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Abstract—The MAP and MMSE estimation of Laplace-
distributed symbols transmitted over Multiple Input Multiple
Output channels is studied. This is an important problem in
analog Joint Source Channel Coding with spiral mappings,
where the probability density function of the transmitted symbols
approximates a Laplace distribution in the low SNR regime.
Simulation results are presented to illustrate the suitability of
these estimators in uncoded and coded analog communications.

Keywords—analog joint source channel coding, MMSE, MAP,
estimation, MIMO.

I. INTRODUCTION

ANALOG sources are often modeled as Gaussian ran-
dom variables. When transmitting Gaussian symbols over

communication channels with additive Gaussian noise, Linear
Minimum Mean-Squared Error (LMMSE) estimation is the
optimal receiving stategy provided the channel response is
known [1]. LMMSE estimation is also helpful for the decoding
of analog symbols compressed with spiral-like mappings [2,
3]. In such case, the use of a two-step receiver structure based
on the concatenation of a LMMSE filter and a Maximum
Likelihood (ML) decoder was shown to achieve near optimal-
performance with a complexity lower than that of optimal
Minimum Mean-Squared Error (MMSE) decoding [4].

The optimality of LMMSE filtering is supported by the
assumption of Gaussian symbols. In a number of practical
situations, however, analog symbols are better modeled as
Laplacian random variables. This occurs in speech [5, 6] and
image [7] transmission, or in analog Joint Source Channel
Coding (JSCC) when spiral-like mappings are used for data
compression [2, 3]. In this latter case, the encoded symbols
have been observed to not strictly follow a Gaussian distribu-
tion and better match a Laplace distribution, specially for low
Signal-to-Noise Ratio (SNR) values.

Parametric Maximum A Posteriori (MAP) and MMSE es-
timation with Laplacian prior has already been studied in the
context of speech and image processing [5, 7, 8]. Furthermore,
some feature selection techniques, such as the Lasso regression
[9], can be interpreted as Bayesian MAP estimators under the
assumption of Laplacian priors. In analog communications, the
MMSE design criterion is a suitable one since it minimizes
analog symbol distortion which is typically measured as the
Mean-Squared Error (MSE) between transmitted and received
symbols. In this work, we consider the MMSE estimation of
Laplace-distributed symbols transmitted over fading Multiple-
Input Multiple-Output (MIMO) channels, following the classi-
cal Bayesian approach. The effect of the MIMO fading channel
is incorporated in the estimator derivation to obtain more
general expressions than previous works focused on SISO

transmissions over AWGN channels. This estimator is evalu-
ated for analog JSCC transmissions, showing its suitability for
the transmission of compressed uncorrelated Gaussian sources.
Additionally, its performance is compared to that obtained with
MAP, LMMSE and to the optimal cost-distortion tradeoff.

The rest of the paper is organized as follows. Section
II describes the system model considered along this work.
Sections III and IV focus on the MAP and MMSE estimation
of symbols transmitted over Rayleigh MIMO channels with
Laplace prior. Section V evaluates the performance of the
MAP and MMSE estimators via computer simulations. Finally,
section VI is devoted to the conclusions.

II. SYSTEM MODEL

Let us consider a discrete-time analog MIMO communi-
cation system where a set of complex-valued continuous-
amplitude symbols {xn}nT

n=1 are transmitted over a MIMO
channel with nT transmit and nR receive antennas. We assume
channel symbols are Laplace-distributed with unit variance,
and independent and identically distributed (i.i.d.) real and
imaginary parts, i.e. <{xn},={xn} ∼ L(0, 1). Let us stack
these symbols in the following 2nT × 1 vector

x = [<{x1},={x1}, . . . ,<{xnT
},={xnT

}]T , (1)

whose probability density function (pdf) is given by

p(x) = exp (−2|x|) = exp
(
−2sgn(x)Tx

)
, (2)

where | · | is the norm-1 operator, and sgn(x) =
[sgn([x]1), . . . , sgn([x]2nT

)]T is the sign operator.
We now represent the MIMO channel output symbols as

y = Hx + w, (3)

where H ∈ R2nR×2nT is the real-valued channel response
matrix

H =

 H1,1 H1,2 · · · H1,nT

H2,1 H2,2 · · · H2,nT

· · · · · · · · · · · ·
HnR,1 HnR,2 · · · HnR,nT

 , (4)

with the 2× 2 matrices

Hi,j =

(
<{hi,j} −={hi,j}
={hi,j} <{hi,j}

)
i = 1, . . . , nR
j = 1, . . . , nT

(5)

determined by the real and imaginary parts of the channel
response hi,j , between the j-th transmit antenna an the i-th
receive antenna. The additive Gaussian noise is given by

w = [<{w1},={w1}, . . . ,<{wnR
},={wnR

}]T , (6)
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where {wn}nR
n=1 are the complex-valued noise components

with wn ∼ CN (0, σ2
w). The noise is assumed to be spatially

white. Hence, w ∼ N (0,
σ2
w

2 I2nR
). According to this signal

model, the conditional pdf of the received signal is

p(y|x) = 1

πnRσ2nR
w

exp

(
−‖y −Hx‖2

σ2
w

)
. (7)

III. MAP ESTIMATOR

For a given y, the MAP estimate of x is

x̂MAP = arg max
x

p(x|y), (8)

where p(x|y) is the a posteriori pdf of x. Applying Bayes
rule, such pdf is rewritten as

p(x|y) = p(y|x)p(x)
p(y)

. (9)

We now denote g(x) = ln(p(x|y))

g(x) = ln

(
1√
πσ2

w

)
− ‖y −Hx‖2

σ2
w

− 2|x|− ln(p(y)). (10)

Hence, the MAP estimation problem can be formulated as

x̂MAP = arg min
x

‖y −Hx‖2 + 2σ2
w|x|. (11)

This problem has already been studied in the literature, in
particular in image and voice processing [7, 8]. Given that
this cost function is non-differentiable, different approaches
have been studied to solve it, such as steepest descent search
or iterative-shrinkage algorithms [7]. However, this problem
simplifies if HTH is diagonal, in which case the MAP estimate
can be written as

x̂MAP = A
(
Ax̂LS − σ2

w(H
TH)−11

)+
. (12)

with (·)+ = max[0, ·] and A = diag {sgn(x̂LS)} a 2nT ×
2nT matrix that multiplied by x̂LS allows to first compute the
absolute value of each component and then restore the original
sign. The proof for (12) is analogous to the one described in
[8] when H is unitary.

IV. MMSE ESTIMATOR

For a given y, the MMSE estimate of x is

x̂MMSE = E(x|y) =
∫

xp(x|y)dx =

∫
xp(y|x)p(x)dx∫
p(y|x)p(x)dx

.

(13)
Substituting (7) and (2) into (13) yields

x̂MMSE =

∫
x exp

(
−σ−2w ‖y −Hx‖2 − 2sgn(x)Tx

)
dx∫

exp
(
−σ−2w ‖y −Hx‖2 − 2sgn(x)Tx

)
dx

.

(14)

We now split the integrals in (14) into a sum of individual
integrals for each orthant Oi, and (14) can be rewritten as

x̂MMSE =

∑
i

∫ bi

ai
x exp

(
−σ−2w ‖y −Hx‖2 − 2δTi x

)
dx∑

i

∫ bi

ai
exp

(
−σ−2w ‖y −Hx‖2 − 2δTi x

)
dx

,

(15)
with the following integral limits

[ai]j =

{
−∞ [δi]j = −1
0 [δi]j = 1

[bi]j =

{
0 [δi]j = −1
∞ [δi]j = 1.

We now elaborate Eq. (15) as

x̂MMSE =

∑
i

∫ bi

ai
x exp

(
−σ−2

w xTHTHx+ 2(σ−2
w yTH− δT

i )x
)
dx∑

i

∫ bi

ai
exp

(
−σ−2

w xTHTHx+ 2(σ−2
w yTH− δT

i )x
)
dx

.

(16)
Introducing µi = x̂LS − σ2

w(H
TH)−1δi and C =

σ2
w(H

TH)−1, (16) is rewritten as

x̂MMSE =

∑
i exp(µ

T
i C

−1µi)
∫ bi

ai
x exp(−(x− µi)

TC−1(x− µi))dx∑
i exp(µ

T
i C

−1µi)
∫ bi

ai
exp(−(x− µi)

TC−1(x− µi))dx

=

∑
i exp(µ

T
i C

−1µi)
∫ bi−µi

ai−µi
(x+ µi) exp(−xTC−1x)dx∑

i exp(µ
T
i C

−1µi)
∫ bi−µi

ai−µi
exp(−xTC−1x)dx

.

(17)

Denoting φi = exp(µTi C−1µi)
∫ bi−µi

ai−µi
exp(−xTC−1x)dx,

and ζi = exp(µTi C−1µi)
∫ bi−µi

ai−µi
x exp(−xTC−1x)dx, and

replacing µi by its definition, we obtain

x̂MMSE =

∑
i(µiφi + ζi)∑

i φi

= x̂LS − σ2
w(H

TH)−1
∑
i δiφi∑
i φi

+

∑
i ζi∑
i φi

. (18)

Observe that if C is diagonal, the calculation of (18)
significantly simplifies. Indeed, denoting ρj = [C]j,j as the j-
th diagonal entry of C, µ+

j = [x̂LS]j+ρj , and µ−j = [x̂LS]j−ρj ,
it can be shown that

∑
i ζi = 0, and also that∑

i

[δi]jφi =
π

2

(
erfcx(−µ−j /

√
ρj)− erfcx(µ+

j /
√
ρj)
)
×

2nT∏
k 6=j

π

2

(
erfcx(−µ−k /

√
ρk) + erfcx(µ+

k /
√
ρk)
)

(19)∑
i

φi =

2nT∏
j=1

π

2

(
erfcx(−µ−j /

√
ρj) + erfcx(µ+

j /
√
ρj)
)
,

(20)

where erfc(x) = 2
π

∫∞
x

exp(−t2)dt is the complementary error
function and erfcx(x) = exp(x2)erfc(x). Substituting (19) and
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(20) into (18), yields the following expression for x̂MMSE when
C is diagonal

x̂MMSE = x̂LS − σ2
w(H

TH)−1θ, (21)

where θ is a vector whose i-th entry is given by

[θ]i =
erfcx

(
−µ−

i√
ρi

)
− erfcx

(
µ+
i√
ρi

)
erfcx

(
−µ−

i√
ρi

)
+ erfcx

(
µ+
i√
ρi

) . (22)

A. Remarks

1) The general MMSE expression in (18) requires the
computation of orthant cumulative distribution func-
tions of multivariate Gaussians in the φi terms. As
shown in [10], low complexity approximations are only
known for distributions up to three variables. For higher
dimensions, other techniques such as the Monte Carlo
methods can be used, which have a large computational
complexity as long as the number of dimensions grows.

2) The MAP and MMSE estimates when C is diagonal
converge to the same form when the components of x̂LS
are large enough. In that case θ equals to sgn(x̂LS).

3) The MMSE estimate in (21) is similar to the one defined
in [5], although (21) incorporates the effect of the
MIMO channel coefficients.

4) The LMMSE estimator is given by

x̂LMMSE = (HTH + σ2
wI2nT

)−1HTy. (23)

The computational complexity of the LMMSE and
MMSE estimates is similar when C is diagonal. Indeed,
the complexity of the LMMSE estimate is mainly
determined by the inversion of a diagonal matrix, which
is linear, whereas the MMSE estimate depends on the
element-wise computation of θ, which is also linear.

5) Expressions (12) and (21) significantly simplify for a
SISO system. In such case, σ2

w(H
TH)−1 =

σ2
w

‖h‖2 I2
where h is the complex-valued SISO channel response.

V. SIMULATION RESULTS

In this section the results of several computer experiments
are presented to illustrate the performance of the MAP and
MMSE estimators derived in the previous sections. We con-
sider spatially white Rayleigh 4 × 4 MIMO channels, i.e.
channel entries are i.i.d. complex-valued zero-mean circularly
symmetric Gaussian random variables. Let us consider the
Singular Value Decomposition (SVD) of the MIMO channel
matrix H = UΣVH where U and V are unitary matrices and
Σ is a diagonal matrix. If the input x is the result of precoding
x̃ with V (i.e. x = Vx̃) the MIMO channel output is

y = HVx̃ + w = UΣx̃ + w = H̃x̃ + w. (24)

The equivalent MIMO channel response matrix H̃ = UΣ
enables the use of the simplified expressions for the MAP and
MMSE estimators, since H̃T H̃ is diagonal.

Two different scenarios are considered: uncoded transmis-
sion of Laplace-distributed source symbols and 2:1 com-
pression of Gaussian sources using analog JSCC with spiral
mappings. In the latter case, the transmitted symbols are
generated as x̃ = g(s1, s2), where s1 and s2 are the source
symbols, and g(·) is the joint source-channel encoder. At
the receiver an estimate of the source symbols is obtained
as [ŝ1, ŝ2] = h(x̂), where the decoder h(·) follows an ML
approach [4]. The statistical distribution of the analog JSCC
symbols x̃ to be transmitted depends on the source symbols
distribution and the particular shape of the Archimedean spiral
employed at the encoding step. Previous work [11] suggests
that the performance of analog JSCC systems is improved if
the encoder g(·) is specifically optimized for each channel
SNR value. When empirically analyzing the distribution of
the analog encoded symbols in such situation, we observe that
this distribution is more like a Laplacian than a Gaussian for
low and medium SNRs. This can be measured by means of
the Jensen-Shannon Divergence (JSD) given by

JSD(p, q) =
1

2

∫ ∞
−∞

p(x) ln

(
p(x)

q(x)

)
dx

+
1

2

∫ ∞
−∞

q(x) ln

(
q(x)

p(x)

)
dx, (25)

where p(x) and q(x) are the pdfs to be compared. Figure 1
plots the JSD between the distribution of the analog JSCC
symbols and the Gaussian and Laplacian distributions for a
range of SNRs between 0 and 30 dB. It is apparent from this
figure that the distribution of the analog encoded symbols is
more like a Laplacian for SNRs below 16 dB while this be-
havior reverses for higher SNRs. Remark that the distribution
of the encoded symbols and, therefore, the corresponding JSD
values explicitly depend on the parameters of the non-linear
mapping g(·), which is specifically optimized for each SNR.
This analysis illustrates the suitability of the MAP and MMSE
estimators derived in this paper for analog JSCC transmissions
that use Archimedean spiral non-linear mappings.

The performance of analog communications is usually mea-
sured in terms of the Signal-to-Distortion Rate (SDR) with
respect to the channel SNR. The SDR in dB is calculated as
SDR = 10 log10

(
σ2
s/D

)
, where σ2

s is the source variance and
D = 1

N

∑N
i=1 E{‖si − ŝi‖2} is the observed MSE distortion,

with N the source bandwidth, i.e. N = 1 in the case of
uncoded Laplacian input and N = 2 for 2:1 encoded Gaussian
inputs. The performance is upper bounded by the optimal
cost-distortion tradeoff which is referred to as the Optimum
Performance Theoretically Attainable (OPTA) in the literature.
The OPTA is calculated by equating the source rate distortion
function and the channel capacity, i.e.,NR(D) = KC(H),
where K is the channel bandwidth (K = 1 in this case),
C(H) is the channel capacity and R(D) is the rate distortion
function of the source. Note that the OPTA is difficult to
determine when considering Laplacian input symbols because
there are no closed-form expressions for C(H) and R(D). We
circumvent this limitation by using the C(H) expression for
Gaussian inputs, and an upper bound for R(D) in the case of
Laplace-distributed sources [12].
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Fig. 1. Jensen-Shannon divergence of the analog JSCC encoder output.

Figure 2 plots the performance obtained with the MAP
and MMSE estimators for Laplace-distributed prior in the two
considered scenarios. The performance obtained with LMMSE
estimation and the OPTA is also included. As expected, a
performance gain with respect to LMMSE is obtained when
the MMSE estimator is used. This is because LMMSE is
actually suboptimal when MIMO channel inputs are Laplace-
distributed. However, the behaviour of both estimators is
slightly different for each scenario. The gap between MMSE
and LMMSE is always present for uncoded Laplacian symbols,
while for 2:1 compressed Gaussian inputs, this gap is larger
for low SNRs but vanishes for SNR values above 15 dB.
These results show that the Laplacian MMSE estimation of the
analog JSCC symbols improves the global system performance
when channel inputs better match the Laplace distribution
(see Figure 1). In any case, note from Figure 2 the good
performance obtained with LMMSE estimation, in spite of the
channel input symbols are sometimes not strictly Gaussian-
distributed. LMMSE filtering hence provides a good tradeoff
between complexity and performance at all ranges of SNRs.

On the other hand, the MAP estimator performs worse
than MMSE and LMMSE in both cases. This is because the
MAP estimator searches for the maximum of the a-posteriori
probability, and does not minimize the MSE.

Finally, the system performance in the encoded case closely
approaches the OPTA, while the gap to the OPTA is larger
when considering uncoded Laplacian symbols. This is partially
caused by the approximations in the OPTA calculation.

VI. CONCLUSIONS

In this work we have derived two suitable estimators for
the transmission of Laplacian sources over MIMO channels:
MAP and MMSE, which can be obtained by means of a
subgradient approach, and by the numerical computation of
complex integrals, respectively. These computations can be
significantly simplified for precoded MIMO channels. The
obtained results show the adequate performance of the MAP

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Analog Encoded Gaussian

Uncoded Laplacian

SNR [dB]

S
D
R

[d
B
]

OPTA

MMSE

LMMSE

MAP

Fig. 2. Performance for uncoded Laplacian sources and 2:1 analog encoded
Gaussian inputs. A spatially white Rayleigh 4×4 MIMO channel is assumed.

and the non-linear MMSE estimators. Nevertheless, such per-
formance is close to that obtained with LMMSE, specially
when considering the analog JSCC encoding of Gaussian
sources with spiral mappings in the high SNR regime, where
the Laplace distribution assumption is weaker.
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