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Abstract
Ensemble modelling is a numerical technique used to combine the results of a number of different individual models in 
order to obtain more robust, better-fitting predictions. The main drawback of ensemble modeling is the identification of the 
individual models that can be efficiently combined. The present study proposes a strategy based on the Random-Restart 
Hill-Climbing algorithm to efficiently build ANN-based hydrological ensemble models. The proposed technique is applied 
in a case study, using three different criteria for identifying the model combinations, different number of individual models 
to build the ensemble, and two different ANN training algorithms. The results show that model combinations based on the 
Pearson coefficient produce the best ensembles, outperforming the best individual model in 100% of the cases, and reaching 
NSE values up to 0.91 in the validation period. Furthermore, the Levenberg-Marquardt training algorithm showed a much 
lower computational cost than the Bayesian regularisation algorithm, with no significant differences in terms of accuracy.

Highlights

• Random-Restart Hill-Climbing algorithm could be 
adapted to identify optimal ensemble models.

• Ensemble models enhance model results in terms of lin-
ear correlation, bias, and variability.

• At least 7 individual models are necessary to ensure a 
good fitting ensemble model.

• Individual models with a high Pearson or high NSE can 
yield robust ensembles.

• Levenberg-Marquardt shows similar results to Bayesian 
Regularization with much lower computationalcost.
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Introduction

Watershed modelling is an essential tool in hydrological 
studies that can be used for different purposes as water 
resources management or the analysis of extreme events 
such as floods and droughts, among others. However, since 

hydrological models are rough representations of real water-
sheds, the accuracy of discharge predictions generated with 
the models can directly affect the management of the water 
resources (Wang et al. 2017; Farfán et al. 2020).

A technique that has been applied in different areas of 
environmental modelling to overcome this limitation and 
obtain more robust and accurate results is the use of ensem-
ble models, which consists of combining different individual 
models to compensate the deficiencies of each other (Schäfer 
Rodrigues Silva et al. 2022; Najafi and Moradkhani 2016; 
Farfán et al. 2020; Wang et al. 2009; Viney et al. 2009; 
Velázquez et al. 2011; Duan et al. 2007).

In the context of hydrological systems modeling, the 
application of ensemble models covers a very wide range 
of studies, such as streamflow modeling, groundwater 
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modeling, global hydrological simulations, droughts, floods, 
reservoir modeling, water resources management, agricul-
tural irrigation, land use change, climate change, among oth-
ers (Shen et al. 2022; Jafarzadeh et al. 2022; Qi et al. 2021; 
Wang et al. 2009, 2017; Liu et al. 2022; Nourani et al. 2022; 
Viney et al. 2009; Bermúdez et al. 2021; Zhang and Yang 
2018; Farfán et al. 2020). To this end, ensemble modelling 
combines simulations obtained with different parameter 
sets, initial conditions, or model structures (Liu et al. 2022; 
DeChant and Moradkhani 2014; Najafi et al. 2012; Najafi 
and Moradkhani 2016), which allows the modeller to extract 
a large amount of information from a set of existing models 
and combine them in an optimal way (Li and Sankarasubra-
manian 2012; Viney et al. 2009). Ensemble models can be 
categorized into 2 different types: (1) single-model ensem-
bles (SME) and (2) multi-model ensembles (MME) (Li et al. 
2022; Viney et al. 2009; Najafi and Moradkhani 2016). In 
SME the individual models are obtained from the same 
hydrological model using different parameter sets. Since 
only one hydrological model is used. Its main strength is 
the reduction of the uncertainty related to the model param-
eters, which tends to be dominant for modelling processes 
at finer time scales (Li et al. 2016). On the other hand, in 
MME the individual models are obtained from different 
hydrological models and thus, they could help to reduce the 
uncertainty associated with the model structure, which tends 
to be dominant at coarser time scales (i.e. monthly) (Viney 
et al. 2009; Najafi et al. 2012; DeChant and Moradkhani 
2014; Najafi and Moradkhani 2016; Li et al. 2016; Zhang 
and Yang 2018).

The techniques used in ensemble modelling include 
approaches such as calculating the average or weighted 
average of the individual models (Madadgar and Morad-
khani 2014; Arsenault et al. 2015; Duan et al. 2007; Dong 
et al. 2013; Zhang and Yang 2018; Tyralis et al. 2021), mul-
tiple linear regression techniques such as constrained and 
unconstrained least squares (Kumar et al. 2015; Najafi and 
Moradkhani 2016), and more complex methods involving 
the application of artificial intelligence techniques inspired 
in the structure of the brain such as the the well known Arti-
ficial Neural Networks (ANN) (Li et al. 2022; Farfán et al. 
2020; Li et al. 2018). Comparisons between different tech-
niques can be found in the works of Andraos and Najem 
(2020), Tyralis et al. (2021), Shamseldin et al. (2007).

In addition to the technique for combining model outputs, 
the modeller must decide which individual models to include 
in the ensemble (Kumar et al. 2015; Li and Sankarasubrama-
nian 2012; Viney et al. 2009). In this respect, several studies 
have reported that using the models with the highest indi-
vidual performance does not necessarily produce the best 
ensemble. On the contrary, individual models with relatively 
lower fits may produce a better error compensation in the 
ensemble (Viney et al. 2009; Kumar et al. 2015).

In the particular case of ANN-based ensembles, addi-
tional decisions must be taken, as the number of neurons 
in the hidden layer and the ANN training algorithm. Sev-
eral works have studied the number of neurons that must 
be used to build the ensemble models to avoid the adverse 
phenomena of overfitting (Farfán et al. 2020; Shamseldin 
et al. 2007). Other studies have analyzed the optimal num-
ber of individual models that should be used to build the 
ensemble (Londhe and Shah 2019; Phukoetphim et al. 2014; 
Arsenault et al. 2015).

Despite this important insight, the approaches to iden-
tify an optimal combination of individual models are scarce 
studied. In this regard, the referenced works, despite report-
ing good results after implementation, do not provide crite-
ria for the selection of models to be used in the ensemble. 
This lack of criteria may lead to the training of ANN-based 
ensembles using individual models that are not the most 
appropriate for this purpose. This implies that the ensem-
ble model results may fail to outperform the best individual 
model, discarding ANN as an option for building ensemble 
models since the selection of ensemble members is not a 
straightforward task. (Yaseen et al. 2015).

A possible method to identify adequate ANN-based (or 
others) ensemble models is to generate a large number of 
individual models and to evaluate the performance obtained 
using different combinations of them. Then, finding opti-
mal combinations of individual models can be addressed 
as a combinatorial optimisation problem, which consists of 
searching for an object inside a finite collection of a large 
number of objects, when evaluating all of them one by one 
is not a feasible option (Schrijver 2003). The Hill-Climbing 
algorithm is a technique for solving combinatorial optimi-
sation problems. The algorithm is computationally efficient 
since it compares only a current object against a randomly 
generated one in each iteration. Due to its easy applicability, 
this algorithm has been used in different works focused on 
branches of engineering and game theory (Lim et al. 2006; 
Ceylan 2006; Al-Betar et al. 2017; Alsukni et al. 2019).

Considering the potential advantage of the application of 
ensemble modeling to hydrological systems, and the lack 
of criteria for the selection of ensemble members, in the 
present work, we provide a strategy for the construction of 
ANN-based ensembles by means of a combinatorial optimi-
sation approach. We use a continuous lumped hydrological 
model that is run with a number of parameter sets randomly 
sampled from its feasible space, to obtain a collection of 
individual hydrological models. Then, we propose to adapt 
the Random-Restart Hill-Climbing Algorithm (RRHC) to 
identify optimal ANN-based ensemble models that enhance 
the predictions of the individual hydrological models. The 
results are evaluated in terms of: (1) The effectiveness of 
the combinatorial optimisation approach to identify reli-
able ANN-based ensembles, (2) the goodness of fit of the 
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identified ensembles, (3) The computational cost of the pro-
posed technique.

The present paper uses as a case study a watershed 
located in Galicia, Northwest of Spain and is organised as 
follows: Sect. 2 describes the study area and available data. 
Then, in Sect. 3, we describe the methodology concerning 
the applied hydrological model, the ANN-based ensemble 
technique, the combinatorial optimisation algorithm (HR) 
and the criteria for the goodness of fit evaluation. Section 4 
analyses and discusses the results obtained and finally, in 
Sect. 5 the conclusions of the work are provided

Study area and data

The Anllóns river basin is used as a study case to develop 
and test the methodology presented in this paper. The basin 
is located in the region of Galicia (NW Spain) and is affected 
by low pressures from the Arctic Polar front coming from 
the North Atlantic, which reaches the European coastline 
influenced by westerly winds during the months of October 
to March, bringing with it gusts of wind and intense rainfall 
(Cabalar Fuentes 2005). Historical rainfall and temperature 
data with a time resolution of one hour are publicly avail-
able at several observation stations from the regional mete-
orological agency (MeteoGalicia). From the MeteoGalicia 
meteorological network, 16 stations were used to interpolate 
the precipitation and temperature over the Anllóns catch-
ment (Fig. 1). The average annual precipitation in the catch-
ment is 1400 mm while the average annual maximum daily 
precipitation is 56 mm.

There is one stream gauge station in the basin, managed 
by the regional water administration (Augas de Galicia), 
with publicly available 10 min discharge data, although for 
this study the data were aggregated with a time step of 1 h 
to have the same temporal resolution as the rainfall and tem-
perature data. The location of the stream gauge stations is 
shown in Fig. 1. The Anllóns stream gauge station is located 
about 53 km upstream of the river mouth, and its drain-
age area is 438 km2 . The basin is not affected by reservoir 
regulation, so the discharges measured are representative of 
natural conditions.

Calibration and validation periods

The available observed time series of precipitation, tempera-
ture and discharge were split into two periods that were used 
for the calibration and validation of the proposed methodol-
ogy. There are 7 years of discharge data available, that have 
been split in two periods of 5 years for calibration and 2 
years for validation. The calibration period spans from 2008 
to 2013, while the validation periods starts in 2013 and ends 
in 2015. Table 1 provides some discharge statistics for the 
calibration and validation periods.

Methods

As mentioned in the introduction section, single model 
ensembles are adequate for the reduction of parameter-
related uncertainty, which is dominant at fine time scales 
(Li et al. 2016). Therefore, since in the present study we 

Fig. 1  Anllóns catchment, including the location of the stream gauge and meteorological stations
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work on a 1 h scale, we focus on the application of single 
model ensembles. The individual models that compose the 
ensemble are obtained from one hydrological model run 
with a number of different parameter sets. The model out-
put obtained with each parameter set is treated as a member 
of the ensemble.

The hydrological model MHIA (acronym for Lumped 
Hydrological Model in Spanish) is used in two processes: (1) 
To generate a number of individual models using the Monte 
Carlo method and (2) To generate an individual model using 
a gradient-based method.

The Monte Carlo method has been run in the calibra-
tion and validation period with 5000 parameter sets sampled 
from its feasible parameter space using the latin hypercube 
sampling technique (Audze 1977; McKay et al. 2000).

Once the model has been run, 3 samples of hydrographs 
have been extracted: (1) The 50 hydrographs with the high-
est Nash-Sutcliffe coefficient in the calibration period, (2) 
The 50 simulations with the highest Pearson coefficient in 
the calibration period and (3) The complete set of 5000 
simulations is treated as a sample. These samples are used 
to define the criteria for the construction of the ANN-based 
ensembles as explained later in the Sect. 3.2.

In the case of the gradient-based method, it is used to 
identify a reference model which we assume to be the best 
single model to compare the results of different ANN-based 
ensemble configurations. The objective function optimised 
with the gradient-based method is a modification of the 
Nash-Sutcliffe coefficient (Nash and Sutcliffe 1970) focused 
on prioritising a correct simulation of peak flows which is 
detailed in Sect. 3.4.

Hydrological model

MHIA is a continuous lumped hydrological model. The 
model performs a balance of the volume of water in the soil 
taking into account the following processes: precipitation, 
infiltration, percolation, evapotranspiration and exfiltration. 
Based on these processes, the model evaluates the hydro-
graph at the outlet of the modelled basin. The input data 
required by the model are the time series of precipitation and 
temperature (spatially averaged over the whole basin) with 
any resolution in time. For this study, we have worked with 
a time resolution of 1 h.

The balance of water content in the soil is performed by 
representing the basin as a reservoir with a maximum stor-
age capacity Smax (in mm) and a volume of water V (in mm) 
that varies over time. At each time step the aforementioned 
hydrological processes are calculated, and the water content 
of the soil is updated according to the following equation:

where V is the volume of water stored in the soil expressed in 
mm, f is the infiltration rate in mm/h, p is the percolation rate 
in mm/h, e is the evapotranspiration rate in mm/h, q is the 
exfiltration rate of water from the soil to the surface water 
streams, also expressed in mm/h, and Δt is the calculation 
time step in h. The super index i in Eq. (1) refers to the time 
step of the computation. The parameters of the model are 
shown in table 2. The reader can access the code and the 
conceptualisation manual of the MHIA model in Farfán and 
Cea (2022) for further details.

Ensemble model based on artificial neural networks

An ensemble model consists of the combination of the out-
puts of different numerical simulations obtained with dif-
ferent parameter sets, initial conditions, or model structures 
(Najafi and Moradkhani 2016; Li and Sankarasubramanian 
2012; Viney et al. 2009). In the case of ANN-based ensem-
bles, the ANN inputs are the discharge time series obtained 
with the hydrological model using different parameter sets, 
and the ANN output are the observed discharge time series. 
Figure 2 shows the general topology of the ANN that have 
been used in this work to build ensemble models. It consists 
of an input layer, one hidden layer (formed by 3 neurons) 
and an output layer (Payal et al. 2013). In the applied ANN 
topology, a neuron is represented as the weighted sum of N 
external stimuli plus a constant bias followed by a non-linear 
activation function which controls the activity at the output 
of the neuron (Tkacz and Hu 1999). The training of the ANN 
starts with a random initialization of a set of weights, which 
is updated iteratively to find an optimal set that minimizes 
the error between the ANN output and the observed data 
(Alados et al. 2004). Notice that, even if in Fig. 2 the number 
of ANN inputs is 5, the number of individual models that 
has been used to build the ensemble was varied between 3 
and 10, as it is mentioned in table 3.

(1)Vi+1
= Vi

+

(

f i − pi − ei − qi
)

Δt

Table 1  Representative 
discharges in the calibration 
and validation periods for the 
Anllóns stream gauge station

Computed from the hourly discharge time series. Q p represents the p − th percentile

Gauge Period Minimum Q25 Q50 Mean Q75 Maximum Standard 
deviation

Anllóns Calibration (2008 - 2013) 1.37 2.53 7.70 11.51 15.80 103.62 12.22
Validation (2013 - 2015) 1.45 2.41 7.20 13.11 18.42 112.74 15.63
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The application of ANN-based ensembles requires to take 
the following decisions for its configuration: (1) the number 
of neurons in the hidden layer, (2) the transfer function, (3) 
the number of hidden layers, (4) the number of inputs, (5) 
the training algorithm and (6) the criteria used to select the 
inputs. We use the proposed combinatorial approach to ana-
lyze the effect of some of these factors in the performance 
of the ANN-based ensemble, we have explored the applica-
tion of different ANN configurations for building ensemble 
models.

For the purposes of the present study and to avoid overfit-
ting oh the ANN, we have fixed the number of neurons in 
the hidden layer to 3 in all the configurations, the hyperbolic 

tangent was used as the transfer function (Farfán et al. 2020) 
and the number of hidden layers was fixed to 1, with the aim 
of avoiding the loss of effectiveness in the training algo-
rithm that could be caused by a greater number of hidden 
layers (Raut and Dani 2020; Günther and Fritsch 2010). In 
addition, since in the present study the ANNs are trained in 
an iterative process, an ANN was trained 5 times in each 
iteration and the average of these was taken as the output to 
reduce the sensitivity of the ANN to the initial weights. On 
the other hand, the effect of the number of inputs (i.e indi-
vidual models), the training algorithm and the criteria used 
to select the inputs was explored by means of the 24 differ-
ent ANN configurations, which are summarised in Table 3.

The configurations tested include the 3 different samples 
of individual models that are used to build the ANN-based 
ensemble (NSE, Pearson or Random). Regarding the number 
of individual models used to build the ensemble, we have 
evaluated ANN configurations with 3, 5, 7 and 10 individual 
models as input.

The combinatorial optimisation approach is also used 
with two different ANN training algorithms: the Levenberg-
Marquardt algorithm (LM) (Marquardt 1963) and the Bayes-
ian regularisation algorithm (BR) (MacKay 1992). The 
Levenberg-Mardquart (LM) algorithm was designed for a 
fast convergence of back-propagation processes and to deal 
with moderate-sized problems (Kayri 2016; Jazayeri et al. 
2016). A detailed description of the mathematical basis of 
the LM back-propagation algorithm is available in Jazayeri 
et al. (2016); Wilamowski and Yu (2010); Marquardt (1963). 
The Bayesian Regularisation (BR) proposed by MacKay 
(1992) is another well-known algorithm used in the train-
ing of ANN. It is a variation of the LM algorithm designed 
to minimise a convex combination of the mean-square-error 
and the mean-square-weights (Burden and Winkler 2008). 
This algorithm is capable of producing robust predictions 
provided that there are a sufficient number of observations. 

Table 2  Calibration parameters 
for the MHIA model

Parameter Symbol Unity Lower limit Upper limit

Curve number CN 20 70
Exponent of drainage m1 5 60
Parameter of infiltration and drainage K s mm/h 0.1 20
Coefficient lag-time relationship for SF k1 0.1 6.5
Parameter for scaling gamma functiont SF n1 1 10
Base flow bias correction m2 15 75
Parameter of exfiltration and BF K

b
mm/h 0.1 20

Coefficient lag-time relationship for BF k2 1 6.5
Parameter for scaling gamma functiont BF n2 1 10
Parameter of potential evapotranspiration b 0.4 2
Initial abstraction coefficient � 0.0001 0.2
Decaying coefficient for P

acum
d 0.01 1

Correction coefficient for S a 1 4

Fig. 2  Architecture of the applied ANN-based ensemble models. 
Qsim

i
(t) represents a value of the simulated discharge series at a time 

t. Qobs(t) represents a value of the observed discharge series at the 
same time t 
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Additionally, it works by eliminating weights that make no 
relevant impact on the solution and is capable of escaping 
to local minima. The reader is referred to MacKay (1992); 
Buntine and Weigend (1991); Jazayeri et al. (2016) for fur-
ther details.

To apply the LM algorithm, the calibration period was 
divided into 3 data sets: a training set, a verification set, 
and a testing set. These sets were defined as follows: (1) 
50 % of the data was allotted to the training set to compute 
the adjustments of the ANN weights, (2) 25 % of the data 
was used in the verification set to compute the generalisa-
tion capabilities of the trained ANN, and (3) the remaining 
25 % of the data was used as a testing set to measure the 
performance of the ANN. The division of the calibration 
data into these three sets was carried out by an interleaving 
process, assigning 2 data to the training set, 1 to the verifica-
tion test set and 1 to the testing set in a sequential manner 
until the end of the time series, as it is shown schematically 
in Fig. 4a. The objective function used to train the ANN was 
the Mean Squared Error (MSE). Once the ensemble model 
was trained with the data from the calibration period, it was 
validated with the data from the validation period [Fig. 3a]. 
Numerous studies suggest using to use the cross-validation 

method because it provides the opportunity for the ANN on 
multiple train-test split. However, with the aim of robust-
ness, as can be seen in Fig. 4, the interleaved method allows 
us to make a continuous sample of the entire regime of the 
discharge series that provides homogeneous information to 
the 3 data sets. Therefore, we have considered this method 
more appropriate for the specific case of ensemble models.

The application of the BR training algorithm consists on 
set the calibration period divided into the following 2 sets: 
(1) a training set with 75% of the data and (2) a testing set 
with the remaining 25% of the data. The verification subset 
is not required in the BR algorithm [Fig. 3b]. (Jazayeri et al. 
2016; MacKay 1992; Buntine and Weigend 1991). As in the 
case of the LM algorithm, the data division is carried out by 
means of a interleaving procedure as it is shown in Fig. 4(b). 
The objective function is the MSE.

Random‑restart hill‑climbing

Once the topology of the ANN-based ensemble models is 
defined, in the next step we propose to apply the Random-
Restart Hill-Climbing algorithm (RRHC) (Russell and 
Norvig 2010) to overcome the problem of identification 

Table 3  Nomenclature for 
the 24 evaluated ANN-based 
ensemble configurations

Configura-
tion number

Configuration name Sample of individual models Number of 
individual models 
(Inputs)

Training 
algo-
rithm

1 NSE_3_LM 50 simulations with highest NSE 3 LM
2 NSE_5_LM 50 simulations with highest NSE 5 LM
3 NSE_7_LM 50 simulations with highest NSE 7 LM
4 NSE_10_LM 50 simulations with highest NSE 10 LM
5 Pearson_3_LM 50 simulations with highest Pearson 3 LM
6 Pearson_5_LM 50 simulations with highest Pearson 5 LM
7 Pearson_7_LM 50 simulations with highest Pearson 7 LM
8 Pearson_10_LM 50 simulations with highest Pearson 10 LM
9 Complete_3_LM Complete set of 5000 simulations 3 LM
10 Complete_5_LM Complete set of 5000 simulations 5 LM
11 Complete_7_LM Complete set of 5000 simulations 7 LM
12 Complete_10_LM Complete set of 5000 simulations 10 LM
13 NSE_3_BR 50 simulations with highest NSE 3 BR
14 NSE_5_BR 50 simulations with highest NSE 5 BR
15 NSE_7_BR 50 simulations with highest NSE 7 BR
16 NSE_10_BR 50 simulations with highest NSE 10 BR
17 Pearson_3_BR 50 simulations with highest Pearson 3 BR
18 Pearson_5_BR 50 simulations with highest Pearson 5 BR
19 Pearson_7_BR 50 simulations with highest Pearson 7 BR
20 Pearson_10_BR 50 simulations with highest Pearson 10 BR
21 Complete_3_BR Complete set of 5000 simulations 3 BR
22 Complete_5_BR Complete set of 5000 simulations 5 BR
23 Complete_7_BR Complete set of 5000 simulations 7 BR
24 Complete_10_BR Complete set of 5000 simulations 10 BR
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of optimal combinations of individual models to conform 
ensembles. The algorithm starts by generating a random 
state (i.e. a combination of individual models) and evaluat-
ing its goodness of fit. Then, an iterative process is started 
in which a new random state is generated and its goodness 

of fit is computed. If the new ensemble outperforms the 
previous one in terms of an array of objective functions, it 
is saved and the previous one is removed. Otherwise, the 
new ensemble is rejected. This procedure is repeated itera-
tively until a stop criterion is reached. In the present work, 

Fig. 3  Scheme of the training process of the ANN-based ensembles using the LM algorithm (a) and for the BR algorithm (b)

Fig. 4  Schematic representation of the data division using a interleaving process for the LM algorithm (a) and for the BR algorithm (b)
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we have set the stop criterion as 5 consecutive iterations 
without improvement with respect to the previous ensemble 
(i.e. 5 consecutive rejections). To maximise the outcome of 
the algorithm, this iterative process is repeated a number of 
times defined by the user, starting each time from a different 
random ensemble. We have repeated the process using 50 
different initial positions, in order to identify 50 different 
ensembles for each of the configurations detailed in Table 3.

The stop criterion in the previous algorithm needs to 
define an array of objective functions to identify if the new 
ensemble outperforms the previous one. For this purpose 
we have established a criterion based on 4 goodness-of-fit 
coefficients, Nash-Sutcliffe Efficiency (NSE), High Flows 
Weighted Nash-Sutcliffe Efficiency (HF-WNSE), Low Flows 

Weighted Nash-Sutcliffe Efficiency (LF-WNSE) and Kling 
& Gupta (KGE), all of which are described in Sect. 3.4. At 
every iteration, each new ensemble is trained in the cali-
bration period and validated in the validation period. If 3 
out of the 4 goodness-of-fit coefficients outperform those of 
the previous ensemble in both, calibration and validation, 
it is saved and the previous one is removed, otherwise it is 
rejected. This criterion has been set with the aim of saving 
only the best fitting ensembles and ensuring that the trained 
ensembles can generalise the modeling process and to avoid 
saving those that may have been overfitted.

The steps for the adaptation of the RRHC algorithm for 
the identification of ANN-based ensembles are summarised 
as a pseudo code as follows:

whereX denotes the number of ensembles we want to 
identify (in this study X= 50), hence the number of restarts 
of the RRHC algorithm, fit() denotes the goodness of fit 
measure, current is the combination of individual models 
used as input to the ANN, best is the best combination of 
models identified, and Sample denotes the group of indi-
vidual models from which the ensembles are built.

The reader is referred to the work carried out by O’Neil 
and Burtscher (2015), Russell and Norvig (2010) and Kato 
et al. (2018) for further details about the Random-Restart 
Hill-Climbing algorithm.

Goodness‑of‑fit and performance measures

The results of the different ANN-based ensemble models 
have been evaluated using an array of goodness-of-fit coef-
ficients, each one focused on a specific zone of the output 
hydrograph. These are the Nash-Sutcliffe Efficiency (NSE) 
(Nash and Sutcliffe 1970), Kling & Gupta efficiency (KGE) 
(Gupta et  al. 2009), and two modifications of the NSE 
focused on high and low discharges respectively. Previous 
studies have already used modifications of NSE applied to 
surface runoff and flood studies (Hundecha and Bárdossy 
2004) in which an adequate evaluation of peak flows is of 
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utmost importance. In this work, we have used the following 
modification of NSE:

where wi is a vector of weights evaluated as:

If the exponent p is positive, the high discharges have a 
higher effect on the value of WNSE, while if p is negative, 
the low discharges will dominate the value of WNSE. In the 
particular case that p = 0 , the standard NSE is recovered.

In the present work, the WNSE was used with two differ-
ent exponents, p = 1 and p = −0.5 , to give a higher weight 
to high flows ( HF −WNSE ) and low flows ( LF −WNSE ) 
respectively. Thus, 4 different goodness-of-fit coefficients 
(NSE, HF − NSE , LF − NSE and KGE) were used to analyse 
the performance of the proposed methodology.

Finally, the proposed methodology is summarised in the 
Fig. 5.
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Fig. 5  Overall description of the methodology

Results and discussion

In the present section, we analyse the results of the proposed 
technique by means of (1) The effectiveness of the com-
binatorial optimisation approach to identify reliable ANN-
based ensembles, (2) the goodness of fit of the identified 
ensembles, compared to the individual models, and to the 
reference model optimised with a gradient-based method, (3) 
The computation cost of the proposed technique.

Effectiveness of the combinatorial optimisation 
approach

Table 4 shows the percentage of the 50 ensemble models 
obtained with each ANN configuration that outperformed 
the reference individual model. In the table, the NSE, 
HF −WNSE , LF −WNSE , KGE columns refer to the per-
centage of ensembles that exceeded the reference individ-
ual model for the specified coefficient in both, calibration 
and validation stages, while the Total column refers to the 
percentage of ensembles that outperformed the reference 
individual model in at least 3 of the 4 coefficients in both, 
calibration and validation stages.

The percentage of successful ensembles depends on the 
selection criterion for the application of RRHC algorithm 
(whether it is NSE, Pearson or Random). The most success-
ful criteria are those based on the Pearson and NSE coef-
ficients, while the Random selection criterion performs 
clearly worse. Within each of these criteria, the number of 
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successful ensembles increases proportionally to the number 
of ANN inputs. The most efficient ANN configuration was 
Pearson-10-LM (sample based on the Pearson coefficient 
with 10 inputs and training the ANN with the LM algorithm) 
in which 90% of the ensembles outperformed the reference 
individual model in at least 3 of the 4 coefficients (Total). 
Regarding the most effective training algorithm, both LM 
and BR algorithms produced similar results.

It is also interesting to note that the KGE coefficient was 
exceeded in a higher percentage of ensembles than the rest 
of coefficients. This might be explained by the fact that the 
KGE coefficient is obtained from a decomposition of the 
NSE coefficient into 3 components that measure respectively 
the linear correlation, bias and variability, with an equal 
weighting for all of these 3 components. Thus, it is possible 
to have a high KGE value if any 2 of its components are 
close to their optimal value, even if the third one is slightly 
lower (Gupta et al. 2009).

Goodness of fit

To analyze the results obtained by applying the proposed 
algorithm, Fig. 6 shows the probability distribution corre-
sponding to the goodness-of-fit coefficients of the individual 
models of one of the samples described in Sect. 3 and the 

ensembles of the configuration NSE_10_BR. This analysis 
has been carried out for all 24 configurations, although in 
this section we limit to showing one configuration for the 
sake of simplicity.

The ensembles have outperformed the individual mod-
els significantly in terms of frequency distribution in the 4 
goodness-of-fit coefficients. The average of the sample with 
the 50 best individual models in terms of NSE is 0.65 with a 
standard deviation of 0.04, while the ensembles composed of 
combinations of 10 of these individual models reach an aver-
age of 0.86 with a standard deviation of 0.01, these results 
are approximately equal for both calibration and validation 
periods. The improvement in the predictive skills using the 
algorithm RRHC is most evident in the validation period, 
where even negative values of HF − NSE were obtained 
for the individual models. In this period, the mean value of 
HF − NSE for the individual models is 0.38 with a standard 
deviation of 0.21, while the HF − NSE ensambles reach an 
average of 0.81 with a standard deviation of 0.16. This indi-
cates that there is an important uncertainty in the individual 
models related to the model parameters. Thus, an individual 
model that presents a high HF − NSE may present a low 
LF − NSE and vice versa. Despite this, the applied algorithm 
has shown to be able to adequately identify combinations of 
individual models that produce ensembles with very goods 

Table 4  Percentages of 
ensembles capable of 
outperforming the best 
individual model in the different 
coefficients in both stages of 
calibration and validation for 
the Anllóns basin

Number Configuration name NS HF-NSE LF-NSE KGE Total

1 NSE_3_LM 0 0 0 96 0
2 NSE_5_LM 8 6 12 100 8
3 NSE_7_LM 30 36 32 100 30
4 NSE_10_LM 76 78 64 100 76
5 Pearson_3_LM 4 6 6 100 4
6 Pearson_5_LM 26 22 32 100 26
7 Pearson_7_LM 54 50 62 100 54
8 Pearson_10_LM 88 86 94 100 90
9 Complete_3_LM 0 0 0 60 0
10 Complete_5_LM 10 6 8 88 8
11 Complete_7_LM 18 22 20 84 18
12 Complete_10_LM 32 46 20 90 34
13 NSE_3_BR 2 0 0 98 2
14 NSE_5_BR 10 16 4 100 10
15 NSE_7_BR 34 30 32 100 34
16 NSE_10_BR 74 80 56 100 74
17 Pearson_3_BR 6 8 8 98 6
18 Pearson_5_BR 38 36 36 98 38
19 Pearson_7_BR 70 72 66 100 70
20 Pearson_10_BR 78 80 70 100 78
21 Complete_3_BR 0 0 2 56 0
22 Complete_5_BR 2 6 2 80 2
23 Complete_7_BR 16 18 14 80 16
24 Complete_10_BR 28 56 20 82 28
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values for all coefficients, which implies a reduction in the 
parametric uncertainty that is dominant at fine time scales, 
such as that of the present study. In addition, the good results 
obtained in the validation period indicates that the ANN has 
not been overfitted when the RRHC algorithm was applied.

Table 5 shows the 4 goodness-of-fit coefficients corre-
sponding to the best ensembles obtained for each configura-
tion tested. The first row includes the goodness-of-fit coef-
ficients obtained the reference hydrological model optimised 
with the gradient descent algorithm. To prioritise a correct 
generalisation of the ANN-based ensembles, the criterion 
taken into account to select the best ensemble among the 
different configurations is based on the coefficient results 
and has been complemented with a visual analysis of the 
simulated hydrographs (Ritter and Muñoz-Carpena 2013).

The most efficient configuration is Pearson_10_BR, 
which achieves values of the NSE, LF −WNSE and 
HF −WNSE near to 0.9, the KGE coefficient being even 
higher. The ANN-based ensemble has been successful in 
generalising the results, obtaining similar performance in 
both, calibration and validation periods. Regarding the ANN 
training algorithm, there are no relevant differences between 
the LM and BR algorithms, having both of them a similar 
performance.

Regarding the criterion used for the selection of individ-
ual models, when using the Pearson and Random criteria 
there is a direct relation between the number of ANN inputs 
and the achieved goodness of fit coefficients. The ensem-
bles built with just 3 inputs presented the lowest goodness 
of fit coefficients, and most of them failed to outperform 
the reference individual model. In case of using the NSE to 
select the individual models, there is also a direct relation 
between number of inputs and performance when training 
the ANN with the LM algorithm. However, if the ANN 
is trained with the BR algorithm, the best ensemble was 
obtained with 7 inputs (NSE_7_BR configuration). This 
could be due to the fact that the individual models found 
in this configuration are a better combination than those 
found in the Nash_BR_10 configuration due to the random-
ness component of the RRHC algorithm. However, all of 
the other cases show that the ensembles with 10 inputs are 
more reliable, both in terms of success rate and goodness of 
fit of the best ensemble. Regarding the number of inputs, it 
is important to remark that in the development of the present 
study, the proposed methodology was also evaluated with 
more than 10 inputs. However, these configurations are not 
included in the results because marginal or null improvement 
in the results was obtained with respect to configurations 
with 7 or 10 inputs. This is explained by taking into account 

Fig. 6  Probability distribution 
of the NSE coefficient of the 
individual models and of the 
ensembles obtained from the 
RRHC algorithm for the Pear-
son_10_BR configuration
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that, after exceeding a certain number of inputs to the ANN, 
the incorporated information starts to be redundant and no 
enhancement of the simulations was observed.

Figure 7 shows in grey the 50 ensembles built using the 
Pearson_10_BR configuration, in red the best model ensem-
ble identified, in green the result of the optimized hydro-
logical model and in black the observed discharge series. 
The best ensemble model has a better fit to the observed 
series than the best individual model both, in calibration 
and validation. The more accurate fit is specially remarkable 
regarding the peak discharges. In addition, the best ensemble 
model has a lower dispersion with respect to the 1:1 line, 
which indicates that it is able to enhance the simulations in 
terms of correlation and variability.

Computational cost

In this section, we analyze the efficiency of the proposed 
algorithms in terms of CPU time. The computational time 
was measured each time the RRHC algorithm was run with 
each ANN configuration (Table 3). From the CPU times 
reported in Table 6, 2 factors can be identified as those 
that mainly control the computational time of the proposed 

method: (1) the number of inputs that conform each ensem-
ble model and (2) the sample from which the individual 
models are chosen. These 2 factors influence the computa-
tional times differently depending on the training algorithm.

The computation times for the NSE_LM_3 configuration 
are considerably longer than the configurations with 3, 5 and 
7 inputs. This may be due to the configuration of the stop 
criteria, which are reset to 0 each time the algorithm finds 
an ensemble better than the previous one and to the fact 
that the number of 3-element combinations implies a larger 
number of ensembles to evaluate that can outperform the 
previous one, regardless of whether or not this one is better 
than the best individual model in terms of the goodness-of-
fit coefficients.

This behaviour is also observable in the Complete_LM_3 
and Complete_LM_5 configurations. This indicates that in 
cases where a sufficient number of inputs are not selected, 
not only a few ensembles that outperform the best indi-
vidual model are obtained, but the computational cost may 
increase, making the proposed technique inefficient. On the 
other hand, in the case of the sample based on the coef-
ficient of Pearson, the times maintain similar values for the 

Table 5  Best goodness-
of-fit ensembles for each 
configuration in the Anllóns 
basin

Number Configuration name Calibration Validation

NS HF-NSE LF-NSE KGE NS HF-NSE LF-NSE KGE

Best individual model 0.86 0.84 0.82 0.87 0.86 0.79 0.84 0.84
1 NSE_3_LM 0.84 0.82 0.79 0.91 0.87 0.86 0.82 0.94
2 NSE_5_LM 0.86 0.84 0.83 0.93 0.89 0.85 0.87 0.95
3 NSE_7_LM 0.86 0.84 0.83 0.93 0.90 0.87 0.89 0.96
4 NSE_10_LM 0.89 0.87 0.87 0.94 0.90 0.88 0.89 0.96
5 Pearson_3_LM 0.86 0.85 0.83 0.93 0.89 0.86 0.86 0.96
6 Pearson_5_LM 0.89 0.87 0.88 0.94 0.88 0.86 0.86 0.95
7 Pearson_7_LM 0.88 0.86 0.87 0.94 0.89 0.86 0.88 0.95
8 Pearson_10_LM 0.90 0.88 0.88 0.95 0.90 0.89 0.88 0.96
9 Complete_3_LM 0.84 0.83 0.80 0.92 0.87 0.84 0.86 0.94
10 Complete_5_LM 0.86 0.84 0.85 0.93 0.87 0.84 0.86 0.95
11 Complete_7_LM 0.88 0.88 0.85 0.94 0.89 0.86 0.87 0.95
12 Complete_10_LM 0.89 0.88 0.87 0.94 0.89 0.87 0.86 0.95
13 NSE_3_BR 0.86 0.83 0.83 0.93 0.87 0.86 0.84 0.94
14 NSE_5_BR 0.86 0.84 0.82 0.93 0.89 0.87 0.88 0.95
15 NSE_7_BR 0.88 0.86 0.86 0.94 0.91 0.88 0.90 0.96
16 NSE_10_BR 0.88 0.87 0.85 0.94 0.90 0.88 0.89 0.95
17 Pearson_3_BR 0.86 0.85 0.83 0.93 0.88 0.87 0.86 0.95
18 Pearson_5_BR 0.88 0.87 0.85 0.94 0.88 0.85 0.86 0.95
19 Pearson_7_BR 0.90 0.87 0.89 0.95 0.89 0.87 0.87 0.96
20 Pearson_10_BR 0.91 0.89 0.89 0.95 0.91 0.88 0.89 0.96
21 Complete_3_BR 0.84 0.83 0.80 0.92 0.87 0.82 0.86 0.95
22 Complete_5_BR 0.87 0.84 0.85 0.93 0.88 0.85 0.88 0.95
23 Complete_7_BR 0.88 0.86 0.85 0.94 0.89 0.87 0.85 0.95
24 Complete_10_BR 0.89 0.88 0.87 0.94 0.88 0.85 0.86 0.95
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LM algorithm, varying between 3.43 to 3.56 h to identify 
50 ensembles.

The shortest times were for the sample based on the NSE 
coefficient, followed by the sample based on the Pearson 
coefficient, showing that the NSE sample was a more com-
putationally efficient selection criterion.

Conclusions

In the present study, we have proposed using a combinatorial 
optimisation approach to identify combinations of individual 
hydrological models suitable for the construction of hydro-
logical ensemble models. The proposed approach consists 
of searching for a small combination of individual models 
that are selected from a large number of individual models 
when evaluating all of them one by one is not a feasible 
option. For this purpose, we have adapted the generic opti-
misation RRHC algorithm to the construction of ANN-based 
hydrological ensemble models. The proposed methodology 
has been used to evaluate 24 configurations of ANN-based 
ensembles including different number of ANN inputs, three 
criteria to select the individual models and two ANN train-
ing algorithms.

The use of ANN-based ensembles has been developed 
since ANNs involve a higher difficulty for the implementa-
tion of the RRHC algorithm, given that ANN have more fac-
tors to take into account for application, such as the training 
algorithm and the possibility of overfitting. However, the 
proposed methodology can be applied with other techniques 
to construct the ensembles, such as model averaging, linear 
regression among others, and their application and compari-
son can be the objective of future studies.

Furthermore, in the present work we have focused on 
single-model ensembles, mainly oriented to the reduction 
of parameter-related uncertainty that is usually dominant 
at finer time scales (Li et al. 2016) as is the case of the 
present work. In this sense, it has been observed that the 
identified ANN ensembles have outperformed the individual 
model samples in terms of the probability distribution of 
the goodness-of-fit coefficients, which indicates a signifi-
cant reduction in parametric uncertainty after its application. 
Therefore, the application of the proposed technique can 
constitute an interesting tool for the construction of multi-
model ensembles obtained from different models focused on 
the reduction of the structural uncertainty which is dominant 
at coarser time scales which should be the purpose of future 
works.

Fig. 7  Results for the case of 
Anllóns river for the configura-
tion Pearson_10_BR

Table 6  Comparison of 
run time of the different 
configurations of the RRHC 
algorithm for the different 
configurations of ANN-based 
ensembles

Inputs NSE Pearson Complete set

LM (h) BR (h) Ratio LM (h) BR (h) Ratio LM (h) BR (h) Ratio

3 3.20 2.99 0.93 3.50 3.82 1.09 4.55 5.83 1.28
5 2.60 4.09 1.57 3.43 4.63 1.35 4.78 6.05 1.26
7 2.70 4.16 1.54 3.56 5.07 1.42 3.86 6.68 1.73
10 2.46 4.74 1.93 3.56 6.21 1.74 3.92 7.09 1.81
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The proposed method is able to consistently identify 
ensembles with better goodness of fit than the reference 
individual model in the case study. This has been made pos-
sible because the proposed algorithm allows to search for an 
object inside a finite collection of a large number of objects, 
when evaluating all of them one by one is not a feasible 
option which enhance the application of ensemble models 
for the modelling of hydrological systems.

Based on our results, the effectiveness of the proposed 
technique is conditioned by two important factors: (1) the 
number of individual models used to build the ensemble 
(i.e. the number of ANN inputs) and (2) the criterion used 
to select the individual models that are used to build the 
ensemble. The best results in terms of goodness of fit were 
obtained with the ensembles formed with 10 individual mod-
els, selected by a sampling strategy based on the 50 indi-
vidual models with the highest Pearson coefficient although 
the difference with the sample based on NSE are minimal. 
On the other hand, the worst results were obtained from the 
ensembles built with just 3 or 5 individual models, selected 
by a random sampling out of 5000 individual models.

Regarding the ANN training algorithms, the BR method 
presented slightly higher results in terms of goodness of fit 
and percentage of models that outperformed the reference 
individual model. However, this was possible at a much 
higher computational cost (between 1.75 and 2.5 times 
higher than that of the LM algorithm). In fact, the CPU 
time needed by the BR algorithm is quite sensitive to the 
number of individual models that form the ensemble, while 
the LM algorithm maintained similar execution times inde-
pendently of the number of individual models. In this sense, 
the selection of the training algorithm represented a greater 
influence on the running times than on the final results of 
the ensembles.
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