmetric BCs when σ2
n =

σ2
n,1 = σ2

n,2. In this case, the minimum distortion achievable
for the first user is given by (8), where η = P/σ2

n represents
the Signal-to-Noise Ratio (SNR) value for both users, and
the threshold u(ρ,k) = v(ρ,k) +

√
v(ρ,k)(v(ρ,k)−1), with

v(ρ,k) = k2+2kρ+1
2k(1−ρ2)

− 1, is determined by equating the dis-
tortion in the third region to D+

2 /k and solving for η . As
observed, the SNR region is split into three different intervals:
D1 =

{
η | η ≤ k−1

1−ρ2

}
, D2 =

{
η | k−1

1−ρ2 ≤ η < u(ρ,k)
}

and
D3 = {η | η ≥ u(ρ,k)}.

The achievable distortions for the second user in the region
D2∪D3 is the distortion of the first user scaled by the factor
k, while the region D1 corresponds to transmit only the source
of the first user [18]. In this case, the distortion for the
second user is the error variance obtained with the linear
Minimum Mean Squared Error (MMSE) filter, since the source
symbols are Gaussian distributed. Thus, the distortion ratio is
lower than or equal to k, and larger distortions could only be
obtained for the second user by penalizing the decoding. As a
consequence, the corresponding SNR interval is not interesting
in terms of distortion balancing or design of coding schemes
to satisfy distortion targets. The achievable distortion for the
second user is hence

Dopt
2 (k,ρ,η) =

{
1− ρ2η

1+η
, η ≤ k−1

1−ρ2

min{1,kDopt
1 }, η > k−1

1−ρ2

(9)

III. ANALOG JSCC MAPPINGS

Two types of analog mappings are considered along this
work: uncoded and sine-like. Uncoded mappings are helpful in
the low SNR regime whereas sine-like mappings will be used
for high SNRs. Both mappings compress two source symbols
into one channel symbol sent over the BC.

A. Uncoded Mappings

When (D1,D2) ∈ D1 ∪D2, i.e. η < u(ρ,k), the minimum
distortion (Dopt

1 ,Dopt
2 ) is achieved with an uncoded scheme

that consists of a linear combination of the source symbols
[18], i.e.,

gu(x) =

√
P

m2 +n2 +2ρmn
(mx1 +nx2) = vT x, (10)

with m and n real-valued mapping parameters, and v =√
P

m2+n2+2ρmn [m n]T . These parameters must be optimized for
each SNR region in (8) as we will explain in Section IV.

The optimal decoder for this setup is the linear MMSE
estimator, i.e.

hu
i (yi) =

[
Cxv(vT Cxv+Cn)

−1yi
]

i , i = 1,2. (11)

The resulting expected individual distortions are given by
[18], [24]

ξ
u
1 (m,n,η1) =

1
(1+η1)2+

η2
1 n2(1−ρ2)+η1(m2 +n2(2−ρ2)+2ρmn)

(1+η1)2(m2 +n2 +2ρmn)
(12)

ξ
u
2 (m,n,η2) = ξ

u
1 (n,m,η2), (13)

where η1 = P/σ2
n1

and η2 = P/σ2
n2

represent the individual
SNRs.

B. Sine-like Mappings

Sine-like mappings arise from a parametric approximation
to the non-parametric analog JSCC mappings for the con-
sidered scenario. Such non-parametric mappings and their
corresponding decoder can be obtained by means of multiple
techniques such as steepest descent [25], vector quantization
[26], or deterministic annealing [19]. For example, in the
steepest descent approach, the analog encoder and decoder
are alternatively optimized to decrease the MSE. For given
enconder g(·), the optimal MMSE decoder can be calculated
as follows

hMMSE
i (yi) = E[x|yi] =

∫
x px(x) pni(yi−g(x)) dx∫
px(x) pni(yi−g(x)) dx

, (14)
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where pni(n) = (2πσ2
ni
)−1/2 exp

(
−n2/σ2

ni

)
represents the pdf

of the Gaussian noise distribution. The optimal encoder,
however, cannot be expressed in terms of the decoder in a
closed-form. It can be determined by means of a steepest
descent search on the domain of the encoding functions to
minimize the MSE for a given decoder, subject to a power
constraint [25]. Although providing good performance, non
parametric approaches suffer from high computational cost and
their solutions are specific to the conditions of each scenario.
Thereby, if noise variance or source correlation change, new
encoding and decoding functions have to be found.

Parametric approaches to analog JSCC are an appealing
alternative where the encoder and the decoder are expressed
as functions of some parametrized space-filling curve. This
structure allows low complexity implementations of the de-
coder and the adaptation of the encoder parameters to the
channel conditions. The parametric mapping proposed in [22]
for single-user scenarios can be adapted to the Gaussian BC
with individual distortions as

cα,∆,β (t) = UΣ
1/2

(
1
√

λ2
λ1

β

0 1

)
s(t), (15)

where

s(t) = [sx(t) sy(t)]T =

(
t− 1

2α
sin(2αt)

∆sin(αt)

)
, (16)

and Cx =UΣUH is the eigenvalue decomposition of the source
covariance, with Σ = diag(λ1,λ2) the matrix containing the
eigenvalues and λ1 ≥ λ2. Hence, the matrix UΣ

1/2 projects
the parametric curve on the source space. Compared to the
parametric curve for single-user 2:1 compression, (15) adds a
new parameter β to support the balancing of individual dis-
tortions. The choice of s(t) is motivated as an approximation
to the non-parametric mappings obtained with the steepest-
descent algorithm explained previously, and after analyzing
other mappings proposed for the BC scenario [7], [27].

Different approaches can be considered to map the source
symbols into the parametric curve. The conventional one is the
Minimum Distance (MD) mapping which consists in finding
the point on the curve with minimum Euclidean distance to
the source symbols x = [x1,x2]. The encoded symbol is thus
obtained as gm(x) = argmin

t
‖x− c(t)‖2.

For symmetrical BCs, an alternative is the Expected Dis-
tortion (ED) mapping. Indeed, assuming that a ML decoder
will be used, the encoding process may take into account the
effect of the AWGN channel as

ge(x) = argmin
t

∫
‖x− c(t)‖2 pn(n− t)dn. (17)

The optimal strategy to decode the source symbols at each
user is the MMSE estimator given by (14). However, the
computational complexity of this solution is large because
it requires numerical calculation of the integrals in (14). A
lower complexity alternative is the Maximum Likelihood (ML)
decoder that can be implemented as

hML
i (yi) =

[
cα,∆,β (yi)

]
i , i = 1,2. (18)

In addition, previous works have shown that a two-stage
receiver can improve the performance of ML decoding, with

negligible impact on the computational complexity, by chain-
ing it with the linear MMSE decoder [28]. This decoder can
be expressed as

htwo
i (yi) =

[
cα,∆,β

(
yi

1+σ2
ni

)]
i

, i = 1,2. (19)

The observed symbols at each user are first filtered with the
linear MMSE filter to mitigate the impact of the noise, and
the resulting symbols are then decoded according to an ML
strategy.

IV. OPTIMIZATION OF MAPPING PARAMETERS

Both uncoded and parametric sine-like analog JSCC
schemes require an optimization of the mapping parameters
to satisfy the individual distortion targets. In the ensuing
sections, an expression of the user distortions depending on
the mapping parameters is first obtained for uncoded and sine-
like mappings. The obtained expressions are then employed to
optimize the mapping parameters according to the distortion
targets and the channel conditions.

A. Uncoded Mapping

The expected distortion when uncoded mappings are used
is given by (12) and (13). We are interested in obtaining the
parameters m and n that satisfy ξ u

2 (m,n,η1)/ξ u
1 (m,n,η2) =

k. This mapping is able to achieve the optimal performance
bound in (6) when the SNR is in the first two intervals.

The first SNR interval is only defined when the user
distortion targets are strictly different (k > 1). In this case,
the optimal parameters of the uncoded scheme are m = 1 and
n = 0 which corresponds to transmitting only the symbol to
the first user. As a consequence, the achievable distortion for
the second user does not meet the ratio defined above and
is directly determined by the error variance of the MMSE
estimator.

In the second SNR interval, the optimal parameters can
be obtained from the distortions of the uncoded scheme in
(12) and (13). After equating ξ u

2 (m,n,η2) = kξ u
1 (m,n,η1) and

solving for n we obtain

n =
−ρz+

√
ρ2z2− (z+η2(1−ρ2))(z−η1(z−1)(1−ρ2))

z+η2(1−ρ2)
m,

(20)

where z = 1− k 1+η2
1+η1

, for any m > 0.

B. Sine-like mappings

As shown in [22], the encoder parameters of sine-like
mappings (α , ∆) can be optimized by using an approach
based on a least squares fitting of the non-parametric curves
obtained in Section III-B [24]. The optimal values of the
parameters are chosen so that the resulting parametric mapping
accurately matches the non-parametric curve. However, this
approach cannot be considered for scenarios with asymmet-
ric distortion requirements because non-parametric mappings
were not obtained in such cases. A more generic approach is
to determine the user distortions as a function of the encoder
parameters. Due to the difficulty to obtain exact expressions,
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Fig. 1. Components of the total error ξ with ML decoder given the mapping
error σ2

A and the noise error σ2
N .

Fig. 2. Approximation of the sinusoid mapping. The dashed red line
represents the parametric curve used by the encoder. The black lines represent
the approximation of the mapping.

we assume different approximations to make the calculation
of the estimate errors affordable.

The distortion of any parametric encoder assuming ML
decoding can be decomposed into three components. The first
is the mapping error, and it is related to the mapping from
the source symbol to the space-filling curve, the second is
related to the channel distortion on the transmitted symbol,
and the third appears when these two errors are not orthogonal
[15]. This is shown in Figure 1 when a source symbol x is
encoded using the parametric sine-like mapping, is transmitted
over an AWGN channel and is decoded with an ML approach.
Mathematically, denoting x̄i as the point on the curve where
the source symbol for the i-th user is mapped, the individual
distortions can be expressed as

ξ
sin
i = E

[
((xi− x̄i)− (x̂i− x̄i))

2
]
= σ

2
A,i +σ

2
N,i− γi, (21)

where σ2
A,i = E

[
(xi− x̄i)

2
]

is the mapping error,
σ2

N,i = E
[
(x̂i− x̄i)

2
]

is the channel error, and
γi = 2E [(x̂i− x̄i)(xi− x̄i)] is a residual term motivated
because the mapping error and the channel error are not
necessarily orthogonal on the curve, as shown in Figure 1. In
the ensuing paragraphs, approximations of these three errors
for sinusoidal mappings are developed.

1) Mapping Error: An approximation of this error can be
computed from a simplified version of the proposed sine-like

2∆̄
π
α

sout

sin

β = 0

2∆̄
π
α

sout

sin

β = −0.2

Fig. 3. Equivalent sine-mapping and the approximation one before the
projection on the source space.

mapping. As shown in Figure 2, the source space is split into
two regions, a rectangular one (light grey) and the remaining
region (dark grey). In the original mapping, represented by the
red dashed curve, the points of the source space that lie on the
outer region (dark grey) are assumed to be mapped to the lobes
of the curve. The points on the inner rectangular region are
assumed to be mapped to the straight parts. Hence, the overall
error due to the mapping operation can be approximated by
the sum of the MSE corresponding to each of these regions.

An interesting simplification is that the errors for the inner
and outer regions can be computed before the projection of
the mapping on the source space. The resulting errors are
then multiplied by the eigenvalues of the covariance matrix,
λ1 and λ2, to fit the actual mapping error after the projection.
The equivalent scenario disregarding the mapping projection is
illustrated in Figure 3. The left side of the figure represents the
mapping when β = 0 and, therefore, the mapping is not tilted
with respect to the vertical axis. In the right side, a version of
the mapping with a certain tilt degree given by β is plotted.

An important issue to obtain an accurate estimate of the
components for the mapping error is to properly adjust the
height of the outer rectangle, since the width of the inner
rectangles corresponds to half of the sinusoid period π/α . The
height of this rectangle is defined as 2∆̄, where the parameter
∆̄ is a function of the original ∆ in the parametric mapping.
We have determined this parameter by finding the point t̄ on
the curve whose slope is larger than a given threshold U , and
evaluated the second component of the mapping in that point.
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Thus,

dsx(t̄)
dsy(t̄)

=
1− cos(2α t̄)
∆α cos(α t̄)

=U, (22)

∆̄ =∆sin(α t̄) (23)

As observed in Figure 2, we seek to identify those cut points
on the curve where the mapping shape changes from the
straight part to the curved shape. As explained in Appendix
A, after solving the above equations, we obtain

∆̄ =
Uα∆2

4

√√√√−2+2

√
1+
(

4
Uα∆

)2

. (24)

The threshold U can be selected experimentally to ensure a
right approximation.

Once the dimensions of the rectangular mapping are estab-
lished, we determine an approximation for the errors corre-
sponding to the inner and outer regions using the alternative
mapping. On the one hand, the error of the points inside
the rectangle can be approximated by the error of a scalar
quantizer with an interval size π/α . Thus,

ein =
π2

12α2 (25)

On the other hand, the MSE for the points outside the
rectangle is obtained assuming that such points are mapped to
the closest point on the corresponding edge of the rectangle.
In this case, the error can be computed as the variance of
the points that lie outside the rectangle with respect to ∆̄

or, equivalently, as the variance of a circularly symmetric
Gaussian truncated to that region. As observed in Figure 3 (left
side), this variance is exactly the same for the four quadrants
on the 2D plane. Hence, we can calculate it on the quadrant
highlighted in blue as

equad =
1

2σ2
x π

∫ −∆̄

−∞

∫ 0

−∞

|x2 + ∆̄|2 exp
(
−x2

1 + x2
2

2σ2
x

)
dx1 dx2,

(26)

and then the outer error will be eout = 4equad. Solving the
integral in (26) and rearranging the resulting terms, we obtain
the following expression

eout = (1− pin)(1+ ∆̄
2)− 2∆̄√

2π
exp
(−∆̄2

2

)
(27)

for the error in the outer region, where pin =∫
∞

−∞

∫
∆̄

−∆̄
px(x)dx = erf

(
∆̄√
2

)
is the probability that a

source point lies inside the considered rectangle with
erf(x) = 2

π

∫ x
0 exp(−t2)dt the error function. The steps to

arrive at the above expression departing from (26) are detailed
in Appendix B.

Finally, the overall mapping error for each user is given by

σ
2
A,1 ≈ λ1 cos2(a)ein pin +

λ2

2
eout (28)

σ
2
A,2 ≈ λ1 sin2(a)ein pin +

λ2

2
eout, (29)

where eout and ein represent the mapping error corresponding
to the outer and inner regions, respectively; and the angle

a = tan−1
(

β−1
β+1

)
represents the slope of the parametric curve

depending on the β values. The factors cos2(a) and sin2(a)
are employed to assign the contribution of the points inside
the rectangle to the error of each user depending on the
mapping tilt degree, and they come from basic trigonometric
relationships. However, the contribution of the outer error to
the mapping error of each user only depends on the parameter
∆̄. As observed in Figure 3, this contribution for both users is
precisely half of the outer error, i.e. eout/2, regardless of the
tilt degree. Finally, the eigenvalues λ1 and λ2 are necessary to
reflect the effect of the projection.

The error expressions in (28) and (29) implicitly depend on
the parameter β through the angle a. When β = 0, this angle
is a = π/4 and, therefore, the terms depending on β simplify
to cos2(a) = sin2(a) = 1/2. As expected, the mapping error is
the same for both users in this case.

2) Channel Error: Assuming ML decoding, the compo-
nents of the error due to the channel distortion can be
computed as

σ
2
N,i =

∫
pt(t)

∫
pni(n)

∣∣[c(t)]i−hML
i (t +n)

∣∣2 dndt

=
∫

pt(t)
∫

pni(n) |[c(t)]i− [c(t +n)]i|2 dndt

=
∫

Ai(t)pt(t)dt, (30)

where pt(t) and pni(n) are the pdf of the mapping output
and the i-th component of the noise, respectively; and c(t)
represents the point on the parametric curve given by t. Note
that the channel noise moves the encoded symbols only along
the curve and, therefore, c(t + n) corresponds to the symbol
at the channel output perturbed by the noise. The Ai(t) terms
can be expressed for the sine-like mapping as

A1(t) =
∫

pn1(n)|cx(t)− cx(t +n)|2dn (31)

A2(t) =
∫

pn2(n)|cy(t)− cy(t +n)|2dn. (32)

where the functions cx(t) and cy(t) provide the x and y
coordinates of t on the bidimensional space and, therefore,
the terms A1(t) and A2(t) represent the channel error at the
point t for the first and second user, respectively.

Since the eigenvectors of the considered correlation model
are U =

[
1√
2

1√
2
; 1√

2
−1√

2

]
, and λ1 and λ2 are the corresponding

eigenvalues, the functions cx(t) and cy(t) can be written as

cx(t) =

√
λ1

2
sx(t)+

√
λ2

2
(1+β )sy(t) (33)

cy(t) =

√
λ1

2
sx(t)−

√
λ2

2
(1−β )sy(t). (34)

Replacing (33) and (34) into (31), the expression for the
first user error at a point t is

A1(t) =
∫

pn1(n)
(

λ1

2
|sx(t)− sx(t +n)|2 + λ2

2
(1+β )2|sy(t)− sy(t +n)|2

+
√

λ1λ2(1−β )2(sx(t)− sx(t +n))(sy(t)− sy(t +n))
)

dn
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Given that En[(sx(t)− sx(t + n))(sy(t)− sy(t + n))] = 0, the
third term in the above equation can be disregarded and the
expression simplifies to

A1(t) =
∫

pn1(n)(
λ1

2
|sx(t)− sx(t +n)|2 + λ2

2
(1+β )2|sy(t)− sy(t +n)|2

)
dn

=
λ1

2
ex1(t)+

λ2

2
(1+β )2ey1(t). (35)

A similar expression is obtained for the second user channel
error

A2(t) =
∫

pn2(n)(
λ1

2
|sx(t)− sx(t +n)|2 + λ2

2
(1−β )2|sy(t)− sy(t +n)|2

)
dn

=
λ1

2
ex2(t)+

λ2

2
(1−β )2ey2(t), (36)

with

exi(t) = σ
2
ni

(
1−2cos(2αt)exp

(
−2α

2
σ

2
ni

))
+

1
4α2 (1− exp(−2α

2
σ

2
ni
))

+
1

4α2 cos(4αt)
(

exp
(
−2α

2
σ

2
ni

)
− 1

2
exp(−8α

2
σ

2
ni
)− 1

2

)
eyi(t) = ∆

2

(
1− exp

(
−

α2σ2
ni

2

)

+cos(2αt)

(
exp

(
−

α2σ2
ni

2

)
− 1

2
exp(−2α

2
σ

2
ni
)− 1

2

))
.

The steps to obtain exi(t) and eyi(t) are developed in the
Appendix C.

Notice that equations (35) and (36) corresponding to the
channel error for the two users explicitly depend on t. The
next step is the integration of these channel errors along all
points on the curve according to (30), i.e. σ2

N,1 =Et [A1(t)] and
σ2

N,2 =Et [A2(t)]. However, the pdf of the mapping output pt(t)
cannot be expressed in a closed form and, consequently, the
integral in (30) must be calculated numerically. Alternatively,
we rely on the relation min{ f (x)} ≤ E[ f (x)] ≤ max{ f (x)}.
Hence, the expectation of a function f (x) can be approached
with a convex combination of the two extreme points as

E[ f (x)] = umax{ f (x)}+(1−u)min{ f (x)}, (37)

by selecting a proper value for u ∈ [0,1].
As an example, Figure 4 plots the error functions exi(t)

and eyi(t) for a scenario where a bivariate Gaussian with
correlation factor ρ = 0.9 is mapped using a particular sine-
like mapping (α = 10; ∆ = 1.4;β = 0). As observed, ex(t)
achieves its maximum values at t = π

2α
± i π

α
,∀i ∈ Z, while

the minimum values occur at t = 0± i π

α
,∀i ∈ Z. Thus, the

maxima are reached at points outside the rectangular region
for the mapping error, and the minima are inside.

Denoting with I and O the inner and outer regions,
respectively, the expectation of the function ex(t) can be ap-
proximated as E[ex(t)] =

∫
ex(t)pt(t)dt ≈ ∫G(I ) ex(t)pt(t)dt +

−0.8 −0.4 0 0.4 0.8
0

0.004

0.008

0.012

0.016

0.02

t

ey(t)
ex(t)

Fig. 4. Example of the error functions exi (t) and eyi (t) for a sine-like mapping
with parameters (α = 10; ∆ = 1.4;β = 0).

∫
G(O) ex(t)pt(t)dt, where G(·) gives the set of encoded points

belonging to a region, and it is an approximation because
the regions of both integrals can overlap. Assuming that∫

G(I ) pt(t)dt ≈ ∫I p(x)dx, and similarly for O , if we ap-
proximate ex(t) by its maximum value in the outer region
and by its minimum value in the inner region, the expec-
tation term is given by E[ex(t)] ≈ max{ex(t)}

∫
O p(x)dx +

min{ex(t)}
∫
I p(x)dx. According to this expression and the

formulation in (37), u =
∫
O p(x)dx = 1− pin is a reasonable

choice, and we checked experimentally that this approach
provides good results. On the contrary, ey(t) achieves its max-
imum values in the inner region and the maximum ones in the
outer region, and in that case we choose u =

∫
I p(x)dx = pin.

The behaviour of the functions ex(t) and ey(t) is identical for
other scenarios with different mapping parameters.

Taking into account this reasoning, the approximations of
the user channel errors are given by

σ
2
N,1 ≈

λ1

2
(pin min{ex1}+(1− pin)max{ex1})

+
λ2

2
(1+β )2 (pin max{ey1}+(1− pin)min{ey1})

=
λ1

2

(
pinex1(0)+(1− pin)ex1

(
π

2α

))
+

λ2

2
(1+β )2

(
piney1(0)+(1− pin)ey1

(
π

2α

))

σ
2
N,2 ≈

λ1

2
(pin min{ex2}+(1− pin)max{ex2})

+
λ2

2
(1−β )2 (pin max{ey2}+(1− pin)min{ey2})

=
λ1

2

(
pinex2(0)+(1− pin)ex2

(
π

2α

))
+

λ2

2
(1−β )2

(
piney2(0)+(1− pin)ey2

(
π

2α

))
,
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with

exi(0) = σ
2
ni

(
1−2exp

(
−2α

2
σ

2
ni

))
+

1
4α2

(
exp
(
−1

2
exp(−8α

2
σ

2
ni
)+

1
2

))
exi

(
π

2α

)
= σ

2
ni

(
1+2exp

(
−2α

2
σ

2
ni

))
+

1
4α2

(
exp
(
−1

2
exp(−8α

2
σ

2
ni
)+

1
2

))

eyi(0) = ∆
2
(
−1

2
exp(−2α

2
σ

2
ni
)+

1
2

)
eyi

(
π

2α

)
= ∆

2

(
−2exp

(
−

α2σ2
ni

2

)
+

1
2

exp(−2α
2
σ

2
ni
)+

3
2

)
.

Like in the mapping error, the same noise error is obtained
for both users if β = 0. Otherwise, these errors are no longer
equal and the difference depends on the specific value of the
β parameter.

3) Residual Term: The last contribution on the overall user
distortions ξ sin

i is the term

γi = 2E [(xi− x̄i)(x̂i− x̄i)] .

When computing the expectation, the term (xi − x̄i) only
depends on the source space, while the term (x̂i − x̄i) only
depends on the noise. Hence, the expectation in the above
expression can be computed as γi = 2E [x̂i− x̄i]E[xi− x̄i].

Assuming the minimum distance encoder is used, each point
of the source space is orthogonally projected on the parametric
curve, and the vectors corresponding to the mapping errors
(xi− x̄i) can be represented by a normalized orthogonal vector
to the tangent of the curve at each point (see Figure 1). In
particular, we consider

d(t) =
[
−dcy(t)

dt
,

dcx(t)
dt

]T

= [d1(t) d2(t)]T , (38)

where

d1(t) =

√
λ1

2
(1− cos(2αt))+

√
λ2

2
(1+β )∆α cos(αt)

d2(t) =

√
λ1

2
(1− cos(2αt))+

√
λ2

2
(1−β )∆α cos(αt).

The normalized version of these orthogonal vectors is d̃(t) =
d(t)/‖d(t)‖2. This error is a consequence of the non-
orthogonality of the vectors for the mapping error and the
noise error and, therefore, it is only significant for source
points outside the rectangle. Hence, the first component of
the residual term can be approximated by the normalized
orthogonal vectors d̃(t) weighted by the mean mapping er-
ror corresponding to the points outside the rectangle, i.e.,√

λ2
2 eoutd̃(t).

The term corresponding to the noise effect, i.e. (xi− x̄i), can
be calculated for each user following a reasoning similar to
that of the previous section. In this case, we define

B1(t) = E[x1− x̄1] =
∫

pn1(n)(cx(t)− cx(t +n))dn (39)

B2(t) = E[x2− x̄2] =
∫

pn2(n)(cy(t)− cy(t +n))dn. (40)

Replacing cx(t) and cy(t) by their corresponding expressions
given by (33) and (34), respectively, and solving the resulting
integrals, we obtain

B1(t) =

√
λ1

2
1

2α
sin(2αt)(exp(−2σ

2
n1

α
2)−1)

+

√
λ2

2
(1+β )∆sin(αt)

(
exp

(
−

σ2
n1

α2

2

)
−1

)

B2(t) =

√
λ1

2
1

2α
sin(2αt)(exp(−2σ

2
n2

α
2)−1)

−
√

λ2

2
(1−β )∆sin(αt)

(
exp

(
−

σ2
n2

α2

2

)
−1

)
.

The intermediate steps to obtain the above result from (39)
and (40) are detailed in Appendix D. The residual terms at the
point t are hence given by

γi(t)≈ 2

√
λ2

2
eout [d̃(t)]iBi(t) (41)

Like in the case of the noise error, the resulting expressions
explicitly depend on t. To circumvent this problem we follow a
similar strategy, i.e. we approach the expectation of the above
expression by using a convex combination of the extreme
points. Recall that the impact of this term is only significant
for the source points outside the rectangle. On one hand, the
minimum values of the residual term in the outer region are
practically zero, and they correspond to the points on the
intersection between the top and bottom edges of the rectangle
and the mapping curve. On the other, the maximum values are
around the top and bottom of the curve and correspond to less
likely points of the source space. Hence, it is reasonable to
conclude that the weight of the points with lower residual
error must be larger than the points with larger error. For this
reason, we propose u = 1/4 as convex combination factor. In
this case, the residual term is approximated as

γi ≈
1
4

max
t

[
2

√
λ2

2
eout [d̃(t)]iBi(t)

]
, (42)

since the minimum value of (41) on the region of interest is
assumed to be 0. Factors around this value have been shown
to provide good approximations of the residual error.
C. Algorithm for the Optimization of Sine-Like Mappings

In the previous sections, we derived an expression for the
overall distortion at each BC user when a sine-like mapping is
used to encode the source symbols. This expression depends
on the three mapping parameters (∆, α and β ) and provides
approximations of the user distortions for any combination of
such parameters. Our objective now is to find the combination
of values that satisfy the requirements in terms of individual
distortions. As commented in Section II, we consider the
balancing of the user distortions to guarantee the feasibility of
the resulting optimization problems. Let ε1 and ε2 be the initial
distortion targets for the two users. Then, the optimal values
of the mapping parameters can be obtained as the solution of
the following optimization problem

min
α,∆,β

b s.t. ξ
sin
i (α,∆,β )−bεi ≤ 0; (43)
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where

ξ
sin
i (α,∆,β ) = σ

2
A,i +σ

2
N,i− γi i = 1,2. (44)

Since (43) is not convex, because the error equations are
not convex, we propose an algorithm based on an exhaustive
search on the β space so that the optimal α and ∆ values for
each considered β are determined, and the combination with
lowest distortion is chosen. Thereby, the algorithm comprises
two main stages: 1) given β , the bisection method is employed
to find the minimum b that satisfies the problem constraints,
and the corresponding α and ∆ are obtained; 2) the previous
step is carried out for a collection of β values in the interval
[−1,1], and the combination that provides the lowest distortion
is finally chosen.

This algorithm allows, with the help of the MSE approxi-
mation of the sine-like mappings, to lower the computational
complexity of the search of the optimal parameters. The use
of the approximation derived in the previous section avoids
to compute the MSEs by Monte Carlo techniques which are
computationally unaffordable for the large number of symbols
required in the simulations to obtain proper approximations of
the user distortions.

V. RESULTS

In this section, the results of several computer experiments
are presented to illustrate the performance of the proposed
analog JSCC scheme for Gaussian BC scenarios with in-
dividual distortion targets. Source symbols are assumed to
follow a bivariate Gaussian distribution with zero mean and
covariance matrix Cx = [1 ρ;ρ 1], where ρ determines the
correlation between symbols. Each pair of source symbols is
encoded using an analog mapping and sent over the Gaussian
BC. The transmitted symbols are normalized to ensure the
transmit power is equal to 1. For convenience, we focus on
the symmetric case where the noise variance for both users
is the same, σ2

n . Hence, the SNR is η = 1/σ2
n . At each

receiver, the source symbols are decoded using an appropriate
strategy, and the individual distortions are computed from
the MSE between the source and the estimated symbols as
ξi = E

[
|x̂i− xi|2

]
, i = 1,2. The performance of the analog

JSCC system is measured in terms of the Signal-to-Distortion
Ratio (SDR), which is defined for each receiver as

SDRi[dB] = 10log10(1/ξi). (45)

As introduced in Section II-A, three distortion regions can
be distinguished when sending a bivariate Gaussian. These
regions are delimited by the two SNR thresholds presented in
(8). The optimal strategy in the first region consists of sending
the symbols of one user only. In the second region, it is known
that the uncoded scheme with the MMSE decoder is able to
achieve the OPTA as long as it is properly optimized. Hence,
it is sensible to restrict the optimization and use of sine-like
mappings to the third SNR region given by

η ≥ v(ρ,k)+
√

v(ρ,k)(v(ρ,k)−1), (46)

with v(ρ,k) = k2+2kρ+1
2k(1−ρ2)

− 1 and k the ratio between the
distortion targets for the two users.

TABLE I
OPTIMAL PARAMETERS FOR THE SINE-LIKE MAPPING WITH ρ = 0.9 AND

EQUAL USER TARGETS k = 1.

Parameter α Parameter ∆

SNR 15 20 25 30 15 20 25 30

LS Fitting 5.11 6.9 8.2 10.39 0.16 0.93 1.2 1.44

Searching Alg. 33.5 7.0 8.7 10.1 0.34 0.98 1.12 1.28

In the first experiment, the algorithm for the optimization
of the sine-like mappings is tested, and the accuracy of
the distortion approximation obtained in Section IV-B for
these mappings is also assessed. Table I compares the values
obtained for the parameters of the sine-like mapping with two
different optimization approaches: 1) least square fitting of
the obtained non-parametric mappings, and 2) the searching
algorithm explained in Section IV-C using the distortion
approximations. The correlation factor for the source symbols
is ρ = 0.9 and the same distortion target is assumed for the two
users, i.e. k= 1. Therefore, the region of interest is given by the
SNRs such that η ≥ 12.6 dB. As observed, both optimization
strategies provide quite similar parameters for η ≥ 20 dB
and, in fact, the analog scheme using the mapping parameters
of either strategy achieves an almost identical distortion. For
η = 15 dB, the resulting mappings resemble a linear encoding
since ∆ is near zero. Different values for α are obtained
depending on the optimization approach, but in this case
that parameter is less significant and similar performance is
achieved.

Table II shows the optimal parameters, obtained with the
proposed algorithm, for different ratios of the user targets,
in particular, k = 1,k = 1.5,k = 2 and k = 4, and their
corresponding SNR thresholds. As observed, the value of β

increases for all SNRs as the distortion ratio k is larger, i.e. as
the difference between the user distortions grows. Regarding
the other parameters, the optimal α and ∆ values are also
larger as k increases. Thus, the analog scheme aims to satisfy
the balancing of the user distortions by changing not only the
slope of the mapping but also the amplitude and the frequency
of the sine function. Figure 5 shows the resulting sine-like
mappings for k = 1 (left side) and k = 4 (right side), with the
optimal parameters obtained for SNR = 25 dB and ρ = 0.9.
As observed, for k = 4, the mapping is skewed to the right
with respect to the mappping for k = 1. When the mapping is
transformed this way, the central part of the sine tends to be
more vertical and, as a consequence, the decoding error for
the first user will be lower. This is the reason why β increases
with k, since more unbalanced targets demand more protection
to one user, and β helps by skewing the mapping.

We next compare the distortion determined analytically in
Section IV and the actual distortion obtained in simulation
for k = 2 and the optimal sine-like mapping parameters.
Figure 6 shows the two SDR curves for the two BC users in
the considered SNR region. The optimal performance bounds
for this scenario are calculated according to (8) and (9),
and plotted in the figure for comparison. As observed, the
expression derived to approximate the distortion of sine-like
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TABLE II
OPTIMAL PARAMETERS FOR THE SINE-LIKE MAPPING WITH ρ = 0.9 AND DIFFERENT k VALUES.

Parameter α Parameter ∆ Parameter β

SNR 15 20 25 30 15 20 25 30 15 20 25 30

k = 1 12.55 33.5 7.0 8.7 10.1 0.34 0.98 1.12 1.28 0 0 0 0
k = 1.5 12.78 34.0 7.81 9.66 11.41 0.4 1.08 1.21 1.4 0.56 0.46 0.41 0.4
k = 2 13.15 34.0 8.61 10.08 11.68 0.51 1.09 1.26 1.45 0.76 0.61 0.55 0.56
k = 4 14.75 42.6 10.82 12.23 12.65 0.88 1.21 1.33 1.57 0.82 0.74 0.69 0.78

Fig. 5. Sine-like mappings with the obtained optimal parameters for k = 1
and k = 4 with ρ = 0.9 and SNR = 25 dB.
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B
]

Bound k = 2

Approximation

Simulation

Fig. 6. Comparison between the user distortions obtained with the approxi-
mation and by simulation for k = 2 with ρ = 0.9.

mappings provides accurate results since the difference with
respect to the actual distortion in simulation is less than 0.3 dB
for the whole SNR range. In addition, both curves approach
the corresponding performance bounds and, therefore, we can
conclude that the approximation function is able to obtain good
estimates of the optimal values for the mapping parameters.

In the second experiment, the performance of optimized
sine-like mappings with different strategies at the encoding
and decoding steps is evaluated for the case of symmetric
distortions and ρ = 0.9. In particular, we evaluate five possible
configurations: 1) Minimum Distance (MD) mapping and
ML decoder, 2) MD mapping and the two stage receiver
(linear MMSE+ML), 3) Expected Distortion (ED) mapping
+ ML decoder, 4) MD mapping + MMSE decoder and 5) ED
mapping + MMSE decoder. The performance curves obtained
are shown in Figure 7. The SDR curve corresponding to
the analog scheme with non-parametric mappings and the
appropriate performance bound are also included in the figure.
As observed, the differences on the performance for all the
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Minimum Dist + ML Fig. 7. Performance of the sine-like mapping with different methods for
the encoding and decoding operation with a correlation factor ρ = 0.9 and
symmetric distortions (k = 1).

configurations are quite small for all SNR values. On the
one hand, the addition of the linear MMSE filter does not
contribute to increase the SDR for the range of considered
SNRs. On the other, the ED method provides a slight gain
for medium SNRs (about 0.3 dB in SNR = 15 dB), but at the
expense of increasing the encoding complexity. Finally, the use
of the optimal MMSE decoder reduces the gap with respect
to the non-parametric one in the high SNR region, also at
the expense of increasing the complexity significantly. Notice
that the parametric sine-like mappings are able to approach
the performance of the non-parametric ones with much less
complexity.

Figure 8 compares the performance of parametric sine-
like mappings to that of other parametric analog JSCC map-
pings. The first one is the uncoded mapping described in
Section III-A using the optimization approach explained in
Section IV-A. The second is a variant of the Scalar Quan-
tizer Linear Coder (SQLC) [29] referred to as alternating
sign SQLC and was proposed in [27] for bivariate Gaussian
sources and BCs. Finally, we consider the Archimedean spiral
[14], [15], traditionally employed for the 2:1 compression of
independent sources. For low and medium SNRs, the best
performance corresponds to the uncoded scheme, achieving
even the performance bound in this region. However, it sat-
urates for high SNRs where the best results are provided by
the parametric sine-like mapping. These results confirm the
optimality of the uncoded scheme in the two first regions and
the suitability of sine-like mappings for the last one.

In the next experiment, we considered scenarios with dif-
ferent distortion targets and balancing of the individual distor-
tions. Figure 9 shows the user SDRs obtained for k = 2 when
a bivariate Gaussian source with ρ = 0.8 is transmitted using
an optimized analog JSCC system. This means that the system
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Fig. 8. Performance comparison between different analog JSCC mappings
for ρ = 0.9 and symmetric distortion targets.

uses the best mapping at each SNR region. The SNR values
where the encoder switches are marked with dashed vertical
lines. In the lowest SNR region, the symbols of one user are
directly transmitted over the channel. In the second one, the
uncoded scheme with the optimal parameters is employed,
whereas in the highest SNR region the optimized parametric
sine-like mapping is selected to encode the source data. The
optimal performance bound for a balancing factor k = 2 is
also plotted in the figure. As observed, the performance of
the proposed scheme perfectly matches that of the theoretical
bounds for η < 9.7 dB, which corresponds to the two first
distortion regions where the uncoded scheme is the optimal
strategy. For larger SNRs, the sine-like mapping provides a
near optimal performance, although the gap with respect to the
theoretical bounds is between 1 and 1.8 dB. The simulation
results also confirm that the analog system properly balances
the user distortions according to the k value, since the gap
between the SDR curves for the two users is about 3 dB.
In the first region (η < 4.6 dB) this gap is smaller than 3
dB because the balancing is only possible by penalizing the
second user, and its actual performance is directly determined
by the error covariance of the linear MMSE estimator.

Figure 10 shows the same SDR curves and performance
bounds when ρ = 0.95. The results are similar to those of
the previous scenario, although we can remark two slight
differences. One is the SDR gain obtained for both users
in medium and large SNRs since the analog scheme is able
to exploit the larger source correlation. In this case, the gap
between the SDR curves and the theoretical bounds remains
about 1 dB in the third region. The other is the SNR threshold
beyond which the sine-like mapping is employed to encode the
user symbols, which is now much higher (16.4 dB). Like in
the previous case, the gap between the SDR curves is about
3 dB in the medium and high SNR region and, therefore, the
analog scheme satisfies the balanced distortion targets.

Finally, we test the proposed optimization method for
different ratios between the user targets. In particular, the
performance of the parametric sine-like mapping with optimal
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Fig. 9. Performance of the optimized analog JSCC scheme and the
corresponding performance bounds for a correlation factor ρ = 0.8 and a
balancing ratio k = 2. Dashed vertical lines mark the SNR values where the
encoder changes.
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Fig. 10. Performance of the analog JSCC scheme and the corresponding
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considering several balancing factors for SNR = 30 dB and ρ = 0.9.
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parameters is shown in Figure 11 for ρ = 0.9 and η = 30
dB and different values of k. As expected, the gap between
the performance curves of the BC users increases with k. In
addition, the gap with respect to the bounds remains constant
at about 2 dB for the considered k values. This behaviour
confirms that the analog JSCC system is able to satisfy
different quality of service requirements, even when the user
targets are significantly different.

VI. CONCLUSION

We have addressed the analog transmission of bivariate
Gaussian symbols over BCs using analog JSCC mappings.
The analog scheme has been designed to satisfy individual
quality of service requirements, and the balancing of the user
distortions has also been considered to ensure the feasibility of
the optimization problems. In particular, two types of analog
parametric mappings have been optimized for different SNR
regions supporting the distortion balancing on BC communi-
cations. The resulting analog JSCC system has been shown
to provide near optimal performance with high transmission
rate, low complexity and negligible delay thanks to the use
of parametric mappings. This scheme is designed for the case
of two receivers, where it is affordable to obtain closed-form
approximations for the mapping distortion. A suboptimal strat-
egy for a larger number of users consists in combining several
2:1 encoders in parallel, but this strategy does not exploit the
source correlation completely. The proposed scheme can be
easily adapted to fading BCs by using the equivalent noise
variances after the filtering stage in the distortion expressions.
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APPENDIX A
HEIGHT ESTIMATE FOR THE APPROXIMATION MAPPING

The parameter ∆̄ is obtained from the unprojected mapping.
First, we look for the point t̄ where the derivative of the
mapping matches some threshold U

dsx(t̄)
dsy(t̄)

=
1− cos(2α t̄)
∆α cos(α t̄)

=U, (47)

Using cos(2x) = 2cos2(x)− 1, the point t̄ can be found by
solving

2−2cos2(α t̄)−U∆α cos(α t̄) = 0. (48)

Solving for y = cos(α t̄), we obtain y = U∆α±
√

(U∆α)2+16
−4 and,

therefore, t̄ = 1
α

arccos(y). Finally, ∆̄ is found by determining
the y-coordinate of the mapping at t̄, i.e.

∆̄ =∆sin(α t̄) = ∆sin(arccos(y)) (49)

Given that sin(arccos(y)) =
√

1− y2 and operating on the
resulting expression, we arrive at

∆̄ =
Uα∆2

4

√√√√−2+2

√
1+
(

4
Uα∆

)2

(50)

APPENDIX B
MAPPING ERROR IN THE OUTER REGION

From the unprojected mapping, the error in the outer region
can be approximated by the mean squared error between each
point in that region and the ∆̄ line

equad =
1

2π

∫ −∆̄

−∞

∫ 0

−∞

|x2 + ∆̄|2 exp
(
−x2

1 + x2
2

2

)
dx1 dx2, (51)

equad =
1

2π

∫ 0

−∞

exp
(
−x2

1
2

)
dx1

∫ −∆̄

−∞

(x2
2 + ∆̄

2 +2x2∆̄)exp
(
−x2

2
2

)
dx2

=
1

2
√

2π

∫ −∆̄

−∞

(x2
2 + ∆̄

2 +2∆̄x2)exp
(
−x2

2
2

)
dx2, (52)

Using the following identities

1√
2π

∫ t

−∞

x2 exp
(
−x2

2

)
dx =

1
2

(
1+ erf

(
− t√

2

))
+

t√
2π

exp
(
− t2

2

)
, (53)

1√
2π

∫ t

−∞

exp
(
−x2

2

)
dx =

1
2

(
1+ erf

(
− t√

2

))
, (54)

1√
2π

∫ t

−∞

xexp
(
−x2

2

)
dx =

1√
2π

exp
(
− t2

2

)
, (55)

we obtain

equad =
1
2

[
1
2

(
1+ erf

(
− ∆̄√

2

))
+

∆̄√
2π

exp
(
− ∆̄2

2

)
+

∆̄

2

(
1+ erf

(
− ∆̄√

2

))
− 2∆̄√

2π
exp
(
− ∆̄2

2

)]
. (56)

Sorting the common terms, the above expression simplifies to

equad =
1
2

(
1
2
(1+ ∆̄)

(
1+ erf

(
− ∆̄√

2

))
− ∆̄√

2π
exp
(
− ∆̄2

2

))
(57)

Finally, since eout = 4equad, the outside error is given by

eout = (1+ ∆̄)

(
1+ erf

(
− ∆̄√

2

))
− 2̄∆√

2π
exp
(
− ∆̄2

2

)
(58)

APPENDIX C
COMPUTATION OF THE ERROR COMPONENTS IN THE

CHANNEL ERROR

We start from the definition of exi(t) and eyi(t) given by

exi(t) =
∫

pni(n)|sx(t)− sx(t +n)|2dn (59)

eyi(t) =
∫

pni(n)|sy(t)− sy(t +n)|2dn (60)
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Using the identities

∫
pni(n)sin(α(t +n))dn =sin(αt)exp

(
−

α2σ2
ni

2

)
, (61)∫

pni(n)sin2(α(t +n))dn =
1
2
− 1

2
cos(2αt)exp(−2α

2
σ

2
ni
)

(62)

it can be shown that

aα(t) =∫
pni(n)|sin(αt)− sin(α(t +n))|2dn = 1− exp

(
−

α2σ2
ni

2

)

+cos(2αt)

(
exp

(
−α2σ2

ni

2

)
− 1

2
exp(−2α

2
σ

2
ni
)− 1

2

)
.

Using this identity, it is straightforward to get an expression
for (60), where sy(t) = ∆sin(αt)

eyi(t) =
∫

pni(n)|∆sin(αt)−∆sin(α(t +n))|2dn = ∆
2aα(t)

(63)

Now, for sx(t) = t− 1
2α

sin(2αt) we have

exi(t) =∫
pni(n)

∣∣∣∣t− 1
2α

sin(2αt)− (t +n− 1
2α

sin(2α(t +n)))
∣∣∣∣2 dn

=
∫

n2 pni(n)dn+
1

4α2

∫
pni(n)|sin(2αt)− sin(2α(t +n))|2dn

− 1
α

∫
pni(n)n(sin(2αt)− sin(2α(t +n))dn

= σ
2
ni
+

1
4α2 a2α(t)−

1
α

∫
pni(n)nsin(2α(t +n))dn (64)

Finally, using the identity

∫
npni(n)sin(α(t +n))dn = ασ

2
ni

cos(αt)exp

(
−

α2σ2
ni

2

)
,

(65)

we get

exi(t) = σ
2
ni
+

1
4α2 a2α(t)−2σ

2
ni

cos(2αt)exp(−2α
2
σ

2
ni
).

Replacing a2α(t) by its expression and rearranging terms, we
finally obtain

exi(t) = σ
2
ni

(
1−2cos(2αt)exp

(
−2α

2
σ

2
ni

))
+

1
4α2 (1− exp(−2α

2
σ

2
ni
))

+
1

4α2 cos(4αt)
(

exp
(
−2α

2
σ

2
ni

)
− 1

2
exp(−8α

2
σ

2
ni
)− 1

2

)
.

(66)

APPENDIX D
RESIDUAL ERROR

Starting from

B1(t) =
∫

pn1(n)(cx(t)− cx(t +n))dn

= cx(t)−
∫

pn1(n)cx(t +n)dn

B2(t) =
∫

pn2(n)(cy(t)− cy(t +n))dn

= cy(t)−
∫

pn2(n)cy(t +n)dn,

and using the expressions for cx(t) and cy(t) given in (33) and
(34), we obtain

B1(t) =

(√
λ1

2
sx(t +n)+

√
λ2

2
(1+β )sy(t +n)

)

−
∫

pn1(n)

(√
λ1

2
sx(t +n)+

√
λ2

2
(1+β )sy(t +n)

)
dn

B2(t) =

(√
λ1

2
sx(t +n)−

√
λ2

2
(1−β )sy(t +n)

)

−
∫

pn2(n)

(√
λ1

2
sx(t +n)−

√
λ2

2
(1−β )sy(t +n)

)
dn

These integrals can be solved using the property in (61) as
follows∫

pn1(n)sx(t +n)dn =
∫

pn1(n)
(

t− 1
2α

sin(2α(t +n))
)

dn

= t− 1
2α

sin(2αt)exp(−2α
2
σ

2
n1
)∫

pn2(n)sy(t +n)dn =
∫

pn2(n)∆sin(α(t +n))dn

= ∆sin(αt)exp

(
−

α2σ2
n2

2

)
Finally, using these identities we obtain

B1(t) =

√
λ1

2
1

2α
sin(2αt)(exp(−2σ

2
n1

α
2)−1)

+

√
λ2

2
(1+β )∆sin(αt)

(
exp

(
−

σ2
n1

α2

2

)
−1

)

B2(t) =

√
λ1

2
1

2α
sin(2αt)(exp(−2σ

2
n2

α
2)−1)

−
√

λ2

2
(1−β )∆sin(αt)

(
exp

(
−

σ2
n2

α2

2

)
−1

)
.
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