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Abstract

In this paper we propose a unified formulation to introduce Lagrangian and semi-Lagrangian velocity
and displacement methods for solving the Navier-Stokes equations. This formulation allows us to state
classical and new numerical methods. Several examples are given. We combine them with finite element
methods for spatial discretization. In particular, we propose two new second-order characteristics meth-
ods in terms of the displacement, one semi-Lagrangian and the other one pure Lagrangian. The pure
Lagrangian displacement methods are useful for solving free surface problems and fluid-structure inter-
action problems because the computational domain is independent of the time and fluid-solid coupling at
the interphase is straightforward. However, for moderate to high-Reynolds number flows, they can lead
to high distortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the
transformation to the identity. In order to assess the performance of the obtained numerical methods, we
solve different, problems in two space dimensions. In particular, numerical results for a sloshing problem
in a rectangular tank and the flow in a driven cavity are presented.

Keywords: Navier-Stokes equations, characteristics methods, Lagrange-Galerkin methods, second-order
schemes, pure Lagrangian methods

1. Introduction

The main goal of the present paper is to introduce new second-order pure Lagrangian and semi-
Lagrangian methods for the numerical solution of Navier-Stokes equations. In the scalar case, methods
of characteristics for time discretization of convection-diffusion problems are extensively used (see the
review paper [17]). These methods are based on time discretization of the material time derivative and
were introduced in the beginning of the eighties of the last century combined with finite differences or
finite elements for space discretization (see [14], [25]). When combined with finite elements they are also
called Lagrange-Galerkin methods. In particular, when the characteristics methods are formulated in a
fixed reference domain (respectively, in the current domain) they are called pure Lagrangian methods
(respectively, semi-Lagrangian methods). In particular, the classical method of characteristics, as intro-
duced in [14] and [25], is semi-Lagrangian and first order in time. There exists an extensive literature
studying this characteristics method combined with finite elements applied to scalar convection-diffusion
equations. If At denotes the time step, h the mesh-size and k the degree of the finite element space,
estimates of the form O(h*) + O(At) in the [°°(L?(R?))-norm are shown in [29] (d denotes the dimension
of the spatial domain). Moreover, in |25] error estimates of the form O(h*) +O(At) +O(h¥*+1 /At) in the
[°°(L*(2))-norm are obtained under the assumption that the normal velocity vanishes on the boundary
of . All of these estimates involve constants depending on solution norms. For linear finite elements and
for a velocity field vanishing on the boundary, convergence of order O(h?) + O(min(h, h?/At)) + O(At)
in the (°°(L?(2))-norm is stated in [1], where the constants only depend on the data. In principle, the
method of characteristics has been introduced for evolution equations but an adaption to solve stationary
convection-diffusion problems has been proposed in [7].
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In order to increase the order of time and space approximations, higher order schemes for the dis-
cretization of the material derivative and higher order finite element spaces should be used. In ﬂﬁ], a
second-order characteristics method for solving constant coefficient convection-diffusion equations with
Dirichlet boundary conditions is studied. The Crank-Nicholson discretization has been used to approxi-
mate the formulation involving the material time derivative. For a divergence-free velocity field vanishing
on the boundary and a smooth enough solution, stability and O(At?) + O(h*) error estimates in the
1°°(L2(£2))-norm are stated (see also [&] and [d] for further analysis).

Recently, for scalar linear convection-diffusion problems, we have introduced so-called pure Lagrangian
methods combined with finite elements. In particular, in [4] and [5] I°°(H*()) stability and 1> (H"(€2))
error estimates of order O(At?) 4+ O(h¥) were proved for a second-order pure Lagrange-Galerkin method.
Moreover, in m], semi-Lagrangian and pure Lagrangian methods are proposed and analyzed for convection-
diffusion equations. Error estimates for Galerkin discretization of a pure Lagrangian formulation and for
a discontinuous Galerkin discretization of a semi-Lagrangian formulation are obtained. The estimates
are written in terms of the projections constructed in [11] and [12]. In [4] and [5] a pure Lagrangian
formulation has been used for more general problems. Specifically, we have considered a (possibly degen-
erate) variable coefficient diffusive term instead of the simpler Laplacian, general mixed Dirichlet-Robin
boundary conditions, and a time dependent domain. Moreover, we have analyzed a scheme with approx-
imate characteristic curves and presented numerical results for pure Lagrangian and semi-Lagrangian
methods. In @] a unified formulation to introduce Lagrangian and semi-Lagrangian methods for solving
scalar linear convection-diffusion problems has been proposed and new stability estimates for the pure
Lagrangian method proposed in [4] and [3] have been obtained. More precisely, an 1°°(H')—stability
estimate independent of the diffusion coefficient has been proved. Besides, if the given velocity field is
incompressible, a stability inequality independent of the final time has been shown.

Usually, the unconditional stability of characteristics methods is only proved under the assumption
that the inner products in the Galerkin formulation are exactly calculated. This is rarely possible so in
practice they have to be calculated by using numerical quadrature. In general, this adds some terms
to the final error estimates and, in some cases, it produces the loss of unconditional stability. There
are several papers in the literature analyzing the effect of numerical integration in Lagrange-Galerkin
methods (see [24], [24], [26], [19], [34], [9]. [3]).

In this paper, we introduce a unified formulation to state pure Lagrangian and semi-Lagrangian
methods for solving vector nonlinear convection-diffusion equations. More precisely, we are interested in
solving the Navier-Stokes equations. For this purpose, we use the mathematical formalism of continuum
mechanics (see for instance [22]) following the ideas given in [2].

The paper is organized as follows. In Section 2] the initial-boundary value problem to be solved is
posed in a time dependent bounded domain and some hypotheses and notations concerning motions are
stated. In Section[3 we introduce a quite general change of variable obtaining a new strong formulation of
the problem. Moreover, the standard associated weak problem is obtained. In Section [ semi-Lagrangian
schemes in terms of the velocity are proposed. All these methods arise from the formulation obtained
in the previous section. By using this formulation, in Section [B] two new Lagrange-Galerkin schemes in
terms of the displacement are proposed, one pure Lagrangian and another one semi-Lagrangian. Finally,
in Section [l numerical examples are presented.

2. Statement of the nonlinear convection diffusion problem. General assumptions and no-
tations

Let Q be a bounded domain in R? (d = 2,3) with Lipschitz boundary I' divided into two parts: T' =
PPur?, with TP NIV = (). Let o and T be two non-negative constants and X : Q x [tg, T] — R?
be a motion in the sense of Gurtin [22]. In particular, X € C3(Q x [to, T]) and for each fixed ¢ € [to, T,
X(-,t) is a one-to-one function satisfying

det F(p,t) >0 Vpe€Q, (1)

being F(-,t) the deformation gradient of X (-,t). We call Q; = X(Q,t), Ty = X(I,t), P = X(I'P,¢) and
I'N = X(I'N,t), for t € [to, T]. We assume that Q;, = Q. Let us introduce the trajectory of the motion

T :={(z,t): 2 € Qu, t € [to, T]}.



For each t, X (-,t) is a one-to-one mapping from Q onto €;; hence it has an inverse
P(-,t):Q — Q, (2)
such that _
X(P(z,t),t) =z, P(X(p,t),t)=p V(z,t) €T ¥(p,t) € QX [to, T]. (3)

The mapping P : T — , so defined is called the reference map of motion X and P € C*(T) (see [22]
pp. 65 — 66). We denote by p the material points in (2, by ¢ the current time, by x the spatial points in
Q, with t > ¢y and by y the points in 2, with 7 < T'. Besides, fields defined in T are called spatial fields.

. . 0
If ¥ is a spatial field, ¥ denotes the material time derivative, that is ¥(x,t) = e (X (P, 8): 1)) |p= Pt
Let us recall that the spatial description of the velocity v : 7 — R? is defined by

v(z,t) = X(P(z,t),t) Y(z,t) €T, (4)

being X the partial derivative of X with respect to the second argument (time).
Let us consider the following initial-boundary value problem.

(SP) STRONG PROBLEM. Find two functions v: T — R? and 7 : T — R such that

plx, t)g—‘t’(x, t) + p(z,t) grad v(x, t)v(z,t)

5
—div {—n(z,t)] + p(x,t)(grad v(z,t) + gradv'(z,t))} = b(z,1), )
divv(z,t) = g(z,t), (6)

for x € Qp and t € (to,T), subject to the boundary conditions
v(z,t) = vp(z,t) on TP, (7)
(—=m(z, )] + p(z,t)(grad v(z,t) + gradv'(z,t))) n(z,t) = h(z,t) on Iy, (8)

for t € (to,T), and the initial condition

v(z,to) = vP(z) in Q. (9)

In the above equations, p : T — R, u: 7 — R, b: T — R% ¢ : T — R, v0 : O — R,
vp(-,t) : TP — R% and h(-,t) : TY — R9 t € (ty,T), are given spatial fields, I is the identity second
order tensor and n(-,t) is the outward unit normal vector to I';. Let us notice that for g = 0 the above
equations are the incompressible Navier-Stokes equations. Otherwise, they arise when modelling low-
Mach number flows as those arising in many gas combustion problems. In this case function g is obtained
from the mass conservation equation and the state law of the gas mixture as a function of temperature
which, in its turn, is computed by solving the energy conservation equation.

For given 7 < T, motion X can also be defined relative to the configuration at time 7. It is the
mapping
X, Qpx[te, T] — R4

given by _
X‘r(y’t) = X(P(yaT)’t) V(y’t) €, x [thT]' (10)

Thus, mapping ¢ € (to,T) — X, (y,t) represents the trajectory described by a material point that is at
position y at time 7. Moreover, we notice that r = X (y,t) if and only if y = X;(x, 7). If ¥ is a spatial
field, we introduce the field ¥, defined in Q. x [tg, T] by

Vo (y, ) = U(Xr(y,1),1) V(y,t) € Qs x [to, T]. (11)
These functions are depicted in Figure[Il Notice that for 7 =t

Uy (z,t) := U(X¢(x,t),t) = U(X(P(x,t),t),t) = U(x,t).
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Figure 1: Functions referred to configuration at time 7 < T'.

Let us introduce the displacement field relative to the configuration at time 7, that is,
uT(y’t) = XT(ya t) -y V(y,t) € ﬁ‘r X [thT] (12)

In the following A denotes a bounded domain in R?. Let us recall the definition of the Hilbert spaces
H'(A) and L?(A):

L*(A) = {f : A — R measurable, / fPdx < oo} , (13)
Q
H'(A) = {f:AHRmeasurable, /s gj (A), il,...,d}. (14)

We also introduce the notation H!(A) = (Hl(A))d and denote by H}.. (A) the closed subspace of H'(A)
defined by
Hfr(A) = {w e H'(A), w|pr =0}, (15)

where I'T is a part of the boundary of A of non-null measure.

3. Strong problem and weak formulation in Q. X (to,T)

We are going to develop some formal computations in order to write the above problem (SP) in
configuration 2., where 7 < T'. First, from the definition of the material time derivative and by using
the chain rule, we get

0 0
v(z,t) = a—Z(z,t) + grad V(@ OV (@,8) = Ve (1) y=x, (o) V(@ 1) € T (16)
By using the above definitions, we have
0X, ou,
T 5t = "o 7t = ", 5t . 1
ve(y,t) = - ,t) = - (1) (17)
Then, from ([I6) and (I7), we deduce
0 0%u,
—v(x,t) + grad ,v(z, t)v(z,t) = —u(y,t)‘y:Xt(zﬁT) V(z,t) € T. (18)
ot ot?
Next, by evaluating equations (&) and (@) at point « = X, (y,t) and then using (8], we obtain
0%u,
p(Xr(y,1),0)—a (1) — diva {—m(Xr(y,8), )] 1)
19
+u(Xr(y, 1), t)(grad o V(X7 (y, 1), t) + grad,v' (X-(y, ), 1))} = b(X-(y, 1), 1),
div . v(X;(y,1),t) = 9(X-(y, 1), 1), (20)



for (y,t) € Q; x (to,T). Note that in (I9) and (20) there are derivatives with respect to the Eulerian
variable x. In order to write a strong formulation of problem (SP) in coordinates (y,t) € Q. x (to,T)
we use the divergence theorem, the change of variable z = X, (y,t) and the chain rule, to obtain the
equalities

— div, {=m (X (g, £), )T +(Xo (g, £), ) (grad v (X, (9, 1), 1) + grad v (X (v, ,t>>}

1
= —W ley {( y,t)[
+ur(y,t)<gradyaat (y, ) F (s t) + Fr Yy, )(gradyaat) (v, ))) det F ( }
div v (X, (3, 0),1) = tr (grad ,v(X, (,0),1)) = (grad 88 (v, 1) - y,w
(22)
= grad, 5 (0, O0F, (5,0) T = grad, S5 (,6) - F ' (9,),

for (y,t) € Q, x (to,T) and where we have used equality (I7). Here and hereafter, the dot is used to
denote the scalar product either of vectors or of second order tensors. Moreover, in the above equations,
F; denotes the Jacobian matrix of the transformation X,. Next, by evaluating equations (7)) and (&) at
point z = X, (y,t) and equation (@) at point P(y,7), and using (1), we obtain the following boundary

u,

ot

and initial conditions for

du,
o (0:1) = (vD):(4.1) on T7 (1o, T),

(wf(y,t)IJruT(y, t) <gradyaat (y, )Y E- (y, 1) + F= 4 (y, t) (gradyaat > (y,t)>>
F ' (y, t)me(y) = [F (y, t)my (y) b (y,t) on TV x (o, T),

ou, -
ot (yvto) (P(yaT)) m QTv

where m is the outward unit normal vector to 9€2,. The second condition has been obtained by using
the chain rule and noting that

F-T(y, t)m,(y)

n(X;(y,t),t) = |F- T (y, t)m, (y)|

(y,t) € T'r x (to,T).

Thus, from these results, we deduce the following formulation in Q. X (to,T') of the initial-boundary value
problem (SP):

(SP), STRONG PROBLEM IN , x (to,T). Find two functions u, : Q. x [to,T] — R? and
7y Qr X [to, T] — R such that

8%u,

ot?

() 5 001) = oo Avo{ (e )T

+uT<y,t><grad S OF )+ F ) (o, O ) <y,t>>>detﬂ(y,t)F;t(y,t)}(zs)

:b'r(yat)v
grady 3 (,1) - F 4 (31) = 900, ), (20



for (y,t) € Q. x (to,T), subjected to the boundary conditions

O ot) = () ) o TP % (10,T), (20)

(—m(y,t)ﬂrur(y,t) (gradyaat (. )y, t) + F ' (y, t) (gradyaat > (y,t)>>

_t . N (26)
F7 (y, tym, (y) = [ F " (y, t)m.(y) b, (y,t) on I x (Lo, T),
and the initial condition 5
u, =
o (y,to) = v'(P(y, 7)) in Q,. (27)

Depending of the choice of 7, we can obtain different Lagrangian and semi-Lagrangian methods. More
precisely, the pure Lagrangian methods (respectively, the semi-Lagrangian methods) are obtained when
7 is fixed along the time integration, that is, it is independent of the current time ¢ (respectively, when
7 changes along the time integration, that is, it changes with ¢). Among semi-Lagrangian methods we
can distinguish forward semi-Lagrangian (if 7 < t) and backward semi-Lagrangian (if 7 > t). Now, we
are going to obtain a weak formulation of (SP),. Let us multiply (23) by det F. and by a test function
z € H%‘P (Q;), integrate in Q,, and apply the usual Green’s formula and (26]). Similarly, let us multiply

24) by det F, and by a test function ¢ € L?(€2,), and integrate in Q.. We get

0%u, _
/Q p'r(yvt) det F‘r(yﬂt)W(y;t) ’ Z(y) dy - /Q Wf(yvt) det FT(y’t)FT t(yﬂt) ’ gradz(y) dy

“
Q

ol ><gradyaat< OF00) + ) (s, 57 (m))

-

det Fr (y, ) F " (y,t) - gradZ(y)dy=/Q b (y,t) - z(y) det Fr-(y,t) dy

B )] det B (3 O (000) - 2(0) A,

T

[ detF ) grad, S ) F 00w dy = [ det P09, (e dy. (29
Q- Q

-

Vz € Hi, (), Vg € L*(Q;) and ¢ € (to,T). These are formal computations, i.e., we have assumed
appropriate regularity of the involved data and solution.

Remark 3.1. Notice that equations (28)-(129) can also be written in terms of the velocity instead of the
0
displacement, by replacing %(y,t) with v, (y,t). Thus, from (28)-(29) we can obtain Lagrangian and

semi-Lagrangian methods in terms of either the velocity or the displacement. We will call velocity meth-
ods (respectively, displacement methods) to those written in terms of the velocity (respectively, of the
displacement). The classical characteristics methods for Navier-Stokes equations are semi-Lagrangian
velocity schemes. In the next sections, we are going to obtain, from (28)-(29), different characteristics
methods, in particular the classical ones.

4. Time discretization: characteristics methods in terms of velocity
In this section, we present semi-Lagrangian velocity methods. They are obtained by introducing

(y, t).

Remark 4.1. Notice that X, (y,t) and Fr(y,t) appearing in (28)-(29) are unknown; but they can be
approzimated by using an approzimation of either the velocity or the displacement.

different time semi-discretizations of problem (SP), written in terms of v (y,t) i

e Displacement methods. For these methods, approzimations of X, and F, can be easily obtained by
using the following equalities:

Xr(y:1) =y +ur(y,t),
F.(y,t) = grad X, (y,t) = I + gradu,(y,1).



e Velocity methods. For these methods, we can observe that X, and F, are the solutions to the
following initial-value problems of ordinary differential equations (y is arbitrarily taken but fized):

0X,

W(y,t) =v.(y,t) X:(y,7) =1y,
oF,
W(yvt) = gradyv'r(yﬂt) F‘r(va) = Ia

being y € Q.. Then, approrimations of X, and F. can be obtained by using numerical methods to
solve these initial-value problems.

The following notations will be used in the rest of the paper. Let us introduce the number of time
steps, N, the time step At = (T — to)/N, and the mesh-points t, = tg + nAt.

Depending on the values of 7 and ¢, on the differentiation formulas used to approximate the time
derivatives and on the numerical formulas used to approximate the other terms, we can obtain different
characterictics methods. Let ¥ be a spatial field. We will use the following notation:

Uh(y) =Ty, (y,tr) Vy € Qu,, V)1 (30)

In particular, for j = we will simply write ¥ instead of \Ilf Let us notice that Fll =1Vl
Similarly, in what follows we will denote by \Ilé Ay (respectively, \Ilé At, &) approximations of \Ilé obtained
with a time semidiscretized scheme (respectively, a fully discretized scheme).

e One-step semi-Lagrangian schemes: This one-parameter family of methods arises from fixing 7 =

ov
tnt1, t = tnye in 23) and t = ¢,,41 in (24)), and using a two-point formula to approximate a—tT and

a convex linear combination involving the values at ¢t = ¢,, and ¢ = ¢,,11 to approximate the rest of
the terms at time ¢,,19. More precisely:

Vztl (z) — VZ+1,At($)

(‘gpm_l(x) +(1— 9)P2+1,At($)) Al
—0div {( TN @) + T (2 )(gradv”“( )+ (gradvixi' (= )) (m)))}
00 o) Y T A R o) (1000 ) (8)

(Fityra0) ™ (@) + (Fi a0 ™ () (grad vy a)' (2)) ) det iy a0 (@) (i, a0) ™' (2) |
= b" " (x) + (1 - )by, mi1,ae(T), €,
divvit'(z) = ¢""'(z), 2 € Q.. (32)

for0<n<N-—1.
Particular cases:

1. When 6 = 1, we obtain the classical first order semi-Lagrangian scheme proposed in [25].
2. When 6 = 1/2, we obtain a new second-order semi-Lagrangian scheme similar to the one
analyzed in [8] and [9] for linear scalar convection-diffusion problems.

e Two-step second-order semi-Lagrangian scheme: This method has been proposed in [10] for the
incompressible Navier-Stokes equations. It can be introduced in our framework by taking 7 = ¢,,41,

t = t,+1, and using the following second-order backward formula to approximate g;: :
ov, 1 2
W(ya ) 2At (Svr(ya ) _4V7(yat_ At) +V‘r(yat_ 2At)) +O(At ) (33)



More precisely:

P (2) 3viar ! (z) — Avi @) + VZ:,At(x)
2At
—div { (=7 @)+ 0 (@) (grad vAT (@) + (grad vAT (@) (@) ) } (34)
=b""(z), z €, ..,
divvixi!'(z) = g"(2), v € U, .. (35)

where 1 <n < N — 1. In [3] this method has been applied to solve natural convection problems.

Remark 4.2. In the above methods, the characteristics curves and their gradients are approrimated by
using the procedures given in Remark[{.1} Notice that F' does not appear either in the classical first order
semi-Lagrangian scheme or in the two-step second-order semi-Lagrangian scheme. However, for both
methods, in order to calculate V£z+1,At7 it s necessary to obtain an approzimation of the characteristics
curves X,lL_H, being | = n for the classical method and | = n,n — 1 for the second-order one (see [3] for
further details).

5. New characteristics methods in terms of the displacement

In order to obtain characteristics methods in terms of the displacement, we consider the following

. . e 0%u, ou,
formulas to approximate the time derivatives (y,t) and Y (y,1):

ot?
e Three-point second-order centered formula:
0%u, u,(y, t + At) — 2u,(y,t) + u,(y,t — At)
gz W) = AP

+ O(At). (36)

e Two-point second-order centered formula:

8uT( )= u,(y,t+ At) —u-(y,t — At)
or T 2A1

+ O(AP?). (37)

5.1. Pure Lagrangian scheme

In this section we introduce a pure Lagrange-Galerkin scheme for fully discretization of (28)-(29).
Firstly, we propose a second order pure Lagrangian scheme for time semi-discretization of (28)-(29).
Next, we propose a space discretization of the time semidiscretized problem by using finite elements
spaces.

5.1.1. Time discretizatiog
t
By taking 7 = tg — - and t = t,41/7 in 28)-29), and using the second-order formulas (38) and
B7), we obtain the time-discretized scheme

n+3/2 n+1/2 n—1/2
/ P2 X2 gop /2 U_y/0A¢ 21171/2,At tu_y oA .
Qi —At/2

—1/2,At —1/2,At T zdy

n+1/2 n+1/2 n+l/2 \—
7/ T_1/2,at det F—1/2,At(F_1/2,At) b grad z dy
Qi —aty/2

n+3/2 n—1/2
+/ L2 o X2 qop /2 graduil/lm - graduil/lm
Qig—at/2

—1/2,At —1/2,At 2AL
n+1/2 \— n+1/2 \— n n+1/2 n+1/2 n+1/2 \—
(F7T/2<At) 1(F7f/2/7m) t. gradzder/Q 2 °X7J1r/2/,m det F7T/2/,At(F—;_/2/,At) b (38)
to—At/2

n+3/2 n—1/2
(gradu’5°x,)" — (gradu’ 5°,)" /2

IAL ( —1/2,At

— n+1/2 +1/2 n+1/2
= / det Ffl/Q,Atbn o X 1 jaa-2dy
Qi —At/2

)7t gradzdy




+/ |(Ffj/12/2m)—tmt0_m/2|det F’ﬂ;r/12/2Athn+1/2 OXn+1/2 2dA
N ’ ,

- —1/2,At " Yo
to—At/2
du"t32  — oradu”; /2
nt1/2 BTAAU_3 9 Ay — 8 —1/2,At ntl/2 \_¢
/Q detF71/2,At INL '(Ffl/Q,At) qdy
to—At/2

(39)

— n+1/2  n41/2 n+1/2
= / det F71/2,At9n o X71/2,Atq dy,
Qi —At/2

Vz € H%flA (Qy—aty2), Vg € L2(Qt0,m/2) and 0 < n < N—1. In the above pure Lagrangian problem,

0—At/2
we have used the following notations

n+1/2 L n+1/2
X—1/2,At(y) =yt u—1/2,At(y)’
Fn+1/2 n+1/2

71/2,At(y) = I+ gra‘dufl/zyAt(y)a

for y € Q4 _a¢/2 and 0 <n < N — 1. Notice that problem (38)-(39) is linear in the unknowns uﬁt%zt
n+1/2

—1/2,At"
In general, €2, _ /2 is unknown; instead we calculate an approximation by using the following second
order approximation of the motion:

and 7w

At

Xae(p.to—ats2) =p — vo(p)?,

for p € Q.

Remark 5.1. In order to obtain the initial conditions for the pure Lagrangian method (38)-(39), we observe
that u:ig (y) :=u_q1/2(y,to—At/2) =0 Vy € ﬁto,m/g. Moreover, a third order approzimation of ul_/12/2

can be obtained by using (Z7), namely

At At
ul’?,(y) = Atv® (y + vo(y)7> +O(A) = Atv° (y + vo(y)7> :

where we have used that u_,/5(y,to — At/2) = 0. Then we take

At
ul’?, o) == AV (y + Vo(y)7) :

In the academic test examples, we have observed that for the above method to be second-order in time for
the velocity it is necessary to start with a third order approzimation of ul_/12/2 as the previous one.

Remark 5.2. By using analogous procedures to the ones in Remark[E1, we can obtain approximate Dirich-
let boundary conditions for the displacement. More precisely, by using that

n n n n— 3
u—j1L/32/2(?/) = u—J{/lz/Q(y) + Atv" ! (X1/2(yatn1/2) +v 1/2()(—1/2(9, tnl/?))§At) +O(AL?),

n+3/2

we deduce the following Dirichlet boundary condition for u_y s

n+3/2 n+1/2 n n—1/2 n=1/2, vn—1/2 3
u—1/2/,At(y) = u—1/2/,At(y) + Atvitt (X_1/2/7At(y) +vp / (X_1/2/,At(y))§At> on Fﬁ_mp-

5.1.2. Space discretization. Finite element method

We propose a space discretization of the above problem by using continuous piecewise-linear+bubble
finite element for each displacement component and continuous piecewise-linear for pressure.

Let us suppose ), _a¢/2 is a bounded domain in R? with a Lipschitz polygonal boundary. Let us
consider a suitable family of regular triangulations of ﬁto, At/2 to be denoted by Ty, consisting of elements



K of diameter < h. Moreover, we assume it is compatible with the partition of the boundary into Fgfm/z
and I‘é\g At
We define the following polynomial spaces:
P (K)={q, : ¢: R* — R polynomial of degree <1},
Py(K)={qg+a)\ 1qe P (K), a eR},

where A/ is the bubble function of element K.
We consider the following spaces of finite elements:

d
X = {wh € (C¥ue—nt2))" + Wi € (P (K)*, VK e zh}, (40)
Xoh:{whEXh: wp =0 on Fg_mm}, (41)
Vi ={on € CO'(QUy—ntj2) : onx € PL(K), VK €T}, (42)

In order to obtain fully discrete scheme of the time semidiscretizated problem (B8))-([B9) we use the ap-
proximations of function spaces H'(Qy,_a¢/2), Hp (Qty—nt/2) and L*(Qy,_ar/2) given by @D), @)
2

to—At/

and ([@2)), respectively.
Thus, we obtain the following fully discrete problem:

{un+3/2 }N—l

(LG).— Find two sequences of functions U_j /oA n = “12atptn=0 € [Xh]N and T_q1/9ath =

(" Yo € Vi)Y such that

un—m/2 2u +u
1/2 1/2 —1/2,At,h —1/2,At,h —1/2,At,h
/ P2 o X2 et T / / / - zp dy
Qig—At/2

—1/2,At,h —1/2,At,h A2

n+1/2 n+1/2 n+1/2 —t
- / T e n Qe F Y o n e (B2 5 ap) ™ - gradzn dy
Qa2

n+3/2

" N gradu_1/2 Arp — gradu
+/ prtt2 o XML hdet BT A
Uy nays 1/2,At,h 1/2,At,h IAt

n—1/2
—1/2,At,h

n+1/2 — n+1/2 _
(F—1/2/,At,h) 1(F—1/2/,At,h) t. gradzy, dy

+1/2 n+1/2 n+1/2 n+1/2 —t
+ /Q p" o X—1/2,At,h det F—1/2,At,h(F—1/2,At,h)
to—At/2

(43)

n+3/2 n—1/2
(grad ufl/gyAtyh)t — (grad ‘Ll/z,m,h)t /2

IAE ( —1/2,At,h
:/ det FP'F Y%, ot 20 X2 gy dy
Qig—at/2

)"t gradzy, dy
—1/2,Ath —1/2,At,

n+1/2 — n+1/2 n n+1/2
+ /FN |(F7;r/2/,At,h) tmto—At/2| det Fff/Q/,At,hh /20 X:1r/2/,m,h -z dAy, Vzn € Xon

nt1/2 grad uTlr%QAt p — grad uiz/lz/QAt h nt1/2  \—¢
/Q det F—1/2,At,h IAL : (F—I/Q,At,h) qn dy
to—At/2

. n41/2 +1/2 n+1/2
= / det FZ )0 a9 70 X200 Avnn 4y, Yan € Vi,
Qiy—at/2

10



for 0 <n <N —1, with

ujg’m’h(y) = 0, for all node y of mesh Ty, (45)

At
ul_/12/2’At’h(y) = Atv' (y + vo(y)T) , for all node y of mesh Tp, (46)

n+3/2 _nt1/2 ntl [ vn—1/2 n—1/2,vn—1/2 3
W) = )+ A (XD )+ )5 A)
(47)
for all node y on ngmp,
n+1/2 n+1/2 n+1/2 n+1/2
and where X 1/2/At W) =y + u—1/2/,At,h(y)’ F—1/2/,At,h|K = I+ grad u—1/2/,At,h|K for y € Qy,—ar/2,

Ke%Tp,and0<n<N-—1.

By using the solution of problem (LG), we can obtain approximations of the followings fields: the ve—

locity relative to Q, _at/2 at times {¢,+1}5_', the velocity in Eulerian coordinates at times {t,4+1}) ',

the motion relative to {2y _a¢/2 at times {tn+1} 01 and the pressure in Eulerian coordlnates at tlmes

{tn+1/2}h. These approximations will be denoted respectively by {v’_”{/lQAth}n s Zﬂl N

n+1 N-1 n+1/2yN-1
{X_1/2 At,h S n=0 and{ At,h n=0 *

e Approximate velocity relative to Q; ;2. It can be easily obtained by using ({I7) and a
u_j/2

second-order centered formula to approximate . More precisely, since

n ou_ys u_ ~1/2
V_J{/lg(y) = ( e ) (Y, tns1) = A7 + O(At?)

we define o e
n+1 . u71/2,At,h( ) — (v)
71/2,At,h(y) =

for y € QAo and 0 <n < N — 1.

v

e Motion approximation relative to Q; _a¢/» at times {th}n o - Noting that u_q,5(y,t) =
X_1/2(y,t) —y and using a second-order centered formula, we obtain

n+3/2 n+1/2
u_ Yy)+u_ Y
12 W) 1/2 )+O(At2).

Xﬂ_/lQ( )=y+

2
Then we define the approximation
n+3/2 n+1/2
o A W) Ul oA, ()

n+1 _
X eaen(y) =y +

fory € Qyy_agpand 0 <n < N — 1.

2 )

h
e Approximate velocity in Eulerian coordinates. Let us denote by {yzh}f\idl the vertices of
mesh Tj,. In order to obtain an approximate velocity in Eulerian coordinates, we consider this as a

piecewise linear function on the moved mesh ‘f""’l being { X"} (yh )}Z | the vertices of this

1/2,At,h

h
mesh. The values of VZJ;}I at vertices {X"l/2 A, Wl )}iv”l, can be obtained by using v _1_/2 Atk
Since we have
h 1 h 1
nH(XTf/lz aen(i)) =V nH(XTf/z(yi ) = Vﬁ/z(yz ) = V—J1F/2 At, Wi,
we take the approximation
1 h 1
Vabn (X o aen W) = VI )y A (00), (48)
for 0 < n < N — 1. Notice that U K~ ﬁtnﬂ.
Kexpt!

11



e Approximate pressure in Eulerian coordinates. In order to obtain this we use procedures

analogous to the ones in the previous point. That is, we consider approximate pressure as a piecewise
~ h
linear function on the moved mesh SZH/Q, being {Xf;r/léim(yf)}iv:”l the vertices of this mesh. The
h
values of the approximate pressure at vertices {X T{;Q/QA :, h(y?)}&l, are obtained as follows: firstly,

n n+1/2 n n+1/2 n+1/2 n+1/2
AR W) = AT () = 7R ) = 7 ),

and then we take 12 12 12
n-+ n+ h . nt h
TAL,h (X_1/2,At,h( i) = 7T_1/2,At,h( i)
for 0 <n <N —1. Notice that | ] K~ ,, ..

Ked) /2

Notice that for the Lagrangian schemes the computational domain is the same for all time steps. However,
in order to calculate the velocity or the pressure in Eulerian coordinates, the moved mesh is used. For real
fluid mechanics problems, this mesh can present large deformations. For this reason, when this happens
it is necessary to remesh and reinitialize the transformation to the identity. Let us assume that we have

decided to reinitialize the problem at time ¢,_; /5, thus the new reference domain is U K~ ﬁtkl Ja-

In order to solve the problem (LG) in the new reference domain, we remesh this domain and calculate
the new initial conditions as follows:

W, o, (Y, tro1/2) =0, (49)

At At
0 tev1y2) = At (14 ¥(00) Gt ) +0(8) = Avi (Vi) ) 60

In order to obtain an approximate initial condition of u;,_, ,(y,t,y1/2) we need vy, , that is calculated
by using (@8).

However, we want to emphasize that in the examples included in the Section [6] of the present paper,
reinitialization for the pure Lagrangian method has not been used.

5.2. Semi-Lagrangian scheme

By taking 7 = t,_1/5 and t = 1,11 /5 in (28)-(29) and using the second-order formulas (38) and (37),
we obtain
n+3/2 B 2un+1/2

+1/2 n+1/2 n+1/2 n—1/2,At n—1/2,At
/Q prtY 0 X, 1o ardet F o Ay Ar2 rzdy —
t

u

n+1/2 n+1/2 n+1/2  \—¢
/Q Tn—1/2,at det Fn—l/Q,At(Fn—l/Q,At) - gradz dy
t

n—1/2

1
n+1/2 n+1/2 n+1/2 n+3/2 n+1/2 -1
2At Jq prt OXn—1/2,At det Fn—1/2,At gradun—1/2,At(Fn—1/2,At)
tn—1/2 X (51)
n+1/2 — n+1/2 n+1/2 n+1/2 n+1/2 _
(F " e ne) " - gradzdy + 2At/Q P o X0 et F (A
tn—1/2
n+3/2 t n+1/2 —t o n+1/2 n+1/2 n+1/2
(grad unfl/Q,At) (Fn71/2,At) - gradz dy 7/9 det Fn71/2,Atb / Oanl/Q,At -zdy
tn—1/2
n+1/2 —t n+1/2 n+1/2 n+1/2
+ N |(Fn71/2,At) mtn71/2| det Fn71/2,Ath 2o Xn71/2,At -zdA,,
tn—1/2
1 n+1/2 n+3/2 nt1/2 | —¢
2At/ﬂ det Fn—1/2,At gradun—1/2,m : (Fn—l/Q,At) qdy
t
1/2 (52)

+1/2 +1/2
- / det Ff?*l//ZAtgnH/2 © X::fl//z,mq dy,
Q4



vz € H}p, (Q,_,,), Vg € L*(,_,,,) and 0 < n < N — 1. In the above semi-Lagrangian problem,

tn—1/2

we have used that u"~'/? = 0, and the following notations

n—1/2 —
n+1/2 o n+1/2
Xn—1/2,At(y) =y+ un—l/Q,At(y)’
n+1/2 _ n+1/2
Fn—1/2,At(y) =1+ grad un—l/Q,At(y)’
foryGQ,gnA/2 and 0 <n<N-—1.
We propose a space discretization of the above problem by using continuous piecewise-linear+bubble
finite elements for each component of the displacement and continuous piecewise-linear for pressure.

Let us suppose (2 _, , is a bounded domain in R? with a Lipschitz polygonal boundary for 0 < n <
N — 1. Let us consider a suitable family of regular triangulations of ﬁt%lm to be denoted by 32_1/2,
consisting of elements K of diameter < h. Moreover, we assume it is compatible with the partition of

the boundary into I'Y) | ~and I'}Y | .

We consider the following spaces of finite elements:

n— d n-
X;7 = {on € (€O, ) s e € (LK), VK €57 )
Xgh71/2 = {Wh S X}?il/2 : wp=0o0n Ft[:ﬁuz} ) (54)
/AR {gﬁh €C%, 1) pni €EPL(K), VK € TZ_UQ}- (55)

In order to obtain fully discrete scheme of the time semidiscretizated problem (EI))-(52) we use the ap-

proximations of function spaces H' (€, _, ), H%tD / (4, _,,,) and L*(,_, ,,) given by (53), (54) and
n—1/2
(B3, respectively. Moreover, by using procedures analogous to the ones in the previous section we obtain

the approximate initial and boundary conditions for the displacement.
Thus, we obtain the following fully discrete problem:

N-1
. . 3/2 - ~1/2 1/2 -
(SLG)2.— Find two sequence of functions {uz:;z,m,h Nle H Xy /% and {WZL;Q,At,h Nle
n=0
N-1
11 V" "'/? such that
n=0
un+3/2 _ 2un+1/2
$1/2  pnt1/2 n+1/2 n—1/2,At,h n—1/2,At,h
/Q prt/2 o Xn—l/Q,At,h det Fn71/2,At,h INE - Zp dy —
t

/ A det F™H1/2 (F"H/2 )=t gradz, dy
Q4

n—1/2,At,h n—1/2,At,h\" n—1/2,At,h
n—1/2
L n+1/2 g Xn+1/2 det Fn+1/2 radu"+3/2
oAt Jq H n—1/2,At,h n—1/2,At,h & n—1/2,At,h
t,_

1/2

n+1/2 — n+1/2 —
(F, iy’ ) 1(Fnj_1//2,At,h) t grad z, dy

n—1/2,At,h (56)
1
+1/2 n+1/2 n+1/2 n+1/2 —t n+3/2 ¢
2At Jq prt 0 X, " 172 arp det Fn71/2,At,h(Fn71/2,At,h) (gradunq/z,m,h)
tn—1/2
n+1/2 —t _ n+1/2 +1/2 n+1/2
(Fn—l/Q,At,h) - grad zy, dy —/Q det Fn—l/Q,At,hbn / OXn—l/Q,At,h “zp dy
th—1/2
n+1/2 —t n+1/2 +1/2 n+1/2
+ . ((F 212 aen)” M,y | det BT 0 A, 0" / ° X 1)2,a0n " Zh ddy,
tn—1/2

Va, € X0 2,
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1

n+1/2 n+3/2 n+1/2 .

2—At det anl/Q,Ath grad u’ﬂ*l/?,At,h ' (anl/Q,At,h) aqn dy

Qtn—l/z

(57)

n+1/2 n nt1/2 —1/2

— /Q det Fnjl//2,At,hg +1/2 o anl//Q,At,hqh dy7 v(]h c Vh, / ,

th—1/2
with
n+1/2 — A" n At tor all . R
w0 o ae () = AtV y+vm,h(y)7 , for all node y of mesh T, , (58)
n+3/2 n+1/2 n 1/ 3

u"LéQ’At’h(y) - unilélAt,h(y) +Atvp' (y +vp / (?/)§At for all node y on Fﬁ,,ma (59)

for 0 <n < N —1, where v}, , is an approximation of the spatial velocity calculated as explained below
and
n+1/2 o n+1/2 n+1/2 o n+1/2
X eaen W) =y w0 (W) F s arnx =L gradw, Ty ay e
foryeQ, ,,, K€ 5271/2 and 0 < n < N —1. Notice that this problem is analogous to the one in the
previous section but reinitializing the transformation to the identity at each time step.

By using procedures analogous to the ones in the previous section, we can obtain approximations of
the pressure in Eulerian coordinates, the velocity and the motion, by using the solution of problem

(SLG)s.

e Approximate velocity relative to € at time ¢,,41: VZJ:}/Q Arpe It can be easily obtained

n—1/2

. . Ju . .
by using (7)) and a second-order centered formula to approximate 8—157 More precisely, since

n+3/2 n+1/2
n ouy,_1/2 n-1/2(%) =0, 5(y)
Vnﬂ/2(y) = 2y, tar) = / AL / +0(At?)
n+3/2 n+1/2
N nﬂ/Q,At,h( ) — nﬂ/Q,At,h(y)
N At ’
we take nt3)2 t1/2
a1 . un71/2,At,h( ) — un71/2,At,h(y)
Vn—l/Q,At,h(y) = At ;
forye(, ,,and0<n<N-1.

e Approximate motion relative to at time ¢,,1: ani/z,m,h' Noting that u,(y,t) =

—1/2 n
X, (y,t) — y and using a second-order centred formula, we obtain

n+3/2(y)+ n+1/2( )

n n—1/2 n—1/2
Xt ay) =y + / 5 P2 o(Af).
Then we define the approximation
n+3/2 n+1/2
W aen W) w0 A (W)

+1 e
X::—l/zm,h(y) =yt 9 )

for y € Q4 and 0 <n <N -—1.

n—1/2

h

e Approximate velocity in Eulerian coordinates at time ¢,,1: VZJ{}I. Let us denote by {yzh}f\]:“1
the vertices of mesh ‘1271/ ?_ Notice that these vertices can depend on time instant. For simplicity,
we do not explicit this dependence. In order to obtain an approximate velocity in Eulerian coor-

. . .. . . . on+1 . n+1 h Nz’;l
dinates, we consider this is piecewise linear on the moved mesh T, ", being {anl/Q,At,h(yi )i

14



h
the vertices of this mesh. The values of the approximate velocity at vertices {ngll 2.t h(yf)}i-v:”l,
can be obtained by using VZJ:}/Q,At,h‘ Since we have

h h h h
Vn+1(XsiL11/2,At,h(yi ) =~ Vn+1(X:ir11/2 (yz ) = VZJ_ri/g (yz ) =~ Vzti/g,At,h(yi )a

we take the approximation

+1 +1 R\Y . o+l h
VZt,h(X;ll/z,At,h(yi ) = V:71/2,At,h(yi )

for 0 <n < N — 1. Notice that U K ~ ﬁtn+1-
Kezptt

. . . . . 1/2 .
e Approximate pressure in Eulerian coordinates at time ¢, /: ﬂgth/ . In order to obtain

the pressure values in Eulerian coordinates, we consider the approximate pressure as a piecewise

~ h
linear function on the moved mesh ‘IZH/Q, being {X:irll//;mh(yf)}fv:“l the vertices of this mesh.
h
The values of the approximate pressure at vertices {Xgirll //22 A tyh(yf)}zj-\[:”l, are obtained as follows:

firstly,

n n+1/2 n n+1/2 n+1/2 n+1/2
AR X ) = TR ) = w0 ),

and then we take

n+1/2 n+1/2 h . n+1/2 h
TAth (Xn—1/2,At,h( i) *”n—1/2,At,h( i)
for 0 <n < N — 1. Notice that U K~ ﬁth/Z-
Ke3nt/?

We also recall that, when we are calculating uz'ﬁﬁ Ab.h?

For the semi-Lagrangian schemes the computational domain changes at each time step. In general,
is unknown; instead we calculate an approximation by using the approximate motion.

VA p, 18 known.

2

n—1/2

Remark 5.3. If we approzimate Xsfll//;mﬁ(y) by y and F:jll//;m,h(y) by I in problem (SLG)o, then
a new semi-Lagrangian problem is obtained. Notice that these approzimations are of first order in time.
This first order semi-Lagrangian method will be denoted by (SLG)1. If Q; = Q for all t and the coefficients

p and n are time independent, then the matriz associated with this method is independent of time.

6. Numerical results

In order to assess the performance of the above numerical methods, analyze their rates of convergence
and compare them, we solve three test problems in two space dimensions. The first one is an academic
problem, for which we verify rates of convergence for the pure Lagrangian and the semi-Lagrangian
methods described in the present paper. The second one is the lid driven cavity problem. It models
the flow in a square box driven by the motion of the lid of the box. This problem has been solved with
the semi-Lagrangian methods presented in this paper and the obtained numerical results are compared
with a reference solution. Finally, the third example is a free surface problem. More precisely, we
consider a classical example of sloshing numerical simulation. This problem has been solved with the
pure Lagrangian method proposed in this paper.

In Example 1, we calculate the error between discrete solutions vay p and ma¢ 5, and exact solutions v
and 7. For this, we approximate the theoretical L*(2,,) and L*(€;, _, ) norms by using a quadrature
formula exact for polynomials of degree 2. Moreover, domains €, and € are calculated by using
the approximate motion. The function spaces endowed with these norms are denoted by L7 (€2, ) and
L3 (O , respectively. Thus, we denote by 1°°(A"), being A" = L} (., ), Lj, (4, _, ,,), the space of

—1/2

n,71/2)

sequences in { A"}V ! equipped with the norm H\TIH ) = gﬁ(})l( ]| g -
oo n n—=
Moreover, schemes (LG), (SLG)2 and (SLG); were combined with an exact quadrature formula for

polynomials of degree 5 in all of the terms.
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Example 1

This is a problem aiming to check the rates of convergence of the schemes proposed in this paper.

I“(LE(Q[ )) error curve (velocity) I""(Lﬁ(nl )) error curve (pressure)
o 1 H -1z
10 10
]
1 ~
= D = \\\\
T~
\\
10° | | —o—(©) T~
— —+#— (SLG), \\\\\
~~ 1 o] | y=ciN? ~
™~ 107 ~
~ (SLG) T~
\\ 1
~_ — — y=CIN
L > 10’12 L L L
10° 10° 10! 10° 10°

N: number of time step N: number of time step

Figure 2: Example 1: computed lw(L%(Qth)) velocity error (left) and 1°°(L2 (Q%,,_4,,)) pressure error (right) versus the
number of time steps in log-log scale, for a fixed spatial mesh of 125 x 125 vertices.

I“(LE(Q[ )) error curve (velocity) I""(Lﬁ(nl )) error curve (pressure)
et n-1r2
10™ 10°
2 - ~ 107tk T~ -
W5 E .
- 107}
107} R * 3 N : Tr- o
R N -
5 N 50
i} Sk I ~
T~
4| ]
10 e (Lo) L[| )
——(sLB), 107 | ——(sLa),
~C/IN? — y=CIN?
107} YN, q y=CINZ
- (SLE), 10°F | ——(SLG),
— — y=CIN — — y=CIN_
10° = — 10° — >
10 10° 10 10°

Nx=Ny: number of degrees of freedom in each spatial direction (h=1/Nx) Nx=Ny: number of degrees of freedom in each spatial direction (h=1/Nx)

Figure 3: Example 1: computed lw(L%(Qth)) velocity error (left) and lw(L%(Qtn,l/z)) pressure error (right) versus 1/h
in log-log scale, for At = 0.01.

The spatial domain is Q = (0,1) x (0,1), to = 0 and T'= 1. The diffusion tensor is A = 0.0017 and p = 1.
Functions b and g and Dirichlet boundary and initial conditions are taken such that the exact solution is

m(z,y) =102z — 1)(2y — 1),
vi(z,y,t) = 10te'a?(x — 1)%y(y — 1)(2y — 1),
o(z,y,t) = —10telz(z — 1)(22 — 1)y*(y — 1)2

<

(,
(z,
We solve this problem by using methods (LG), (SLG); and (SLG);. In Figure[2, we have fixed a uniform
spatial mesh of 125 x 125 vertices and shown the [*° (L% (€Y, ,,)) velocity error (left) and (> (L%L(Qtn—l/Z))
pressure error (right) versus the number of time steps. These results show that schemes (LG) and
(SLG); possess second-order accuracy in time and scheme (SLG); possess first-order accuracy in time.
Concerning the semi-Lagrangian schemes, for fixed &, we can observe an increasing error as the time step
decreases below a threshold. This is due to the presence of terms added by the quadrature formula to
the error. In Figure [3 we represent the 1°° (L}(€,,)) velocity error and the 1°° (L7.(€,, _, ,)) pressure
error versus 1/h for a fixed small time step, namely At = 0.01. We can observe that schemes (LG),
(SLG), possess second-order accuracy in space in the [°°(L?)-norm. Moreover, with the scheme (SLG);
we observe first-order accuracy in space for velocity and second-order accuracy in space for pressure.

16



’Ul:l, ’UQ:O

t=20

V1 = Vg =

’UQ:O ’UQ:O

’U1:O, ’1}2:0

Figure 4: Driven cavity: initial and boundary conditions.

Remark 6.1. In the academic tests, we have observed that the order of the error of the methods is main-
tained if we calculate F without considering the bubble term. In some cases, in order to mot to have
negative values of det F' it is convenient to do this.

Example 2

We consider a driven cavity flow governed by the incompressible Navier-Stokes equations to compare
the numerical results obtained with the classical semi-Lagrangian methods and the new ones presented
in this paper. The driven cavity problem has long been used as a test case for Navier-Stokes solvers,
thanks to it has simple geometry and boundary conditions. Although the problem looks simple in many
ways, the flow in a cavity retains all the flow physics with counter rotating vortices appearing at the
corners of the cavity. In some papers in the literature, a steady solution is sought and therefore the
numerical solution of steady incompressible Navier-Stokes equations are presented at various Reynolds
numbers (see, for instance, [21], [15], [16], [6]). However, in other papers the bifurcation of the flow
in a driven cavity from a steady regime to an unsteady regime is studied (see, for instance, HE], @])
The dimensionless problem is defined in a square domain = (0,1) x (0,1) with the upper side of the
cavity sliding to the right at unit velocity. The problem is depicted in Figure @ For the current study,
the problem was solved for a Reynolds number of 1000 on a series of meshes, the coarsest mesh having
17 x 17 vertices, while the finest one has 70962 vertices. We solve this problem with semi-Lagrangian
methods (SLG); and (SLG); and with the second-order in time semi-Lagrangian classical method given
by B4)-([B3) combined with continuous piecewise-linear+bubble finite elements for each component of
the velocity and continuous piecewise-linear for pressure for space discretization. This method will be
denoted by (SLG)3; we use the strategy given in B] to calculate the integrals. We carry the simulations
along the time until convergence. Results are compared with the benchmark solutions given in M]

In Figure Bl we have fixed the time step, namely, At = 0.002 and show, for different regular meshes,
the horizontal velocity profiles along the vertical centreline of the cavity (on the left) and the vertical
velocity profiles along the horizontal centreline of the cavity (on the right), computed by using the
(SLG)3, (SLG); and (SLG)3 methods. The benchmark solutions of Ghia is included for comparison.
Clearly, (SLG)2 and (SLG); achieve better results than the corresponding classical second-order method
(SLG)3. Moreover, under the same parameters, the (SLG)2 and (SLG); schemes provide the same
numerical solutions. Besides, for both methods, errors with At in the denominator are observed (see
Figures [ and ). However, for this example, the matrix associated with the (SLG); scheme is time
independent. Moreover, in order to obtain a stationary numerical solution, with the (SLG)s scheme we
need to use smaller time steps than with the (SLG); method. For these reasons, in this case, the most
convenient method to solve this problem is the (SLG); scheme. In Figure [f] we have shown, for different
regular meshes, the horizontal velocity profiles along the vertical centreline of the cavity (on the left)
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Figure 5: Driven cavity: on the left, profiles of the horizontal velocity along the vertical centreline, calculated using different
schemes for a range of mesh sizes, and compared with the benchmark solutions given in ] On the right, profiles of the
vertical velocity along the horizontal centreline, calculated using different schemes for a range of mesh sizes, and compared
with the benchmark solutions given in [21].

and the vertical velocity profiles along the horizontal centreline of the cavity (on the right), computed
by using the (SLG); method. In this figure, the time step varies with the mesh. More precisely, for
each mesh, we consider the largest time step for which the orientation of the elements of the moved mesh
%Z“ is the same as the one of the elements of the mesh 5271/ > In Figure [ we represent the numerical
solution obtained with the (SLG); method for a spatial mesh of 70962 vertices and At = 0.0026. More
precisely, the horizontal velocity profiles along the vertical centreline of the cavity, the vertical velocity
profiles along the horizontal centreline of the cavity and the isovelocity and streamfunction contours are
plotted. As the references in the literature, our numerical solutions exhibits a large primary vortex with

two secondary vortices in the two bottom corners.
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Figure 6: Driven cavity: on the left, profiles of the horizontal velocity along the vertical centreline, calculated using the
(SLG); scheme for a range of mesh sizes, and compared with the benchmark solutions given in [21]. On the right, profiles
of the vertical velocity along the horizontal centreline, calculated using the (SLG)1 scheme for a range of mesh sizes, and
compared with the benchmark solutions given in I2__1|] For each mesh, we use the largest possible time step.

Example 3

To show the behaviour of the pure Lagrangian formulation for large mesh distortion, the analysis of
large amplitude sloshing in a rectangular tank has been carried out. The width of the tank is 0.8 m and
the depth is 0.3 m. Incompressible fluid is considered. The liquid in the tank is subject to a sinusoidal
horizontal acceleration. More precisely, the body force is

b(xv t) = p(:c, t)(A g Sin(Wt)v *g);

where A is an arbitrary constant governing the amplitude of the excitation, g is the gravity acceleration
and w is the excitation frequency. In this example, A = 0.01, p = 1000kg/m3, g = 9.8 m/s? and
w = 5.642rad/s. Using these parameters, experimental results show that the resonance frequency of
the tank is 0.898 Hz. At the vertical boundaries the horizontal velocity is zero, at the lower horizontal
boundary the vertical velocity is zero and at the upper horizontal boundary we impose null Neumann
condition (force-free). Since it is a free surface problem we solve it with the pure Lagrangian method
(LG) without reinitializing. Notice that in pure Lagrangian methods the computational domain is the
reference domain; in this case it is Q@ = (0,0.8) x (0,0.3). We solve this problem for different viscosity
values, = 0.1,0.01,0.001. Figure (8) shows the vertical displacement of the upper corner nodes at the
wall tank, as a function of time. The results are in good agreement with those given in M] and M] In
Figure [@ we represent an instantaneous configuration of the domain and the streamlines.
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Figure 7: Driven cavity: horizontal velocity profiles along the vertical centreline of the cavity, the vertical velocity profiles
along the horizontal centreline of the cavity and the isovelocity and streamfunction (bottom) contours, computed with the
(SLG)1 method, for a spatial mesh of 70962 vertices and At = 0.0026.
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Figure 8: Sloshing waves: time history of wave height at the walls for = 0.1 (top left), u = 0.01 (top right) and g = 0.001
(bottom), and for a spatial mesh of 5743 vertices and At = 0.02.
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Figure 9: Sloshing waves: instantaneous domain configuration and streamlines for p = 0.001 at ¢ = 8.35, and for a spatial
mesh of 5743 vertices and At = 0.02.

7. Conclusions

We have obtained a unified formulation with which classical and new characteristics methods can be
obtained for solving the Navier-Stokes equations. In particular, we have proposed two new Lagrange-
Galerkin schemes in terms of the displacement, one pure Lagrangian and another one semi-Lagrangian.
The semi-Lagrangian scheme is analogous to the pure Lagrangian method but reinitializing the transfor-
mation to the identity at each time step. Numerical tests have been presented to compare the new and
classical methods, assess the performance of the new numerical methods and analyze their rates of conver-
gence. We have observed that the new schemes achieve better results than the classical ones. Moreover,
we have considered a free surface problem. It has been solved with the pure Lagrangian displacement
method proposed in this paper. These new characteristics methods are useful for solving free surface
problems because the computational domain is time independent. However, when the mesh elements
have high distortions it is necessary to remesh and reinitialize the transformation to the identity. In fact,
for solving some problems with high Reynolds numbers, it is convenient to use semi-Lagrangian schemes.
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