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Abstract - In this paper, two novel distances for nominal time series are introduced. Both of them are based on features describing the 
serial dependence patterns between each pair of categories. The first dissimilarity employs the so-called association measures, whereas 
the second computes correlation quantities between indicator processes whose uniqueness is guaranteed from standard stationary 
conditions. The metrics are used to construct crisp algorithms for clustering categorical series. The approaches are able to group series 
generated from similar underlying stochastic processes, achieve accurate results with series coming from a broad range of models and 
are computationally efficient. An extensive simulation study shows that the devised clustering algorithms outperform several 
alternative procedures proposed in the literature. Specifically, they achieve better results than approaches based on maximum 
likelihhod estimation, which take advantage of knowing the real underlying procedures. Both innovative dissimilarities could be useful 
for practitioners in the field of time series clustering.  
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1. Introduction 

Clustering of time series concerns the challenge of splitting a set of unlabeled time series into homogeneous groups, 
which is a pivotal problem in many knowledge discovery tasks [1]. Categorical time series (CTS) are a particular class of 
time series exhibiting a qualitative range which consists of a finite number of categories. Most of the classical statistical 
tools used for real-valued time series (e.g., the autocorrelation function) are not useful in the categorical case, so different 
types of measures than the standard ones are needed for a proper analysis of CTS. CTS arise in an extensive assortment of 
fields [2, 3]. Since only a few works have addressed the problem of CTS clustering [4, 5], the main goal of this paper is to 
introduce novel clustering algorithms for CTS.   

 
2. Two Novel Feature-Based Approaches for Categorical Time Series Clustering 

Consider a set of 𝑠 categorical time series 𝒮 = {𝑋𝑡
(1)
, … ,𝑋𝑡

(𝑠)
}, where the 𝑗-th element is a 𝑇𝑗 length partial 

realization from any categorical stochastic process (𝑋𝑡)𝑡∈ℤ. We suppose that the process (𝑋𝑡)𝑡∈ℤ is is bivariate 
stationary, i.e., the pairwise joint distribution of (𝑋𝑡−𝑘,𝑋𝑡) is invariant in 𝑡.  Additionally, it is assumed that the range of 
the process is coded as 𝒱 = {1,… , 𝑟}. Our goal is to perform clustering on the elements of 𝒮 in such a way that the 
series generated from identical stochastic processes are placed together. To that aim, we propose two distance metrics 
which are based on feature extraction.  
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2.1. Descriptive features for categorical processes 
Features based on association measures 

Let {𝑋𝑡 , 𝑡 ∈ ℤ} be a bivariate stationary categorical stochastic process with range 𝒱 = {1,… , 𝑟}. Denote by 
𝝅 = (𝜋1, … ,𝜋𝑟) the marginal distribution of 𝑋𝑡, which is, 𝑃(𝑋𝑡 = 𝑗) = 𝜋𝑗 > 0, 𝑗 = 1,… , 𝑟. Fixed 𝑙 ∈ ℕ and 
𝑖, 𝑗 ∈ 𝒱, we define the lagged bivariate probability 𝑝

𝑖𝑗
(𝑙) as 𝑝

𝑖𝑗
(𝑙) = 𝑃(𝑋𝑡 = 𝑖,𝑋𝑡−𝑙 = 𝑗). 

Note that the quantity 𝑝
𝑖𝑗
(𝑙) measures the serial independence at lag 𝑙 between the categories 𝑗 and 𝑖. In fact, this 

quantity is used to define the concept of perfect serial independence at lag 𝑙 ∈ ℕ, in the sense that such independence 
exists if 𝑝

𝑖𝑗
(𝑙) = 𝜋𝑖𝜋𝑗 for any 𝑖, 𝑗 ∈ 𝒱. There are several association measures which describe the serial dependence 

structure of a categorical process at lag 𝑙. One of such measures is the so-called Cramer's 𝑣, which is defined as  
 

𝑣(𝑙) =  
1

𝑟−1
∑

𝑖,𝑗=1

𝑟 (𝑝𝑖𝑗(𝑙)−𝜋𝑖𝜋𝑗)
2

𝜋𝑖𝜋𝑗
.                                           (1)                                    

 
Cramer's 𝑣 summarizes the serial dependence patterns of a categorical process for every pair (𝑖, 𝑗) and 𝑙 ∈ ℕ. 

However, this quantity is not appropriate for describing a given stochastic process, since two different processes can have 
the same value of 𝑣(𝑙). A better way to characterize the process 𝑋𝑡 is by considering the matrix 𝑽(𝑙) = (𝑉𝑖𝑗

𝑙 )1≤𝑖,𝑗≤𝑟, 

where 𝑉𝑖𝑗
𝑙 =

(𝑝𝑖𝑗(𝑙)−𝜋𝑖𝜋𝑗)
2

𝜋𝑖𝜋𝑗
. The quantities in the matrix 𝑽(𝑙) give information about the so-called unsigned dependence of 

the process. However, it is often useful to know whether a process tends to stay in the state it has reached or, on the 
contrary, the repetition of the same state after 𝑙 steps is infrequent. This motivates the concept of signed dependence, 
which arises as an analogy of the autocorrelation function of a numerical process, since such quantity can take either 
positive or negative values. Let's first define the conditional bivariate probabilities at lag 𝑙 as 𝑝

𝑖|𝑗
= 𝑃(𝑋𝑡 = 𝑖|𝑋𝑡−𝑙 =

𝑗) =
𝑝𝑖𝑗(𝑙)

𝜋𝑗
 for 𝑖, 𝑗 = 1,… , 𝑟.  

According to the previous quantities, perfect serial dependence occurs if, for any 𝑗 ∈ 𝒱, the conditional distribution of 
𝑝
⋅|𝑗
(𝑙) is a one-point distribution. Provided that perfect serial dependence holds, we have perfect positive (negative) serial 

dependence if 𝑝
𝑖|𝑖
(𝑙) = 1 (𝑝

𝑖|𝑖
(𝑙) = 0) for all 𝑖 ∈ 𝒱.  

 
A common measure of signed serial dependence at lag 𝑙 is the Cohen's 𝜅 
 

𝜅(𝑙) =
∑𝑗=1
𝑟 (𝑝𝑗𝑗(𝑙)−𝜋𝑗

2)

1−∑𝑗=1
𝑟 𝜋𝑗

2 .                                              (2) 

 
 
Proceeding as with 𝑣(𝑙), the quantity 𝜅(𝑙) can be decomposed in order to obtain a complete representation of the 

signed dependence patterns of the process. In this way, we consider the vector 𝓚(𝑙) = (𝒦1(𝑙), … ,𝒦𝑟(𝑙)), where each 
𝒦𝑖 is defined as 

 

𝒦𝑖(𝑙) =
𝑝𝑖𝑖(𝑙)−𝜋𝑖

2

1−∑𝑗=1
𝑟 𝜋𝑗

2,                                                       (3) 
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𝑖 = 1,… , 𝑟.  
 
In practice, the matrix 𝑽(𝑙) and the vector 𝓚(𝑙) must be estimated from a 𝑇-length realization of the process, 

{𝑋1, …𝑋𝑇}. To this aim, we consider estimators of 𝜋𝑖 and 𝑝
𝑖𝑗
(𝑙), 𝜋𝑖 and 𝑝

𝑖𝑗
(𝑙), respectively, defined as𝜋𝑖 =

𝑁𝑖

𝑇
and𝑝

𝑖𝑗
(𝑙) =

𝑁𝑖𝑗(𝑙)

𝑇−𝑙
, where 𝑁𝑖 is the number of variables 𝑋𝑡 equal to 𝑖 in the realization {𝑋1, …𝑋𝑇}, and 𝑁𝑖𝑗(𝑙) is the number of pairs 

(𝑋𝑡 ,𝑋𝑡−𝑙) = (𝑖, 𝑗) in the realization {𝑋1, …𝑋𝑇}. Hence, estimates of 𝑽(𝑙) and 𝓚(𝑙), 𝑽(𝑙) and 𝓚(𝑙), respectively, can be 

obtained by plugging in the estimates 𝜋𝑖 and 𝑝
𝑖𝑗
(𝑙) in (2) and (3). This leads directly to estimates of 𝑣(𝑙) and 𝜅(𝑙), so-

called 𝑣(𝑙) and 𝜅(𝑙). 
 
Properties of Cramer's 𝑣 and Cohen's 𝜅 are given in [7]. In particular, Cramer's 𝑣 has range [0,1], with the values 0 

and 1 associated with the cases of perfect serial independence and perfect serial dependence at lag 𝑙, respectively. On the 

other hand, The range of Cohen's 𝜅 is given by [− ∑
𝑗=1

𝑟

𝜋𝑗
2/(1 − ∑

𝑗=1

𝑟

𝜋𝑗
2),1], with the lower and upper bounds associated with 

the cases of perfect negative and perfect positive dependence, respectively. 
 

Features Based On Indicator Processes 
An alternative way of describing the dependence structure of the process {𝑋𝑡 , 𝑡 ∈ ℤ} is by defining auxiliary 

processes showing the occurrence of each category. Given 𝑖 ∈ 𝒱, consider the process 𝐼𝑡
𝑖 = 𝐼(𝑋𝑡 = 𝑖), where 𝐼 stands 

for the indicator function. Fixed 𝑙 ∈ ℕ and 𝑖, 𝑗 ∈ 𝒱, consider the correlation 
 

𝜙
𝑖𝑗
(𝑙) = 𝐶𝑜𝑟𝑟(𝐼𝑡

𝑖 , 𝐼𝑡−𝑙
𝑗
),                                                              (4) 

 

which measures linear dependence between the indicator process of the 𝑗-th category and the indicator process of the 𝑖-th 

category 𝑙 instants later. The following Lemma provides some properties of the quantity 𝜙
𝑖𝑗
(𝑙). 

 
Lemma 1.  
Let {𝑋𝑡 , 𝑡 ∈ ℤ} be a bivariate stationary categorical process with range 𝒱 = {1,… , 𝑟}. Then the following properties 
hold: 
 
1. For every 𝑖, 𝑗 ∈ 𝒱, the function 𝜙

𝑖𝑗
:ℕ → [−1,1] given by 𝑙 → 𝜙𝑖𝑗(𝑙) = 𝐶𝑜𝑟𝑟(𝐼𝑡

𝑖 , 𝐼𝑡−𝑙
𝑗
) is well-defined. 

2. 𝜙
𝑖𝑗
(𝑙) = 0 ⇔ 𝑝

𝑖𝑗
(𝑙) = 𝜋𝑖𝜋𝑗. 

3. 𝜙
𝑖𝑗
(𝑙) = ±1 ⇔ 𝑝

𝑖𝑗
(𝑙) = ± 𝜋𝑖(1 − 𝜋𝑖)𝜋𝑗(1 − 𝜋𝑗) + 𝜋𝑖𝜋𝑗. 

4.𝜙
𝑖𝑗
(𝑙) =  

𝜋𝑗(1−𝜋𝑖)

𝜋𝑖(1−𝜋𝑗)
⇔ 𝑝

𝑖|𝑗
(𝑙) = 1. 

 
The proof of Lemma 1 is quite straightforward and it is not shown in the manuscript for the sake of brevity. According 

to Lemma 1, the quantity 𝜙
𝑖𝑗
(𝑙) can be used to explain both types of dependence, signed and unsigned, within the 

underlying process. In fact, in the case of perfect unsigned independence at lag 𝑙, we have that 𝑝
𝑖𝑗
(𝑙) = 𝜋𝑖𝜋𝑗 for all 
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𝑖, 𝑗 ∈ 𝒱 so that 𝜙
𝑖𝑗
(𝑙) = 0 for all 𝑖, 𝑗 ∈ 𝒱 in accordance with Property 2. On the other hand, when we have perfect 

positive dependence at lag 𝑙, then 𝑝
𝑖|𝑖
(𝑙) = 1 for all 𝑖 ∈ 𝒱. Then 𝜙

𝑖𝑖
(𝑙) = 1 for all 𝑖 ∈ 𝒱 by following Property 4. 

Therefore, 𝜙
𝑖𝑗
(𝑙) evaluates unsigned dependence when 𝑖 ≠ 𝑗 and signed dependence when 𝑖 = 𝑗. The quantities in (4) 

can be encapsulated in a matrix 𝜱(𝑙) = (𝜙𝑖𝑗(𝑙))1≤𝑖,𝑗≤𝑟. The matrix 𝜱(𝑙) can be easily estimated by means of 

𝜱(𝑙) = (𝜙
𝑖𝑗
(𝑙))

1≤𝑖,𝑗≤𝑟
, where each estimator 𝜙

𝑖𝑗
(𝑙) is computed as 𝜙

𝑖𝑗
(𝑙) =

𝑝𝑖𝑗(𝑙)−𝜋𝑖𝜋𝑗

 𝜋𝑖(1−𝜋𝑖)𝜋𝑗(1−𝜋𝑗)

, which follows from 

the fact that 𝜙
𝑖𝑗
(𝑙) =

𝐸(𝐼𝑡
𝑖𝐼𝑡−𝑙
𝑗
)−𝐸(𝐼𝑡

𝑖)𝐸(𝐼𝑡−𝑙
𝑗
)

 𝑉𝑎𝑟(𝐼𝑡
𝑖)𝑉𝑎𝑟(𝐼𝑡−𝑙

𝑗
)

. 

 
2.2. Two innovative dissimilarities between CTS 

In this section we introduce two distance measure between categorical series based on the features described above. 
Suppose we have a pair of CTS 𝑋𝑡

(1) and 𝑋𝑡
(2) and consider a set of 𝐿 lags, ℒ = {𝑙1, … , 𝑙𝐿}. A dissimilarity based on 

association measures, so-called 𝑑𝐴𝑀, is defined as 
 

𝑑𝐴𝑀(𝑋𝑡
(1)
,𝑋𝑡
(2)
) = ∑

𝑘=1

𝐿

[||𝑣𝑒𝑐(𝑽(𝑙𝑘)
(1) − 𝑽(𝑙𝑘)

(2))||2 + ||𝓚(𝑙𝑘)
(1) −𝓚(𝑙𝑘)

(2)||2] + ||𝝅
(1)

− 𝝅
(2)2

|| = 

∑
𝑘=1

𝐿

∑
𝑖=1

𝑟

∑
𝑗=1

𝑟

(𝑉𝑖𝑗

𝑙𝑘(1)

− 𝑉𝑖𝑗

𝑙𝑘(2)

)2 + ∑
𝑘=1

𝐿

∑
𝑖=1

𝑟

(𝒦𝑖(𝑙𝑘)
(1) −𝒦𝑖(𝑙𝑘)

(2)) + ∑
𝑖=1

𝑟

(𝜋𝑖
(1)

− 𝜋𝑖
(2)

)2,         (5)                                  

 
 

 
where the superscripts (1) and (2) are used to indicate that the corresponding estimation is obtained with respect to the 
realization 𝑋𝑡

(1) and 𝑋𝑡
(2), respectively.  

 
An alternative distance measure relying on indicator processes, so-called 𝑑𝐼𝑃, is defined as 

 

𝑑𝐼𝑃(𝑋𝑡
(1),𝑋𝑡

(2)) = ∑
𝑘=1

𝐿

[||𝑣𝑒𝑐(𝜱(𝑙𝑘)
(1) −𝜱(𝑙𝑘)

(2))||2] + ||𝝅
(1)

− 𝝅
(2)2

|| = 

∑
𝑘=1

𝐿

∑
𝑖=1

𝑟

∑
𝑗=1

𝑟

(𝜙
𝑖𝑗
(𝑙𝑘)

(1)
− 𝜙

𝑖𝑗
(𝑙𝑘)

(2)
)
2
+ ∑

𝑖=1

𝑟

(𝜋𝑖
(1)

− 𝜋𝑖
(2)

)
2.                                                                                (6) 

 
For a given set of categorical series, the distances 𝑑𝐴𝑀 and 𝑑𝐼𝑃 can be used as input for traditional clustering 

algorithms. In this manuscript we consider the Partition Around Medoids (PAM) algorithm. 
 

3. Partitioning Around Medoids Clustering Of Categorical Time Series 
In this section we examine the performance of both metrics 𝑑𝐴𝑀 and 𝑑𝐼𝑃 in the context of hard clustering through a 

simulation study. 
 
3.1 Experimental design 

The simulated scenarios encompass a broad variety of generating processes. In particular, three setups were 
considered, namely clustering of (i) Markov Chains (MC), (ii) New Discrete ARMA (NDARMA) processes and (iii) 
Hidden Markov Models (HMM). The generating models with respect to each class of processes are given below. 
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Scenario 1. Clustering of MC. Consider four three-state MC, so-called MC⬚1, MC⬚2, MC⬚3 and MC⬚4, with 

respective transition matrices 𝑷1
1, 𝑷2

1, 𝑷3
1 and 𝑷4

1 given by 
 

𝑷1
1 = 𝑀𝑎𝑡3(0.1,0.8,0.1,0.5,0.4,0.1,0.6,0.2,0.2), 

𝑷2
1 = 𝑀𝑎𝑡3(0.1,0.8,0.1,0.6,0.3,0.1,0.6,0.2,0.2), 

𝑷3
1 = 𝑀𝑎𝑡3(0.05,0.90,0.05,0.05,0.05,0.90,0.90,0.05,0.05), 

𝑷4
1 = 𝑀𝑎𝑡3(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3), 

 
where the operator 𝑀𝑎𝑡𝑘, 𝑘 ∈ ℕ transforms a vector into a square matrix of order 𝑘 by sequentially placing the 
corresponding numbers by rows.    
 
Scenario 2. Clustering of  HMM. Consider the bivariate process (𝑋𝑡 ,𝑄𝑡)𝑡∈ℤ, where 𝑄𝑡 stands for the hidden states and 
𝑋𝑡for the observable random variables. Process (𝑄𝑡)𝑡∈ℤ constitutes an homogeneous MC. Both (𝑋𝑡)𝑡∈ℤ and (𝑄𝑡)𝑡∈ℤ 
are assumed to be count processes with range {1,… , 𝑟}. Process (𝑋𝑡 ,𝑄𝑡)𝑡∈ℤ is assumed to verify the three classical 
assumptions of a HMM. Based on previous considerations, let HMM⬚1, HMM⬚2, HMM⬚3 and HMM⬚4 be four 

three-state HMM with respective transition matrices 𝑷1
2, 𝑷2

2, 𝑷3
2 and 𝑷4

2 and emission matrices 𝑬1
2, 𝑬2

2, 𝑬3
2 and 𝑬4

2 given 
by 
 

𝑷1
2 = 𝑀𝑎𝑡3(0.05,0.90,0.05,0.05,0.05,0.90,0.90,0.05,0.05), 𝑷2

2 = 𝑷1
2, 

𝑷3
2 = 𝑀𝑎𝑡3(0.1,0.7,0.2,0.4,0.4,0.2,0.4,0.3,0.3), 

𝑷4
2 = 𝑀𝑎𝑡3(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3), 𝑬1

2 = 𝑷1
2, 

𝑬2
2 = 𝑀𝑎𝑡3(0.1,0.8,0.1,0.5,0.4,0.1,0.6,0.2,0.2), 𝑬3

2 = 𝑬2
2, 

𝑬4
2 = 𝑀𝑎𝑡3(1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3,1/3). 

 
 

Scenario 3. Clustering of NDARMA processes. Let (𝑋𝑡)𝑡∈ℤ and (𝜖𝑡)𝑡∈ℤ, be two count processes with range 
{1,… , 𝑟}following the equation 
 

𝑋𝑡 = 𝛼𝑡,1𝑋𝑡−1 +⋯+ 𝛼𝑡,𝑝𝑋𝑡−𝑝 + 𝛽
𝑡,0
𝜖𝑡 +⋯+ 𝛽

𝑡,𝑞
𝜖𝑡−𝑞, 

 
where (𝜖𝑡)𝑡∈ℤ is i.i.d with 𝑃(𝜖𝑡 = 𝑖) = 𝜋𝑖 , independent of (𝑋𝑠)𝑠<𝑡 , and the i.i.d multinomial random vectors 
 

(𝛼𝑡,1, … ,𝛼𝑡,𝑝,𝛽𝑡,0, … ,𝛽𝑡,𝑞) ∼ MULT(1;𝜙1, … ,𝜙𝑝,𝜑0, … ,𝜑𝑞), 
 

are independent of (𝜖𝑡)𝑡∈ℤ and (𝑋𝑠)𝑠<𝑡 . The considered models are three three-state NDARMA(2,0) processes and one 
three-state NDARMA(1,0) process with marginal distribution 𝝅3 = (2/3,1/6,1/6), and corresponding probabilities in 
the multinomial distribution given by 
 
(𝜙1,𝜙2,𝜑0)1

3 = (0.7,0.2,0.1), (𝜙1,𝜙2,𝜑0)2
3 = (0.1,0.45,0.45), (𝜙1,𝜙2,𝜑0)3

3 = (0.5,0.25,0.25), 
(𝜙1,𝜑0)4

3 = (0.2,0.8). 
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The simulation study was carried out as follows. For each scenario, 5 CTS of length 𝑇 = 200,600 were generated 
from each process in order to execute the clustering techniques twice, thus allowing to analyze the impact of the series 
length. The resulting experimental solution produced by the PAM algorithm was stored. The simulation procedure was 
repeated 500 times for each scenario and value of 𝑇. The computation of 𝑑𝐴𝑀 and 𝑑𝐼𝑃 was carried out by considering 
ℒ = {1} in Scenarios 1 and 2, and ℒ = {1,2} in Scenario 3. This way, we adapted the distances to the maximum 
number of significant lags existing in each scenario.  
 
3.2 Alternative metrics and assessment criteria 

To better analyze the performance of both metrics 𝑑𝐴𝑀 and 𝑑𝐼𝑃, we also obtained partitions by using alternative 
techniques for clustering of categorical series. The considered procedures are described below.  
 

 • Model-based approach using maximum likelihood estimation (MLE). The distance between two CTS is 
defined as the squared Euclidean distance between the corresponding vectors of fitted coefficients via MLE 
(𝑑𝑀𝐿𝐸). 

 • Model-based approach using mixtures. [4] propose to cluster a set of CTS by learning a mixture of first 
order Markov models via the EM algorithm (𝑑𝐶𝑍).  

 • An hybrid framework for clustering CTS. [6] presents a dissimilarity between categorical series which 
evaluates both closeness between raw categorical values and proximity between dynamic patterns (𝑑𝑀𝑉). 

 
Note that the approach based on the distance 𝑑𝑀𝐿𝐸 can be seen as a strict benchmark in the evaluation task. 

The effectiveness of the clustering approaches was assessed by comparing the clustering solution produced by 
the algorithms with the true clustering partition, so-called ground truth. The latter consisted of 𝐶 = 4 clusters in 
all scenarios, each group including the five CTS generated from the same process. The value 𝐶 = 4 was 
provided as input parameter to the PAM algorithm in the case of 𝑑𝐴𝑀, 𝑑𝐼𝑃, 𝑑𝑀𝐿𝐸 and 𝑑𝑀𝑉. Experimental and 
true partitions were compared by using three well-known external clustering quality indexes, the Adjusted Rand 
Index (ARI), the Jaccard Index (JI) and the Fowlkes-Mallows index (FMI). 

 
3.3 Results and discussion 

Average values of the quality indexes by taking into account the 500 simulation trials are given in Tables 1, 
2 and 3 for Scenarios 1, 2 and 3, respectively.  

 
Table 1: Average results for Scenario 1. 

𝑇 = 200 𝑇 = 600 

Method ARI JI FMI ARI JI FMI 

𝑑𝐴𝑀 0.77 0.71 0.83  0.92 0.89 0.94 

𝑑𝐼𝑃 0.73 0.66 0.79 0.86 0.88 0.89 

𝑑𝑀𝐿𝐸 0.70 0.63 0.77 0.84 0.79 0.88 

𝑑𝐶𝑍 0.71 0.65 0.79 0.92 0.89 0.93 

𝑑𝑀𝑉 0.41 0.36 0.67 0.38 0.36 0.65 
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Table 1: Average results for Scenario 2. 

𝑇 = 200 𝑇 = 600 

Method ARI JI FMI ARI JI FMI 

𝑑𝐴𝑀 0.71 0.64 0.78 0.86 0.81 0.89 

𝑑𝐼𝑃 0.76 0.70 0.81 0.96 0.95 0.97 

𝑑𝑀𝐿𝐸 0.35 0.34 0.51 0.30 0.31 0.48 

𝑑𝐶𝑍 0.65 0.58 0.74 0.70 0.64 0.78 

𝑑𝑀𝑉 0.09 0.18 0.32 0.06 0.18 0.30 

 
Table 1: Average results for Scenario 3. 

𝑇 = 200 𝑇 = 600 

Method ARI JI FMI ARI JI FMI 

𝑑𝐴𝑀 0.63 0.56 0.72 0.88 0.84 0.90 

𝑑𝐼𝑃 0.68 0.61 0.75 0.93 0.90 0.94 

𝑑𝑀𝐿𝐸 0.73 0.66 0.79 0.87 0.83 0.90 

𝑑𝐶𝑍 0.59 0.56 0.69 0.65 0.58 0.74 

𝑑𝑀𝑉 0.04 0.17 0.29 -0.03 0.14 0.25 

 
The results in Table 1 indicate that the dissimilarity 𝑑𝐴𝑀 is the best performing one when dealing with MC, 

outperforming the MLE-based metric 𝑑𝑀𝐿𝐸. The distance 𝑑𝐼𝑃 is also superior to 𝑑𝑀𝐿𝐸. The measure 𝑑𝐶𝑍 attains 
in Scenario 1 similar results than 𝑑𝐴𝑀, specially for 𝑇 = 600. The good performance of 𝑑𝐶𝑍 was expected, since 
the assumption of first order Markov models considered by this metric is fulfilled in Scenario 1. Table 2 shows a 
completely different picture, indicating that the metrics 𝑑𝐴𝑀 and 𝑑𝐼𝑃 exhibit a significantly better effectiveness 
than the rest of the dissimilarities. Finally, the quantities in Table 3 reveal that the model-based distance 𝑑𝑀𝐿𝐸 
attains the best results when 𝑇 = 200, but is defeated by 𝑑𝐼𝑃 when 𝑇 = 600. The metric 𝑑𝐶𝑍 suffers again from 
model misspecification. In summary, the numerical experiments carried out throughout this section show the 
excellent ability of both measures 𝑑𝐴𝑀 and 𝑑𝐼𝑃 to discriminate between a broad variety of categorical processes. 
Specifically, these metrics either outperform or show similar behavior than distances based on estimated model 
coefficients, which take advantage of knowing the true underlying models. 
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4. Conclusions 

In this paper we introduced two metrics to perform cluster analysis of categorical series. The goal of both distances is 
to discriminate between underlying categorical processes. The two dissimilarities are used to construct clustering 
algorithms, which were evaluated in a broad simulation study. The methods outperform several alternatives proposed in the 
literature, suggesting the usefulness of the proposed dissimilarities for clustering of categorical series.   

 
References 
[1]  T. W. Liao, “Clustering of time series data: A survey,” Pattern Recognit., vol. 38, no. 11, pp. 1857–1874, 2005.  
[2]  G. A. Churchill, “Stochastic models for heterogeneous dna sequences,” Bulletin of mathematical biology, vol. 51, no. 

1, pp. 79–94, 1989.  
[3]  K. Fokianos and B. Kedem, “Regression theory for categorical time series,” Statistical science, vol. 18, no. 3, pp. 

357–376, 2003.   
[4]  I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, “Model-based clustering and visualization of navigation 

patterns on a web site,” Data mining and knowledge discovery, vol. 7, no. 4, pp. 399–424, 2003. 
[5]  S. Frühwirth-Schnatter and C. Pamminger, “Model-based clustering of categorical time series,” Bayesian Analysis, 

vol. 5, no. 2, pp. 345–368, 2010.  
[6]  M. García-Magariños and J. A. Vilar, “A framework for dissimilarity- based partitioning clustering of categorical time 

series,” Data mining and knowledge discovery, vol. 29, no. 2, pp. 466–502, 2015. 
[7]  Weiß, C. H. (2018). An introduction to discrete-valued time series. John Wiley & Sons. 

 


