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Abstra
t

In this paper we propose a uni�ed formulation to introdu
e Lagrangian and semi-Lagrangian velo
ity

and displa
ement methods for solving the Navier-Stokes equations. This formulation allows us to state


lassi
al and new numeri
al methods. Several examples are given. We 
ombine them with �nite element

methods for spatial dis
retization. In parti
ular, we propose two new se
ond-order 
hara
teristi
s meth-

ods in terms of the displa
ement, one semi-Lagrangian and the other one pure Lagrangian. The pure

Lagrangian displa
ement methods are useful for solving free surfa
e problems and �uid-stru
ture inter-

a
tion problems be
ause the 
omputational domain is independent of the time and �uid-solid 
oupling at

the interphase is straightforward. However, for moderate to high-Reynolds number �ows, they 
an lead

to high distortion in the mesh elements. When this happens it is ne
essary to remesh and reinitialize the

transformation to the identity. In order to assess the performan
e of the obtained numeri
al methods, we

solve di�erent problems in two spa
e dimensions. In parti
ular, numeri
al results for a sloshing problem

in a re
tangular tank and the �ow in a driven 
avity are presented.

Keywords: Navier-Stokes equations, 
hara
teristi
s methods, Lagrange-Galerkin methods, se
ond-order

s
hemes, pure Lagrangian methods

1. Introdu
tion

The main goal of the present paper is to introdu
e new se
ond-order pure Lagrangian and semi-

Lagrangian methods for the numeri
al solution of Navier-Stokes equations. In the s
alar 
ase, methods

of 
hara
teristi
s for time dis
retization of 
onve
tion-di�usion problems are extensively used (see the

review paper [17℄). These methods are based on time dis
retization of the material time derivative and

were introdu
ed in the beginning of the eighties of the last 
entury 
ombined with �nite di�eren
es or

�nite elements for spa
e dis
retization (see [14℄, [25℄). When 
ombined with �nite elements they are also


alled Lagrange-Galerkin methods. In parti
ular, when the 
hara
teristi
s methods are formulated in a

�xed referen
e domain (respe
tively, in the 
urrent domain) they are 
alled pure Lagrangian methods

(respe
tively, semi-Lagrangian methods). In parti
ular, the 
lassi
al method of 
hara
teristi
s, as intro-

du
ed in [14℄ and [25℄, is semi-Lagrangian and �rst order in time. There exists an extensive literature

studying this 
hara
teristi
s method 
ombined with �nite elements applied to s
alar 
onve
tion-di�usion

equations. If ∆t denotes the time step, h the mesh-size and k the degree of the �nite element spa
e,

estimates of the form O(hk)+O(∆t) in the l∞(L2(Rd))-norm are shown in [29℄ (d denotes the dimension

of the spatial domain). Moreover, in [25℄ error estimates of the form O(hk)+O(∆t)+O(hk+1/∆t) in the

l∞(L2(Ω))-norm are obtained under the assumption that the normal velo
ity vanishes on the boundary

of Ω. All of these estimates involve 
onstants depending on solution norms. For linear �nite elements and

for a velo
ity �eld vanishing on the boundary, 
onvergen
e of order O(h2) + O(min(h, h2/∆t)) + O(∆t)
in the l∞(L2(Ω))-norm is stated in [1℄, where the 
onstants only depend on the data. In prin
iple, the

method of 
hara
teristi
s has been introdu
ed for evolution equations but an adaption to solve stationary


onve
tion-di�usion problems has been proposed in [7℄.
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In order to in
rease the order of time and spa
e approximations, higher order s
hemes for the dis-


retization of the material derivative and higher order �nite element spa
es should be used. In [27℄, a

se
ond-order 
hara
teristi
s method for solving 
onstant 
oe�
ient 
onve
tion-di�usion equations with

Diri
hlet boundary 
onditions is studied. The Crank-Ni
holson dis
retization has been used to approxi-

mate the formulation involving the material time derivative. For a divergen
e-free velo
ity �eld vanishing

on the boundary and a smooth enough solution, stability and O(∆t2) + O(hk) error estimates in the

l∞(L2(Ω))-norm are stated (see also [8℄ and [9℄ for further analysis).

Re
ently, for s
alar linear 
onve
tion-di�usion problems, we have introdu
ed so-
alled pure Lagrangian

methods 
ombined with �nite elements. In parti
ular, in [4℄ and [5℄ l∞(H1(Ω)) stability and l∞(H1(Ω))
error estimates of order O(∆t2)+O(hk) were proved for a se
ond-order pure Lagrange-Galerkin method.

Moreover, in [13℄, semi-Lagrangian and pure Lagrangianmethods are proposed and analyzed for 
onve
tion-

di�usion equations. Error estimates for Galerkin dis
retization of a pure Lagrangian formulation and for

a dis
ontinuous Galerkin dis
retization of a semi-Lagrangian formulation are obtained. The estimates

are written in terms of the proje
tions 
onstru
ted in [11℄ and [12℄. In [4℄ and [5℄ a pure Lagrangian

formulation has been used for more general problems. Spe
i�
ally, we have 
onsidered a (possibly degen-

erate) variable 
oe�
ient di�usive term instead of the simpler Lapla
ian, general mixed Diri
hlet-Robin

boundary 
onditions, and a time dependent domain. Moreover, we have analyzed a s
heme with approx-

imate 
hara
teristi
 
urves and presented numeri
al results for pure Lagrangian and semi-Lagrangian

methods. In [2℄ a uni�ed formulation to introdu
e Lagrangian and semi-Lagrangian methods for solving

s
alar linear 
onve
tion-di�usion problems has been proposed and new stability estimates for the pure

Lagrangian method proposed in [4℄ and [5℄ have been obtained. More pre
isely, an l∞(H1)−stability
estimate independent of the di�usion 
oe�
ient has been proved. Besides, if the given velo
ity �eld is

in
ompressible, a stability inequality independent of the �nal time has been shown.

Usually, the un
onditional stability of 
hara
teristi
s methods is only proved under the assumption

that the inner produ
ts in the Galerkin formulation are exa
tly 
al
ulated. This is rarely possible so in

pra
ti
e they have to be 
al
ulated by using numeri
al quadrature. In general, this adds some terms

to the �nal error estimates and, in some 
ases, it produ
es the loss of un
onditional stability. There

are several papers in the literature analyzing the e�e
t of numeri
al integration in Lagrange-Galerkin

methods (see [24℄, [29℄, [26℄, [19℄, [30℄, [9℄, [3℄).

In this paper, we introdu
e a uni�ed formulation to state pure Lagrangian and semi-Lagrangian

methods for solving ve
tor nonlinear 
onve
tion-di�usion equations. More pre
isely, we are interested in

solving the Navier-Stokes equations. For this purpose, we use the mathemati
al formalism of 
ontinuum

me
hani
s (see for instan
e [22℄) following the ideas given in [2℄.

The paper is organized as follows. In Se
tion 2 the initial-boundary value problem to be solved is

posed in a time dependent bounded domain and some hypotheses and notations 
on
erning motions are

stated. In Se
tion 3, we introdu
e a quite general 
hange of variable obtaining a new strong formulation of

the problem. Moreover, the standard asso
iated weak problem is obtained. In Se
tion 4, semi-Lagrangian

s
hemes in terms of the velo
ity are proposed. All these methods arise from the formulation obtained

in the previous se
tion. By using this formulation, in Se
tion 5, two new Lagrange-Galerkin s
hemes in

terms of the displa
ement are proposed, one pure Lagrangian and another one semi-Lagrangian. Finally,

in Se
tion 6 numeri
al examples are presented.

2. Statement of the nonlinear 
onve
tion di�usion problem. General assumptions and no-

tations

Let Ω be a bounded domain in R
d
(d = 2, 3) with Lips
hitz boundary Γ divided into two parts: Γ =

ΓD ∪ ΓN
, with ΓD ∩ ΓN = ∅. Let t0 and T be two non-negative 
onstants and X : Ω × [t0, T ] −→ R

d

be a motion in the sense of Gurtin [22℄. In parti
ular, X ∈ C3(Ω× [t0, T ]) and for ea
h �xed t ∈ [t0, T ],
X(·, t) is a one-to-one fun
tion satisfying

detF (p, t) > 0 ∀p ∈ Ω, (1)

being F (·, t) the deformation gradient of X(·, t). We 
all Ωt = X(Ω, t), Γt = X(Γ, t), ΓD
t = X(ΓD, t) and

ΓN
t = X(ΓN , t), for t ∈ [t0, T ]. We assume that Ωt0 = Ω. Let us introdu
e the traje
tory of the motion

T := {(x, t) : x ∈ Ωt, t ∈ [t0, T ]}.
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For ea
h t, X(·, t) is a one-to-one mapping from Ω onto Ωt; hen
e it has an inverse

P (·, t) : Ωt −→ Ω, (2)

su
h that

X(P (x, t), t) = x, P (X(p, t), t) = p ∀(x, t) ∈ T ∀(p, t) ∈ Ω× [t0, T ]. (3)

The mapping P : T −→ Ω, so de�ned is 
alled the referen
e map of motion X and P ∈ C3(T ) (see [22℄
pp. 65− 66). We denote by p the material points in Ω, by t the 
urrent time, by x the spatial points in

Ωt with t > t0 and by y the points in Ωτ with τ ≤ T . Besides, �elds de�ned in T are 
alled spatial �elds.

If Ψ is a spatial �eld, Ψ̇ denotes the material time derivative, that is Ψ̇(x, t) =
∂

∂t
(Ψ(X(p, t), t))|p=P (x,t).

Let us re
all that the spatial des
ription of the velo
ity v : T −→ R
d
is de�ned by

v(x, t) := Ẋ(P (x, t), t) ∀(x, t) ∈ T , (4)

being Ẋ the partial derivative of X with respe
t to the se
ond argument (time).

Let us 
onsider the following initial-boundary value problem.

(SP) STRONG PROBLEM. Find two fun
tions v : T −→ R
d
and π : T −→ R su
h that

ρ(x, t)
∂v

∂t
(x, t) + ρ(x, t) gradv(x, t)v(x, t)

(5)

− div
{
−π(x, t)I + µ(x, t)( gradv(x, t) + gradvt(x, t))

}
= b(x, t),

div v(x, t) = g(x, t), (6)

for x ∈ Ωt and t ∈ (t0, T ), subje
t to the boundary 
onditions

v(x, t) = vD(x, t) on ΓD
t , (7)(

−π(x, t)I + µ(x, t)( gradv(x, t) + gradvt(x, t))
)
n(x, t) = h(x, t) on ΓN

t , (8)

for t ∈ (t0, T ), and the initial 
ondition

v(x, t0) = v0(x) in Ω. (9)

In the above equations, ρ : T −→ R, µ : T −→ R, b : T −→ R
d
, g : T −→ R, v0 : Ω −→ R

d
,

vD(·, t) : ΓD
t −→ R

d
and h(·, t) : ΓN

t −→ R
d
, t ∈ (t0, T ), are given spatial �elds, I is the identity se
ond

order tensor and n(·, t) is the outward unit normal ve
tor to Γt. Let us noti
e that for g = 0 the above

equations are the in
ompressible Navier-Stokes equations. Otherwise, they arise when modelling low-

Ma
h number �ows as those arising in many gas 
ombustion problems. In this 
ase fun
tion g is obtained
from the mass 
onservation equation and the state law of the gas mixture as a fun
tion of temperature

whi
h, in its turn, is 
omputed by solving the energy 
onservation equation.

For given τ ≤ T , motion X 
an also be de�ned relative to the 
on�guration at time τ . It is the

mapping

Xτ : Ωτ × [t0, T ] −→ R
d
,

given by

Xτ (y, t) := X(P (y, τ), t) ∀(y, t) ∈ Ωτ × [t0, T ]. (10)

Thus, mapping t ∈ (t0, T ) → Xτ (y, t) represents the traje
tory des
ribed by a material point that is at

position y at time τ . Moreover, we noti
e that x = Xτ (y, t) if and only if y = Xt(x, τ). If Ψ is a spatial

�eld, we introdu
e the �eld Ψτ , de�ned in Ωτ × [t0, T ] by

Ψτ (y, t) := Ψ(Xτ (y, t), t) ∀(y, t) ∈ Ωτ × [t0, T ]. (11)

These fun
tions are depi
ted in Figure 1. Noti
e that for τ = t

Ψt(x, t) := Ψ(Xt(x, t), t) = Ψ(X(P (x, t), t), t) = Ψ(x, t).
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X(·, t)
X(·, τ)

P (·, τ)

Xτ (·, t)

p

Ω

y

Ωτ

x

Ωt

Ψ(·, t)
R

R
d

Lin

Ψτ (y, t) := Ψ(Xτ (y, t), t)

Figure 1: Fun
tions referred to 
on�guration at time τ ≤ T .

Let us introdu
e the displa
ement �eld relative to the 
on�guration at time τ , that is,

uτ (y, t) := Xτ (y, t)− y ∀(y, t) ∈ Ωτ × [t0, T ]. (12)

In the following A denotes a bounded domain in R
d
. Let us re
all the de�nition of the Hilbert spa
es

H1(A) and L2(A):

L2(A) =

{
f : A −→ R measurable,

∫

Ω

f2dx < ∞

}
, (13)

H1(A) =

{
f : A −→ R measurable, f,

∂f

∂xi
∈ L2(A), i = 1, . . . , d

}
. (14)

We also introdu
e the notation H1(A) =
(
H1(A)

)d
and denote by H1

ΓP (A) the 
losed subspa
e of H1(A)
de�ned by

H1
ΓP (A) :=

{
w ∈ H1(A), w|ΓP ≡ 0

}
, (15)

where ΓP
is a part of the boundary of A of non-null measure.

3. Strong problem and weak formulation in Ωτ × (t0, T )

We are going to develop some formal 
omputations in order to write the above problem (SP) in


on�guration Ωτ , where τ ≤ T . First, from the de�nition of the material time derivative and by using

the 
hain rule, we get

v̇(x, t) =
∂v

∂t
(x, t) + grad xv(x, t)v(x, t) =

∂

∂t
vτ (y, t)|y=Xt(x,τ) ∀(x, t) ∈ T . (16)

By using the above de�nitions, we have

vτ (y, t) =
∂Xτ

∂t
(y, t) =

∂uτ

∂t
(y, t). (17)

Then, from (16) and (17), we dedu
e

∂v

∂t
(x, t) + grad xv(x, t)v(x, t) =

∂2uτ

∂t2
(y, t)|y=Xt(x,τ) ∀(x, t) ∈ T . (18)

Next, by evaluating equations (5) and (6) at point x = Xτ (y, t) and then using (18), we obtain

ρ(Xτ (y, t), t)
∂2uτ

∂t2
(y, t)− div x {−π(Xτ (y, t), t)I

(19)

+µ(Xτ (y, t), t)( grad xv(Xτ (y, t), t) + grad xv
t(Xτ (y, t), t))

}
= b(Xτ (y, t), t),

div xv(Xτ (y, t), t) = g(Xτ (y, t), t), (20)
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for (y, t) ∈ Ωτ × (t0, T ). Note that in (19) and (20) there are derivatives with respe
t to the Eulerian

variable x. In order to write a strong formulation of problem (SP) in 
oordinates (y, t) ∈ Ωτ × (t0, T )
we use the divergen
e theorem, the 
hange of variable x = Xτ (y, t) and the 
hain rule, to obtain the

equalities

− div x {−π(Xτ (y, t), t)I +µ(Xτ (y, t), t)( grad xv(Xτ (y, t), t) + grad xv
t(Xτ (y, t), t))

}

= −
1

detFτ (y, t)
div y {(−πτ (y, t)I (21)

+µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))
detFτ (y, t)F

−t
τ (y, t)

}
,

div xv(Xτ (y, t), t) = tr ( grad xv(Xτ (y, t), t)) = tr

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t)

)

(22)

= grad y
∂uτ

∂t
(y, t)F−1

τ (y, t) · I = grad y
∂uτ

∂t
(y, t) · F−t

τ (y, t),

for (y, t) ∈ Ωτ × (t0, T ) and where we have used equality (17). Here and hereafter, the dot is used to

denote the s
alar produ
t either of ve
tors or of se
ond order tensors. Moreover, in the above equations,

Fτ denotes the Ja
obian matrix of the transformation Xτ . Next, by evaluating equations (7) and (8) at

point x = Xτ (y, t) and equation (9) at point P (y, τ), and using (17), we obtain the following boundary

and initial 
onditions for

∂uτ

∂t
:

∂uτ

∂t
(y, t) = (vD)τ (y, t) on ΓD

τ × (t0, T ),
(
−πτ (y, t)I + µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))

F−t
τ (y, t)mτ (y) = |F−t

τ (y, t)mτ (y)|hτ (y, t) on ΓN
τ × (t0, T ),

∂uτ

∂t
(y, t0) = v0(P (y, τ)) in Ωτ ,

where mτ is the outward unit normal ve
tor to ∂Ωτ . The se
ond 
ondition has been obtained by using

the 
hain rule and noting that

n(Xτ (y, t), t) =
F−T
τ (y, t)mτ (y)∣∣F−T
τ (y, t)mτ (y)

∣∣ (y, t) ∈ Γτ × (t0, T ).

Thus, from these results, we dedu
e the following formulation in Ωτ ×(t0, T ) of the initial-boundary value
problem (SP):

(SP)τ STRONG PROBLEM IN Ωτ × (t0, T ). Find two fun
tions uτ : Ωτ × [t0, T ] −→ R
d
and

πτ : Ωτ × [t0, T ] −→ R su
h that

ρτ (y, t)
∂2uτ

∂t2
(y, t)−

1

detFτ (y, t)
div y

{
(−πτ (y, t)I

+µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))
detFτ (y, t)F

−t
τ (y, t)

}
(23)

= bτ (y, t),

grad y
∂uτ

∂t
(y, t) · F−t

τ (y, t) = gτ (y, t), (24)
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for (y, t) ∈ Ωτ × (t0, T ), subje
ted to the boundary 
onditions

∂uτ

∂t
(y, t) = (vD)τ (y, t) on ΓD

τ × (t0, T ), (25)

(
−πτ (y, t)I + µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

))

(26)

F−t
τ (y, t)mτ (y) = |F−t

τ (y, t)mτ (y)|hτ (y, t) on ΓN
τ × (t0, T ),

and the initial 
ondition

∂uτ

∂t
(y, t0) = v0(P (y, τ)) in Ωτ . (27)

Depending of the 
hoi
e of τ , we 
an obtain di�erent Lagrangian and semi-Lagrangian methods. More

pre
isely, the pure Lagrangian methods (respe
tively, the semi-Lagrangian methods) are obtained when

τ is �xed along the time integration, that is, it is independent of the 
urrent time t (respe
tively, when
τ 
hanges along the time integration, that is, it 
hanges with t). Among semi-Lagrangian methods we


an distinguish forward semi-Lagrangian (if τ < t) and ba
kward semi-Lagrangian (if τ > t). Now, we

are going to obtain a weak formulation of (SP)τ . Let us multiply (23) by detFτ and by a test fun
tion

z ∈ H1
ΓD
τ
(Ωτ ), integrate in Ωτ , and apply the usual Green's formula and (26). Similarly, let us multiply

(24) by detFτ and by a test fun
tion q ∈ L2(Ωτ ), and integrate in Ωτ . We get

∫

Ωτ

ρτ (y, t) detFτ (y, t)
∂2uτ

∂t2
(y, t) · z(y) dy −

∫

Ωτ

πτ (y, t) detFτ (y, t)F
−t
τ (y, t) · gradz(y) dy

+

∫

Ωτ

µτ (y, t)

(
grad y

∂uτ

∂t
(y, t)F−1

τ (y, t) + F−t
τ (y, t)

(
grad y

∂uτ

∂t

)t

(y, t)

)

(28)

detFτ (y, t)F
−t
τ (y, t) · grad z(y) dy =

∫

Ωτ

bτ (y, t) · z(y) detFτ (y, t) dy

+

∫

ΓN
τ

|F−t
τ (y, t)mτ (y)| detFτ (y, t)hτ (y, t) · z(y) dAy ,

∫

Ωτ

detFτ (y, t) grad y
∂uτ

∂t
(y, t) · F−t

τ (y, t)q(y) dy =

∫

Ωτ

detFτ (y, t)gτ (y, t)q(y) dy, (29)

∀z ∈ H1
ΓD
τ
(Ωτ ), ∀q ∈ L2(Ωτ ) and t ∈ (t0, T ). These are formal 
omputations, i.e., we have assumed

appropriate regularity of the involved data and solution.

Remark 3.1. Noti
e that equations (28)-(29) 
an also be written in terms of the velo
ity instead of the

displa
ement, by repla
ing

∂uτ

∂t
(y, t) with vτ (y, t). Thus, from (28)-(29) we 
an obtain Lagrangian and

semi-Lagrangian methods in terms of either the velo
ity or the displa
ement. We will 
all velo
ity meth-

ods (respe
tively, displa
ement methods) to those written in terms of the velo
ity (respe
tively, of the

displa
ement). The 
lassi
al 
hara
teristi
s methods for Navier-Stokes equations are semi-Lagrangian

velo
ity s
hemes. In the next se
tions, we are going to obtain, from (28)-(29), di�erent 
hara
teristi
s

methods, in parti
ular the 
lassi
al ones.

4. Time dis
retization: 
hara
teristi
s methods in terms of velo
ity

In this se
tion, we present semi-Lagrangian velo
ity methods. They are obtained by introdu
ing

di�erent time semi-dis
retizations of problem (SP)τ written in terms of vτ (y, t) instead of

∂uτ

∂t
(y, t).

Remark 4.1. Noti
e that Xτ (y, t) and Fτ (y, t) appearing in (28)-(29) are unknown; but they 
an be

approximated by using an approximation of either the velo
ity or the displa
ement.

• Displa
ement methods. For these methods, approximations of Xτ and Fτ 
an be easily obtained by

using the following equalities:

Xτ (y, t) = y + uτ (y, t),

Fτ (y, t) = gradXτ (y, t) = I + graduτ (y, t).

6



• Velo
ity methods. For these methods, we 
an observe that Xτ and Fτ are the solutions to the

following initial-value problems of ordinary di�erential equations (y is arbitrarily taken but �xed):

∂Xτ

∂t
(y, t) = vτ (y, t) Xτ (y, τ) = y,

∂Fτ

∂t
(y, t) = grad yvτ (y, t) Fτ (y, τ) = I,

being y ∈ Ωτ . Then, approximations of Xτ and Fτ 
an be obtained by using numeri
al methods to

solve these initial-value problems.

The following notations will be used in the rest of the paper. Let us introdu
e the number of time

steps, N , the time step ∆t = (T − t0)/N , and the mesh-points tn = t0 + n∆t.
Depending on the values of τ and t, on the di�erentiation formulas used to approximate the time

derivatives and on the numeri
al formulas used to approximate the other terms, we 
an obtain di�erent


hara
teri
ti
s methods. Let Ψ be a spatial �eld. We will use the following notation:

Ψl
j(y) := Ψtj(y, tl) ∀y ∈ Ωtj , ∀j, l. (30)

In parti
ular, for j = l we will simply write Ψl
instead of Ψl

l. Let us noti
e that F
l
l = I ∀ l.

Similarly, in what follows we will denote byΨl
j,∆t (respe
tively, Ψ

l
j,∆t,h) approximations of Ψl

j obtained

with a time semidis
retized s
heme (respe
tively, a fully dis
retized s
heme).

• One-step semi-Lagrangian s
hemes: This one-parameter family of methods arises from �xing τ =

tn+1, t = tn+θ in (23) and t = tn+1 in (24), and using a two-point formula to approximate

∂vτ

∂t
and

a 
onvex linear 
ombination involving the values at t = tn and t = tn+1 to approximate the rest of

the terms at time tn+θ. More pre
isely:

(θρn+1(x) + (1− θ)ρnn+1,∆t(x))
vn+1
∆t (x) − vn

n+1,∆t(x)

∆t

−θ div
{(

−πn+1
∆t (x)I + µn+1(x)

(
gradvn+1

∆t (x) +
(
gradvn+1

∆t (x)
)t
(x)
))}

−(1− θ)
1

detFn
n+1,∆t(x)

div
{(

−πn
n+1,∆t(x)I + µn

n+1,∆t(x)
(
gradvn

n+1,∆t(x) (31)

(Fn
n+1,∆t)

−1(x) + (Fn
n+1,∆t)

−t(x)
(
gradvn

n+1,∆t

)t
(x)
))

detFn
n+1,∆t(x)(F

n
n+1,∆t)

−t(x)
}

= θbn+1(x) + (1− θ)bn
n+1,∆t(x), x ∈ Ωtn+1

,

div vn+1
∆t (x) = gn+1(x), x ∈ Ωtn+1

, (32)

for 0 ≤ n ≤ N − 1.

Parti
ular 
ases:

1. When θ = 1, we obtain the 
lassi
al �rst order semi-Lagrangian s
heme proposed in [25℄.

2. When θ = 1/2, we obtain a new se
ond-order semi-Lagrangian s
heme similar to the one

analyzed in [8℄ and [9℄ for linear s
alar 
onve
tion-di�usion problems.

• Two-step se
ond-order semi-Lagrangian s
heme: This method has been proposed in [10℄ for the

in
ompressible Navier-Stokes equations. It 
an be introdu
ed in our framework by taking τ = tn+1,

t = tn+1, and using the following se
ond-order ba
kward formula to approximate

∂vτ

∂t
:

∂vτ

∂t
(y, t) =

1

2∆t
(3vτ (y, t)− 4vτ (y, t−∆t) + vτ (y, t− 2∆t)) +O(∆t2). (33)
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More pre
isely:

ρn+1(x)
3vn+1

∆t (x)− 4vn
n+1,∆t(x) + vn−1

n+1,∆t(x)

2∆t

− div
{(

−πn+1
∆t (x)I + µn+1(x)

(
gradvn+1

∆t (x) +
(
gradvn+1

∆t (x)
)t
(x)
))}

(34)

= bn+1(x), x ∈ Ωtn+1
,

div vn+1
∆t (x) = gn+1(x), x ∈ Ωtn+1

, (35)

where 1 ≤ n ≤ N − 1. In [3℄ this method has been applied to solve natural 
onve
tion problems.

Remark 4.2. In the above methods, the 
hara
teristi
s 
urves and their gradients are approximated by

using the pro
edures given in Remark 4.1. Noti
e that F does not appear either in the 
lassi
al �rst order

semi-Lagrangian s
heme or in the two-step se
ond-order semi-Lagrangian s
heme. However, for both

methods, in order to 
al
ulate vl
n+1,∆t, it is ne
essary to obtain an approximation of the 
hara
teristi
s


urves X l
n+1, being l = n for the 
lassi
al method and l = n, n− 1 for the se
ond-order one (see [3℄ for

further details).

5. New 
hara
teristi
s methods in terms of the displa
ement

In order to obtain 
hara
teristi
s methods in terms of the displa
ement, we 
onsider the following

formulas to approximate the time derivatives

∂2uτ

∂t2
(y, t) and

∂uτ

∂t
(y, t):

• Three-point se
ond-order 
entered formula:

∂2uτ

∂t2
(y, t) =

uτ (y, t+∆t)− 2uτ (y, t) + uτ (y, t−∆t)

∆t2
+O(∆t2). (36)

• Two-point se
ond-order 
entered formula:

∂uτ

∂t
(y, t) =

uτ (y, t+∆t)− uτ (y, t−∆t)

2∆t
+O(∆t2). (37)

5.1. Pure Lagrangian s
heme

In this se
tion we introdu
e a pure Lagrange-Galerkin s
heme for fully dis
retization of (28)-(29).

Firstly, we propose a se
ond order pure Lagrangian s
heme for time semi-dis
retization of (28)-(29).

Next, we propose a spa
e dis
retization of the time semidis
retized problem by using �nite elements

spa
es.

5.1.1. Time dis
retization

By taking τ = t0 −
∆t

2
and t = tn+1/2 in (28)-(29), and using the se
ond-order formulas (36) and

(37), we obtain the time-dis
retized s
heme

∫

Ωt0−∆t/2

ρn+1/2 ◦X
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t

u
n+3/2
−1/2,∆t − 2u

n+1/2
−1/2,∆t + u

n−1/2
−1/2,∆t

∆t2
· z dy

−

∫

Ωt0−∆t/2

π
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t(F

n+1/2
−1/2,∆t)

−t · gradz dy

+

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t

gradu
n+3/2
−1/2,∆t − gradu

n−1/2
−1/2,∆t

2∆t

(F
n+1/2
−1/2,∆t)

−1(F
n+1/2
−1/2,∆t)

−t · grad z dy +

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t detF

n+1/2
−1/2,∆t(F

n+1/2
−1/2,∆t)

−t
(38)

( gradu
n+3/2
−1/2,∆t)

t − ( gradu
n−1/2
−1/2,∆t)

t

2∆t
(F

n+1/2
−1/2,∆t)

−t · gradz dy

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆tb

n+1/2 ◦X
n+1/2
−1/2,∆t · z dy
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+

∫

ΓN
t0−∆t/2

|(F
n+1/2
−1/2,∆t)

−tmt0−∆t/2| detF
n+1/2
−1/2,∆th

n+1/2 ◦X
n+1/2
−1/2,∆t · z dAy ,

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t

gradu
n+3/2
−1/2,∆t − gradu

n−1/2
−1/2,∆t

2∆t
· (F

n+1/2
−1/2,∆t)

−tq dy

(39)

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆tg

n+1/2 ◦X
n+1/2
−1/2,∆tq dy,

∀z ∈ H1
ΓD
t0−∆t/2

(Ωt0−∆t/2), ∀q ∈ L2(Ωt0−∆t/2) and 0 ≤ n ≤ N−1. In the above pure Lagrangian problem,

we have used the following notations

X
n+1/2
−1/2,∆t(y) := y + u

n+1/2
−1/2,∆t(y),

F
n+1/2
−1/2,∆t(y) := I + gradu

n+1/2
−1/2,∆t(y),

for y ∈ Ωt0−∆t/2 and 0 ≤ n ≤ N − 1. Noti
e that problem (38)-(39) is linear in the unknowns u
n+3/2
−1/2,∆t

and π
n+1/2
−1/2,∆t.

In general, Ωt0−∆t/2 is unknown; instead we 
al
ulate an approximation by using the following se
ond

order approximation of the motion:

X∆t(p, t0−∆t/2) = p− v0(p)
∆t

2
,

for p ∈ Ω.

Remark 5.1. In order to obtain the initial 
onditions for the pure Lagrangian method (38)-(39), we observe

that u
−1/2
−1/2(y) := u−1/2(y, t0−∆t/2) = 0 ∀y ∈ Ωt0−∆t/2. Moreover, a third order approximation of u

1/2
−1/2


an be obtained by using (27), namely

u
1/2
−1/2(y) = ∆tv0

(
y + v0(y)

∆t

2

)
+O(∆t3) ≃ ∆tv0

(
y + v0(y)

∆t

2

)
,

where we have used that u−1/2(y, t0 −∆t/2) = 0. Then we take

u
1/2
−1/2,∆t(y) := ∆tv0

(
y + v0(y)

∆t

2

)
.

In the a
ademi
 test examples, we have observed that for the above method to be se
ond-order in time for

the velo
ity it is ne
essary to start with a third order approximation of u
1/2
−1/2 as the previous one.

Remark 5.2. By using analogous pro
edures to the ones in Remark 5.1, we 
an obtain approximate Diri
h-

let boundary 
onditions for the displa
ement. More pre
isely, by using that

u
n+3/2
−1/2 (y) = u

n+1/2
−1/2 (y) + ∆tvn+1

(
X−1/2(y, tn−1/2) + vn−1/2(X−1/2(y, tn−1/2))

3

2
∆t

)
+O(∆t3),

we dedu
e the following Diri
hlet boundary 
ondition for u
n+3/2
−1/2 :

u
n+3/2
−1/2,∆t(y) = u

n+1/2
−1/2,∆t(y) + ∆tvn+1

D

(
X

n−1/2
−1/2,∆t(y) + v

n−1/2
D (X

n−1/2
−1/2,∆t(y))

3

2
∆t

)
on ΓD

t0−∆t/2.

5.1.2. Spa
e dis
retization. Finite element method

We propose a spa
e dis
retization of the above problem by using 
ontinuous pie
ewise-linear+bubble

�nite element for ea
h displa
ement 
omponent and 
ontinuous pie
ewise-linear for pressure.

Let us suppose Ωt0−∆t/2 is a bounded domain in R
d
with a Lips
hitz polygonal boundary. Let us


onsider a suitable family of regular triangulations of Ωt0−∆t/2 to be denoted by Th, 
onsisting of elements
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K of diameter≤ h. Moreover, we assume it is 
ompatible with the partition of the boundary into ΓD
t0−∆t/2

and ΓN
t0−∆t/2.

We de�ne the following polynomial spa
es:

P1 (K) =
{
q|K : q : Rd −→ R polynomial of degree ≤ 1

}
,

Pb (K) =
{
q + αλK

b : q ∈ P1 (K) , α ∈ R
}
,

where λK
b is the bubble fun
tion of element K.

We 
onsider the following spa
es of �nite elements:

Xh =
{
wh ∈

(
C0(Ωt0−∆t/2)

)d
: wh|K ∈ (Pb (K))d , ∀K ∈ Th

}
, (40)

X0h =
{
wh ∈ Xh : wh = 0 on ΓD

t0−∆t/2

}
, (41)

Vh =
{
ϕh ∈ C0(Ωt0−∆t/2) : ϕh|K ∈ P1 (K) , ∀K ∈ Th

}
. (42)

In order to obtain fully dis
rete s
heme of the time semidis
retizated problem (38)-(39) we use the ap-

proximations of fun
tion spa
es H1(Ωt0−∆t/2), H
1
ΓD
t0−∆t/2

(Ωt0−∆t/2) and L2(Ωt0−∆t/2) given by (40), (41)

and (42), respe
tively.

Thus, we obtain the following fully dis
rete problem:

(LG).− Find two sequen
es of fun
tions û−1/2,∆t,h = {u
n+3/2
−1/2,∆t,h}

N−1
n=0 ∈ [Xh]

N
and π̂−1/2,∆t,h =

{π
n+1/2
−1/2,∆t,h}

N−1
n=0 ∈ [Vh]

N
su
h that

∫

Ωt0−∆t/2

ρn+1/2 ◦X
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h

u
n+3/2
−1/2,∆t,h − 2u

n+1/2
−1/2,∆t,h + u

n−1/2
−1/2,∆t,h

∆t2
· zh dy

−

∫

Ωt0−∆t/2

π
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h(F

n+1/2
−1/2,∆t,h)

−t · grad zh dy

+

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h

gradu
n+3/2
−1/2,∆t,h − gradu

n−1/2
−1/2,∆t,h

2∆t

(F
n+1/2
−1/2,∆t,h)

−1(F
n+1/2
−1/2,∆t,h)

−t · grad zh dy
(43)

+

∫

Ωt0−∆t/2

µn+1/2 ◦X
n+1/2
−1/2,∆t,h detF

n+1/2
−1/2,∆t,h(F

n+1/2
−1/2,∆t,h)

−t

( gradu
n+3/2
−1/2,∆t,h)

t − ( gradu
n−1/2
−1/2,∆t,h)

t

2∆t
(F

n+1/2
−1/2,∆t,h)

−t · grad zh dy

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t,hb

n+1/2 ◦X
n+1/2
−1/2,∆t,h · zh dy

+

∫

ΓN
t0−∆t/2

|(F
n+1/2
−1/2,∆t,h)

−tmt0−∆t/2| detF
n+1/2
−1/2,∆t,hh

n+1/2 ◦X
n+1/2
−1/2,∆t,h · zh dAy , ∀zh ∈ X0h

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t,h

gradu
n+3/2
−1/2,∆t,h − gradu

n−1/2
−1/2,∆t,h

2∆t
· (F

n+1/2
−1/2,∆t,h)

−tqh dy

(44)

=

∫

Ωt0−∆t/2

detF
n+1/2
−1/2,∆t,hg

n+1/2 ◦X
n+1/2
−1/2,∆t,hqh dy, ∀qh ∈ Vh,
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for 0 ≤ n ≤ N − 1, with

u
−1/2
−1/2,∆t,h(y) = 0, for all node y of mesh Th, (45)

u
1/2
−1/2,∆t,h(y) = ∆tv0

(
y + v0(y)

∆t

2

)
, for all node y of mesh Th, (46)

u
n+3/2
−1/2,∆t,h(y) = u

n+1/2
−1/2,∆t,h(y) + ∆tvn+1

D

(
X

n−1/2
−1/2,∆t,h(y) + v

n−1/2
D (X

n−1/2
−1/2,∆t,h(y))

3

2
∆t

)

(47)

for all node y on ΓD
t0−∆t/2,

and where X
n+1/2
−1/2,∆t,h(y) = y + u

n+1/2
−1/2,∆t,h(y), F

n+1/2
−1/2,∆t,h|K = I + gradu

n+1/2
−1/2,∆t,h|K for y ∈ Ωt0−∆t/2,

K ∈ Th and 0 ≤ n ≤ N − 1.

By using the solution of problem (LG), we 
an obtain approximations of the followings �elds: the ve-

lo
ity relative to Ωt0−∆t/2 at times {tn+1}
N−1
n=0 , the velo
ity in Eulerian 
oordinates at times {tn+1}

N−1
n=0 ,

the motion relative to Ωt0−∆t/2 at times {tn+1}
N−1
n=0 and the pressure in Eulerian 
oordinates at times

{tn+1/2}
N−1
n=0 . These approximations will be denoted respe
tively by {vn+1

−1/2,∆t,h}
N−1
n=0 , {vn+1

∆t,h}
N−1
n=0 ,

{Xn+1
−1/2,∆t,h}

N−1
n=0 and {π

n+1/2
∆t,h }N−1

n=0 .

• Approximate velo
ity relative to Ωt0−∆t/2. It 
an be easily obtained by using (17) and a

se
ond-order 
entered formula to approximate

∂u−1/2

∂t
. More pre
isely, sin
e

vn+1
−1/2(y) =

(
∂u−1/2

∂t

)
(y, tn+1) =

u
n+3/2
−1/2 (y)− u

n+1/2
−1/2 (y)

∆t
+O(∆t2)

we de�ne

vn+1
−1/2,∆t,h(y) :=

u
n+3/2
−1/2,∆t,h(y)− u

n+1/2
−1/2,∆t,h(y)

∆t
,

for y ∈ Ωt0−∆t/2 and 0 ≤ n ≤ N − 1.

• Motion approximation relative to Ωt0−∆t/2 at times {tn+1}
N−1
n=0 . Noting that u−1/2(y, t) =

X−1/2(y, t)− y and using a se
ond-order 
entered formula, we obtain

Xn+1
−1/2(y) = y +

u
n+3/2
−1/2 (y) + u

n+1/2
−1/2 (y)

2
+O(∆t2).

Then we de�ne the approximation

Xn+1
−1/2,∆t,h(y) := y +

u
n+3/2
−1/2,∆t,h(y) + u

n+1/2
−1/2,∆t,h(y)

2
,

for y ∈ Ωt0−∆t/2 and 0 ≤ n ≤ N − 1.

• Approximate velo
ity in Eulerian 
oordinates. Let us denote by {yhi }
Nh

v
i=1 the verti
es of

mesh Th. In order to obtain an approximate velo
ity in Eulerian 
oordinates, we 
onsider this as a

pie
ewise linear fun
tion on the moved mesh T̃
n+1
h , being {Xn+1

−1/2,∆t,h(y
h
i )}

Nh
v

i=1 the verti
es of this

mesh. The values of vn+1
∆t,h at verti
es {Xn+1

−1/2,∆t,h(y
h
i )}

Nh
v

i=1, 
an be obtained by using vn+1
−1/2,∆t,h.

Sin
e we have

vn+1(Xn+1
−1/2,∆t,h(y

h
i )) ≃ vn+1(Xn+1

−1/2(y
h
i )) = vn+1

−1/2(y
h
i ) ≃ vn+1

−1/2,∆t,h(y
h
i ),

we take the approximation

vn+1
∆t,h(X

n+1
−1/2,∆t,h(y

h
i )) := vn+1

−1/2,∆t,h(y
h
i ), (48)

for 0 ≤ n ≤ N − 1. Noti
e that
⋃

K∈T̃
n+1

h

K ∼ Ωtn+1
.
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• Approximate pressure in Eulerian 
oordinates. In order to obtain this we use pro
edures

analogous to the ones in the previous point. That is, we 
onsider approximate pressure as a pie
ewise

linear fun
tion on the moved mesh T̃
n+1/2
h , being {X

n+1/2
−1/2,∆t,h(y

h
i )}

Nh
v

i=1 the verti
es of this mesh. The

values of the approximate pressure at verti
es {X
n+1/2
−1/2,∆t,h(y

h
i )}

Nh
v

i=1, are obtained as follows: �rstly,

πn+1/2(X
n+1/2
−1/2,∆t,h(y

h
i )) ≃ πn+1/2(X

n+1/2
−1/2 (yhi )) = π

n+1/2
−1/2 (yhi ) ≃ π

n+1/2
−1/2,∆t,h(y

h
i ),

and then we take

π
n+1/2
∆t,h (X

n+1/2
−1/2,∆t,h(y

h
i )) := π

n+1/2
−1/2,∆t,h(y

h
i ),

for 0 ≤ n ≤ N − 1. Noti
e that
⋃

K∈T̃
n+1/2
h

K ∼ Ωtn+1/2
.

Noti
e that for the Lagrangian s
hemes the 
omputational domain is the same for all time steps. However,

in order to 
al
ulate the velo
ity or the pressure in Eulerian 
oordinates, the moved mesh is used. For real

�uid me
hani
s problems, this mesh 
an present large deformations. For this reason, when this happens

it is ne
essary to remesh and reinitialize the transformation to the identity. Let us assume that we have

de
ided to reinitialize the problem at time tr−1/2, thus the new referen
e domain is

⋃

K∈T̃
r−1/2
h

K ∼ Ωtr−1/2
.

In order to solve the problem (LG) in the new referen
e domain, we remesh this domain and 
al
ulate

the new initial 
onditions as follows:

utr−1/2
(y, tr−1/2) = 0, (49)

utr−1/2
(y, tr+1/2) = ∆tv

(
y + v(y, tr)

∆t

2
, tr

)
+O(∆t3) ≃ ∆tvr

∆t,h

(
y + vr

∆t,h(y)
∆t

2

)
. (50)

In order to obtain an approximate initial 
ondition of utr−1/2
(y, tr+1/2) we need vr

∆t,h that is 
al
ulated

by using (48).

However, we want to emphasize that in the examples in
luded in the Se
tion 6 of the present paper,

reinitialization for the pure Lagrangian method has not been used.

5.2. Semi-Lagrangian s
heme

By taking τ = tn−1/2 and t = tn+1/2 in (28)-(29) and using the se
ond-order formulas (36) and (37),

we obtain

∫

Ωtn−1/2

ρn+1/2 ◦X
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t

u
n+3/2
n−1/2,∆t − 2u

n+1/2
n−1/2,∆t

∆t2
· z dy −

∫

Ωtn−1/2

π
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t(F

n+1/2
n−1/2,∆t)

−t · grad z dy

1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t gradu

n+3/2
n−1/2,∆t(F

n+1/2
n−1/2,∆t)

−1

(51)

(F
n+1/2
n−1/2,∆t)

−t · gradz dy +
1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t detF

n+1/2
n−1/2,∆t(F

n+1/2
n−1/2,∆t)

−t

( gradu
n+3/2
n−1/2,∆t)

t(F
n+1/2
n−1/2,∆t)

−t · gradz dy =

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆tb

n+1/2 ◦X
n+1/2
n−1/2,∆t · z dy

+

∫

ΓN
tn−1/2

|(F
n+1/2
n−1/2,∆t)

−tmtn−1/2
| detF

n+1/2
n−1/2,∆th

n+1/2 ◦X
n+1/2
n−1/2,∆t · z dAy ,

1

2∆t

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t gradu

n+3/2
n−1/2,∆t · (F

n+1/2
n−1/2,∆t)

−tq dy

(52)

=

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆tg

n+1/2 ◦X
n+1/2
n−1/2,∆tq dy,
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∀z ∈ H1
ΓD
tn−1/2

(Ωtn−1/2
), ∀q ∈ L2(Ωtn−1/2

) and 0 ≤ n ≤ N − 1. In the above semi-Lagrangian problem,

we have used that u
n−1/2
n−1/2 ≡ 0, and the following notations

X
n+1/2
n−1/2,∆t(y) = y + u

n+1/2
n−1/2,∆t(y),

F
n+1/2
n−1/2,∆t(y) = I + gradu

n+1/2
n−1/2,∆t(y),

for y ∈ Ωtn−1/2
and 0 ≤ n ≤ N − 1.

We propose a spa
e dis
retization of the above problem by using 
ontinuous pie
ewise-linear+bubble

�nite elements for ea
h 
omponent of the displa
ement and 
ontinuous pie
ewise-linear for pressure.

Let us suppose Ωtn−1/2
is a bounded domain in R

d
with a Lips
hitz polygonal boundary for 0 ≤ n ≤

N − 1. Let us 
onsider a suitable family of regular triangulations of Ωtn−1/2
to be denoted by T

n−1/2
h ,


onsisting of elements K of diameter ≤ h. Moreover, we assume it is 
ompatible with the partition of

the boundary into ΓD
tn−1/2

and ΓN
tn−1/2

.

We 
onsider the following spa
es of �nite elements:

X
n−1/2
h =

{
wh ∈

(
C0(Ωtn−1/2

)
)d

: wh|K ∈ (Pb (K))
d
, ∀K ∈ T

n−1/2
h

}
, (53)

X
n−1/2
0h =

{
wh ∈ X

n−1/2
h : wh = 0 on ΓD

tn−1/2

}
, (54)

V
n−1/2
h =

{
ϕh ∈ C0(Ωtn−1/2

) : ϕh|K ∈ P1 (K) , ∀K ∈ T
n−1/2
h

}
. (55)

In order to obtain fully dis
rete s
heme of the time semidis
retizated problem (51)-(52) we use the ap-

proximations of fun
tion spa
es H1(Ωtn−1/2
), H1

ΓD
tn−1/2

(Ωtn−1/2
) and L2(Ωtn−1/2

) given by (53), (54) and

(55), respe
tively. Moreover, by using pro
edures analogous to the ones in the previous se
tion we obtain

the approximate initial and boundary 
onditions for the displa
ement.

Thus, we obtain the following fully dis
rete problem:

(SLG)2.− Find two sequen
e of fun
tions {u
n+3/2
n−1/2,∆t,h}

N−1
n=0 ∈

N−1∏

n=0

X
n−1/2
h and {π

n+1/2
n−1/2,∆t,h}

N−1
n=0 ∈

N−1∏

n=0

V
n−1/2
h su
h that

∫

Ωtn−1/2

ρn+1/2 ◦X
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h

u
n+3/2
n−1/2,∆t,h − 2u

n+1/2
n−1/2,∆t,h

∆t2
· zh dy −

∫

Ωtn−1/2

π
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h(F

n+1/2
n−1/2,∆t,h)

−t · grad zh dy

1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h gradu

n+3/2
n−1/2,∆t,h

(F
n+1/2
n−1/2,∆t,h)

−1(F
n+1/2
n−1/2,∆t,h)

−t · grad zh dy
(56)

+
1

2∆t

∫

Ωtn−1/2

µn+1/2 ◦X
n+1/2
n−1/2,∆t,h detF

n+1/2
n−1/2,∆t,h(F

n+1/2
n−1/2,∆t,h)

−t( gradu
n+3/2
n−1/2,∆t,h)

t

(F
n+1/2
n−1/2,∆t,h)

−t · grad zh dy =

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t,hb

n+1/2 ◦X
n+1/2
n−1/2,∆t,h · zh dy

+

∫

ΓN
tn−1/2

|(F
n+1/2
n−1/2,∆t,h)

−tmtn−1/2
| detF

n+1/2
n−1/2,∆t,hh

n+1/2 ◦X
n+1/2
n−1/2,∆t,h · zh dAy ,

∀zh ∈ X
n−1/2
0h ,

13



1

2∆t

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t,h gradu

n+3/2
n−1/2,∆t,h · (F

n+1/2
n−1/2,∆t,h)

−tqh dy

(57)

=

∫

Ωtn−1/2

detF
n+1/2
n−1/2,∆t,hg

n+1/2 ◦X
n+1/2
n−1/2,∆t,hqh dy, ∀qh ∈ V

n−1/2
h ,

with

u
n+1/2
n−1/2,∆t,h(y) = ∆tvn

∆t,h

(
y + vn

∆t,h(y)
∆t

2

)
, for all node y of mesh T

n−1/2
h , (58)

u
n+3/2
n−1/2,∆t,h(y) = u

n+1/2
n−1/2,∆t,h(y) + ∆tvn+1

D

(
y + v

n−1/2
D (y)

3

2
∆t

)
for all node y on ΓD

tn−1/2
, (59)

for 0 ≤ n ≤ N − 1, where vn
∆t,h is an approximation of the spatial velo
ity 
al
ulated as explained below

and

X
n+1/2
n−1/2,∆t,h(y) = y + u

n+1/2
n−1/2,∆t,h(y), F

n+1/2
n−1/2,∆t,h|K = I + gradu

n+1/2
n−1/2,∆t,h|K,

for y ∈ Ωtn−1/2
, K ∈ T

n−1/2
h and 0 ≤ n ≤ N − 1. Noti
e that this problem is analogous to the one in the

previous se
tion but reinitializing the transformation to the identity at ea
h time step.

By using pro
edures analogous to the ones in the previous se
tion, we 
an obtain approximations of

the pressure in Eulerian 
oordinates, the velo
ity and the motion, by using the solution of problem

(SLG)2.

• Approximate velo
ity relative to Ωtn−1/2
at time tn+1: vn+1

n−1/2,∆t,h. It 
an be easily obtained

by using (17) and a se
ond-order 
entered formula to approximate

∂uτ

∂t
. More pre
isely, sin
e

vn+1
n−1/2(y) =

∂un−1/2

∂t
(y, tn+1) =

u
n+3/2
n−1/2(y)− u

n+1/2
n−1/2(y)

∆t
+O(∆t2)

≃
u
n+3/2
n−1/2,∆t,h(y)− u

n+1/2
n−1/2,∆t,h(y)

∆t
,

we take

vn+1
n−1/2,∆t,h(y) :=

u
n+3/2
n−1/2,∆t,h(y)− u

n+1/2
n−1/2,∆t,h(y)

∆t
,

for y ∈ Ωtn−1/2
and 0 ≤ n ≤ N − 1.

• Approximate motion relative to Ωtn−1/2
at time tn+1: Xn+1

n−1/2,∆t,h. Noting that uτ (y, t) =

Xτ (y, t)− y and using a se
ond-order 
entred formula, we obtain

Xn+1
n−1/2(y) = y +

u
n+3/2
n−1/2(y) + u

n+1/2
n−1/2(y)

2
+O(∆t2).

Then we de�ne the approximation

Xn+1
n−1/2,∆t,h(y) := y +

u
n+3/2
n−1/2,∆t,h(y) + u

n+1/2
n−1/2,∆t,h(y)

2
,

for y ∈ Ωtn−1/2
and 0 ≤ n ≤ N − 1.

• Approximate velo
ity in Eulerian 
oordinates at time tn+1: vn+1
∆t,h. Let us denote by {yhi }

Nh
v

i=1

the verti
es of mesh T
n−1/2
h . Noti
e that these verti
es 
an depend on time instant. For simpli
ity,

we do not expli
it this dependen
e. In order to obtain an approximate velo
ity in Eulerian 
oor-

dinates, we 
onsider this is pie
ewise linear on the moved mesh T̃
n+1
h , being {Xn+1

n−1/2,∆t,h(y
h
i )}

Nh
v

i=1
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the verti
es of this mesh. The values of the approximate velo
ity at verti
es {Xn+1
n−1/2,∆t,h(y

h
i )}

Nh
v

i=1,


an be obtained by using vn+1
n−1/2,∆t,h. Sin
e we have

vn+1(Xn+1
n−1/2,∆t,h(y

h
i )) ≃ vn+1(Xn+1

n−1/2(y
h
i )) = vn+1

n−1/2(y
h
i ) ≃ vn+1

n−1/2,∆t,h(y
h
i ),

we take the approximation

vn+1
∆t,h(X

n+1
n−1/2,∆t,h(y

h
i )) := vn+1

n−1/2,∆t,h(y
h
i ),

for 0 ≤ n ≤ N − 1. Noti
e that
⋃

K∈T̃
n+1

h

K ∼ Ωtn+1
.

• Approximate pressure in Eulerian 
oordinates at time tn+1/2: π
n+1/2
∆t,h . In order to obtain

the pressure values in Eulerian 
oordinates, we 
onsider the approximate pressure as a pie
ewise

linear fun
tion on the moved mesh T̃
n+1/2
h , being {X

n+1/2
n−1/2,∆t,h(y

h
i )}

Nh
v

i=1 the verti
es of this mesh.

The values of the approximate pressure at verti
es {X
n+1/2
n−1/2,∆t,h(y

h
i )}

Nh
v

i=1, are obtained as follows:

�rstly,

πn+1/2(X
n+1/2
n−1/2,∆t,h(y

h
i )) ≃ πn+1/2(X

n+1/2
n−1/2 (y

h
i )) = π

n+1/2
n−1/2(y

h
i ) ≃ π

n+1/2
n−1/2,∆t,h(y

h
i ),

and then we take

π
n+1/2
∆t,h (X

n+1/2
n−1/2,∆t,h(y

h
i )) := π

n+1/2
n−1/2,∆t,h(y

h
i ),

for 0 ≤ n ≤ N − 1. Noti
e that
⋃

K∈T̃
n+1/2
h

K ∼ Ωtn+1/2
.

We also re
all that, when we are 
al
ulating u
n+3/2
n−1/2,∆t,h, v

n
∆t,h is known.

For the semi-Lagrangian s
hemes the 
omputational domain 
hanges at ea
h time step. In general,

Ωtn−1/2
is unknown; instead we 
al
ulate an approximation by using the approximate motion.

Remark 5.3. If we approximate X
n+1/2
n−1/2,∆t,h(y) by y and F

n+1/2
n−1/2,∆t,h(y) by I in problem (SLG)2, then

a new semi-Lagrangian problem is obtained. Noti
e that these approximations are of �rst order in time.

This �rst order semi-Lagrangian method will be denoted by (SLG)1. If Ωt = Ω for all t and the 
oe�
ients

ρ and η are time independent, then the matrix asso
iated with this method is independent of time.

6. Numeri
al results

In order to assess the performan
e of the above numeri
al methods, analyze their rates of 
onvergen
e

and 
ompare them, we solve three test problems in two spa
e dimensions. The �rst one is an a
ademi


problem, for whi
h we verify rates of 
onvergen
e for the pure Lagrangian and the semi-Lagrangian

methods des
ribed in the present paper. The se
ond one is the lid driven 
avity problem. It models

the �ow in a square box driven by the motion of the lid of the box. This problem has been solved with

the semi-Lagrangian methods presented in this paper and the obtained numeri
al results are 
ompared

with a referen
e solution. Finally, the third example is a free surfa
e problem. More pre
isely, we


onsider a 
lassi
al example of sloshing numeri
al simulation. This problem has been solved with the

pure Lagrangian method proposed in this paper.

In Example 1, we 
al
ulate the error between dis
rete solutions v∆t,h and π∆t,h, and exa
t solutions v
and π. For this, we approximate the theoreti
al L2(Ωtn+1

) and L2(Ωtn−1/2
) norms by using a quadrature

formula exa
t for polynomials of degree 2. Moreover, domains Ωtn+1
and Ωtn−1/2

are 
al
ulated by using

the approximate motion. The fun
tion spa
es endowed with these norms are denoted by L2
h(Ωtn+1

) and
L2
h(Ωtn−1/2

), respe
tively. Thus, we denote by l∞(An), being An = L2
h(Ωtn+1

), L2
h(Ωtn−1/2

), the spa
e of

sequen
es in {An}N−1
n=0 equipped with the norm

∣∣∣
∣∣∣Ψ̂
∣∣∣
∣∣∣
l∞(An)

:=
N−1
max
n=0

||Ψn||An .

Moreover, s
hemes (LG), (SLG)2 and (SLG)1 were 
ombined with an exa
t quadrature formula for

polynomials of degree 5 in all of the terms.
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Example 1

This is a problem aiming to 
he
k the rates of 
onvergen
e of the s
hemes proposed in this paper.
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Figure 2: Example 1: 
omputed l∞(L2

h
(Ωtn+1

)) velo
ity error (left) and l∞(L2

h
(Ωtn−1/2

)) pressure error (right) versus the

number of time steps in log-log s
ale, for a �xed spatial mesh of 125× 125 verti
es.
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Figure 3: Example 1: 
omputed l∞(L2

h
(Ωtn+1

)) velo
ity error (left) and l∞(L2

h
(Ωtn−1/2

)) pressure error (right) versus 1/h
in log-log s
ale, for ∆t = 0.01.

The spatial domain is Ω = (0, 1)× (0, 1), t0 = 0 and T = 1. The di�usion tensor is A = 0.001I and ρ = 1.
Fun
tions b and g and Diri
hlet boundary and initial 
onditions are taken su
h that the exa
t solution is

π(x, y) = 10(2x− 1)(2y − 1),
v1(x, y, t) = 10tetx2(x − 1)2y(y − 1)(2y − 1),
v2(x, y, t) = −10tetx(x − 1)(2x− 1)y2(y − 1)2.

We solve this problem by using methods (LG), (SLG)2 and (SLG)1. In Figure 2, we have �xed a uniform
spatial mesh of 125×125 verti
es and shown the l∞

(
L2
h(Ωtn+1

)
)
velo
ity error (left) and l∞

(
L2
h(Ωtn−1/2

)
)

pressure error (right) versus the number of time steps. These results show that s
hemes (LG) and

(SLG)2 possess se
ond-order a

ura
y in time and s
heme (SLG)1 possess �rst-order a

ura
y in time.

Con
erning the semi-Lagrangian s
hemes, for �xed h, we 
an observe an in
reasing error as the time step

de
reases below a threshold. This is due to the presen
e of terms added by the quadrature formula to

the error. In Figure 3 we represent the l∞
(
L2
h(Ωtn+1

)
)
velo
ity error and the l∞

(
L2
h(Ωtn−1/2

)
)
pressure

error versus 1/h for a �xed small time step, namely ∆t = 0.01. We 
an observe that s
hemes (LG),
(SLG)2 possess se
ond-order a

ura
y in spa
e in the l∞(L2)-norm. Moreover, with the s
heme (SLG)1
we observe �rst-order a

ura
y in spa
e for velo
ity and se
ond-order a

ura
y in spa
e for pressure.
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v1 = 0, v2 = 0

v1 = 1, v2 = 0

v1 = 0

v2 = 0

v1 = 0

v2 = 0

t = 0

v1 = v2 = 0

Figure 4: Driven 
avity: initial and boundary 
onditions.

Remark 6.1. In the a
ademi
 tests, we have observed that the order of the error of the methods is main-

tained if we 
al
ulate F without 
onsidering the bubble term. In some 
ases, in order to not to have

negative values of detF it is 
onvenient to do this.

Example 2

We 
onsider a driven 
avity �ow governed by the in
ompressible Navier-Stokes equations to 
ompare

the numeri
al results obtained with the 
lassi
al semi-Lagrangian methods and the new ones presented

in this paper. The driven 
avity problem has long been used as a test 
ase for Navier-Stokes solvers,

thanks to it has simple geometry and boundary 
onditions. Although the problem looks simple in many

ways, the �ow in a 
avity retains all the �ow physi
s with 
ounter rotating vorti
es appearing at the


orners of the 
avity. In some papers in the literature, a steady solution is sought and therefore the

numeri
al solution of steady in
ompressible Navier-Stokes equations are presented at various Reynolds

numbers (see, for instan
e, [21℄, [15℄, [16℄, [6℄). However, in other papers the bifur
ation of the �ow

in a driven 
avity from a steady regime to an unsteady regime is studied (see, for instan
e, [18℄, [20℄).

The dimensionless problem is de�ned in a square domain Ω = (0, 1) × (0, 1) with the upper side of the


avity sliding to the right at unit velo
ity. The problem is depi
ted in Figure 4. For the 
urrent study,

the problem was solved for a Reynolds number of 1000 on a series of meshes, the 
oarsest mesh having

17 × 17 verti
es, while the �nest one has 70962 verti
es. We solve this problem with semi-Lagrangian

methods (SLG)1 and (SLG)2 and with the se
ond-order in time semi-Lagrangian 
lassi
al method given

by (34)-(35) 
ombined with 
ontinuous pie
ewise-linear+bubble �nite elements for ea
h 
omponent of

the velo
ity and 
ontinuous pie
ewise-linear for pressure for spa
e dis
retization. This method will be

denoted by (SLG)22; we use the strategy given in [3℄ to 
al
ulate the integrals. We 
arry the simulations

along the time until 
onvergen
e. Results are 
ompared with the ben
hmark solutions given in [21℄.

In Figure 5 we have �xed the time step, namely, ∆t = 0.002 and show, for di�erent regular meshes,

the horizontal velo
ity pro�les along the verti
al 
entreline of the 
avity (on the left) and the verti
al

velo
ity pro�les along the horizontal 
entreline of the 
avity (on the right), 
omputed by using the

(SLG)2, (SLG)1 and (SLG)22 methods. The ben
hmark solutions of Ghia is in
luded for 
omparison.

Clearly, (SLG)2 and (SLG)1 a
hieve better results than the 
orresponding 
lassi
al se
ond-order method

(SLG)22. Moreover, under the same parameters, the (SLG)2 and (SLG)1 s
hemes provide the same

numeri
al solutions. Besides, for both methods, errors with ∆t in the denominator are observed (see

Figures 5 and 6). However, for this example, the matrix asso
iated with the (SLG)1 s
heme is time

independent. Moreover, in order to obtain a stationary numeri
al solution, with the (SLG)2 s
heme we

need to use smaller time steps than with the (SLG)1 method. For these reasons, in this 
ase, the most


onvenient method to solve this problem is the (SLG)1 s
heme. In Figure 6 we have shown, for di�erent

regular meshes, the horizontal velo
ity pro�les along the verti
al 
entreline of the 
avity (on the left)
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Figure 5: Driven 
avity: on the left, pro�les of the horizontal velo
ity along the verti
al 
entreline, 
al
ulated using di�erent

s
hemes for a range of mesh sizes, and 
ompared with the ben
hmark solutions given in [21℄. On the right, pro�les of the

verti
al velo
ity along the horizontal 
entreline, 
al
ulated using di�erent s
hemes for a range of mesh sizes, and 
ompared

with the ben
hmark solutions given in [21℄.

and the verti
al velo
ity pro�les along the horizontal 
entreline of the 
avity (on the right), 
omputed

by using the (SLG)1 method. In this �gure, the time step varies with the mesh. More pre
isely, for

ea
h mesh, we 
onsider the largest time step for whi
h the orientation of the elements of the moved mesh

T̃
n+1
h is the same as the one of the elements of the mesh T

n−1/2
h . In Figure 7 we represent the numeri
al

solution obtained with the (SLG)1 method for a spatial mesh of 70962 verti
es and ∆t = 0.0026. More

pre
isely, the horizontal velo
ity pro�les along the verti
al 
entreline of the 
avity, the verti
al velo
ity

pro�les along the horizontal 
entreline of the 
avity and the isovelo
ity and streamfun
tion 
ontours are

plotted. As the referen
es in the literature, our numeri
al solutions exhibits a large primary vortex with

two se
ondary vorti
es in the two bottom 
orners.
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Figure 6: Driven 
avity: on the left, pro�les of the horizontal velo
ity along the verti
al 
entreline, 
al
ulated using the

(SLG)1 s
heme for a range of mesh sizes, and 
ompared with the ben
hmark solutions given in [21℄. On the right, pro�les

of the verti
al velo
ity along the horizontal 
entreline, 
al
ulated using the (SLG)1 s
heme for a range of mesh sizes, and


ompared with the ben
hmark solutions given in [21℄. For ea
h mesh, we use the largest possible time step.

Example 3

To show the behaviour of the pure Lagrangian formulation for large mesh distortion, the analysis of

large amplitude sloshing in a re
tangular tank has been 
arried out. The width of the tank is 0.8m and

the depth is 0.3m. In
ompressible �uid is 
onsidered. The liquid in the tank is subje
t to a sinusoidal

horizontal a

eleration. More pre
isely, the body for
e is

b(x, t) = ρ(x, t)(A · g · sin(ωt),−g),

where A is an arbitrary 
onstant governing the amplitude of the ex
itation, g is the gravity a

eleration

and ω is the ex
itation frequen
y. In this example, A = 0.01, ρ = 1000 kg/m3
, g = 9.8m/s2 and

ω = 5.642 rad/s. Using these parameters, experimental results show that the resonan
e frequen
y of

the tank is 0.898Hz. At the verti
al boundaries the horizontal velo
ity is zero, at the lower horizontal

boundary the verti
al velo
ity is zero and at the upper horizontal boundary we impose null Neumann


ondition (for
e-free). Sin
e it is a free surfa
e problem we solve it with the pure Lagrangian method

(LG) without reinitializing. Noti
e that in pure Lagrangian methods the 
omputational domain is the

referen
e domain; in this 
ase it is Ω = (0, 0.8) × (0, 0.3). We solve this problem for di�erent vis
osity

values, µ = 0.1, 0.01, 0.001. Figure (8) shows the verti
al displa
ement of the upper 
orner nodes at the

wall tank, as a fun
tion of time. The results are in good agreement with those given in [23℄ and [28℄. In

Figure 9 we represent an instantaneous 
on�guration of the domain and the streamlines.
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Figure 7: Driven 
avity: horizontal velo
ity pro�les along the verti
al 
entreline of the 
avity, the verti
al velo
ity pro�les

along the horizontal 
entreline of the 
avity and the isovelo
ity and streamfun
tion (bottom) 
ontours, 
omputed with the

(SLG)1 method, for a spatial mesh of 70962 verti
es and ∆t = 0.0026.
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Figure 8: Sloshing waves: time history of wave height at the walls for µ = 0.1 (top left), µ = 0.01 (top right) and µ = 0.001
(bottom), and for a spatial mesh of 5743 verti
es and ∆t = 0.02.

Figure 9: Sloshing waves: instantaneous domain 
on�guration and streamlines for µ = 0.001 at t = 8.35, and for a spatial

mesh of 5743 verti
es and ∆t = 0.02.

7. Con
lusions

We have obtained a uni�ed formulation with whi
h 
lassi
al and new 
hara
teristi
s methods 
an be

obtained for solving the Navier-Stokes equations. In parti
ular, we have proposed two new Lagrange-

Galerkin s
hemes in terms of the displa
ement, one pure Lagrangian and another one semi-Lagrangian.

The semi-Lagrangian s
heme is analogous to the pure Lagrangian method but reinitializing the transfor-

mation to the identity at ea
h time step. Numeri
al tests have been presented to 
ompare the new and


lassi
al methods, assess the performan
e of the new numeri
al methods and analyze their rates of 
onver-

gen
e. We have observed that the new s
hemes a
hieve better results than the 
lassi
al ones. Moreover,

we have 
onsidered a free surfa
e problem. It has been solved with the pure Lagrangian displa
ement

method proposed in this paper. These new 
hara
teristi
s methods are useful for solving free surfa
e

problems be
ause the 
omputational domain is time independent. However, when the mesh elements

have high distortions it is ne
essary to remesh and reinitialize the transformation to the identity. In fa
t,

for solving some problems with high Reynolds numbers, it is 
onvenient to use semi-Lagrangian s
hemes.
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