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Abstract: This study presents MERLIN, an innovative flood hazard forecasting system 

for predicting discharges and water levels at flood prone areas of coastal catchments. 

Discharge forecasts are preceded by a hindcast stage. During this stage, the hydrological 

models assimilate soil moisture and hydro-meteorological observations to evaluate soil 

infiltration capacities at the beginning of the discharge forecast. Predicted discharges 

are converted to water level forecasts using the hydraulic model Iber+, a GPU 

parallelized bidimensional flow model. Hydraulic models also assimilate tidal level 

forecasts in order to define the boundary conditions of the models. The performance of 

MERLIN was evaluated over 4 months at 3 coastal catchments of 4.95, 16.96, and 83.9 

km2. Forecasted discharges and water levels presented a good fit to observed values, 

especially at the larger catchments, which confirmed the potential utility of the 

presented system. 
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1. Introduction

Flood events are becoming more frequent due to multiple factors. On the one hand, 

changes in land use and rapid urbanization have increased the amount of rainfall 

conveyed to streams (Rosburg et al., 2017). On the other hand, climate change has 

increased maximum rainfall intensities that increase river flood hazards at all the scales 

(Arnell and Gosling, 2016). In addition, the increase in the population has raised 

antropic pressure on water courses, and triggered the negative impact of flood events. 

As a result of all these factors, floods have become the main type of natural disaster, 

and in recent decades have affected 2.480 million people, causing damage worth 625 

billion dollars according to the International Disaster Database (Wallemarq et al. 2018).  

Against this background, several international organizations have proposed increasing 

resilience as a more efficient approach than building structural defences to reduce flood 

damage (Djordjevicet al. 2011; Schelfautet al., 2011). This approach has resulted in 

numerous flood forecasting systems, also known as early warning systems (EWS), at 

local (Cools et al. 2012, Hossain et al. 2014, Krajewski et al. 2017), national (Kellens et 

al. 2013, Weerts et al. 2011), and trans-national (Thielen et al. 2009) scales. 

Currently, most flood forecasting systems are similar in structure. The operation of the 

system begins with the acquisition of meteorological data. This data usually consists of 

forecasts obtained from numerical weather prediction (NWP) models, which can 

achieve spatial resolutions of a few kilometres and temporal resolutions of less than an 

hour. The main drawback is that the accuracy of the forecasts depends largely on the 

time span of the predictions and on the rainfall aggregation time. The hydrological 

response of small catchments depends mostly on maximum rainfall intensities at low 

aggregation times. However, the accuracy of weather prediction models diminishes as 

does the rainfall aggregation time. In addition, flood forecasts require accurate 
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predictions of storm motion, since small deviations of the path of a storm can 

significantly affect the amount of rainfall in a catchment (particularly in small basins). 

These factors limit the applicability of NWP products for time horizons beyond a few 

days. An approach overcoming this limitation involves the use of meteorological and 

hydrological observations of gauges located upstream from the area under study. 

Though this approach has been employed in medium sized catchments (Ehret et al. 

2008; Horita et al. 2018), it is more frequent in large basins (Nester et al. 2016; 

Krajewski et al. 2017), where flood propagation times are long enough to alert the 

population. 

The second step of an EWS is to transform meteorological forecasts into discharge 

predictions. To this end, the most frequent approach is using physically based rainfall-

runoff models. Satisfactory results have been reported using lumped (Alvarez-Garreton 

et al. 2015), semi-distributed (Oleyiblo and Li, 2010; Mure-Ravaud et al. 2016), and 

distributed (Thielen et al., 2009; Thiemig et al. 2015) models. Artificial intelligence 

techniques, such as neural networks (Kasiviswanathan et al. 2016), or genetic 

programming (Kumar and Sahay, 2018) have also been used for this purpose. These 

techniques reduce the computational burden of the forecast system, but fail to reproduce 

the physical processes involved; thus, accuracy and applicability are substantially 

constrained by the calibration data.  

No matter what type of model is used to compute the rainfall-runoff transformation, 

reliable discharge forecasts require both accurate meteorological forecasts and a proper 

characterization of the antecedent soil moisture content (AMC). The same runoff can 

originate from high rainfall intensities falling over a relatively dry terrain or from low 

rainfall intensities falling over a saturated terrain. The improvement in the performance 

of rainfall-runoff computations when AMC is incorporated has been widely reported by 
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numerous authors (Brocca et al. 2011;Van Steenbergen and Willems, 2013; Massari et 

al. 2014; Tayfur et al. 2014; Massari et al. 2015; Cea and Fraga, 2018). An increase of 

nearly 50% in the correlation of the forecasted and observed discharges has been 

observed when the hydrological model was fed with AMC data (Lievens et al., 2015). 

Similarly, an increase of one order of magnitude in the accuracy of peak discharges was 

obtained when soil moisture data was used in an operational flood forecasting system 

(Wanders et al., 2017). 

Most EWS assess flood hazard directly from the discharges computed by hydrological 

models. When discharges exceed a specific threshold, they are reported to stakeholders 

and the population through different channels (web apps, mail, acoustic alerts, etc.). An 

interesting review of the challenges during this last step of the flood forecasting process 

can be found in Schwanenberg et al. (2018). 

Several EWS include a third step, in which the forecasted discharges are used as input 

of a hydraulic model to compute the spatial distribution of water depth and velocity. 

Hydraulic models allow for an accurate estimation of the flood extent, but their 

computational burden limits their application, so the number of flood forecasting 

systems including these types of model is scarce (Nguyen et al. 2016, Sanz Ramos et al. 

2018). However, this last step is particularly crucial in coastal areas, where flooding is 

due to the combined effect of the tidal level and the river discharge (Acreman, 1994; 

Hawkes, 2003; Sopelana et al. 2018, Svensson and Jones, 2002). In these cases, the use 

of hydraulic models is essential to impose boundary conditions reproducing both the 

river discharge and sea level, allowing for an accurate estimation of the flood hazard 

that is not possible from only the output of a hydrological model. Moreover, including 

tidal levels in flood forecasting is becoming increasingly vital due to increasing sea 

levels resulting from climate change (IPCC, 2018). 
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In recent years, forecasting systems have improved considerably for two main reasons. 

First, remote observations such as meteorological radar and satellite observations are 

usually available in near real-time, and often at no cost. These observations, with high 

spatial (and sometimes temporal) resolution, allow for accurate hydro-meteorological 

monitoring that improves the quality and quantity of available data. The use of standard 

file formats and data transfer protocols facilitates the easy integration of these data 

sources to existing forecasting systems. Furthermore, the computational time needed to 

run high-resolution 2D flooding models has decreased significantly, thanks to High 

Performance Computing techniques and the increase of computational power (García-

Feal et al. 2018; Nguyen et al. 2016; Noh et al. 2018; Sanders et al. 2019; Xia et al. 

2019).  

In this article we present MERLIN, a flood forecasting system that exploits these 

improvements to deliver discharge and flood extent forecasts on a daily basis from 

meteorological predictions. MERLIN (which is the acronym in Spanish for Local Flood 

Risk Evaluation Model) incorporates remote observations to characterize the initial soil 

infiltration capacity prior to the discharge forecast. Discharges are forecasted using 

numerical weather predictions that feed semi-distributed models of flood prone 

catchments. To forecast the flood extension, MERLIN uses the 2D inundation model 

Iber+ (García-Feal et al. 2018), which is a GPU-parallelized version of the Iber model 

(Bladé et al., 2014).  

The MERLIN system has been used to forecast the flood hazard at several catchments 

in the region of Galicia (northwest Spain). The Special Civil Protection Plan for Flood 

Risks in Galicia (Xunta de Galicia, 2016), and the Flood Risk Management Plan of 

Galicia-Costa 2015–2021 (Augas de Galicia 2016), both acknowledge the need for 

developing hydrological forecast systems in this region to enhance decision making.  
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However, flood forecasting in Galicia is particularly challenging for two reasons. First, 

there are numerous small catchments in which discharge forecasting is highly sensitive 

to the spatial and temporal evolution of weather fronts.  Secondly, most flood risk areas 

in Galicia correspond to coastal towns, where floods are caused by the joint effect of 

tidal level and river discharge. The MERLIN system was implemented at 3 coastal 

catchments with contributing areas of ≈5, 15, and 80 km2 in order to explore the 

feasibility of the system in small basins, and to assess the effect of the catchment area 

on the performance of the forecasting system. 

The paper is structured as follows. Section 2 provides a detailed description of the 

MERLIN system. Section 3 describes the characteristics of the catchments used to 

evaluate system performance. Section 4 reviews the application of the system during the 

winter of 2018 and the spring of 2019. Section 5 highlights the main conclusions of this 

study. 

2. Description of the flood forecasting system

2.1. System overview and workflow 

MERLIN forecasts the flood hydrographs and the flood hazard at the flood prone areas 

of selected catchments from meteorological observations and forecasts. MERLIN can 

be run on a daily or sub-daily basis. The functioning of the system consists of two 

stages: a hindcast stage and a forecast stage (Figure 1). During the hindcast stage, 

meteorological and discharge observations of the previous 30 days are assimilated by 

the hydrological models of the studied catchments in order to reproduce the soil 

moisture condition at the beginning of the forecast. A 30-day time window was selected 

due to the relation between soil moisture and the antecedent rainfall reported for areas 

in the northwest of Spain (Cea and Fraga, 2018). The relevance of this step should be 
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underscored owing to the impact of the previous moisture content on rainfall-runoff 

computations. 

In the forecast stage, the hydrographs along the river network over the following days 

are predicted using meteorological forecasts and the initialized hydrological models.  

The predicted hydrographs are used as inputs of 2D hydraulic models of flood prone 

areas, in order to compute the flood hazard. 

Figure 1. Flowchart of the MERLIN system showing the tasks performed by each module. 
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To perform these tasks, MERLIN is structured in three modules (meteorological, 

hydrologic, and hydraulic), orchestrated by a Python script. This script systematizes the 

operation of the system and performs the information exchange between the modules.  

2.2. Meteorological module 

The meteorological module acquires and processes the meteorological data used by the 

hydrological models during both the hindcast and forecast stages. The module also 

performs the conversion of all the generated outputs to the file formats required by the 

hydrological models. 

2.2.1. Hindcast stage 

During the hindcast stage, the observations processed are soil moisture, river discharge, 

rainfall, air temperature, wind speed, air moisture and solar radiation. Rainfall, air 

temperature, wind speed, air moisture and solar radiation data are obtained from the 

monitoring stations operated by MeteoGalicia, the regional weather agency. These 

variables are registered every 10 minutes. The spatial distribution of air temperature, 

wind speed, air moisture and solar radiation is interpolated from the values registered at 

the stations using the ordinary kriging (OK) technique (Goovaerts, 1997). Isotropic 

variograms obtained from hourly data of each variable are used in the interpolation. The 

resulting fields have a 1-hour temporal resolution, and a 1-km spatial resolution. 

Rainfall fields are computed from rain gauge and meteorological radar observations, 

using the kriging with external drift (KED) technique (Haberlandt, 2007). The radar 

data operated by MeteoGalicia has spatial and temporal resolutions of 1 km and 5 

minutes respectively, and covers the whole region of Galicia. Computing the rainfall 

fields using the KED technique instead of the OK improves the characterization of the 

spatial distribution of rainfall (Schiemann et al., 2011; Jewell and Gaussiat, 2015), since 
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it combines the advantages of the rain gauge measurements (high accuracy of rainfall 

data at ground level) and radar data (high space–time resolution of the observations). 

The accurate representation of the spatial variability of rainfall is particularly important 

in small catchments due to the significant impact on the performance of rainfall-runoff 

models (Emmanuel et al., 2015; Engeland et al., 2016, Cea and Fraga, 2018). The 

variogram used in the KED is obtained following the procedure described by Delrieu et 

al (2014). In case of missing radar data (due to radar breakdown, maintenance, etc.), the 

interpolation of the rainfall fields is performed using the OK technique, with a 

variogram obtained from the 10-minute rainfall depth measured at the rain gauges. No 

matter if rainfall is interpolated with KED or OK, the rain fields have a 10-minute 

temporal resolution, and a 1-km spatial resolution. 

Soil moisture data corresponds to the products of the Soil Moisture Active Passive 

(SMAP) satellite provided by the National Snow and Ice Data Center. In particular, 

level 4 root-zone soil moisture data is used, which has spatial and temporal resolutions 

of 3 hours and 9 km respectively. The meteorological module acquires the root-zone 

moisture at the beginning of the hindcast stage and associates the moisture value of the 

closest pixel to each sub-basin of the hydrological models.  

Discharge data is obtained from the stream gauge network operated by Augas de 

Galicia, the regional hydraulic administrator. The data are obtained from water level 

measurements performed every 10 minutes, converted to discharge values using 

previously calibrated rating curves. 

2.2.2. Forecast stage 

During the forecast stage, the meteorological module acquires the outputs of the 

Weather Research and Forecasting (WRF) model (Skamarock et al. 2005) operated by 

MeteoGalicia, that issues a daily 96-hour forecast. From the available predictions, the 
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system uses the rainfall, temperature, air humidity, solar radiation and wind speed 

forecasts, with temporal and spatial resolutions of 1 hour and 4 km respectively.  

The meteorological module also acquires the tidal levels forecasted by the Regional 

Ocean Modelling System (ROMS) (Shchepetkin and McWilliams, 2005) at the 

catchment outlets. The ROMS setup for the Galician coast, operated by MeteoGalicia 

(Carracedo, 2003), include both astronomic and atmospheric tidal components, which 

are particularly relevant for predicting inundation events in coastal river reaches due to 

the interaction of sea level and river discharge (Acreman, 1994; Hawkes, 2003; 

Sopelana et al. 2018, Zhong et al. 2013). The forecasts of tidal levels are used as the 

boundary conditions of the 2D inundation models, as described in the following 

sections. 

2.3. Hydrological module 

The hydrological module forecasts the discharges along the catchments included in the 

forecasting system. This module consists of the hydrological models of the catchments 

included in the forecasting system, and several functions written in Python for 

launching the simulations and processing the model outputs. 

2.3.1. Hydrological models 

The hydrological model of each basin was built using the HEC-HMS Version 4.2.1 

(Scharffenberg & Fleming, 2006), one of the most widely used models in hydrology. In 

addition, HEC-HMS is extensively used in operational systems due to its low 

computational burden and the numerous tools available for input and output data 

conversions. However, the modular structure of the MERLIN forecasting system makes 

it straightforward to replace the hydrologic and hydraulic models by any other models 

preferred by the user.  
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HEC-HMs is a semi-distributed model that discretizes the catchment in river reaches 

and sub-basins with spatially uniform properties. The formulations used to reproduce 

the simulated physical processes, and the required input parameters are shown in Table 

1. Whereas certain parameters remain fixed during model set-up, others were tuned on a

daily basis as explained in the following sections. 

Physical process Formulation Input parameters 

Rainfall interception Dynamic canopy Vegetation storage capacity (VC) 

Rainfall-runoff 

transformation 

SCS unit 

hydrograph 
Lag time (TL) 

Rainfall losses 
Soil Moisture 

Account (SMA) 

Percentage of initial soil water content and each 

groundwater layer (SMS, SMGW1, SMGW2) 

Soil Maximum infiltration rate, storage capacity, and 

percolation rate * (IS, VS, PS) 

Storage, routing, and percolation coefficient for each 

groundwater layer *(VGW1, R GW1, PGW1, VGW2, R GW2, 

PGW2) 

Baseflow Linear reservoir Routing coefficient * (R GW1, R GW2) 

Flow routing Kinematic wave Manning coefficient 

Evapotranspiration Penman-Montheit None 

Table 1. Formulations and input parameters of the hydrological models. Parameters with * were 

tuned during the hindcast stage. 

Rainfall interception by vegetation is simulated using the dynamic canopy formulation. 

According to this approach, vegetation is modelled as a deposit where a certain volume 

of rainfall can be retained (Vc). Stored water is lost by evapotranspiration, which is 

computed following the Penman-Montheit formulation using solar radiation, air 

temperature, air humidity and wind speed data. Rainfall exceeding the capacity of the 

deposit is conveyed to the surface, where it infiltrates and generates runoff (Figure 2).  

Runoff hydrographs are computed using the SCS unit hydrograph method (Cronshey, 

1986), requiring as input parameter the lag time of each sub-basin (TL), defined as the 

delay between the peak rainfall intensity and the peak discharge. This time interval is 

computed from elevation and roughness data following the TR55 formulation 
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(Cronshey et al. 1985). 

Rainfall infiltration is modeled using the Soil Moisture Account formulation (Bennet & 

Peters, 2000). This methodology discretizes the terrain in three deposits (Figure 2). One 

deposit represents the soil layer with a storage capacity of VS. The other two represent 

underground layers with storage capacities of VGW1 and VGW2. Rainfall infiltrates into 

the soil deposit at a rate computed from the maximum infiltration rate (IS) and the 

moisture content of the soil layer (SMS). Water stored in the soil deposit can be lost by 

evapotranspiration or percolate to shallower underground deposits. The percolation rate 

is computed from the maximum percolation rate (Ps), and the moisture content of the 

soil and shallow underground deposits (SMS and SMGW1). Water flowing into a shallow 

underground deposit can either percolate to the deepest deposit or flow to the river bed 

as interstitial flux. The percolation rate is computed from the maximum percolation 

(PGW1) and the water content of both underground deposits (SMGW1 and SMGW2). 

Interstitial flow is simulated using a linear reservoir model with conductivity RGW1. 

Inflows into the deep underground deposit can either percolate to a deep aquifer, where 

they are stored indefinitely, or conveyed to the stream as interstitial flows. 
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Figure 2. Flowchart of the water fluxes in the Soil Moisture Account formulation. Dashed lines 

represent processes that detract water from the system. 

Runoff and interstitial flows conveyed to the stream are propagated following the 

kinematic wave formulation, which computes water velocity and depth from the slope 

and roughness (nC) of river reaches. 

2.3.2. Hindcast and forecast stage 

During the hindcast stage, the hydrological model of each catchment assimilates 

observed discharge and meteorological data to reproduce the soil infiltration capacity at 

the beginning of the forecast stage. To this end, hydrological models are fed with the 

meteorological observations described in section 2.2.1, and the infiltration parameters 

are tuned to fit the computed discharges to the observed ones.  

At each sub-basin, the moisture content of the soil and underground layers (SMS, 

SMGW1 and SMGW2) are obtained from SMAP satellite data. The remaining SMA 

parameters (IS, VS, PS, VGW1, R GW1, PGW1, VGW2, R GW2, and PGW2) are calibrated to fit 

the observed discharges. To simplify the calibration procedure, the same value of each 

parameter is allocated to all the sub-basins of each catchment. A Nelder-Mead 

algorithm is used to search for the optimum parameter values, using the Nash-Suttcliffe 

Efficiency Index (NSE) as the objective function. The number of iterations is set to 100 

in order to reduce the computational burden and allow an early delivery of the 

forecasting system. In order to improve the convergence of the hindcast process, the 

values of the input parameters of each catchment obtained for the previous day are used 

as seed values. 

During the forecast stage, hydrological models predict the discharges along the studied 

catchments for the upcoming 4 days. For this purpose, the models are fed with the 

meteorological forecasts described in section 2.2.2 and the parameter values obtained 
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from the hindcast stage. By doing so, the hydrological models accurately reproduce the 

infiltration capacity of the catchment during the simulated period. 

2.4. Hydraulic module 

The hydraulic module computes the flood extent from the discharges forecasted by the 

hydrological module and the tidal level forecasts. The hydraulic module comprises the 

hydraulic models of the flood prone areas of the catchments included in the forecasting 

system. Moreover, the module includes a set of python functions used to set the 

corresponding boundary conditions of the hydraulic models, launch the simulations, and 

process the outputs.  

2.4.1. Hydraulic models 

The hydraulic models used in the MERLIN forecasting system are Iber+ models 

(García-Feal et al. 2018), a GPU parallelized version of the Iber model (Bladé et al. 

2014). Iber solves the two-dimensional shallow water equations over both structured 

and unstructured meshes, using a finite volume approach. The Iber model has been 

validated in many previous studies (Bermúdez et al. 2017; Cea and Bladé, 2015; Cea 

and French, 2012; Fraga et al. 2017), and it has proved to deal efficiently with some of 

the main numerical difficulties that appear in the modelling of overland flow, such as 

the presence of highly unsteady wet–dry fronts, small water depths, and high bed 

friction (Cea and Bladé, 2015). The parallelized version of the model decreases in two 

orders of magnitude the computational time, which is especially relevant for flood 

forecasting since flood warnings have to be delivered as soon as possible.  

Unlike hydrological models, hydraulic models do not require initialization and therefore 

run only during the forecast stage. The input parameters required by hydraulic models 

are the roughness coefficients defined during model set-up. 



15 

For each day of the forecast stage, the hydraulic models are run using as boundary 

conditions the discharge and tidal levels forecasted for the referred day. This approach 

is adapted for coastal river reaches, where flood extent is conditioned by both fluvial 

discharges and the tidal level. The computed flood hazard and maximum water depths 

are interpolated to raster files. These rasters are plotted over geo-referenced 

photographs, showing the time stamp corresponding to maximum flooding (Figure 3). 

The generated images and the forecasted hydrographs can be sent to local stakeholders, 

who can use this information to alert the population, and to activate evacuation and 

defence protocols. In addition, the time series of the water depths at control points are 

extracted to compare the computed values against measured data when available. 

Figure 3. Example of hydraulic model output at one of the catchments described in section 3. Flood 

hazard was determined in accordance with Spanish legislation. 

2.4.2. Triggering of the hydraulic model simulations 

In order to save computational resources, the hydrodynamic simulations of the flood 

prone areas are run only when forecasted discharges are expected to cause flooding. For 

this purpose, discharges predicted by the hydrological models are compared against the 
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bankfull discharges. This comparison is performed separately for each catchment and 

each day of the forecast stage (Figure 4). When forecasted discharges are higher than 

the bankfull discharges, the watercourse capacity is exceeded. In this case, the 

simulation of the hydraulic model is launched to compute the inundation extent and 

flood hazard. 

Figure 4. Example of flood risk and maximum waterway capacity forecasts at one of the catchments. 

The bankfull discharge of each river reach was determined prior to the forecast system 

set up. To this end, the hydrodynamic models of the flood prone areas were used. 

Multiple simulations were run for every model, each with a fixed tidal level at the basin 

outlet and a slowly increasing discharge at the inlet boundary. For each simulation, the 

bankfull discharge was considered as the maximum discharge flowing without 

exceeding the waterway at any point of the river reach. It is important to remark that no 

specific location was selected a priori to define the bankfull discharge. From the results 

of the hydrodynamic simulations, the river cross-section where overflow first occurred 

was identified, and the bankfull discharge was defined as the discharge flowing through 

that section just before the waterway capacity was exceeded. If an overflow occurred far 

from the river mouth, where the flow is not influenced by the tide, the bankfull 

discharge will be the same for any tidal level. However, in the catchments included in 
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the MERLIN forecasting system, overflow started near the river mouth, so the 

maximum discharge depended on the tidal level. The bankfull discharges and tidal 

levels obtained at each catchment during the described simulations were fitted to a 

curve (Figure 5).  These curves and the tidal level forecasts described in section 2.2.2 

were used to estimate the bankfull discharges over the upcoming days (Figure 4).    

Figure 5. Relation between bankfull discharge and tidal level for the catchments described in section 

3. Dots correspond to the values obtained for each simulation and the solid line to the fitted curve.

3. System implementation

This section reviews the application of the MERLIN system for forecasting the flood 

hazard in three areas located in coastal catchments in north-western Spain. The 

MERLIN system run on an Intel Core i7 7700 3.6 GHz CPU, with 32 GB of RAM, and 

a NVIDIA Gforce GT730 GPU. The time required to perform the whole forecasting 

process, which included both the hindcast and forecast stages of the three catchments, 

was approximately 1 hour. 

3.1. Catchments description 

The flood hazard forecasting system was implemented in three coastal catchments in the 

northwest of Spain. The studied catchments are those of the rivers Cee, Grova and 

Mendo (Figure 6). In the three catchments there are urbanized areas exposed to flood 

risk. These are the towns of Cee, Baiona and Betanzos, with populations of around 

8000, 12000 and 13000 inhabitants respectively. 
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The studied catchments present similar characteristics in terms of land use and 

topography (Table 2). However, they differ in size and lag times. The lag times were 

determined by analysing the hydrographs computed by the hydrological model of each 

catchment when constant rain intensity was imposed. Discharge data from the 

monitoring network operated by Augas de Galicia was available near the outlet of each 

catchment. The Annual Exceedance Probability Discharges (AEP) presented in Table 2 

were obtained from Augas de Galicia (2016). 

Catchment 

Area (Km2) 

QF 

(m3/s) 

Catchment Land use (%) River 

length 

(km) 

Maximum 

height 

(m.a.s.l) 

TL 

(hours) 

Forest Agricultural Moors 

Cee 4.95 3.1 28 42 30 4.7 300 0:50 

Grova 16.96 14.0 27 27 46 9.7 650 1:20 

Mendo 83.9 60.31 26 66 8 32.2 500 4:30 

Table 2. Characteristics of the three catchments. TL corresponds to the lag time of the catchment, 

and QF to the 1 / 3 AEP discharge 

The catchments are located in the region of Galicia, which is situated in the path of 

incoming low pressure fronts from the Atlantic Ocean. These fronts are generated in 

polar regions and move southeast with the prevailing winds. The incoming fronts are 

uplifted at the coastline due to the steep terrain of the coastal region, which generates 

adverse weather events with intense rainfalls characterized by high spatial and temporal 

variability (Cabalar‐ Fuentes, 2005). This behaviour is also observed in other regions, 

such as the U.S. Pacific Coast, given the similar latitude and orography (Eiras‐ Barca, 

Brands, & Miguez‐ Macho, 2016).  
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Figure 6. Location and topography of the Cee, Grova and Mendo catchments used to analyse the 

performance of the MERLIN system. 

3.2. Hydrological model set-up 

The hydrological model of each catchment was built using the HEC-GeoHMS software 

(Fleming & Doan, 2009). Elevation data from a 5 meters Digital Elevation Model 

(DEM), provided by the Spanish National Geographical Institute, was used to define the 

extent and slope of the sub-basins and river reaches (Table 3). Land use data obtained 

from the Corine Land Cover service was used to compute the amount of impervious 

surface and the roughness coefficient for each sub-basin. The Manning coefficients of 

all the river reaches were set to 0.06 s.m-1/3 after visual inspections. The vegetation 

storage capacity of the sub-basins (VC in Table 1) was set to 2 mm. This value was 

selected from the range recommended in the HEC-HMS user’s manual, taking into 

account land use. The same value was allocated to the sub-basins of the three 

catchments, since all of them have a similar percentage of forested areas. 

3.3. Hydraulic model set-up 

The hydraulic model of each catchment covers the Area with Potential Significant 

Flood Risk (APSFR) of the basin, as defined by the Flood Risk Management Plan of 

Galicia-Costa 2015–2021 (Inungal, 2016). Models also extend the estuary downstream 
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the river mouth to include the tidal level forecasts as boundary conditions (Figure 7). 

The computational meshes were built to ensure an accurate discretization of each 

domain while avoiding a large number of elements. These premises become crucial 

towards achieving good model performance in affordable computational times 

(Costabile et al. 2011; Costabile & Macchione, 2015). To this end, the discretization of 

the APSFR areas was performed using the IberGUI. This tool allows combining 

structured and un-structured meshes, resulting in a more efficient discretization of the 

domain. 

The river channels were discretized in structured meshes with element sizes of 2 meters. 

The rest of the domain was discretized in un-structured meshes with coarser resolutions 

to reduce the number of elements of the meshes (Table 3). In urbanized areas, buildings 

were modelled as holes in the computational mesh. The element size was set to 3 meters 

to accurately reproduce the topography of streets and pathways. River estuaries were 

discretized using larger elements (Figure 7), using mesh elements of size 30, 20, and 60 

m at the Cee, Grova, and Mendo models respectively. The reason for this was that 

estuaries were included mainly to simulate the tidal level near the river mouth. A 

detailed characterization of the hydrodynamics at the estuary was not required to 

compute the flood extent in urbanized areas. Therefore, they were discretized into larger 

elements in order to reduce the computational burden. 
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Figure 7. Element size distribution in the hydraulic model of the Grova catchment. 

Elevation data was obtained from 1 m resolution DEM produced by the Spanish 

National Grographical Institute. The roughness coefficient of each element was set from 

the corresponding land use and the values recommended in the Iber user’s manual. 

Land use was defined from visual inspections and aerial photography of the catchments.  

Hydrological model Hydraulic model 

Basin Number of 

sub-basins 

Sub-basin size 

range (km2) 

Model 

area (m2) 

Number of  

elements 

Element size 

range (m) 

Cee 7 0.48-1.22 552115 29474 2 - 30 

Grova 18 0.36– 2.80 2720417 32944 2 - 20 

Mendo 23 0.79-6.90 8173792 136582 1.5 - 60 

Table 3.Main characteristics of the hydrological and hydraulic models. 

4. Results and discussion

4.1. Results 

The performance of the MERLIN system in the 3 catchments described in section 3 was 
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evaluated over 4 months spanning over winter and spring.  An example of the discharge 

forecasts produced by the flood forecasting system on a daily basis is shown in Figure 

8, where observed discharges and rainfall were added a posteriori to evaluate the 

accuracy of the predictions. At the Mendo catchment, despite small deviations observed 

in the shapes of the rising and recession limbs of the hydrograph, peak discharges were 

correctly predicted both in terms of magnitude and time. However, since meteorological 

forecasts over predict rainfall, the total runoff volume was over estimated. The results at 

the Cee and Grova catchments are presented as an example of the importance of rain 

forecasts in the performance of the warning system. At the Cee catchment, peak rain 

intensity was underestimated, causing under-prediction of forecasted discharges. In 

contrast, the meteorological forecasts at the Grova catchment overestimated maximum 

rain intensity, so predicted discharges exceeded the observed ones at the peak of the 

hydrograph. 



23 

Figure 8. Example of the discharge forecasts and observations. 

The accuracy of the forecasts delivered by the MERLIN system during the whole 

evaluation period is shown in Figure 9, where rain intensities correspond to a 10-minute 

interval and were measured at rain gauges located inside the Cee catchment, 

approximately 10 km northeast from the Grova catchment and around 15 km east from 

the Mendo basin.  
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The degree of collinearity between simulated and measured discharges is quantified 

using the coefficients of determination R2. The R2 coefficients 0.81, 0.68, and 0.39 are 

obtained at the Mendo, Grova and Cee catchments. It is important to remark that the R2 

values are remarkably higher than those obtained for the peak rain intensities at the 

Mendo (0.47), Grova (0.2) and Cee (0.27) catchments. The percent bias (PBIAS) of the 

forecasted discharges, which measures the average tendency of the simulated values to 

be larger or smaller than the observations, indicate that peak discharges were under 

predicted at the Mendo and Grova catchments, and over predicted at the Cee catchment.  

At the three catchments, the R2 coefficients between the forecasted and observed water 

depths are similar to the R2 coefficients between the predicted and measured discharges. 

In contrast, the PBIAS decrease significantly in magnitude, especially at the Cee and 

Grova catchments.  Differences between predicted and observed water depths are below 

10% in most cases, which represent errors of about 10-15 cm. Furthermore, it is likely 

that these errors could be further reduced since they can be partially explained by the 

discretization of the river reach. Hydraulic models with finer resolutions would capture 

more precisely the elevation of the river bed at the gauging sections, which would 

improve the accuracy of water level forecasts. However, this would increase the 

computational cost of the system, which could limit its ability to deliver early flood 

warnings. This is particularly relevant since water depths, rather than discharges, 

determine the flood extent. 
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Figure 9. Comparison between observed and forecasted values. Rain intensities correspond to a 10-

minute interval. Predicted values correspond to 24-hour forecasts. 

Results presented in Figure 9 correspond to forecasts for the upcoming day. Figure 10 

shows the comparison between the measured and forecasted peak discharges for 

different time horizons. At the Mendo and Grova catchments, results show an increase 

in the accuracy of forecasted discharges as the time horizon decreases, as measured by 

the relative mean square errors (RMSE). At the Mendo catchment, the RMSE of the 

discharges forecasted for one day in advance (2 m3/s) halves those corresponding to 

forecasts performed with four days in advance (4.14 m3/s). At the Cee catchment, no 

improvement in the accuracy of discharge forecasts is observed.   
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At the three studied catchments, the sign for the PBIAS remains constant regardless of 

the time horizon of the forecast. Discharges forecasted at the Mendo, and Cee 

catchments present a relative constant PBIAS. At the Grova catchment, PBIAS vary 

depending on the antecedent days of the forecast.  

Figure 10. Comparison between observed and forecasted peak discharges with different days in 

advance (D1 to D4). Solid black line corresponds to a 1:1 line 
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4.2. Discussion 

The results presented substantiate the adequate performance of the MERLIN flood 

forecasting system during the evaluation period. The RMSE and R2 coefficients 

obtained for the forecasted discharges and water levels are acceptable (according to 

Moriasi et al., 2007), especially in the Mendo and Grova catchments. In addition, the 

PBIAS of the forecasted discharges at the three catchments are similar to the values 

reported for other flood forecasting systems (Neto et al., 2104; Laminchane and 

Sharma, 2017; Abdullah et al. 2018).  

It is worth noting that the R2 coefficients of the predicted discharges are higher than the 

R2 coefficients of the predicted rainfall at the three catchments. This implies that the 

meteorological forecast errors are attenuated during the rainfall runoff computations. In 

addition, the accuracy of the forecasting system increases when discharge forecasts are 

converted to water levels by the hydraulic models, which may be inferred from the 

decrease in the PBIAS shown in Figure 9. 

The R2 coefficients between the observed and forecasted discharges increase with the 

size of the catchment. For the Mendo catchment (83.9 km2), the R2 coefficient of the 

forecasted discharges doubles the R2 coefficient of the Cee basin (4.95 km2). In small 

catchments, small deviations in the storm path forecasted can significantly vary the 

average rainfall depth in the whole basin, leading to significant differences in the 

computed discharges. In comparison, bigger catchments are less sensitive to small 

deviations in the storm path since due to their large surface and rainfall is still likely to 

fall within the catchment.  

The least accurate predictions of peak discharge are obtained in the Cee catchment, 

where the system systematically over predicts the observed discharge (positive PBIAS). 
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This is partially explained by the high and positive PBIAS of the rain intensities 

forecasted in this catchment (Figure 9), which indicate that rainfall tends to be 

overestimated. A plausible explanation is the location of the Cee catchment in the 

western coast of Galicia (Figure 6), where most storms arrive from the Atlantic Ocean. 

The uplift of the low pressure fronts occurring when the fronts hit the coast hinders the 

accuracy of meteorological forecasts. This fact may also explain the low R2 coefficients 

of the predicted rainfall at the Grova and Cee catchments (0.26 and 0.20), which are 

much lower than the R2 coefficient at the Mendo catchment (0.46), located on the 

northern coast.  In fact, high rainfall intensities were forecasted for several days in the 

Cee and Grova catchments, although no rainfall finally occurred. In addition, the fact 

that the catchment is crossed by several roads and infrastructure that were not explicitly 

represented in the hydrological model, might have had an effect on performance of the 

model, especially given the small size of the catchment. Moreover, the narrow width of 

the stream network makes it difficult to accurately represent low flows in the hydrologic 

and hydraulic models, which are those that mainly occurred during the evaluation 

period of the system. It should be noted that the R2 coefficient in the Cee catchment is 

much lower for the water level than for the discharge, whilst the Grova and Mendo 

water levels and discharges obtained similar R2 values as shown in Figure 9. This 

indicates that there is a source of uncertainty in the transformation of the water 

discharges to water levels in the Cee catchment. This uncertainty should be addressed 

with a more accurate representation of the stream network and infrastructures, both in 

the hydrological and hydraulic models (Costabile and Macchione, 2015).  

The performance of the NWP model may also explain the increase of the accuracy in 

the predicted discharges at the Grova and Mendo catchments as the time horizon 

diminishes. The hydrological response of larger catchments is related to large-scale 
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atmospheric processes, which are better predicted by the meteorological models for 

short lead times (Gimeno et al. 2014). However, the ability of NWP models to capture 

small scale atmospheric processes that explain the hydrologic response of small 

catchments is still limited nowadays, regardless of the lead time (Wick et al. 2013).  

The previous findings underscore the need for quantifying uncertainty in the prediction 

chain (from rainfall through discharge to water levels), in order to estimate the 

reliability of flood hazard warnings. This is not a straightforward task since there are 

many sources of uncertainty, including rainfall input data (Fraga et al. 2018; Moulin et 

al. 2009; Villarini et al. 2008), the initialization of the hydrological model before each 

rainfall event (infiltration parameters), the calibration of the hydrological and hydraulic 

models (Beven and Binley, 2014; Huard and Mailhot, 2006; Lehbab‐ Boukezzi et al. 

2016), and the formulations used to model the hydrological and hydraulic processes, 

also known as model structural uncertainty (Beven and Binley, 2014).  

Finally, it is important to remark that the results obtained in this study correspond to a 

four-month evaluation period. During this period, the maximum observed discharges 

were approximately 1/3 of the mean annual maximum discharge. Therefore, further 

insight into the performance of the system during intense flood events is still required.  

5. Conclusions

This paper presents MERLIN, a new flood hazard forecasting system for coastal river 

reaches located in small and medium-size catchments. In order to account for the 

antecedent moisture content of the soil, the system operates in two stages. First, the 

system hindcasts the infiltration capacity of soil using meteorological and discharge 

observations. Then, the flood hydrographs and inundation hazard along flood prone 

areas are computed from meteorological forecasts. The system considers the joint 
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effects of tidal level and river discharge in the computation of the inundation hazard, 

and exploits recent improvements in High Performance Computing techniques applied 

to inundation models that enabled high-resolution two-dimensional simulations in 

relatively short time lapses. 

The performance of the forecast system was analysed during a few months period in 

winter and spring, with good performance being obtained for lead times of 24 to 48 

hours. Predictions improve as the size of the catchment increases. For larger time 

horizons the predictions deteriorate mainly due to the poor quality of the precipitation 

forecasts. Though the preliminary work presented in this study should be corroborated 

with further data gathered during future flood events, the system has proven to be 

potentially useful.  

Finally, it is important to remark that unexpected flooding may cause substantial 

damage and even the loss of human lives; hence, the design of flood warning systems 

should be conservative, since the consequences of under-prediction were far more 

serious than those of over-prediction. 
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