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Analog Transmission of Correlated Sources over
fading SIMO Multiple Access Channels

Pedro Suárez-Casal, Óscar Fresnedo Member, IEEE, Luis Castedo, Senior Member, IEEE,
Javier Garcı́a-Frı́as, Senior Member, IEEE

Abstract—Joint Source-Channel Coding for discrete-time ana-
log sources is an appealing transmission approach because of
its extremely low delay and complexity. When the users access
the channel orthogonally, analog transmission of correlated
information over fading Multiple Access Channels (MACs) using
modulo-like mappings provides better performance than uncoded
transmission. In this work, we propose a simplified decoder for
modulo mappings in possibly non-orthogonal MAC scenarios
with single-antenna users and a multiple-antenna receiver. Sphere
decoding is investigated to reduce the computational complexity
when the number of users is large. In addition, affordable
strategies are proposed to optimize the mapping parameters
according to the channel conditions and the source correlation.
The obtained results show that the use of modulo mappings is
suitable when the number of antennas at the receiver is larger
than the number of users and for high correlation between user
data.

Index Terms—Multiuser channels, Correlation, MAP estima-
tion, Mean square error methods

I. INTRODUCTION

THE transmission of correlated information over fading
Multiple Access Channels (MACs) is an important prob-

lem in wireless communications. Traditional approaches are
based on the separate optimization of the source and the
channel encoders [1]. Separation, however, presents significant
practical limitations. On the one hand, optimal performance is
approached as long as the block length of the encoders is
large enough, and this leads to high complexity and large
delays. Moreover, encoders are specifically optimized for
given channel conditions. When these conditions change, the
rates of the source and channel encoders must be adapted, and
the separation schemes need to be completely redesigned. In
addition, separation is no longer optimal for the transmission
of correlated data over MACs [2], [3].

An alternative strategy is the use of Joint Source-Channel
Coding (JSCC) where source and channel encoding is per-
formed in a single operation. Different works [4], [5], [6] have
already considered the use of JSCC for correlated sources over
MACs, but all of them employ digital formats to transmit
the user data. In this work, however, we focus on analog
JSCC techniques to be applied when the source information is
analog. Analog JSCC basically employs mappings based on
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geometric curves to transform the discrete-time continuous-
amplitude source symbols into the corresponding encoded
symbols [7], [8]. These mappings are based on parametric
curves that fill up the source space. This strategy has been
shown to closely approach the optimal performance in the
case of compression of independent sources over Additive
White Gaussian Noise (AWGN) channels [9], [10], [11]. It has
also been applied to fading channels [12], Multiple-Input and
Multiple-Output (MIMO) channels [13], bandwidth expansion
[14] or the compression of correlated sources in AWGN
channels [15].

We address in this work the application of analog JSCC
techniques to the transmission of correlated data over fading
Single-Input and Multiple-Output (SIMO) MACs with single-
antenna users and a multiple-antenna receiver. We focus on
non-cooperative scenarios where the users individually encode
their data and the correlation is exploited at the receiver,
a problem which has been studied previously for different
scenarios. A particular encoder known as Scalar Quantizer
Linear Coding (SQLC) was proposed to transmit bivariate
Gaussian sources over Gaussian MAC [16]. It consists of
a scalar quantizer and an optimized linear analog mapping.
Other works also address the design of non-parametric analog
mappings for the same scenario, obtaining similar shapes for
the optimal mappings [17]. One of the first works focused
on low delay schemes for distributed coding of bivariate
correlated sources over orthogonal channels is [18], which
showed that non-linear mappings are able to achieve better
performance than linear approaches when the source infor-
mation is correlated. Other works studied the optimal non-
parametric mappings for this setup with different strategies
and, interestingly, they found that such mappings resemble
modulo functions [19], [20].

Analog mappings for two users orthogonal MAC with
collaborative and distributed coding have also been studied
[21]. In the case of distributed coding, they consider modulo
functions and the mapping parameters are computed solving
numerically an optimization problem. The use of modulo
mappings for a general number of sources in a sensor network
have been explored in [22]. In this case, the proposed mapping
consists of a combination of linear and modulo mappings
depending on the channel conditions. In addition, a low
complexity ML decoder is proposed to estimate the common
message for all sensor nodes. A more general approach is
presented in [23] where analog mappings based on different
lattices are considered for the transmission of multivariate
Gaussian sources over orthogonal fading channels. In this
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work, the mapping parameters are optimized numerically by
searching the parameter space and a ML approach similar to
[22] is also applied to estimate all the source symbols. Finally,
an approximation to Maximum A Posteriori (MAP) decoding
for the MAC with modulo mappings and orthogonal signaling
has been considered in [24] but the proposed solution scales
exponentially with the number of users.

A. Contributions

The main contributions of this work are summarized as:
• The development of a decoding algorithm based on the

MAP criterion that jointly exploits the source correlation
to determine estimates of the user symbols. This decoder
can be applied to scenarios using MIMO or Filter Bank
Multi-Carrier (FBMC) techniques, where the transmis-
sion is not necessarily orthogonal. This represents a
significant difference with respect to previous works on
modulo mappings [21], [22], [23]. Sphere decoding is
used to reduce the computational complexity and provide
affordable solutions in scenarios with large number of
users. This decoding strategy is shown to exhibit a
performance similar to that of optimal Minimum Mean
Squared Error (MMSE) decoding.

• The performance evaluation of parametric modulo map-
pings for correlated sources and fading SIMO MACs.
Two low complexity approaches are also proposed to
optimize the users mapping parameters depending on
the source correlation and the Channel State Information
(CSI) available. These approaches avoid numerical op-
timizations of the parameters present in previous works
[21], [23].

B. Notation

In this work, scalars are represented by lower case letters,
vectors by bold lower case letters, and matrices by bold capital
letters. The superscripts T and H are the transpose and the
Hermitian operators, respectively. E[·] and tr(·) correspond
to the mathematical expectation and the trace of a matrix,
respectively. The operator |·| with a scalar argument represents
the absolute value, with a matrix argument represents the
determinant, and with a set argument represents its cardinality.
The operator b·e and b·c represent the element-wise round
and floor operations, while mod(a,b) is the element-wise
modulo operation that returns for each index mod([a]i, [b]i).
The operator <(·) takes the real part of a complex-valued
argument. A ⊗ B is the Kronecker product of matrices A
and B, diag (·) is the diagonal matrix with the arguments
in its main diagonal, and blockdiag (·) constructs a diagonal
supermatrix in which the diagonal elements are given by the
matrices in the argument, and the off-diagonal elements are
zero matrices. Q(x) = 2√

π

∫ x
0

exp(−x2)dx denotes the Gauss
error function. Finally, 0 and 1 denote the vectors of zeros
and ones of the right dimension, respectively.

II. SYSTEM MODEL

Fig. 1 shows the block diagram of the considered MAC
communication model. As observed, K single-antenna users

Analog
Mapping

Analog
Mapping

Analog
Decoder

Fig. 1. Block diagram of the considered communication model.

transmit their information to a centralized receiver with NR
antennas. The multiuser source information is represented by
s = [s1, · · · , sK ]T ∈ CK which is assumed to follow a mul-
tivariate circularly symmetric complex Gaussian distribution
with zero mean and covariance matrix Cs = E

[
ssH

]
. The

elements [Cs]i,j = ρi,j represent the correlation between the
i-th and j-th source symbols of s. Without loss of generality,
we will assume that ρi,i = σ2, ∀i. The probability density
function (pdf) of s is therefore given by

p(s) =
1

πK |Cs|
exp

(
−sHC−1s s

)
. (1)

The user symbols are first encoded individually at each
transmitter using a specific analog JSCC scheme fk(·) :
C → C, and the resulting coded symbols xk = fk(sk), k ∈
{1, . . . ,K}, are then transmitted over the fading MAC to
produce the received signal vector y ∈ CNR

y =
K∑
k=1

hkxk + n, (2)

where hk ∈ CNR is the k-th user channel response and
n = [n1, . . . , nNR

]T ∼ NC(0, σ2
nI) is the AWGN. An

individual power constraint is imposed at each transmitter,
such that E[|xk|2] ≤ Pk, k = 1, . . . ,K . Alternatively, (2) can
be rewritten in vector form as

y = Hx + n (3)

where H = [h1| . . . |hK ] and x = [x1, . . . , xK ]T . The
vector of encoded symbols is obtained as x = f(s), where
f(·) represents the set of all encoding functions, i.e. f(s) =
[f1(s1), . . . , fK(sK)]T .

A. Real-valued Equivalent Model for Non-linear Mappings

In the ensuing sections, the non-linear mapping functions
are applied to complex-valued variables. Some of these map-
pings will operate independently on the real and imaginary
part of the source symbols and, for simplicity, (2) can be
transformed into the following real-valued equivalent model

ỹ = H̃ f(s̃) + ñ = H̃x̃ + ñ, (4)

where each element hn,k of the original channel matrix H is
transformed into the block

[H̃]n,k =

(
<{hn,k} −={hn,k}
={hn,k} <{hn,k}

)
n = 1, . . . , NR
k = 1, . . . ,K

(5)

the equivalent of vector symbols is s̃ =
[<{s1},={s1}, . . . ,<{sK},={sK}]T ∈ R2K , and x̃
results from applying the mapping operation on the real and
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imaginary parts of the source symbols. The vectors ỹ and ñ,
are also transformed accordingly. After this notation change,
s̃ ∼ NR(0,Cs̃), with Cs̃ = Cs ⊗ 1

2I2, and ñ ∼ NR(0,
σ2
n

2 I)

III. ANALOG JSCC BASED ON MODULO MAPPINGS

Along this work we will assume that MAC users employ
modulo mappings to encode their source symbols individually.
Modulo mappings have numerous advantages. They allow to
design decoding strategies with affordable complexity when
the number of users is large, and the encoder is easily adapted
to the variations of the channel conditions by optimizing
its parameters. In addition, modulo mappings exhibit good
performance when analog correlated symbols are transmitted
over the MAC using orthogonal signaling [20], [22].

Considering the real-valued equivalent model explained in
Section II-A the parametric definition of the modulo mapping
function is

f(s̃) = ∆ mod(s̃ + α/2,α), (6)

where s̃ is the vector of source symbols in the equivalent
model, and α ∈ R2K and ∆ ∈ R2K×2K contain the
parameters of the encoding operation. In particular, the k-th
element of the vector α corresponds to the modulo argument
for the k-th source symbol of s̃. The optimal values of
α depend on the source correlation, the channel response,
and the noise variance. The diagonal matrix ∆ preserves
the variance of the source symbols after encoding. The k-
th diagonal element of this matrix is ∆k =

√
Pk/ωk, with

ωk the variance of the modulo mapping for given αk, i.e.
ωk =

∫∞
−∞ p(s) f2k(s)ds =

∫∞
−∞ p(s) mod2(s + αk/2, αk)ds

where p(s) = N (0, σ2). Such variance can be expressed in
terms of the Gauss error function Q(·) as follows

ωk =σ2 + α2
k

∞∑
i=1

i2 (Q (ni)−Q (mi))

− 2αk

√
2σ2

π

∞∑
i=1

i
(
exp

(
−m2

i

)
− exp

(
−n2i

))
(7)

where mi = αk(2i−1)√
8σ2

and ni = αk(2i+1)√
8σ2

. In this expression,
the terms in the sums rapidly converge to zero, and ωk can be
computed accurately with few terms.

At the receiver, an estimate of the source symbols can
be obtained from the observed symbols using an appropriate
decoding method. In the case of analog communications,
the optimal decoding corresponds to the MMSE estimation
of the source symbols. However, the resulting integrals can
only be computed numerically, and the complexity of this
decoding operation is unaffordable even for small number of
users. As an alternative, suboptimal decoding methods can be
considered like MAP and ML approaches. Unfortunately, the
use of modulo functions in these cases leads to non convex
optimization problems with multiple local minima. In the
following, we show how this limitation can be circumvented
by using a piecewise definition of the modulo mapping.

Recall that the mapping function in (6) consists of a set
of modulo functions that are individually applied to each
component of the source vector s̃. As observed in Fig. 2, each
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Fig. 2. Example of two modulo functions with parameters α1 = 4 and α2 =
2, respectively, for a transmitted symbol s = [−0.8, 1.2]T . The corresponding
l for that s and those α parameters is l = [0, 1]T .

of these modulo functions splits the source space into a set of
non-overlapping intervals such that the corresponding source
symbol falls into a unique interval. Notice that the length of the
intervals is given by the corresponding component of α. Since
the source symbols are mapped linearly at each interval, each
modulo function in f(·) can be interpreted as a set of linear
functions and, therefore, the mapping in (6) can be expressed
in an alternative form as

f(s̃) =∆(s̃−Al), (8)

where A = diag(α), and l ∈ Z2K is a vector of integers
whose k-th component identifies the interval corresponding
to the k-th source symbol of s̃. Thus, the vector l explicitly
tells us the interval into which each source symbols falls.
Mathematically, this vector can be directly determined from
the source vector s̃ as

l =

⌊
A−1s̃ +

1

2
I

⌋
.

The dependence of l on s̃ can be circumvented by redefining
the function f(·) piecewise as

fi(s̃) =

{
∆(s̃−Ali) ai ≤ s̃ ≤ bi

undefined otherwise,
(9)

where li ∈ L represents a particular combination of 2K
mapping intervals. Notice that L ⊂ Z2K is the set of all
integer-valued vectors that represents a feasible combination
of mapping intervals. Therefore, the function above is only
defined for the vector li that contains the intervals corre-
sponding to the vector of source symbols s̃. The vectors
ai = A

(
li − 1

21
)

and bi = A
(
li + 1

21
)

contain the lower
and upper limits, respectively, for the sequence of 2N intervals
given by li.

The potential values for the k-th component of l are
determined from the distribution of the k-th source symbol and
the corresponding modulo argument [α]k. Feasible values for
the zero-mean Gaussian distributed variable s̃ are not strictly
bounded, but we can assume they will fall into an interval
such as (−aσ, aσ), where a > 0 is a real value to adjust the
confidence of bounding the source values. Hence, an example
of definition for L is the set of all integer-valued vectors l
whose components are

L =
{
l ∈ Z2K | −aσ/[α]k ≤ [l]k ≤ aσ/[α]k, ∀k ∈ [1,K]} .

(10)

In the following, we explore three decoding strategies: ML,
MAP and MMSE. The piecewise definition of modulo map-
pings in (9) is used to reformulate the optimization problem
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to find the MAP estimate of the source symbols. The idea
is based on obtaining an estimate (candidate) of the source
symbols for each feasible combination of intervals, li ∈ L,
and then selecting the estimate that maximizes the MAP
criterion from the list of candidates. A similar approach can
be followed to obtain the MMSE estimates, although in this
case the estimates are calculated by weighting the candidates
depending on the probability of each li. In addition, a sphere
decoder will be employed to lower the complexity of MAP
and MMSE methods.

1) ML Decoder: An estimate of the source symbols can
be determined using an approach based on a three-step ML
decoder for orthogonal channel access [22], [23]. In that
scheme, a subset of users directly transmits their source
symbols with no coding and the rest uses modulo mappings
with a common parameter α, i.e. αk = α, ∀k. In this case,
an estimate of the source symbols from the uncoded users
is first obtained with the linear MMSE estimator, and then
this information helps to recover the symbols of the modulo-
mapping users. In this work, we follow the same approach for
the case of non orthogonal transmission. First, a linear MMSE
estimate for all symbols is obtained from the received symbols
as

t̂ =

(
1

σ2
n

HHH + C−1s

)−1
y. (11)

Then, assuming the first user transmits with a large α parame-
ter (uncoded transmission), we estimate the vector of intervals
l corresponding to the transmitted user symbols as

l̂ =
⌊
A−1

(
t̂11−∆−1t̂

)⌉
, (12)

where t̂1 represent the first component of t̂. Finally, an
estimate of the source symbols is computed as

ŝ =∆−1t̂ + Al̂. (13)

2) MAP Decoder: The MAP estimates of the source sym-
bols are the solutions to the following maximization problem

ŝMAP = arg max
s̃

p(s̃|ỹ) = arg max
s̃

p(ỹ|s̃)p(s̃)

p(ỹ)
, (14)

where the source pdf p(s̃) is given by (1), with covariance
matrix Cs̃, and the conditional probability is

p(ỹ|s̃) =
(
πσ2

n

)−N
exp

(
− 1

σ2
n

‖ỹ − H̃ f (̃s)‖2
)
. (15)

According to the piecewise definition of the modulo func-
tion, this probability can be rewritten in terms of p(ỹ|s̃) ∝∑|L|
i=1 qi(ỹ, s̃) where

qi(ỹ, s̃) =

{
exp

(
− 1
σ2
n
‖ỹ − H̃ fi(s̃)‖2

)
, ai ≤ s̃ ≤ bi

0 otherwise
,

(16)

and the normalization factors are omitted for simplic-
ity. Consequently, the function p(s̃|ỹ) ∝ p(ỹ|s̃)p(s̃) =∑
i qi(ỹ, s̃)p(s̃) is non-convex and non-differentiable. Notice,

however, that the qi(ỹ, s̃)p(s̃) terms are convex, and hence is
possible to find their individual maximum points on s̃. Then,

the MAP estimate can be searched along this set of extreme
points.

Indeed, let us define the set of extreme points as S =
{ŝi, i ∈ [1, |L|]}, whose elements come from finding the
maximum on ln(qi(ỹ, s̃)) + ln(p(s̃)). Replacing the functions
fi(·) by the corresponding expression in (9), the extreme points
ŝi can be calculated by solving the optimization problem

ŝi = arg min
s̃

‖ỹ − H̃∆(s̃−Ali)‖2 +
σ2
n

2
s̃TC−1s̃ s̃ (17)

s.t. A

(
li −

1

2
1

)
≤ s̃ ≤ A

(
li +

1

2
1

)
,

and the MAP estimate is finally obtained as

ŝMAP = arg max
s̃∈S

p(s̃|ỹ). (18)

The problem in (17) can be rewritten in a quadratic form
as

ŝi = arg min
s̃

1

2
s̃TQs̃− vTi s̃ (19)

s.t. A

(
li −

1

2
1

)
≤ s̃ ≤ A

(
li +

1

2
1

)
.

where Q = 2∆T H̃T H̃∆ + σ2
nC−1s̃ , and vi = 2∆T H̃T (ỹ +

H̃∆Ali).
This problem can be solved by quadratic programming

techniques for each candidate vector l. However, if the set
of feasible vectors l is defined as in (10), |L| increases
exponentially with the total number of transmitted symbols
N , which makes this direct approach to the MAP estimate
infeasible for large number of users.

3) MMSE Decoder: The optimal decoder according to the
Mean Squared Error (MSE) distortion criteria is the MMSE
decoder given by

ŝ = E(̃s|ỹ) =

∫
s̃p(s̃|ỹ)ds̃ (20)

Using the piecewise definition of the conditional probability
in (16), the term p(s̃|ỹ) can be expressed as p(s̃|ỹ) ∝∑
i ri(ỹ, s̃), where

ri(ỹ, s̃) ∝
{
φit(s̃|µi,Σ), ai ≤ s̃ ≤ bi

0 otherwise , (21)

with t(s̃|µi,Σ) =
(
(2π)2N |Σ|

)−1/2
exp

(
− 1

2 (s̃− µi)
T

Σ−1 (s̃− µi)
)

and

φi = exp

(
−1

2

(
σ−2n ‖ỹ − H̃∆Ali‖2 − µTi Σ−1µi

))
(22)

µi =
1

σ2
n

Σ∆T H̃T (ỹ + H̃∆Ali), (23)

Σ =

(
1

σ2
n

∆T H̃T H̃∆ + C−1s̃

)−1
. (24)

A more detailed explanation of this transformation is provided
in Appendix A. As observed, using the piecewise definition of
the modulo function, the integral in (20) can be decomposed
into a sum of terms weighted by the corresponding factor φi.
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Since the function t(s̃|µi,Σ) is the pdf of a multivariate
Gaussian with mean µi and covariance matrix Σ, the MMSE
estimation of the source symbols is calculated as

ŝMMSE =

∑
i φiΘ(ai,bi; Σ,µi)∑
i φiΦ(ai,bi; Σ,µi)

(25)

where Θ(ai,bi; Σ,µi) =
∫ bi

ai
s̃t(s̃|µi,Σ)ds̃ is the mean of

a multivariate Gaussian truncated to the orthant given by the
limits ai and bi, and Φ(ai,bi; Σ,µi) =

∫ bi

ai
t(s̃|µi,Σ)ds̃ is

the orthant cumulative distribution of a multivariate Gaussian
variable.

Note that (25) provides a lower complexity solution to the
general MMSE estimation problem, but it also turns out to be
infeasible when the number of users is large for two reasons.
First, the orthant cumulative distribution of a Gaussian variable
cannot be efficiently approximated for dimensions larger than
three, and techniques such as importance sampling should be
used to approximate it [25]. The other drawback is shared
with the MAP estimator, and it is related to the exponentially
growing size of L when the number of users grows. In the
ensuing section, this problem will be addressed with the help
of a sphere decoder that will allow us to limit the number of
feasible l vectors in the set L as the number of users increases,
while ensuring that the optimal l is contained in it.

IV. SPHERE DECODER FOR MODULO MAPPINGS

The direct implementation of the MMSE decoder from (25)
is computationally costly. Nevertheless, the examination of
(25) provides insight in the behavior of the MMSE estimator.
First, the MMSE estimator results from a weighted sum of
evaluations Θ(ai,bi; Σ,µi) at different points. This function
is the average of a Gaussian variable bounded to a region, and
its evaluation gives values in the interval aiΦ(ai,bi; Σ,µi) ≤
Θ(ai,bi; Σ,µi) ≤ biΦ(ai,bi; Σ,µi). Since these values are
bounded, an approximation of the estimator can be obtained
by evaluating Θ(ai,bi; Σ,µi) only when the weights φi take
large values.

Note also that for high Signal-to-Noise Ratio (SNR) values,
the function Θ(ai,bi; Σ,µi) ≈ ŝiΦ(ai,bi; Σ,µi), with ŝi
the solution to the partial MAP problem posed in (17). On
the other hand, the MAP and MMSE solutions converge in
the high SNR region. This provides the intuition that the
distribution of the weights φi will peak around the solution ŝi
corresponding to the optimal li, and this search for the large
φi will likely provide good candidates for the MAP estimator.

The problem of estimating the source symbols can hence be
reformulated as finding those vectors li whose corresponding
weight φi is significant. The search of the candidates li can
be done by selecting only those weights φi larger than a given
threshold T , i.e.,

φi = exp

(
−1

2

(
σ−2n ‖ỹ + H̃∆Ali‖2 − µTi Σ−1µi

))
> T.

(26)

This problem can be equivalently formulated as the search
for the candidate vectors that make the exponent below some

radius R. Taking this into account, an alternative definition of
the set L is LR = {l ∈ Z2K |h(l) < R}, with

h(l) =
1

2

(
σ−2n ‖ỹ + H̃∆Al‖2 − µTl Σ−1µl

)
, (27)

and

µl =
1

σ2
n

Σ∆T H̃T (ỹ + H̃∆Al). (28)

The original problem of estimating the analog source sym-
bols is hence reduced to look for the most likely discrete vec-
tors l used during the transmission. In the literature, different
approaches have been proposed to solve this kind of problems
and one of the most appealing is the sphere decoder, originally
proposed to detect digital signals in MIMO transmissions [26].
Notice that the sphere decoder is a general strategy to search
for the shortest vector in a lattice, and the modulo mapping
can actually be interpreted as a lattice.

To apply the sphere decoder, (27) must be rewritten as

h(l) = (l + lo)
TΛ(l + lo), (29)

where

Λ =
1

2
AT∆T H̃T

(
σ2
nI + H̃∆Cs̃∆

T H̃T
)−1

H̃∆A, (30)

is the matrix that represents the lattice that summarizes the
effecs of the channel and the modulo mapping, and

lo = (AT∆T H̃T H̃∆A)−1AT∆T H̃T ỹ

represents the center of the sphere where candidates for l
will be searched for. Appendix B details the steps of this
transformation.

The search of the l vectors that make h(l) to be below some
radius is performed by means of the Cholesky decomposition
Λ = LLT and iteratively obtaining a feasible range of values
for each component of l that satisfy the considered radius given
the previous components. Following an approach similar to
[26], at the n-th iteration the sphere decoder will select the
values for the n-th component of l that fall into the interval

[lo]n − dn −
√

4R2 − cn
[L]nn︸ ︷︷ ︸

In(l)

≤ [l]n ≤ [lo]n − dn +

√
4R2 − cn
[L]nn︸ ︷︷ ︸

On(l)

(31)

with

dn =
n−1∑
i=1

[L]n,i
[L]n,n

([l]i + [lo]i) ,

cn =cn−1 +

(
n−1∑
i=1

[L]n−1,i([l]i + [lo]i)

)2

where c0 = 0. In this work, the set of vectors l is built
recursively as LR = L2N

R , where

LnR = {l ∈ Zn|l = [mTm]T , In(m) ≤ m ≤ On(m), ∀m ∈ Ln−1R }, L0
R = ∅.

(32)

Using the sphere decoder to build the set L makes the MAP
estimation affordable for large number of users. In addition,
it reduces the complexity of the MMSE decoder in (25),
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although the practical implementation of this strategy is still
only feasible for a small number of source symbols due to
the complexity of the evaluation of the Θ and Φ functions.
Finally, the distribution of the weights φi also determines the
distortion of the MMSE estimator: for flatter distributions, the
MSE should be larger. On the other hand, when one weight
is significantly larger than the others, the MSE will be well
approximated by the variance of the main lobe of the posterior
distribution, i.e., by the matrix Σ.

A. Radius Selection

An important issue when using the sphere decoder is to
ensure it provides a set LR that includes those vectors l with
a significant weight. This requires an adequate optimization
of the radius employed at the decoding step. Let us assume a
specific vector l̂ is transmitted and its value is known at the
receiver. Using ỹ = H̃∆(s̃−Al̂)+ ñ, it is possible to rewrite
the first term in (27) as ỹ+H̃∆Al̂ = H̃∆s̃+ñ = z. Replacing
this expression in (27), and using the definition (23) for the
µi values, the metric for the sphere decoder can be rewritten
as

h(̂l) =
1

2

(
σ−2n ‖z‖2 − σ−4n zT H̃∆Σ∆T H̃T z

)
=

1

2
zT
(
σ−2n I− σ−4n H̃∆Σ∆T H̃T

)
z

=
1

2
zT
(
σ2
nI + H̃∆Cs̃∆

T H̃T
)−1

z (33)

Given that E(zzT ) = σ2
nI+H̃∆Cs̃∆

T H̃T = Z, the exponent
for l̂ follows a distribution zTZ−1z ∼ χ2

2K . Since we are
assuming that the mapping is designed to achieve the minimum
weight φ for this l̂, it is safe to assume that the radius must
be at least

R ≥ g−12K(τ)/2, (34)

with gk(r) = P (χ2
k < r) the cumulative distribution function

of a chi-squared variable with k degrees of freedom, and
g−1k (·) its inverse function. In this case, τ ∈ [0, 1] is a
parameter to adjust the likelihood of obtaining a LR 6= ∅. We
have checked experimentally that the criterion (34) provides
good candidates for l when τ ≥ 1−10−5. If no candidates are
found for a given τ , decoding can be repeated with a larger
parameter until solutions are found.

B. Design of Mapping Parameters

The optimization of the user mappings is fundamental to
minimize the signal distortion. In the case of modulo map-
pings, two parameter matrices, A and ∆, are involved in the
optimization procedure, although the values of ∆ can actually
be determined from A and from the user power constraints,
as shown in (7). An adequate tradeoff for αk is essential to
achieve the lowest possible distortion. On the one hand, a
lower αk implies a larger value for ∆k and, as a consequence,
the distortion is reduced since the error covariance in (24)
explicitly depends on ∆. On the other hand, if αk is too small,
the sphere decoder can break down due to the large number
of candidate vectors with similar weight.

Given that the optimal parameters are difficult to obtain
from an analytical expression due to the nature of the modulo
functions, we propose two optimization strategies depending
on whether the channel information is available. To design the
parameters αk, we first define a lower bound according to the
systematic error of the encoder, and then study the influence
of the channel to enhance the optimization.

1) Source Correlation Criterion: In this strategy, we de-
termine the αk values from the information of the sources
distribution. Specifically, αk is selected according to the
conditional variance σ2

k|k−1 to guarantee no ambiguities in the
mapping operation. This choice lies on the iterative nature of
the analog encoder based on modulo functions. Ambiguities
on the encoding step can be prevented by using a large α for
the first user, while the next users can lower their α values
successively without creating ambiguities that break down the
decoding procedure.

Let sk = [s̃1, . . . , s̃k]T be the vector that stacks the source
symbols up to the k-th symbol, and Dk = E[sks

T
k ] such that

Dk =

(
Dk−1 dk
dTk σ2

)
, (35)

where σ2 is the variance of the k-th source symbol, and dk =
E[sks

T
k−1] the covariance of the k-th source symbol with the

k − 1 previous symbols. In this case, considering that sk is
Gaussian, the variance of the k-th source symbol conditioned
to the previous symbols is given by σ2

k|k−1 = σ2−dTkD−1k−1dk.
A suitable choice can be αk = 2σk|k−1% with % a parameter

to adjust the likelihood of missing the right modulo mapping
cut. We have found that values around % = 6 provide good
αk parameters.

2) Channel State Criterion: Although the method above
provides a lower bound for practical values of αk, it can be
optimistic depending on the channel conditions. With the help
of the structure of the sphere decoder, a tighter bound for
αk can be defined. Recall that the lattice where the feasible
l are searched for is defined by the matrix Λ in (30), which
depends on the parameter matrices A and ∆. We can define
an alternative lattice as Λ̄ = A−1ΛA−1, and a decomposition
Λ̄ = L̄L̄T . The expression in (29) can now be written as

h(l) = (l + lo)
TAT L̄L̄TA(l + lo), (36)

and A can be adjusted to shape the lattice. The dependence
of ∆ on A can be addressed by using an iterative algorithm
where ∆ is first initialized as ∆ = P, the parameters in A
are computed, and the new values for ∆ are then obtained
according to (7). In the next iteration, these values are used
to recalculate the lattice and to update A.

Recalling that we are interested in generating a set LR as
small as possible for a given radius R, matrix A can be defined
so that variations in any component of l cause large variations
in the metric h(l). In the n-th iteration of the sphere decoder,
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the metric can be written as

hn(l) =
n−1∑
j=1

(
j∑

k=1

αkLj,k(lk + lo,k)

)2

+

(
n−1∑
k=1

αkLn,k(lk + lo,k) + αnLn,n(ln + lo,n)

)2

︸ ︷︷ ︸
gn(ln)

. (37)

It can be seen that αn only affects the metric with the
variations on ln, the n-th component in l. Therefore, a feasible
criterion to choose αn is

|gn(ln)− gn(ln + 1)| ≥ S, (38)

where S represents the minimum desired distance between
contiguous points in the n-th dimension of the lattice. From
(37) it is obtained that

|gn(ln)− gn(ln + 1)| = α2
nL

2
n,n + 2gn(ln)αnLn,n ≥ S.

(39)

Notice that hn(l) ≈ 0 when l = l̂ corresponds to the truly
transmitted symbol. As a consequence, gn(l̂n) ≈ 0 and the
determination of the mapping parameter simplifies to αn ≥√
S

Ln,n
.

V. SIMULATION RESULTS

In this section, the results of several computer experiments
are presented to illustrate the performance of the proposed
analog JSCC scheme for different MAC scenarios.

Source symbols are assumed to be complex-valued
circularly-symmetric zero-mean multivariate Gaussian with
covariance matrix Cs. Let us consider that these symbols
are normalized, i.e., ρi,i = 1 ∀i = 1, . . . ,K , and two
different correlation models: 1) the correlation between all
the source symbols is the same, thus ρi,j = ρ ∀i 6= j; and
2) the correlation between the i-th and j-th source symbols
is modeled as ρi,j = ρ|i−j|, ∀i, j. The first situation is
referred to as equal source correlation and the second one as
exponential source correlation. The user symbols are encoded
individually at each transmitter by using the modulo mappings
described in Section III. The optimal values of the mapping
parameters are obtained according to the strategies explained
in Section IV-B, depending on whether CSI is available at
transmitters. After the encoding step, the resulting symbols
are transmitted over a Rayleigh fading MAC with a matrix
response H ∈ CNR×K . At the receiver, estimates of the source
symbols are calculated with the help of the sphere decoder.
Finally, the expected sum-distortion between the source and
decoded symbols is computed. In general, we address the
symmetric case where the power constraints for all users are
equal, i.e., P = Pi ∀i = 1, . . . ,K . When considering different
power constraints for the MAC users, the power model will
be described explicitly. We will also focus on scenarios with
K ≤ NR, i.e., the number of users does not exceed the number
of receive antennas.
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Fig. 3. Average αk values with respect to SNR in a scenario with
K = 4, NR = 4 and ρ = 0.95. Solid lines corresponds to values of
αk obtained by Channel State optimization, and dashed lines to Source
Correlation optimization.
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Fig. 4. Cardinality of the set of feasible l vectors with the two optimization
strategies for K = 20, NR = 20 and ρ = 0.95.

A. Optimization of the Analog JSCC System

As commented, two different criteria will be considered
to optimize the parameters of the user mappings: the source
correlation criterion and the channel state criterion.

Fig. 3 shows the average value of the parameters αk
obtained with these two optimization strategies for different
SNRs in a scenario with K = 4, NR = 4 and ρ = 0.95 using
the equal correlation model. As observed, when using the
channel state criterion, the αk values decrease for all users as
the SNR increases. In addition, this strategy shows that one of
the MAC users should transmit its data with a large αk to avoid
ambiguities, while the last users can use lower αk values given
that more information from the previously decoded symbols
is available. When the optimization is based on the source
correlation, the same αk is obtained for all SNRs. However,
the values calculated according to this criterion are usually
optimistic for adverse channel realizations.

Another important issue is the computational cost of the
decoding operation. The complexity of MAP and MMSE
estimators depend on the cardinality of the set of l vectors that
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Fig. 5. Cardinality of the set of feasible l vectors for different number of
users and with ρ = 0.95.

the sphere decoder obtains. The evolution of the number of l
candidates that falls into the decoding sphere is shown in Fig. 4
for the two optimization strategies in a K = 20, NR = 20
scenario with ρ = 0.95. As observed, the size of the set of
candidate vectors is smaller along all iterations of the decoding
algorithm when using the channel state criterion, since the
parameters αk are selected depending on each channel realiza-
tion. The sphere decoder with a parameter optimization based
on the source correlation criterion provides larger number of
candidate vectors and, consequently, the computational cost of
the decoding operation is also higher. The increase of the set
size is more significant as the SNR decreases, since the values
of αk are in general too optimistic.

Fig. 5 shows the evolution of the number of l candidates
depending on the number of MAC users K with the channel
state optimization strategy for SNR = 30 dB and ρ = 0.95.
As observed, the number of candidate vectors increases as the
number of users grows. Unlike the general case without the
sphere decoder, this increase is not dramatic, and the decoding
operation is still affordable.

B. Performance Evaluation

Analog communication systems are often designed to trans-
mit and recover the source information with the lowest pos-
sible distortion and, therefore, their performance is usually
measured in terms of the Signal-to-Distortion Ratio (SDR)
with respect to the channel SNR. Since we focus on the sum-
distortion, and considering the MSE as distortion criteria, the
SDR is calculated as

SDR[dB] = 10 log10(1/ξ), (40)

where the term ξ = 1
K

∑K
k=1 E

[
‖ŝk − sk‖2

]
is the average

sum-MSE between the source and the estimated symbols.
The theoretical optimal performance of analog communica-

tions is given by the optimal cost-distortion tradeoff, referred
to as the Optimum Performance Theoretically Attainable
(OPTA). This bound is in general unknown when transmitting
correlated data over the MAC. In this paper, we consider
an upper bound based on the source-channel separation to
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Fig. 6. Performance of modulo mappings with the optimal MMSE estimator
and with the MAP strategy depending on the radius of the sphere decoder for
K = 2, NR = 4 and ρ = 0.95.

illustrate the theoretical optimal performance. The steps to
determine this bound are described in Appendix C.

In the first experiment, we test the performance of the
proposed sphere decoder to lower the complexity of MAP
decoding. The evolution of the system performance depending
on the radius in the sphere decoder is shown in Fig. 6,
using parameters obtained by the channel state optimization.
The performance curve corresponding to the optimal MMSE
method and the separation bound calculated according to (58)
are also included for comparison. A scenario with K = 2
and NR = 4 is chosen since the optimal MMSE decoding is
unfeasible for larger number of users. We also focus on the
equal source correlation model with variance σ2 = 1 and a
correlation factor ρ = 0.95. Hence, Cs = [1 0.95; 0.95 1]. As
observed, the system performance gradually improves as the
radius of the sphere decoder becomes larger, until it converges
to the MMSE curve when the radius is R = 20. From these
results, we can conclude that: 1) MAP strategy is able to
achieve the performance of the MMSE decoding for all SNRs,
and 2) the use of the sphere decoder does not penalize the
system performance as long as the radius is properly selected
to include those solutions with significant weight. In addition,
the gap between the best SDR curve for the MAP strategy and
the separation bound is relatively small, since it goes from 2
dB for low SNRs to less than 4 dB for high SNRs. It is worth
noting that in this scenario with two users the bound is exact,
since the constraints on the individual capacities are employed
to determine the bound (see Appendix C).

Next, we consider a scenario where K = 4 users transmit
multivariate Gaussian symbols with the same correlation factor
ρ = 0.95. The parameters are optimized according to the
channel state criterion. At the receiver, three decoding methods
are considered: 1) MMSE with sphere decoder, 2) MAP with
sphere decoder and 3) ML decoding as in [23] for lattice
mappings extended to non-orthogonal transmissions. The first
two approaches use the sphere decoder to lower the complexity
of the decoding operation.
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Fig. 7. SDR against SNR with different decoders for K = 4 and ρ = 0.95.
Two different number of receive antennas, NR = 4 and NR = 20, are
considered.

Fig. 7 shows the performance of the analog JSCC system
for NR = 4 and NR = 20 receive antennas with the three
decoding approaches. The performance of the uncoded scheme
and the upper bound with separation given by (58) are also
plotted for comparison. On the one hand, the performance
provided by MAP and MMSE decoding is very similar, with
only a slight gain in SDR with MMSE decoding. Also, the
ML decoder cannot reach the performance of the MAP and
MMSE when the number of receive antennas is low because
this decoding algorithm is designed to work under orthogonal
access to the channel. When the number of antennas increases,
the channels observed by each user are more orthogonal to
each other, and hence the ML is able to overcome the uncoded
scheme. However, it is still below the performance obtained
with the MAP. On the other hand, the analog JSCC scheme
using modulo mappings outperforms the uncoded transmission
for all the range of SNRs, although the SDR gain is more
significant for high SNRs where this gain is almost 2 dBs for
NR = 4 and NR = 20.

When NR = 4 the gap between the performance of the
modulo mappings and the separation upper bound grows as
the SNR increases (from 3.5 dB at SNR = 0 dB to 12 dB at
SNR = 30 dB). This behaviour is not observed for NR = 20
where the slope of the performance curve is similar to that
of the separation bound. This is due to intrinsic limitations of
the modulo mappings. Although the SNR increases, it is not
possible to lower the values of αk below a certain threshold,
given by the source correlation, without creating ambiguities
at the decoding operation. Recall that the separation bound for
K > 2 is plotted as reference. This bound is actually higher
than the real bound since the constraints for the individual rates
are disregarded. Moreover, the separation bound is calculated
under the assumption of infinite block length for the source
and channel encoders.

We next move to scenarios with more MAC users where
the use of the sphere decoder is essential. Fig. 8 shows the
performance of the analog JSCC system with modulo encoding
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Fig. 8. Performance curves obtained with modulo mappings and uncoded
transmission for K = NR = 10 and K = 10 NR = 20 (left side), and for
K = NR = 20 and K = 20 NR = 40 scenarios, considering a correlation
factor ρ = 0.95 in both cases.

and MAP decoding with sphere decoder for K = 10 users
(left hand) and K = 20 users (right hand). In both cases, two
different situations are evaluated: 1) NR = K and 2) NR =
2K. Like in the previous case, we consider the source model
with equal correlation ρ = 0.95. The mapping parameters are
optimized according to the two proposed strategies: source
correlation and channel state criteria. The SDR curves obtained
with both optimization strategies are also plotted in Fig. 8.
Again, the performance of the uncoded scheme and the upper
bounds with separation are included for comparison.

As observed in both figures, when considering scenarios
with larger number of users the modulo mappings present a
similar behaviour to the case of NR = 4 antennas and K = 4
users. On one hand, these mappings outperform the uncoded
scheme for the whole range of SNRs. The performance gain
grows as the SNR is higher and it also increases as the number
of users grows. The gap between the modulo mapping and
the uncoded scheme was slightly below 2 dB for K = 4
and high SNRs, while this difference increases up to 2.5 dB
for K = 10 users and almost 3 dB for K = 20 users.
For the considered correlation model, lower values for the
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Fig. 9. Performance of uncoded and modulo mappings for K = 10
and NR = 20 in the case of exponential correlation considering different
correlation factors : 0.8, 0.95 and 0.99.

parameters αk can be used for the last decoded users, since for
these users there is more prior information available about the
transmitted symbols. Lower αk parameters allow to increase
the corresponding ∆k values and, consequently, the overall
MSE given by (24) will be smaller. It is interesting to remark
that modulo mappings provide superior performance when
the parameters are optimized with the channel strategy, since
in this case the channel information is exploited to refine
the optimization step. As observed in both figures, the gain
due to the channel state optimization is about 1 dB. Finally,
the performance curves corresponding to the mapping and
the uncoded schemes, and the separation upper bound have
similar slope when the number of receive antennas is larger
than the number of MAC users. This reaffirms the assumption
that modulo mappings are specially suitable for this type of
scenarios. Finally, the gap between the system performance
and the separation bound is larger than in the case of NR = 4.
Notice, however, that the distance between the real bound and
the plotted one –considering only the sum-rate– is potentially
larger as the number of users grows, since it is more likely
that some individual constraint is violated.

In the next experiment, the performance of modulo map-
pings is evaluated considering an exponential correlation
model, i.e., the correlation between the i-th and j-th source
symbols is modeled as ρi,j = ρ|i−j|, ∀i, j. We considered
different correlation factors: ρ = 0.8, ρ = 0.95 and ρ = 0.99.
In this case, the performance curves are obtained assuming
a MAC scenario with K = 10, NR = 20, MAP decoding
and parameter optimization based on the channel state strat-
egy. Fig. 9 compares the performance obtained with modulo
mappings to that of the uncoded scheme and to the upper
bound with source-channel separation. The performance for
the uncoded transmission of uncorrelated sources, i.e. ρ = 0,
is also included for comparison. As observed, the performance
gain of modulo mappings with respect to the uncoded scheme
is more remarkable when the correlation is higher, specially
for medium and high SNRs. In fact, this gain is negligible
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Fig. 10. SDR against SNR for K = 10 and NR = 20 with equal correlation
ρ = 0.95, and where the user powers are given by a log-distance path loss
model.

for ρ = 0.8 in all the SNRs range, while it is about 6 dB
for ρ = 0.99 and SNR = 30 dB. Moreover, all performance
curves corresponding to uncoded transmission converge to
the uncorrelated one as the SNR increases, regardless of
the correlation level. These results suggest that the analog
JSCC scheme with modulo encoding is able to exploit high
correlations even for high SNR values, while the uncoded
scheme does not improve the SDR in this regime. This is
because the uncoded scheme uses linear MMSE decoding to
estimate the source symbols and the weight of the correlation
information in this strategy diminishes as the noise effect
vanishes. Finally, the gap between the system performance and
the separation bounds is constant for all SNRs, and it increases
from 5 dB for ρ = 0.8 to almost 10 dB for ρ = 0.99.

We have until now assumed that all the MAC users transmit
with the same power. We now move to a scenario with
asymmetric power constraints and test the behaviour of the
proposed analog JSCC system with modulo mappings in this
situation. In particular, we choose a power allocation model
that takes into account the propagation loss of radio signals
over wireless channels. This model is useful to model, for
example, a wireless sensor network where the nodes are placed
at different distances from the central receiver. Specifically,
we assume the k-th node is at a distance dk = k d where
d = d1 is the distance of user k = 1 which is the closest to the
receiver. Assuming free-space propagation, this corresponds to
a transmit power for the k-th node equal to Pk = Pd−2k . SDR
curves are plotted with respect to SNR = P1/σ

2
n which is the

SNR for user k = 1.
We consider a MAC scenario with K = 10, NR = 20, same

correlation between the source symbols with ρ = 0.8, ρ = 0.95
and ρ = 0.99, MAP decoding and parameters optimization
using the sphere decoder. Fig. 10 shows the SDR curves
obtained for the modulo mappings and the uncoded scheme
assuming d1 = 1. The upper bounds corresponding to the
source-channel separation are also included in the figure for
reference. As observed, the proposed analog JSCC system pro-



IEEE TRANSACTIONS ON COMMUNICATIONS 11

vides again better performance than the uncoded scheme when
the users transmit with different powers. Like in the previous
experiments, the gain obtained with modulo mappings is larger
as the correlation increases, and the uncoded scheme saturates
for high SNRs and high correlation levels. Finally, the gap
between the system performance and the separation bounds is
similar to that when K = 10, NR = 20 and equal transmit
powers, and it ranges from 7 dB to 10 dB in the high SNR
regime depending on the source correlation.

VI. CONCLUSIONS

In this work, we have addressed the use of modulo map-
pings for the transmission of multivariate Gaussian sources
over fading MACs. We have investigated a MAP decoding
strategy to estimate the user symbols. In addition, the use
of a sphere decoder makes the implementation of the MAP
estimation practical for a large number of users. Simulation
results have shown that MAP decoding practically achieves
the same performance as MMSE decoding, but with lower
complexity, while it clearly outperforms ML decoding, spe-
cially for non-orthogonal access. Thereby, the proposed analog
JSCC scheme, together with MAP estimation and sphere
decoding, is a truly zero-delay low-complexity solution to
reliably transmit correlated information over fading MACs,
specially for scenarios with high correlation and where the
number of receive antennas is larger than the number of users.
An appropriate optimization of the mapping parameters also
ensures that the analog JSCC system achieves equal or better
performance than the uncoded scheme for all SNR regimes.

APPENDIX A
MMSE ESTIMATOR

As explained in Section III-2, the source pdf conditional to
the vector of observed symbols can be expressed as

p(s̃|ỹ) ∝ p(ỹ|s̃)p(s̃) =
∑
i

qi(ỹ, s̃)p(s̃). (41)

Using the definition of qi(ỹ, s̃) given by (16), and the piece-
wise definition of the modulo function in (9), the above
expression is rewritten as

p(s̃|ỹ) ∝
∑
i

exp

(
− 1

σ2
n

‖ỹ − H̃ fi(s̃)‖2
)

exp

(
−1

2
s̃TC−1s̃ s̃

)
∝
∑
i

exp

(
− 1

σ2
n

‖ỹ − H̃∆(s̃−Ali)‖2
)

exp

(
−1

2
s̃TC−1s̃ s̃

)
.

(42)

Developing this equation and reordering the resulting terms,
we obtain

p(s̃|ỹ) ∝
∑
i

δi

· exp

(
−1

2

(
s̃TΣ−1s̃− 1

σ2
n

2s̃T∆T H̃T (y + H̃∆Ali)

))
∝
∑
i

δi exp

(
−1

2

(
s̃TΣ−1s̃− 2s̃TΣ−1µi

))
, (43)

where

δi = exp

(
− 1

2σ2
n

‖ỹ + H̃∆Ali‖2
)

(44)

Σ =

(
1

σ2
n

∆T H̃T H̃∆ + C−1s̃

)−1
(45)

µi =
1

σ2
n

Σ∆T H̃T (ỹ + H̃∆Ali). (46)

The exponent can be rewritten as a quadratic form by adding
and subtracting µTi Σ−1µi, i.e.,

p(s̃|ỹ) ∝
∑
i

φi exp

(
−1

2
(s̃− µi)

T
Σ−1 (s̃− µi)

)
(47)

with φi = exp
(
− 1

2

(
σ−2n ‖ỹ + H̃∆Ali‖2 − µTi Σ−1µi

))
.

APPENDIX B
SPHERE DECODER

Starting from the original metric given by

h(l) =
1

2

(
σ−2n ‖ỹ + H̃∆Al‖2 − µTl Σ−1µl

)
, (48)

with µl defined in (28), and denoting z = ỹ + H̃∆Al, this
metric can be rewritten as

h(l) =
1

2

(
σ−2n ‖z‖2 −

1

σ4
n

zTi H̃∆Σ∆T H̃T z

)
=

1

2
zT
(

1

σ2
n

I− 1

σ4
n

H̃∆Σ∆T H̃T

)
z

=
1

2
zT
(

I +
1

σ2
n

H̃∆Cs̃∆
T H̃T

)−1
z, (49)

where the matrix inversion lemma was applied in the last
step. Replacing back the definition of z and denoting B =(
I + 1

σ2
n
H̃∆Cs̃∆

T H̃T
)−1

, (49) can be written as

h(l) =
1

2

(
ỹ + H̃∆Al

)T
B
(
ỹ + H̃∆Al

)
=

1

2

(
ỹTBỹ + lTAT∆T H̃TBH̃∆Al +2lTAT∆T H̃TBỹ

)
(50)

Introducing the matrix Λ = 1
2AT∆T H̃TBH̃∆A, the expres-

sion above is transformed into

h(l) =
1

2

(
ỹTBỹ + 2lTΛl +4lTΛAT∆T H̃T (H̃∆AAT∆T H̃T )−1ỹ

)
.

(51)

Defining lo = AT∆T H̃T (H̃∆,AAT∆T H̃T )−1ỹ, we obtain

h(l) =
1

2

(
ỹTBỹ + 2lTΛl + 4lTΛlo

)
=

1

2

(
2(l + lo)

TΛ(l + lo)− 2lTo Λlo + ỹTBỹ
)
. (52)

Notice that lTo Λlo and ỹTBỹ do not depend on l and,
therefore, these terms can be disregarded when minimizing
h(l). Hence, the metric employed for the sphere decoder
simplifies to

h(l) = (l + lo)
TΛ(l + lo). (53)
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APPENDIX C
UPPER BOUND BASED ON SOURCE-CHANNEL SEPARATION

Although the assumption of optimality for source-channel
separation does not hold for the MAC with correlated sources,
this criterion will be used to determine a reference bound
for analog JSCC communications. The separation bound is
calculated by equating the source rate distortion region and
the capacity region of the fading MAC.

Given a set of distortion targets d = [D1, D2, ..., DN ]T ,
the rate distortion region R(d) is the set of rate distor-
tion functions corresponding to the individual sources, i.e.
RDk (Di), k = 1, ...,K , and by the sum-rate distortion function
RDsum(D). For the case of distributed encoding of bivariate
Gaussian sources under the MSE distortion, this region is
given by [27], [28]

RD1 (D1) =

{
(R1, R2) : R1 ≥ log

(
1

D1

(
1− ρ2 + ρ22−2R2

))}
RD2 (D2) =

{
(R1, R2) : R2 ≥ log

(
1

D2

(
1− ρ2 + ρ22−2R1

))}
RDsum(D1, D2) =

{
(R1, R2) : R1 +R2 ≥ log

(
(1− ρ2)β(D1, D2)

2D1D2

)}
with β(D1, D2) = 1 +

√
1 + 4ρ2D2D2

(1−ρ2)2 . For scenarios with
more than two source symbols, [29] provides the following
lower bound for the sum-rate

RDsum(d) = min
Ds:dii≤[d]i

log

(
|Cs|
|Ds|

)
, (54)

where Ds = (C−1s + B)−1, for some diagonal matrix B,
and Cs is the source covariance matrix. However, closed-
form expressions for the individual rate distortion functions
are unknown for N > 2. In this case, an upper bound for the
OPTA can be computed by equating only the sum-distortion
function to the sum-capacity of the MAC. In general, this
bound will be optimistic since the individual rate constraints
are not necessarily satisfied.

On the other hand, the capacity region of the MIMO MAC
channel is defined by [30]∑
k∈K

RCk (Hk) ≤ log

∣∣∣∣∣I +
1

σ2
n

∑
k∈K

HkQkH
H
k

∣∣∣∣∣ K ⊂ {1, . . . ,K},

(55)

where Qk represents the covariance matrix for the k-th user
channel inputs, and must satisfy tr(Qk) ≤ Pk ∀k = 1, . . . ,K .
The sum-capacity of a SIMO MAC with non-cooperative users
is

RCsum(H) = log

∣∣∣∣I +
1

σ2
n

HPHH

∣∣∣∣ , (56)

where P = diag(P1, . . . , PK) is a diagonal matrix with the
power constraints for the MAC users.

In general, the OPTA bound can be defined in terms of
intersections between the rate distortion and capacity regions.
For the case of two users, we state the following minimization
problem

Dsum(H) = min
D1,D2:C(H)∩R(D1,D2) 6=∅

D1 +D2 (57)

where C(H) represents the capacity region while
R(D1, D2) = RD1 (D1) ∩ RD2 (D2) ∩ RDsum(D1, D2) is
the corresponding rate distortion region for the bivariate
Gaussian distribution. For K > 2, we will only consider
the constraints on the sum rates for all users, due to the
computational complexity of searching for the best intersection
between regions in such case. Hence, the separation bound is
calculated by equating (54) and (56), i.e.,

Dsum(H) = min
d:RD

sum(d)=R
C
sum(H)

1Td, (58)

and then averaging the obtained distortions for each channel
realization to determine the optimum SDR, i.e. SDRopt =
EH[1/Dsum(H)].
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