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SECOND ORDER PURE LAGRANGE-GALERKIN METHODS FOR

FLUID-STRUCTURE INTERACTION PROBLEMS

MARTA BENÍTEZ†
AND ALFREDO BERMÚDEZ‡

Abstract. In this paper we propose a second order (both in time and in space) pure Lagrange-Galerkin method for
the numerical solution of fluid-structure interaction problems. The proposed scheme is written in material coordinates and
in terms of displacements in the structure and of displacements and pressures in the fluid. Pure-Lagrangian displacement
methods are useful for solving free surface problems and fluid-structure interaction problems because the computational
domain is independent of time and fluid-structure coupling at the interphase is straightforward. Unfortunately, for moderate
to high-Reynolds number flows, pure-Lagrangian methods can lead to high distortion of the mesh elements and as a
consequence non-accurate approximations can be obtained. Before this happens it is necessary to re-mesh and re-initialize
the motion. In the present paper we also deal with this problem by proposing a method to be combined with the pure
Lagrange-Galerkin method we introduce that preserves the order. In order to assess the performance of the overall numerical
method, we solve different problems in two space dimensions. In particular, numerical results for the two-dimensional motion
of an elastic circular cylinder in a fluid and a sloshing problem with an elastic submerged cylinder in a rectangular tank are
presented.

Key words. fluid-structure interaction problems, Navier-Stokes equations, linear elasticity, Lagrange-Galerkin meth-
ods, second-order schemes, pure-Lagrangian methods, semi-Lagrangian methods

AMS subject classifications. 65M25, 65M60, 74F10

1. Introduction. In the present paper a new pure Lagrange-Galerkin method to solve fluid-structure
interaction problems is described. Important problems from different fields of engineering and applied
sciences involve the interaction of fluids and structures. Examples are common in off-shore structures,
liquid containers, airplanes, submarines, etc. Typically, the fluid model is based on a Eulerian formulation
in terms of the velocity in contrast to the usual Lagrangian formulation in terms of the displacement for
the solid model. Therefore, a typical difficulty for solving fluid-structure interaction problems is coupling
at the interphase. Moreover, often the fluid problem is a free surface problems. The Eulerian formula-
tion of these problems presents two classical difficulties: the treatment of the convective term and the
modelling and tracking of the free surface. All these problems disappear if the fluid problem is written
in Lagrangian coordinates and in terms of displacement.

The methods of characteristics are extensively used for solving convection-diffusion problems with
dominant convection (see the review paper [12]). These methods are based on time discretization of
the time derivative along characteristic curves. When they are referred to a fixed domain (respectively,
to a time dependent domain) they are called pure Lagrangian methods (respectively, semi-Lagrangian
methods). The classical methods of characteristics are formulated in Eulerian coordinates and therefore
they are semi-Lagrangian schemes. These methods have been mathematically analyzed and applied to
different problems with time independent domains by several authors (see [11], [23], [29], [27], [7], [8] and
[3]). More precisely, in [29] and [23] the classical first order characteristic method, as introduced in [11],
is combined with finite elements for solving convection-diffusion equations. In [27], [7] and [8] a second
order characteristics method for solving constant coefficient convection-diffusion equations is analyzed.
Stability and optimal error estimates are proved.

The Eulerian framework of the classical characteristics methods is unduly cumbersome to solve prob-
lems with time dependent domains, such as free-surface flows or problems involving interfaces between
different bodies. These problems have been solved with several Lagrangian approaches. More precisely,
in [15], [20], [26], [18], [19], [17], [10], [22] the Eulerian classical formulation of the Navier-Stokes equa-
tions is considered and the classical technique to discretize the material derivative is used. A Lagrangian
framework is considered because the track of the locations of individual particles (which can be nodes)
is kept and particles in current domain are viewed as moving points from previous domains. The par-
ticle positions are updated by using the values of velocity. At each time step, the problem to solve is
non-linear because it is written in the current domain which is unknown (it depends on current velocity,
unknown too). Notice that the particle finite element method (PFEM) uses this strategy to discretize the
convective term. This method has been applied to the solution of fluid-dynamics problems including free
surface flows and breaking waves [18], fluid-structure interactions ([19], [17]) or fluid-object interactions
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([10], [22]). On the other hand, in [25] the Lagrangian form of the Navier-Stokes equations in terms of
the motion is considered. A Newmark’s algorithm for time discretization, combined with element finite,
is proposed to solve the Lagrangian problem. At each time step, the obtained problem is non-linear
and it is solved by Newton-Raphson iteration. In this paper, we also consider the Lagrangian form of
the Navier-Stokes equations but in terms of displacement. Moreover, we propose a new strategy of time
discretization so that at each time the problem to solve is linear.

In the past, the main problem of pure Lagrangian methods for fluids has been the lack of re-meshing
(see [15] and [26]). As an exception, in [20] a rezoning technique has been applied for the propagation
analysis of solitary waves. Advances in meshing have enabled the automated and adaptive re-meshing,
which extends the range of application of Lagrangian methods (see, for instance, [25] and [18]). More
precisely, in [25] a full Lagrangian finite element method for the analysis of Newtonian flows based on
continuous and adaptive re-meshing is developed. Numerical results for a sloshing problem and a for the
propagation of a water wave are presented. The finite element mesh is maintained undistorted throughout
the computation by recourse to frequent and adaptive re-meshing. On the other hand, in the particle
finite element method (PFEM) the mesh is regenerated at every time-step, the particles belonging to the
boundaries may change and the new boundary nodes (and therefore the particles) have to be identified
(see [18] for details).

Recently, we have introduced new characteristics methods combined with finite elements to solve
time dependent domain problems, first for scalar linear convection-diffusion equations and then for vec-
tor nonlinear convection-diffusion equations. All these methods are linear and are obtained by introducing
a change of variable from the current configuration to a reference configuration (known). In particular,
for scalar linear convection-diffusion equations, a second order pure Lagrange-Galerkin scheme has been
introduced in [4] and [5] where stability and optimal error estimates were proved. In [9], semi-Lagrangian
and pure-Lagrangian methods are also proposed and analyzed for convection-diffusion equations. In
[4] and [5] more general problems are considered. Specifically, we have considered a (possibly degener-
ate) variable coefficient diffusive term instead of the simpler Laplacian, general mixed Dirichlet-Robin
boundary conditions, and a time dependent domain. Moreover, we have analyzed a scheme with approx-
imate characteristic curves and presented numerical results for pure-Lagrangian and semi-Lagrangian
methods. In [6] a unified approach to state pure-Lagrangian and semi-Lagrangian methods for solving
convection-diffusion partial differential equations is introduced. More precisely, a quite general change of
variable from the current configuration to a reference configuration, not necessarily the one of the initial
time, is proposed obtaining another new strong formulation of the problem from which classical and new
time discretization methods can be introduced in a natural way. Moreover, stability estimates for the
pure-Lagrangian method proposed in [4] and [5] have been obtained.

By applying the above ideas to the Navier-Stokes equations, we can obtain displacement methods
similar to those used for numerical solution of solid mechanics problems. More precisely, in [2] a unified
formulation to introduce Lagrangian and semi-Lagrangian velocity and displacement methods for solving
the Navier-Stokes equations is proposed. By using this formulation, two new second-order characteristics
methods in terms of the displacement and classical second-order characteristics methods in terms of
the velocity are obtained. Moreover, numerical results showing the performance of these methods are
presented.

In this paper, we consider the coupling of a viscous Newtonian incompressible fluid and a linear elastic
solid. The governing equations for the fluid are the unsteady incompressible Navier-Stokes equations and,
for the solid, the Navier-Lamé equations of linear elastodynamics. These equations are coupled by the
standard kinematic and kinetic interface conditions, namely, continuity of displacements and forces. We
propose a second-order pure-Lagrangian method combined with finite element approximations for the
numerical solution of this problem. For this purpose, we use the mathematical formalism of continuum
mechanics (see for instance [14]) following the ideas given in [4] and [2]. More precisely, the Navier-
Stokes equations and the Navier-Lamé equations are written in material coordinates and in terms of
displacements and fluid pressure. This new strategy avoids several difficulties presented by literature
methods as some of those referenced above. For example, at each time step the computational domain is
known and the problem to solve is linear. Moreover, the interface kinematic condition is included in the
definition of the functional space where the numerical solution is looked for and the kinetic condition is
a natural one of the weak formulation for the coupled fluid-solid problem.

The paper is organized as follows. In Section 2 a general initial-boundary value problem is posed in
a time dependent bounded domain and some hypotheses and notations concerning motions are recalled.
In Section 3, a change of variable from the current configuration to the initial configuration is proposed
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obtaining a new strong formulation of the problem in a time-independent domain. More precisely, the
fluid-structure interaction problem is written in Lagrangian coordinates and in terms of displacements
and fluid pressure. Then, the standard associated weak problem is obtained. In Section 4, we propose
a second-order time discretization scheme for solving the coupled weak formulation. Section 5 discusses
the fully discretized scheme using a finite element method: in the solid, continuous piecewise linear
functions are used for each component of the displacement field and, in the fluid, the same approximation
for the pressure and the mini-element (P1-bubble) for the displacement field. Moreover, we obtain
approximations of velocity and pressure in Eulerian coordinates (i.e., in the current configuration) by
using the obtained approximations of displacement and pressure in Lagrangian coordinates. A method to
re-initialize the pure Lagrange-Galerkin method is presented in Section 6. Finally, in Section 7 numerical
examples are included showing the performance of the overall method.

2. Statement of the problem. General assumptions and notations. Let Ω be a bounded
domain in R

d (d = 2, 3) with Lipschitz boundary Γ. Let us assume that Ω and Γ are divided into two

parts: Ω = int(Ω
f
∪Ω

s
) and Γ = ΓD∪ΓN , with ΓD∩ΓN = ∅. We call ΓI = Ω

f
∩Ω

s
. Let X : Ω×R −→ R

d

be a motion in the sense of Gurtin [14]. For given A ⊂ Ω, we call At = X(A, t). In practice, a bounded
time interval is considered for the motion, namely, [t0, tf ], being t0, tf two non-negative numbers. For
simplicity, in this paper we assume that X(p, t0) = p ∀p ∈ Ω. Notice that in many cases the body is at
rest until the initial time, i.e., X(p, t) = p ∀t ≤ t0 ∀p ∈ Ω and then the initial velocity is null. For given
t0 ≤ τ ≤ tf , we denote by Xτ the motion relative to the configuration at time τ , namely

Xτ (y, t) := X(P(y, τ), t) ∀(y, t) ∈ Ωτ × [t0, tf ]. (2.1)

Let us introduce the notation

Fτ (y, t) := grad yXτ (y, t). (2.2)

We will adopt the notation given in [2] for the trajectory of the motion (T ), the spatial velocity (v), the
displacement (u), the deformation gradient (F), the reference map (P), the points in Ω (p), the points
in Ωt (x), the points in Ωτ (y), and the functional spaces involved in the formulation of the problem (see
Section 2 of [2] for more details). Fields defined in T (respectively, in Ω× [t0, tf ]) are called spatial fields
(respectively, material fields). For the sake of clarity, in expressions involving space and time derivatives
we use the definitions and notations given in [14]. In particular, if Φ is a smooth material field, we
denote by ∇Φ (respectively, by Div Φ) the gradient (respectively, the divergence) with respect to the first
argument (p), and by Φ̇ the partial derivative with respect to the second argument (time). Similarly, if
Ψ is a smooth spatial field or a smooth field defined in Ωτ × [t0, tf ], we denote by gradΨ (respectively, by
divΨ) the gradient (respectively, the divergence) with respect to the first argument (x or y), and by Ψ′

the partial derivative with respect to the second argument (time). For the sake of clarity, in some places
where these operators appear, we specify the differentiation variable as a subscript, e.g., ∇pΦ, grad xΨ,
grad yΨ (respectively, Div pΦ, div xΨ, div yΨ) denote the gradient (respectively, the divergence) with

respect to the first argument (p, x or y). Moreover, if Ψ is a spatial field, Ψ̇ denotes the material time

X(·, t)
X(·, τ)

P(·, τ)

Xτ (·, t)

p

Ω

y

Ωτ

x

Ωt

Ψ(·, t)
R

R
d

Lin

Ψτ (y, t) := Ψ(Xτ (y, t), t)

Fig. 2.1. Functions referred to configuration at time τ , t0 ≤ τ ≤ tf .

derivative, that is Ψ̇(x, t) =
∂

∂t
(Ψ(X(p, t), t))|p=P(x,t). Let us introduce the following definition of the
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trajectory of the fluid motion (see [14]):

T f := {(x, t) : x ∈ Ω
f

t , t ∈ [t0, tf ]}.

A spatial field Ψ can also be defined in Ωτ × [t0, tf ]. It is the field

Ψτ (y, t) := Ψ(Xτ (y, t), t) ∀(y, t) ∈ Ωτ × [t0, tf ]. (2.3)

These functions are depicted in Figure 2.1. For τ = t0, Ψt0 is the material description of Ψ also denoted
by Ψm. Let uτ be the displacement field relative to the configuration at time τ , that is,

uτ (y, t) := Xτ (y, t) − y ∀(y, t) ∈ Ωτ × [t0, tf ]. (2.4)

Now, let us consider the following general initial-boundary value problem (motion equation of continuum
mechanics):

(GSP) General Strong Problem. Find two mappings v : T −→ R
d and T : T −→ Lin such that

ρv′ + ρ gradvv − divT = b in T , (2.5)

subject to the boundary conditions

v(x, t) = vD(x, t) on ΓD
t , (2.6)

T(x, t)n(x, t) = h(x, t) on ΓN
t , (2.7)

for t ∈ (t0, tf ), and to the initial condition

v(x, t0) = v0(x) in Ω. (2.8)

In the above equations, Lin denotes the space of tensors in the d-dimensional space, ρ : T −→ R,
b : T −→ R

d, vD(·, t) : ΓD
t −→ R

d and h(·, t) : ΓN
t −→ R

d, t ∈ (t0, tf ), are given spatial fields,
n(·, t) is the outward unit normal vector to Γt. Notice that the system of equations given in (GSP) is
undetermined. In Section 3, in order to complete the system, constitutive assumptions on the form of
the Cauchy stress tensor T will be introduced. These additional equations depend on the behavior of the
specific materials we are considering (e.g., fluid or solid). Moreover, we notice that equations (2.5)-(2.7)
are expressed in spatial coordinates, x = X(p, t), belonging, in general, to an unknown domain. In order
to avoid this difficulty we will rewrite problem (GSP) in the reference configuration Ω which is supposed
to be given.

3. Strong problem and weak formulation in Lagrangian coordinates. We are going to
develop some formal computations in order to write the above problem (GSP) in Lagrangian coordinates
and in terms of displacement. Firstly, from the definition of the material time derivative and by using
the chain rule, we get (see, for instance, [14])

v̇(x, t) =
∂v

∂t
(x, t) + grad xv(x, t)v(x, t) = ü(p, t)|p=P(x,t) ∀(x, t) ∈ T . (3.1)

Then, by evaluating equation (2.5) at point x = X(p, t) and then using (3.1), we obtain

ρ(X(p, t), t)ü(p, t)− div xT(X(p, t), t) = b(X(p, t), t), (3.2)

for (p, t) ∈ Ω × (t0, tf ). Notice that in (3.2) there are derivatives with respect to the Eulerian variable
x. In order to write a strong formulation of problem (GSP) in Lagrangian coordinates we can use the
divergence theorem, the change of variable x = X(p, t), the chain rule and the localization theorem, to
obtain the equality

− div xT(X(p, t), t) = −Div p

(
Tm(p, t) detF(p, t)F−t(p, t)

) 1

detF(p, t)
, (3.3)

for (p, t) ∈ Ω× (t0, tf ). Then, (3.2) becomes

ρmü−
1

detF
Div p

(
Tm detFF−t

)
= bm, (3.4)



LAGRANGE-GALERKIN METHODS FOR FLUID-STRUCTURE INTERACTION 5

in Ω × (t0, tf ). Next, by evaluating equations (2.6) and (2.7) at point x = X(p, t) and using (2.8), we
obtain the following material versions of the boundary and initial conditions:

u̇ = (vD)m on ΓD × (t0, tf ), (3.5)

TmF−tm = |F−tm|hm on ΓN × (t0, tf ), (3.6)

u̇(p, t0) = v0(p) in Ω, (3.7)

being m the outward unit normal vector to Γ , and where we have used

n(X(p, t), t) =
F−t(p, t)m(p)

|F−t(p, t)m(p)|
(p, t) ∈ Γ× (t0, tf ).

As a consequence of these results, equations of problem (GSP) in the current configuration are trans-
formed into equations in the reference configuration Ω. More precisely, we have got the following formu-
lation in Ω× (t0, tf ):

(LGSP) Lagrangian General Strong Problem. Find two functions u : Ω × [t0, tf ] −→ R
d and

Tm : Ω × [t0, tf ] −→ Lin satisfying (3.4), subject to boundary conditions (3.5) and (3.6), and to initial
condition (3.7).

Although the numerical method could be written for a more general case, for simplicity of this pre-
sentation, we are going to consider two specific types of materials in the domain Ω. More precisely, at
each instant t ∈ [t0, tf ], let us consider an incompressible Newtonian fluid occupying domain Ωf

t and a
homogeneous isotropic linear elastic material occupying domain Ωs

t . Moreover, let us also assume, for the
sake of simplicity, that the residual stress in the solid is null, i.e., T(p, t0) = 0 ∀p ∈ Ωs. Next, we recall
the constitutive equations for these materials:

• For an incompressible Newtonian fluid, the Cauchy stress tensor T has the following form:

T = −πI+ η( gradv + gradvt) in T f (3.8)

In the above equation, π : T f −→ R denotes the pressure (unknown) and η the dynamic viscosity
(known). Motion equation (3.4) must be supplemented by the constitutive equation (3.8) and
the incompressibility condition

div v = 0 in T f (3.9)

• For a homogeneous isotropic linear elastic material, the first Piola-Kirchoff stress tensor :

Tm detFF−t,

is related with displacement by the approximate equality (see, for instance, [14])

Tm detFF−t ≃ λDiv uI+ 2µE(u) in Ωs × (t0, tf ), (3.10)

where λ and µ are the Lamé coefficients and E(u) = 1/2
(
∇u+∇ut

)
is the infinitesimal strain

tensor (see for instance [14]). Let us recall that the Lamé coefficients can be written in terms of
Young modulus E and Poisson ratio ν as follows:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
.

Similar to the motion equation, we write equations (3.8) and (3.9) in Lagrangian coordinates. Firstly, by
using the chain rule, we obtain (see, for instance, [14])

div xv(X(p, t), t) = tr ( grad xv(X(p, t), t)) = tr
(
∇u̇(p, t)F−1(p, t)

)

= ∇u̇(p, t)F−1(p, t) · I = ∇u̇(p, t) · F−t(p, t) ∀(p, t) ∈ Ωf × (t0, tf ). (3.11)

Next, by evaluating equations (3.8) and (3.9) at point x = X(p, t), using the chain rule in (3.8), and
equality (3.11), we get

Tm = −πmI+ η
(
∇u̇F−1 + F−t (∇u̇)

t
)

in Ωf × (t0, tf ), (3.12)

∇u̇ ·F−t = 0 in Ωf × (t0, tf ), (3.13)
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Let us introduce equations (3.10), (3.12) and (3.13) in the above problem. Then, we have the following
fluid-structure interaction problem written in the reference configuration:

(LFSP) Lagrangian fluid-structure interaction problem. Find two functions u : Ω×[t0, tf ] −→ R
d

and πm : Ω
f
× [t0, tf ] −→ R such that

ρmü−
1

detF
Div

(
Tm detFF−t

)
= bm in Ω× (t0, tf ), (3.14)

Tm = −πmI+ η
(
∇u̇F−1 + F−t (∇u̇)t

)
in Ωf × (t0, tf ), (3.15)

∇u̇ ·F−t = 0 in Ωf × (t0, tf ), (3.16)

Tm detFF−t = λDiv uI+ 2µE(u) in Ωs × (t0, tf ), (3.17)

subject to the boundary conditions

u̇ = (vD)m on ΓD × (t0, tf ), (3.18)

TmF−tm = |F−tm|hm on ΓN × (t0, tf ), (3.19)

and to the initial condition

u̇(p, t0) = v0(p) in Ω. (3.20)

Now, by multiplying equation (3.14) by detF and by a test function z ∈ H1
ΓD(Ω), integrating in Ω,

applying the usual Green’s formula and equations (3.15), (3.17) and (3.19) we easily get a weak formula-
tion for the motion equation. Similarly, by multiplying equation (3.16) by detF and by a test function
q ∈ L2(Ωf ) and integrating in Ωf we obtain a weak formulation for the incompressibility equation in the
fluid. The whole problem is the following:

∫

Ω

ρm detFü · z dp−

∫

Ωf

πm detFF−t · ∇z dp

+η

∫

Ωf

(
∇u̇F−1 + F−t (∇u̇)

t
)
detFF−t · ∇z dp+ λ

∫

Ωs

DivuDiv z dp

+2µ

∫

Ωs

E(u) · E(z) dp =

∫

Ω

bm · zdetF dp+

∫

ΓN

|F−tm| detFhm · z dAp, (3.21)

∫

Ωf

detF∇u̇ ·F−tq dp = 0, (3.22)

∀z ∈ H1
ΓD(Ω) and ∀q ∈ L2(Ωf ). Notice that the above problem is non-linear in the fluid but not in the

solid. However, extension of what follows to nonlinear solids is straightforward. Moreover, let us notice
that fluid-solid coupling is implicitely included. More precisely, continuity of displacements across the
interface is included in the function space where the solution is looked for (essential condition) while the
kinetic condition is a natural condition for (3.21).

Numerical methods applied to formulations in material coordinates are called pure-Lagrangian meth-
ods. Thus, from (3.21)-(3.22), we can obtain different pure-Lagrangian numerical methods. These meth-
ods are useful, in particular, for solving free surface problems because the computational domain is
independent of time.
Remark 3.1. Notice that in equations (3.21)-(3.22), the integrals corresponding to the fluid can also
be written in terms of the velocity instead of the displacement, by replacing u̇ with vm. Thus, from
(3.21)-(3.22) we can obtain pure-Lagrangian methods whose unknowns are either the fluid velocity, the
fluid pressure and the solid displacement, or the fluid and solid displacements and the fluid pressure. We
will call the latter a displacement method. In this paper, we propose a second-order pure-Lagrangian
displacement method.

4. Time discretization. Depending on the differentiation formulas used to approximate the time
derivatives, we can obtain, from (3.21)-(3.22), different pure-Lagrangian methods. In this section, we
introduce a Newmark-like second-order centered scheme for time semi-discretization of (3.21)-(3.22).

The following notations will be used in the rest of the paper. Let us denote the number of time steps
by N , the time step ∆t = (T − t0)/N , and the mesh-points tn = t0 + n∆t. We will use the notation
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Ψl(y) := Ψ(y, tl) for a function Ψ(y, t). Similarly, for a given material field Φ (respectively, a spatial field
Ψ) we will denote by Φl

∆t (respectively, Ψl
m,∆t) approximations of Φl (respectively, Ψl

m) obtained with a
time-semidiscretized scheme.

In order to discretize the time derivatives ü and u̇ in equations (3.21)-(3.22), we propose the following
second-order centered formulas:

• Three-points:

∂2Ψ

∂t2
(y, t) =

Ψ(y, t+∆t)− 2Ψ(y, t) + Ψ(y, t−∆t)

∆t2
+O(∆t2). (4.1)

• Two-points:

∂Ψ

∂t
(y, t) =

Ψ(y, t+∆t)−Ψ(y, t−∆t)

2∆t
+O(∆t2). (4.2)

Moreover, the following interpolation formula will be convenient to approximate the gradient of the solid
displacement:

gradΨ(y, t) =
gradΨ(y, t+∆t) + gradΨ(y, t−∆t)

2
+O(∆t2). (4.3)

Then, by evaluating (3.21) and (3.22) at time t = tn+1/2 and then using second-order formulas (4.1),
(4.2) and (4.3) for Ψ = u, we deduce the following Newmark-like time-semidiscretized scheme:

∫

Ω

ρn+1/2 ◦X
n+1/2
∆t detF

n+1/2
∆t

u
n+3/2
∆t − 2u

n+1/2
∆t + u

n−1/2
∆t

∆t2
· z dp

−

∫

Ωf

π
n+1/2
m,∆t detF

n+1/2
∆t (F

n+1/2
∆t )−t · ∇z dp

+η

∫

Ωf

detF
n+1/2
∆t

∇u
n+3/2
∆t −∇u

n−1/2
∆t

2∆t
(F

n+1/2
∆t )−1(F

n+1/2
∆t )−t · ∇z dp

+η

∫

Ωf

detF
n+1/2
∆t (F

n+1/2
∆t )−t (∇u

n+3/2
∆t )t − (∇u

n−1/2
∆t )t

2∆t
(F

n+1/2
∆t )−t · ∇z dp

+
λ

2

∫

Ωs

(
Divu

n+3/2
∆t + Divu

n−1/2
∆t

)
Div z dp+ µ

∫

Ωs

(
E(u

n+3/2
∆t ) + E(u

n−1/2
∆t )

)
· E(z) dp

=

∫

Ω

bn+1/2 ◦X
n+1/2
∆t · zdetF

n+1/2
∆t dp+

∫

ΓN

|(F
n+1/2
∆t )−tm| detF

n+1/2
∆t hn+1/2 ◦X

n+1/2
∆t · z dAp, (4.4)

∫

Ωf

detF
n+1/2
∆t

∇u
n+3/2
∆t −∇u

n−1/2
∆t

2∆t
· (F

n+1/2
∆t )−tq dp = 0, (4.5)

∀z ∈ H1
ΓD(Ω), ∀q ∈ L2(Ωf ) and 0 ≤ n ≤ N − 1. Notice that X and F appearing in equations (3.21) and

(3.22) are unknown. However, they can be easily approximated from u by using the following equalities:

X(p, t) = p+ u(p, t),

F(p, t) = ∇X(p, t) = I+∇u(p, t),

for (p, t) ∈ Ω× (t0, tf ). More precisely, in the above pure-Lagrangian scheme we have used the following
approximations of Xn+1/2 and Fn+1/2:

X
n+1/2
∆t (p) := p+ u

n+1/2
∆t (p),

F
n+1/2
∆t (p) := I+∇u

n+1/2
∆t (p),

for p ∈ Ω and 0 ≤ n ≤ N − 1. Let us emphasize that while the continuous problem is non-linear, the

implicit semi-discrete scheme (4.4)-(4.5) is linear in the two unknowns u
n+3/2
∆t and π

n+1/2
m,∆t . Moreover,

we can easily see that the consistency error is of order two.
Remark 4.1. Let us observe that the initial condition u1/2 appearing in scheme (4.4)-(4.5) is unknown but
it can be approximated by using the initial condition for the continuous problem (3.20). More precisely,
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by using the following Taylor expansions satisfied by a smooth enough displacement field

u(p, t−∆t/2) = u(p, t)− vm(p, t)
∆t

2
+ v̇(X(p, t), t)

∆t2

8
+O(∆t3), (4.6)

u(p, t+∆t/2) = u(p, t) + vm(p, t)
∆t

2
+ v̇(X(p, t), t)

∆t2

8
+O(∆t3), (4.7)

we deduce a third-order approximation of u1/2, namely,

u
1/2
∆t := u−1/2 + v0∆t in Ω. (4.8)

For simplicity, let us assume that initial velocity v0 is null so we take

u
−1/2
∆t = u

1/2
∆t = 0 in Ω. (4.9)

Otherwise, it is convenient to write the considered problem in configuration Ωt0−∆t/2 instead of Ω noting

that u
−1/2
t0−∆t/2 ≡ 0 (see [2] for details). In the academic test examples considered in this paper, the initial

velocity is not null but we know and use the exact value of u−1/2. We have observed quite surprisingly
that if we start with a third order approximation of displacement u1/2 as (4.8), then the above method is
also second-order accurate not only for displacements but for the velocity as well. In order to understand
the reason of this fact, we are going to analyze the following simple scheme

u
n+3/2
∆t − 2u

n+1/2
∆t + u

n−1/2
∆t

∆t2
= ün+1/2 in Ω, (4.10)

for 0 ≤ n ≤ N − 1. If u is smooth enough, we have

un+3/2 − 2un+1/2 + un−1/2

∆t2
= ün+1/2 +O(∆t2) in Ω, (4.11)

for 0 ≤ n ≤ N − 1. By subtracting (4.11) from (4.10) we get

u
n+3/2
∆t − u

n+1/2
∆t

∆t2
−

u
n+1/2
∆t − u

n−1/2
∆t

∆t2

=
un+3/2 − un+1/2

∆t2
−

un+1/2 − un−1/2

∆t2
+O(∆t2) in Ω, (4.12)

for 0 ≤ n ≤ N − 1. Now, for fixed q, 0 ≤ q ≤ N − 1, let us add (4.12) multiplied by ∆t from n = 0 to
n = q. We have

u
q+3/2
∆t − u

q+1/2
∆t

∆t
−

uq+3/2 − uq+1/2

∆t

=
u
1/2
∆t − u

−1/2
∆t

∆t
−

u1/2 − u−1/2

∆t
+O(∆t2) in Ω. (4.13)

Next, by subtracting (4.6) from (4.7) for t = tq+1 and then using (4.13), we obtain

u
q+3/2
∆t − u

q+1/2
∆t

∆t
− (vm)q+1 =

u
1/2
∆t − u

−1/2
∆t

∆t
−

u1/2 − u−1/2

∆t
+O(∆t2) in Ω, (4.14)

for 0 ≤ q ≤ N − 1. Now, from this equality we deduce that, for the simple scheme (4.10), a second-order
approximation of the material velocity is obtained if the initial conditions satisfy

u
1/2
∆t − u

−1/2
∆t

∆t
−

u1/2 − u−1/2

∆t
= O(∆t2) in Ω. (4.15)

Therefore, for scheme (4.4)-(4.5) a second-order approximation for the velocity is obtained when we start

with u
−1/2
∆t = u−1/2 and u

1/2
∆t given in (4.8). Notice that if the displacement field is smooth enough, these

initial conditions satisfy (4.15).
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Remark 4.2. By using analogous procedures to the ones in the previous remark, we can obtain approxi-
mate Dirichlet boundary conditions for the displacement. More precisely, by using that

un+3/2 = un−1/2 + 2∆tvn+1/2
(
Xn+1/2

)
+O(∆t3),

we deduce the following Dirichlet boundary condition for un+3/2 preserving the second order of the global
scheme:

u
n+3/2
∆t = u

n−1/2
∆t + 2∆tv

n+1/2
D

(
X

n+1/2
∆t

)
on ΓD,

for 0 ≤ n ≤ N − 1.

5. Space discretization. Finite element method. In this section we propose a space discretiza-
tion of the time semidiscretized problem (4.4)-(4.5) by using finite elements. More precisely, we consider
continuous piecewise-linear for each solid displacement component and for the fluid the mini-element (see
[1]), that is, continuous piecewise-linear+bubble finite element for each fluid displacement component and
continuous piecewise-linear for pressure. In what follows, for a given material field Φ (respectively, a spa-
tial field Ψ) we will denote by Φl

∆t,h (respectively, Ψl
m,∆t,h) approximations of Φl (respectively, Ψl

m)
obtained with a fully discretized scheme, being h the meshsize.

Let us suppose Ωf and Ωs are two bounded domains in R
d with Lipschitz polygonal boundaries.

Let us consider two suitable families of regular triangulations of Ω
f

and Ω
s

to be denoted by T
f
h and T

s
h

respectively, both consisting of elements K of diameter ≤ h. Moreover, let us assume they are compatible
with the partition of the boundary of Ω into ΓD and ΓN and have the same vertices on the interface ΓI

for both fluid and solid (i.e., they are conformal meshes).
We define the following polynomial spaces:

P1 (K) =
{
q|K with q : Rd −→ R polynomial of degree ≤ 1

}
,

Pb (K) =
{
q + αλK

b : q ∈ P1 (K) , α ∈ R
}
,

where λK
b is the bubble function of element K. We consider the following spaces of finite elements:

Xh =
{
wh ∈

(
C0(Ω)

)d
: wh|K ∈ (Pb (K))

d ∀K ∈ T
f
h, wh|K ∈ (P1 (K))

d ∀K ∈ T
s
h

}
, (5.1)

X0h =
{
wh ∈ Xh : wh = 0 on ΓD

}
, (5.2)

Vh =
{
ϕh ∈ C0(Ω

f
) : ϕh|K ∈ P1 (K) ∀K ∈ T

f
h

}
. (5.3)

Let us notice that for the continuity through the fluid-solid interface it is enough that the displacement
components coincide at the vertices on this interface because bubbles are null on the boundaries of the
mesh elements. In order to obtain a fully discrete scheme of the time semi-discretized problem (4.4)-(4.5)
we use spaces Xh, X0h and Vh to approximate function spaces H1(Ω), H1

ΓD(Ω) and L2(Ωf ), respectively.
Thus, we obtain the following fully discrete problem:

(LG) Pure Lagrange-Galerkin problem. Find two sequences of functions û∆t,h = {u
n+3/2
∆t,h }N−1

n=0 ∈

[Xh]
N and π̂m,∆t,h = {π

n+1/2
m,∆t,h}

N−1
n=0 ∈ [Vh]

N such that

∫

Ω

ρn+1/2 ◦X
n+1/2
∆t,h detF

n+1/2
∆t,h

u
n+3/2
∆t,h − 2u

n+1/2
∆t,h + u

n−1/2
∆t,h

∆t2
· zh dp

−

∫

Ωf

π
n+1/2
m,∆t,h detF

n+1/2
∆t,h (F

n+1/2
∆t,h )−t · ∇zh dp

+η

∫

Ωf

detF
n+1/2
∆t,h

∇u
n+3/2
∆t,h −∇u

n−1/2
∆t,h

2∆t
(F

n+1/2
∆t,h )−1(F

n+1/2
∆t,h )−t · ∇zh dp

+η

∫

Ωf

detF
n+1/2
∆t,h (F

n+1/2
∆t,h )−t

(∇u
n+3/2
∆t,h )t − (∇u

n−1/2
∆t,h )t

2∆t
(F

n+1/2
∆t,h )−t · ∇zh dp

+
λ

2

∫

Ωs

(
Divu

n+3/2
∆t,h + Divu

n−1/2
∆t,h

)
Div zh dp

+µ

∫

Ωs

(
E(u

n+3/2
∆t,h ) + E(u

n−1/2
∆t,h )

)
· E(zh) dp =

∫

Ω

bn+1/2 ◦X
n+1/2
∆t,h · zh detF

n+1/2
∆t,h dp
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+

∫

ΓN

|(F
n+1/2
∆t,h )−tm| detF

n+1/2
∆t,h hn+1/2 ◦X

n+1/2
∆t,h · zh dAp ∀zh ∈ X0h, (5.4)

∫

Ωf

detF
n+1/2
∆t,h

∇u
n+3/2
∆t,h −∇u

n−1/2
∆t,h

2∆t
· (F

n+1/2
∆t,h )−tqh dp = 0 ∀qh ∈ Vh, (5.5)

for 0 ≤ n ≤ N − 1, subject to the initial and boundary conditions

u
−1/2
∆t,h (p) = u−1/2(p) for all node p of mesh T

f
h ∪ T

s
h, (5.6)

u
1/2
∆t,h(p) = u

−1/2
∆t,h (p) + v0(p)∆t for all node p of mesh T

f
h ∪ T

s
h, (5.7)

u
n+3/2
∆t,h (p) = u

n−1/2
∆t,h (p) + 2∆tv

n+1/2
D

(
X

n+1/2
∆t,h (p)

)

for all node p of mesh T
f
h ∪ T

s
h on ΓD, and 0 ≤ n ≤ N − 1, (5.8)

and where

X
n+1/2
∆t,h (p) := p+ u

n+1/2
∆t,h (p), (5.9)

F
n+1/2
∆t,h|K := I+∇u

n+1/2
∆t,h|K , (5.10)

for p ∈ Ω, K ∈ T
f
h ∪Ts

h and 0 ≤ n ≤ N − 1. Notice that for displacement methods as the one above, the
fluid-solid coupling at the interface is straightforward. In particular, the interface kinematic condition is
included in the definition of the functional space where the solution is looked for.
By using the solution of problem (LG), we can obtain approximations of the followings fields: the material
description of the velocity at times {tn+1}

N−1
n=0 , the motion at times {tn+1}

N−1
n=0 , the spatial description of

the velocity at times {tn+1}
N−1
n=0 , the pressure in spatial coordinates at times {tn+1/2}

N−1
n=0 and the stress

tensor in spatial coordinates at times {tn+1/2}
N−1
n=0 . These approximations will be denoted respectively

by {vn+1
m,∆t,h}

N−1
n=0 , {Xn+1

∆t,h}
N−1
n=0 , {vn+1

∆t,h}
N−1
n=0 , {π

n+1/2
∆t,h }N−1

n=0 and {T
n+1/2
∆t,h }N−1

n=0 . Moreover, we will denote

by {ph
i }

Nh
v

i=1, {p
f,h
i }

Nf,h
v

i=1 and {ps,h
i }

Ns,h
v

i=1 the vertices of meshes T
f
h ∪ T

s
h, Tf

h and T
s
h, respectively. Notice

that T
f
h and Ts

h have the same vertices on the interface, then Nh
v = Nf,h

v +Ns,h
v −N I,h

v , being N I,h
v the

number of vertices on the interface ΓI . Analogously, let us denote by T̃
f,l
h and T̃

s,l
h the moved meshes at

time tl, being {Xl
∆t,h(p

f,h
i )}

Nf,h
v

i=1 and {Xl
∆t,h(p

s,h
i )}

Ns,h
v

i=1 the vertices of these meshes, respectively.
• Approximation of the material description of the velocity. It can be easily obtained by

using Taylor expansions (4.6) and (4.7). More precisely, since

vn+1
m =

un+3/2 − un+1/2

∆t
+O(∆t2),

we define

vn+1
m,∆t,h :=

u
n+3/2
∆t,h − u

n+1/2
∆t,h

∆t
in Ω,

for 0 ≤ n ≤ N − 1.
• Motion approximation at times {tn+1}

N−1
n=0 . Noting that u(p, t) = X(p, t) − p and using

(4.6) and (4.7), we obtain

Xn+1(p) = p+
un+3/2(p) + un+1/2(p)

2
+O(∆t2).

Then we define the approximation

Xn+1
∆t,h(p) := p+

u
n+3/2
∆t,h (p) + u

n+1/2
∆t,h (p)

2
,

for p ∈ Ω and 0 ≤ n ≤ N − 1.
• Approximation of the spatial description of the velocity. In order to obtain an approxi-

mate velocity in Eulerian coordinates, it will be considered as a piecewise linear function on the
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moved mesh T̃
f,n+1
h ∪T̃

s,n+1
h , being {Xn+1

∆t,h(p
h
i )}

Nh
v

i=1 the vertices of this mesh. The values of vn+1
∆t,h

at vertices {Xn+1
∆t,h(p

h
i )}

Nh
v

i=1 can be obtained by using vn+1
m,∆t,h. Since we have

vn+1(Xn+1
∆t,h(p

h
i )) ≃ vn+1(Xn+1(ph

i )) = vn+1
m (ph

i ) ≃ vn+1
m,∆t,h(p

h
i ),

we take the approximation

vn+1
∆t,h(X

n+1
∆t,h(p

h
i )) := vn+1

m,∆t,h(p
h
i ), (5.11)

for 0 ≤ n ≤ N − 1. Notice that
⋃

K∈T̃
f,n+1

h ∪T̃
s,n+1

h

K ∼ Ωtn+1
.

• Approximate pressure in spatial coordinates. In order to approximate this field we use
analogous procedures to the ones above. That is, we consider the approximate pressure in

spatial coordinates as a piecewise linear function on the moved mesh T̃
f,n+1/2
h . The values of the

approximate pressure at vertices {X
n+1/2
∆t,h (pf,h

i )}
Nf,h

v

i=1 are obtained as follows: firstly, we notice
that

πn+1/2(X
n+1/2
∆t,h (pf,h

i )) ≃ πn+1/2(Xn+1/2(pf,h
i )) = πn+1/2

m (pf,h
i ) ≃ π

n+1/2
m,∆t,h(p

f,h
i ),

and then we take

π
n+1/2
∆t,h (X

n+1/2
∆t,h (pf,h

i )) := π
n+1/2
m,∆t,h(p

f,h
i ),

for 0 ≤ n ≤ N − 1. Notice that
⋃

K∈T̃
f,n+1/2
h

K ∼ Ω
f

tn+1/2
.

• Approximation of the stress tensor in the solid current configuration. We consider
the approximate stress tensor in spatial coordinates as a piecewise linear function on the moved

mesh T̃
s,n+1/2
h , being {X

n+1/2
∆t,h (ps,h

i )}
Ns,h

v

i=1 the vertices of this mesh. The values of the approximate

stress tensor at vertices {X
n+1/2
∆t,h (ps,h

i )}
Ns,h

v

i=1 are obtained as follows. Firstly, for a given element

Ks of the mesh Ts
h and a vertex p

s,h
i ∈ Ks, from (3.10) we have

Tn+1/2(X
n+1/2
∆t,h (ps,h

i )) ≃ Tn+1/2(Xn+1/2(ps,h
i )) = Tn+1/2

m (ps,h
i )

=
1

detFn+1/2(ps,h
i )

(
λDivu(ps,h

i , tn+1/2)I+ 2µE(u)(ps,h
i , tn+1/2)

)
(Fn+1/2)t(ps,h

i )

≃
1

detF
n+1/2
∆t,h|Ks

(
λ(Div u

n+1/2
∆t,h )|KsI+ 2µE(u

n+1/2
∆t,h )|Ks

)
(F

n+1/2
∆t,h|Ks)

t.

Then, we define the approximation

T
n+1/2
∆t,h (X

n+1/2
∆t,h (ps,h

i )) :=
1

ni

∑

Ks∈Es
i

1

detF
n+1/2
∆t,h|Ks

(
λ(Div u

n+1/2
∆t,h )|KsI

+2µE(u
n+1/2
∆t,h )|Ks

)
(F

n+1/2
∆t,h|Ks)

t, (5.12)

for 0 ≤ n ≤ N − 1, where Es
i is the set of elements of Ts

h that share vertex p
s,h
i and ni is the

number of elements of Es
i . Notice that

⋃

K∈T̃
s,n+1/2
h

K ∼ Ω
s

tn+1/2
.

6. Reinitialization of the pure Lagrange-Galerkin scheme. Notice that for pure-Lagrangian
schemes, the computational domain is the same for all time steps. However, in order to calculate the
velocity, the pressure or the stress tensor in Eulerian coordinates the moved mesh has to be used. For real
fluid-structure problems, the fluid mesh may have large deformations. When this happens it is necessary
to remesh and reinitialize the motion.

In this section we propose a method to do this for the pure Lagrange-Galerkin scheme (5.4)-(5.10)
that preserves the order of convergence. Let us assume that we have decided to reinitialize this problem

at time tr−1/2 being 1 ≤ r ≤ N − 1. Then, we first compute u
r+1/2
∆t,h by using (5.4), (5.5) and (5.8) for

n = r − 1. The objective of this section is the numerical solution of problem (2.5)-(2.8), (3.8)-(3.10) at
times t > tr+1/2. For this purpose, we first obtain a strong formulation of the problem written in the new

reference domain Ωtr−1/2
and then we propose a fully discrete scheme by using again a pure-Lagrangian

method for time discretization and a finite element approximation for space discretization.
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6.1. Strong problem and weak formulation in Ωtr−1/2
× (tr−1/2, tf ). It can be obtained by

analogous procedures to the ones in Section 3 but using the change of variable x = Xtr−1/2
(y, t). Specif-

ically, in order to write equations (2.5), (2.6), (2.7), (3.8) and (3.9) in configuration Ωtr−1/2
we use the

divergence theorem, the change of variable x = Xtr−1/2
(y, t), the chain rule and the localization theorem,

obtaining

ρtr−1/2

∂2utr−1/2

∂t2
−

1

detFtr−1/2

div y

(
Ttr−1/2

detFtr−1/2
F−t

tr−1/2

)
= btr−1/2

in Ωtr−1/2
× (t0, tf ), (6.1)

Ttr−1/2
= −πtr−1/2

I+ η

(
grad y

∂utr−1/2

∂t
F−1

tr−1/2
+ F−t

tr−1/2

(
grad y

∂utr−1/2

∂t

)t
)

in Ωf
tr−1/2

× (t0, tf ), (6.2)

grad y

∂utr−1/2

∂t
·F−t

tr−1/2
= 0 in Ωf

tr−1/2
× (t0, tf ), (6.3)

∂utr−1/2

∂t
= (vD)tr−1/2

on ΓD
tr−1/2

× (t0, tf ), (6.4)

Ttr−1/2
F−t

tr−1/2
mtr−1/2

= |F−t
tr−1/2

mtr−1/2
|htr−1/2

on ΓN
tr−1/2

× (t0, tf ), (6.5)

where mtr−1/2
is the outward unit normal vector to ∂Ωtr−1/2

.
Remark 6.1. Notice that in this paper we consider a fluid-structure interaction problem in which the
solid presents small deformations, that is, the displacement gradient ∇u in the solid is small. We want to
emphasize that the derivation of the linearized constitutive equation (3.10) is based on this assumption.
More precisely, this constitutive equation is obtained neglecting the terms of order o(∇u) and assuming
the residual stress in the reference configuration (t = t0) vanishes (see [14] for details). Similarly, we can
deduce the following linear constitutive equation in configuration Ωs

tr−1/2
:

Ttr−1/2
(y, t) detFtr−1/2

(y, t)F−t
tr−1/2

(y, t) = λdiv yutr−1/2
(y, t)I

+µ
(
grad yutr−1/2

(y, t) + ( grad yutr−1/2
)t(y, t)

)
+T(y, tr−1/2), (6.6)

for (y, t) ∈ Ωs
tr−1/2

× (t0, tf ). We notice that T(y, tr−1/2) is the residual stress tensor at time tr−1/2.

Then, in order to obtain an approximate solution of problem (2.5)-(2.8), (3.8)-(3.10) at times t >
tr−1/2, we need to solve the above boundary value problem for which the following weak formulation can
be easily obtained:

∫

Ωtr−1/2

ρtr−1/2
detFtr−1/2

∂2utr−1/2

∂t2
· z dy −

∫

Ωf
tr−1/2

πtr−1/2
detFtr−1/2

F−t
tr−1/2

· gradz dy

+η

∫

Ωf
tr−1/2

(
grad

∂utr−1/2

∂t
F−1

tr−1/2
+ F−t

tr−1/2

(
grad

∂utr−1/2

∂t

)t
)

detFtr−1/2
F−t

tr−1/2
· gradz dy

+λ

∫

Ωs
tr−1/2

divutr−1/2
div z dy + 2µ

∫

Ωs
tr−1/2

E(utr−1/2
) · E(z) dy

=

∫

Ωtr−1/2

btr−1/2
· zdetFtr−1/2

dy −

∫

Ωs
tr−1/2

Tr−1/2 · gradz dy

+

∫

ΓN
tr−1/2

|F−t
tr−1/2

mtr−1/2
| detFtr−1/2

htr−1/2
· z dAy, (6.7)

∫

Ωf
tr−1/2

detFtr−1/2
grad

∂utr−1/2

∂t
· F−t

tr−1/2
(y, t)q dy = 0, (6.8)

∀z ∈ H1
ΓD
tr−1/2

(Ωtr−1/2
), ∀q ∈ L2(Ωf

tr−1/2
) and where E(Ψ) = 1/2( gradΨ +( gradΨ)t) for a function Ψ.

6.2. Pure Lagrange-Galerkin scheme in Ωtr−1/2
×(tr−1/2, tf ). In what follows we will denote by

Ψl
r−1/2,∆t,h approximations of Ψl

tr−1/2
obtained with a fully discretized scheme, being Ψ = u, X, F, π.

An analogous scheme to the one introduced in Section 4 is considered for time discretization of (6.7)-
(6.8). More precisely, we take t = tn+1/2 in (6.7) and (6.8) and use the second-order formulas (4.1), (4.2)
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and (4.3) for Ψ = utr−1/2
. For space discretization, we use continuous piecewise-linear+bubble finite

element for each fluid displacement component and continuous piecewise-linear for pressure and each
solid displacement component.

Let us suppose Ωf
tr−1/2

and Ωs
tr−1/2

are bounded domains in R
d with Lipschitz polygonal boundaries.

Let us consider suitable families of regular triangulations of Ω
f

tr−1/2
and Ω

s

tr−1/2
to be denoted by T

f,r−1/2
h

and T
s,r−1/2
h respectively, both consisting of elements K of diameter ≤ h. Moreover, let us assume they

have the same vertices on the interface and that they are compatible with the partition of the boundary
of Ωtr−1/2

into ΓD
tr−1/2

and ΓN
tr−1/2

. We consider the following finite element spaces:

X
r−1/2
h =

{
wh ∈

(
C0(Ωtr−1/2

)
)d

: wh|K ∈ (Pb (K))
d ∀K ∈ T

f,r−1/2
h ,

wh|K ∈ (P1 (K))d ∀K ∈ T
s,r−1/2
h

}
, (6.9)

X
r−1/2
0h =

{
wh ∈ X

r−1/2
h : wh = 0 on ΓD

tr−1/2

}
, (6.10)

V
r−1/2
h =

{
ϕh ∈ C0(Ω

f

tr−1/2
) : ϕh|K ∈ P1 (K) ∀K ∈ T

f,r−1/2
h

}
. (6.11)

In order to obtain a fully discrete scheme of the time semidiscretized problem, we replace function spaces

H1(Ωtr−1/2
), H1

ΓD
tr−1/2

(Ωtr−1/2
) and L2(Ωf

tr−1/2
) with X

r−1/2
h , X

r−1/2
0h and V

r−1/2
h , respectively. Now we

are in a position to introduce the fully discretized problem:

Pure Lagrange-Galerkin scheme in Ωtr−1/2
× (tr−1/2, tf ). Find two sequences of functions ûr−1/2,∆t,h =

{u
n+3/2
r−1/2,∆t,h}

N−1
n=r ∈

[
X

r−1/2
h

]N−r

and π̂r−1/2,∆t,h = {π
n+1/2
r−1/2,∆t,h}

N−1
n=r ∈

[
V

r−1/2
h

]N−r

such that

∫

Ωtr−1/2

ρn+1/2 ◦X
n+1/2
r−1/2,∆t,h detF

n+1/2
r−1/2,∆t,h

u
n+3/2
r−1/2,∆t,h − 2u

n+1/2
r−1/2,∆t,h + u

n−1/2
r−1/2,∆t,h

∆t2
· zh dy

−

∫

Ωf
tr−1/2

π
n+1/2
r−1/2,∆t,h detF

n+1/2
r−1/2,∆t,h(F

n+1/2
r−1/2,∆t,h)

−t · grad zh dy

+η

∫

Ωf
tr−1/2

detF
n+1/2
r−1/2,∆t,h

gradu
n+3/2
r−1/2,∆t,h − gradu

n−1/2
r−1/2,∆t,h

2∆t

(F
n+1/2
r−1/2,∆t,h)

−1(F
n+1/2
r−1/2,∆t,h)

−t · gradzh dy + η

∫

Ωf
tr−1/2

detF
n+1/2
r−1/2,∆t,h(F

n+1/2
r−1/2,∆t,h)

−t

( gradu
n+3/2
r−1/2,∆t,h)

t − ( gradu
n−1/2
r−1/2,∆t,h)

t

2∆t
(F

n+1/2
r−1/2,∆t,h)

−t · grad zh dy

+
λ

2

∫

Ωs
tr−1/2

(
divu

n+3/2
r−1/2,∆t,h + divu

n−1/2
r−1/2,∆t,h

)
div zh dy

+µ

∫

Ωs
tr−1/2

(
E(u

n+3/2
r−1/2,∆t,h) + E(u

n−1/2
r−1/2,∆t,h)

)
· E(zh) dy

=

∫

Ωtr−1/2

bn+1/2 ◦X
n+1/2
r−1/2,∆t,h · zh detF

n+1/2
r−1/2,∆t,h dy −

∫

Ωs
tr−1/2

T
r−1/2
∆t,h · grad zh dy

+

∫

ΓN
tr−1/2

|(F
n+1/2
r−1/2,∆t,h)

−tmtr−1/2
| detF

n+1/2
r−1/2,∆t,hh

n+1/2 ◦X
n+1/2
r−1/2,∆t,h · zh dAy, (6.12)

∫

Ωf
tr−1/2

detF
n+1/2
r−1/2,∆t,h

gradu
n+3/2
r−1/2,∆t,h − gradu

n−1/2
r−1/2,∆t,h

2∆t
· (F

n+1/2
r−1/2,∆t,h)

−tqh dy = 0, (6.13)

∀zh ∈ X
r−1/2
0h , ∀qh ∈ V

r−1/2
h , r ≤ n ≤ N − 1, and where

X
n+1/2
r−1/2,∆t,h(y) := y + u

n+1/2
r−1/2,∆t,h(y),

F
n+1/2
r−1/2,∆t,h|K := I+ gradu

n+1/2
r−1/2,∆t,h|K,
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for y ∈ Ωtr−1/2
, K ∈ T

f,r−1/2
h ∪ T

s,r−1/2
h and r ≤ n ≤ N − 1. Notice that stress tensor T appearing in

equation (6.7) is unknown. It is approximated by using (5.12).
Remark 6.2. By using analogous procedures to the ones in Remarks 4.1 and 4.2, we can obtain approxi-
mate initial and Dirichlet boundary conditions for displacement utr−1/2

. More precisely, in order to obtain

the initial conditions for scheme (6.12)-(6.13), we observe that u
r−1/2
r−1/2(y) = 0 ∀y ∈ Ωtr−1/2

. Moreover,

by using Taylor expansions and that u
r−1/2
r−1/2 ≡ 0, we deduce

u
r+1/2
r−1/2(y) = ∆tvr

(
y + vr(y)

1

2
∆t

)
+O(∆t3).

Then we take

u
r−1/2
r−1/2,∆t,h(y) = 0, u

r+1/2
r−1/2,∆t,h(y) = ∆tvr

∆t,h

(
y + vr

∆t,h(y)
1

2
∆t

)
, (6.14)

for all node y of mesh T
f,r−1/2
h ∪ T

s,r−1/2
h . Notice that, in order to obtain the above approximate initial

condition for utr−1/2
(y, tr+1/2) we need vr

∆t,h that is calculated by (5.11). Similarly, we can obtain
approximate Dirichlet boundary conditions for displacement utr−1/2

. More precisely, since

u
n+3/2
r−1/2 (y) = u

n−1/2
r−1/2 (y) + 2∆tvn+1/2

(
X

n+1/2
r−1/2 (y)

)
+O(∆t3),

we deduce the following Dirichlet boundary condition for u
n+3/2
r−1/2 :

u
n+3/2
r−1/2,∆t,h(y) = u

n−1/2
r−1/2,∆t,h(y) + 2∆tv

n+1/2
D

(
X

n+1/2
r−1/2,∆t,h(y)

)
, (6.15)

for all node y of mesh T
f,r−1/2
h ∪ T

s,r−1/2
h on ΓD.

By analogous procedures to the ones in Section 5, we can also obtain, from the solution of problem
(6.12)-(6.15), approximations of the pressure in spatial coordinates, the stress tensor in spatial coordi-
nates, the velocity and the motion at time t > tr−1/2.

In general, domains at time tr−1/2 are unknown, but they are approximated by using the approximate
displacement calculated in (5.9).

Then, assuming that we have decided to reinitialize the problem at time tr−1/2, the proposed reini-
tialization algorithm consists of the following steps.

1. Compute the solution of problem (LG) for n = r − 2, r − 1 (u
r−1/2
∆t,h and u

r+1/2
∆t,h ) and obtain

X
r−1/2
∆t,h and vr

∆t,h from (5.9) and (5.11).

2. Obtain approximations of domains Ω
f

tr−1/2
and Ω

s

tr−1/2
by using X

r−1/2
∆t,h , namely

Ω
f

tr−1/2
∼ Ω̃

f

tr−1/2
:=

⋃

K∈T̃
f,r−1/2
h

K, Ω
s

tr−1/2
∼ Ω̃

s

tr−1/2
:=

⋃

K∈T̃
s,r−1/2
h

K,

being {X
r−1/2
∆t,h (pf,h

i )}
Nf,h

v

i=1 (respectively, {X
r−1/2
∆t,h (ps,h

i )}
Ns,h

v

i=1 ) the vertices of mesh T̃
f,r−1/2
h (re-

spectively, T̃
s,r−1/2
h ).

3. Generate new meshes of domains Ω̃
f

tr−1/2
and Ω̃

s

tr−1/2
which are denoted by T

f,r−1/2
h and T

s,r−1/2
h

respectively. Notice that T̃
f,r−1/2
h and T̃

s,r−1/2
h are conformal meshes of these domains, but new

conformal meshes must be considered in order to not to have meshes with highly distorted
elements. In this paper we consider a problem in which the solid presents small deformations
but the fluid mesh may have large deformations.

4. Obtain the initial conditions for scheme (6.12)-(6.13) from (6.14), by using vr
∆t,h.

5. Solve the linear problem (6.12)-(6.15) where the stress tensor T appearing in equation (6.7) is
approximated by using (5.12).

6. By analogous procedures to the ones in Section 5, we obtain approximations of the pressure in
spatial coordinates, the stress tensor in spatial coordinates, the velocity and the motion at time
instants t > tr−1/2 by using the solution of problem (6.12)-(6.15).
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Remark 6.3. This new strategy of reinitialization avoids some difficulties presented by literature methods.
For example, in our approach the new domain is updated in a natural way, by using the approximate
displacement. Notice that in literature, this domain is obtained by integrating the motion equation
(Ẋ = vm) and using an approximate velocity. Moreover, in most reinitialization algorithms of literature,
the schemes to solve are non-linear because they are written in the current domain which is unknown.
However, we obtain a linear scheme because the problem is written in a previous domain. Moreover, our
reinitialization method preserves the order of convergence (second order). For this, it is necessary to start
with a high order approximation of displacement utr−1/2

as (6.14).

7. Numerical results. In order to assess the performance of the numerical method introduced in
this article, we solve three test problems in two space dimensions. The first one is an academic problem
which is used to check the convergence rates. The second one is the 2D motion of an elastic circular
cylinder in a tank filled with an incompressible Newtonian viscous fluid. Different values for the density
of the cylinder and the fluid viscosity are considered. This problem has been solved with the method
described in the present paper, being necessary to remesh and to reinitialize the motion from time to
time. Finally, the third example is a free surface problem. More precisely, we consider an example of 2D
sloshing of an incompressible Newtonian viscous fluid where a circular cylinder is submerged.

In Example 1, we calculate the error between discrete solutions u∆t,h, v∆t,h, π∆t,h, and exact solutions
u, v, π. For this, we approximate the theoretical H1(Ωτ ) and L2(Ωτ ) norms by using a quadrature formula
exact for polynomials of degree 5. Moreover, domain at time τ with τ > t0, is calculated by using the
approximate motion. The function spaces endowed with these norms are denoted by H1

h(Ωτ ) and L2
h(Ωτ ),

respectively. Furthermore, we introduce the notation H1
h(Ωτ ) = (H1

h(Ωτ ))
2, L2

h(Ωτ ) = (L2
h(Ωτ ))

2 and

denote by l∞(An) the space of sequences in An equipped with the norm
∣∣∣
∣∣∣Ψ̂
∣∣∣
∣∣∣
l∞(An)

:= max
n

||Ψn||An ,

being An one of the following spaces:

L2
h(Ω),H

1
h(Ω),L

2
h(Ωtn+1

),H1
h(Ωtn+1

), L2
h(Ωtn+1/2

), H1
h(Ωtn+1/2

).

Moreover, all integrals appearing in the discrete weak formulations introduced above are approximated
by using an exact quadrature formula for polynomials of degree 5.

Example 1

This is a problem aiming to analyze the rates of convergence. The fluid domain is Ωf = (0, 1) × (0, 1)
and the solid domain is Ωs = (1, 2)× (0, 1), the initial time is t0 = 0 and the final time is tf = 1. The
physical parameters are ρ = 1, λ = 1, µ = 1 and η = 0.1. We adjust the body force and the boundary
conditions so that the solution of the problem is the following:

v(x1, x2, t) = (0.01exp(t), 0.01exp(t)cos(x1 − 0.01exp(t)− 1)),

π(x1, x2, t) = exp(t)sin(x1 − 0.01exp(t)− 1),

u(p1, p2, t) = (0.01exp(t), 0.01exp(t)cos(p1 − 1)).

Notice that for this example, equations (3.21) and (3.22) are satisfied. We have solved this problem

10
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Fig. 7.1. Example 1: computed l∞(L2
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) errors, in log-log scale, versus the number of time steps for a fixed spatial

mesh of 251× 251 vertices.
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Fig. 7.3. Example 1: on the left, computed l∞ errors for areas, in log-log scale, versus the number of time steps for a
fixed spatial mesh of 251× 251 vertices and for tf = 4. On the right, computed l∞ errors for areas, in log-log scale, versus
1/h for ∆t = 1/2048 and for tf = 4.
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Fig. 7.4. 2D Motion of a cylinder: histories of the x-coordinate (left) and y-coordinate (right) of the solid center for
η = 0.1 and ρs = 1.25, and for ∆t = 0.02.

by using the Lagrange-Galerkin method introduced in this paper (LG) with and without reinitializing.
However, we only present the results obtained without any reinitialization, because the errors observed

for velocity and pressure are practically the same in both cases. The initial conditions u
−1/2
∆t,h and u

1/2
∆t,h

are calculated by (5.6) and (5.7), respectively. In Figure 7.1, we have fixed a uniform spatial mesh of
251 × 251 vertices and show the l∞

(
L2
h(Ω)

)
displacement error, the l∞

(
L2
h(Ωtn+1

)
)

velocity error and

the l∞
(
L2
h(Ωtn+1/2

)
)

pressure error versus the number of time steps. These results show that the scheme
(LG) possesses second-order accuracy in time for displacement and velocity and first-order accuracy in
time for pressure. Notice that, for fixed h, we can observe an increasing error as the time step decreases
below a threshold. This seems to be due to the fact that terms with ∆t in the denominator would be
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Fig. 7.5. 2D Motion of a cylinder: histories of the x-coordinate (left) and y-coordinate (right) of the solid center for
η = 0.01 and ρs = 1.5, and for ∆t = 0.001.

Fig. 7.6. 2D Motion of a cylinder: numerical streamlines for η = 0.1 and ρs = 1.25 at t = 14.3 and t = 42,
respectively, and for ∆t = 0.02.

present in the error expression due to the need of using quadrature formulas. It is well-known (see, for
instance, [23], [21], [29], [24], [30], [8], [3]) that the numerical integration in Lagrange-Galerkin methods
may add terms to the final error of the form O(hα/∆t) and, in some cases, even it produces the loss
of unconditional stability. In Figure 7.2 we represent the computed l∞

(
L2
h

)
and l∞

(
H1

h

)
errors for

displacement, velocity and pressure versus 1/h, for a fixed small time step, namely ∆t = 0.0004. We
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can observe that the (LG) scheme possesses second-order accuracy in space in the l∞(L2
h)-norm and

first-order accuracy in space in the l∞(H1
h)-norm.

Moreover, for this example we have also numerically checked that the scheme conserves the volume
with high order of accuracy. Notice that in this example detF = 1 in the fluid domain and in the
solid domain, therefore the areas occupied by fluid and solid are conserved along the time (area(Ωf

t ) =
area(Ωf ), area(Ωs

t ) = area(Ωs) ∀t). Then we calculate the l∞ errors between the areas of fluid and solid
domains at times {tn+1/2}n (calculated by using the approximate motion) and the exact areas (area(Ωs)

and area(Ωf )), i.e., we compute the errors

max
n

∣∣∣area(Ωf
tn+1/2

)− area(Ωf )
∣∣∣ , max

n

∣∣∣area(Ωs
tn+1/2

)− area(Ωs)
∣∣∣ ,

where domains Ωf
tn+1/2

and Ωs
tn+1/2

are calculated by using the approximate motion. In Figure 7.3 (on

the left) we represent these l∞ errors versus the number of time steps for a fixed uniform spatial mesh
of 251 × 251 vertices and for tf = 4. In Figure 7.3 (on the right), we have fixed the time step, namely
∆t = 1/2048, and show the l∞ errors for the areas versus 1/h for tf = 4.

Fig. 7.7. 2D Motion of a cylinder: isopressure contours for η = 0.1 and ρs = 1.25 at t = 14.295 and t = 41.99,
respectively, and for ∆t = 0.02.

Example 2

In this example we consider the 2D motion of an elastic circular cylinder in a rectangular cavity filled
with an incompressible Newtonian viscous fluid. The only force considered is gravity. The computational
domain is Ω = (0, 2) × (0, 6), the diameter of the cylinder is d = 0.25 and the fluid density is ρf = 1.
The values of the Young modulus and Poisson ratio for the cylinder are 108 and 0.3, respectively. For
these values, the solid is visually non-deformable. We solve this problem for different viscosity coeffi-
cients (η = 0.1, η = 0.01) and for different solid densities (ρs = 0.5, ρs = 1.25, ρs = 1.5), with the
pure-Lagrangian method (LG), but remeshing and reinitializing the motion at some times. Specifically,
for η = 0.1 (respectively, for η = 0.01) the problem is reinitialized every second being ∆t = 0.02 (respec-
tively, every 0.01 seconds being ∆t = 0.001). The fluid and the solid are initially at rest. Moreover, when
ρs > ρf the fluid velocity is 0 on the boundary of Ω, that is vD ≡ 0. However, when ρs < ρf , we impose
null Neumann condition (force-free) on the upper horizontal boundary, while on the vertical boundaries
and on the lower horizontal boundary the velocity is zero (no-slip boundary condition). The considered
Lagrangian meshes are finer close to the cylinder. More precisely, for all meshes the minimum mesh-size is
hmin = 0.001 and the maximum one is hmax = 0.07. In Figures 7.4 and 7.5 we show the x-coordinate and
y-coordinate of the center of the solid along the time for µ = 0.1, ρs = 1.25 and for µ = 0.01, ρs = 1.5,
respectively. As expected, we can observe that the cylinder falls much faster when its density is increased
and the fluid viscosity is reduced. In Figures 7.6 and 7.7 we represent, respectively, the streamlines and
the isopressure contours at two times for µ = 0.1 and ρs = 1.25. Similarly, in Figures 7.8 and 7.9 the
streamlines and the isopressure contours at two times and for µ = 0.01 and ρs = 1.5 are shown, respec-
tively. As expected, we obtain a recirculating motion and a symmetric solution. In particular, for both
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Fig. 7.8. 2D Motion of a cylinder: numerical streamlines for η = 0.01 and ρs = 1.5 at t = 2.25 and t = 5.49,
respectively, and for ∆t = 0.001.

Fig. 7.9. 2D Motion of a cylinder: isopressure contours for η = 0.01 and ρs = 1.5 at t = 2.2495 and t = 5.4895,
respectively, and for ∆t = 0.001.

experiments, two perfect symmetric eddies are obtained at each time. These features can be observed in
figures 7.6-7.9. Notice that these experiments have been solved in the whole domain. It is remarkable that
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Fig. 7.10. 2D Motion of a cylinder: histories of the x-coordinate (left) and y-coordinate (right) of the solid center
for η = 0.1 and ρs = 0.5, and for ∆t = 0.02.

Fig. 7.11. 2D Motion of a cylinder: numerical streamlines for η = 0.1 and ρs = 0.5 at t = 4 and t = 12, respectively,
and for ∆t = 0.02.

the scheme is accurate even at very small scales. In particular, in Figures 7.6 and 7.8 we can see the good
definition of the streamlines even at very small scales. Moreover, as we can see in Figures 7.7 and 7.9,
decreasing Reynolds number, the hydrostatic pressure becomes increasingly prominent. In [13] numerical
results for similar experiments are presented. Qualitatively, some of our results are in good agreement
with those presented in [13]. Moreover, we show the numerical results obtained for µ = 0.1 and ρs = 0.5.
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Fig. 7.12. 2D Motion of a cylinder: isopressure contours for η = 0.1 and ρs = 0.5 at t = 3.99 and t = 11.99,
respectively, and for ∆t = 0.02.

Fig. 7.13. 2D Motion of a cylinder: numerical streamlines for η = 0.1, ρs = 1.25, E = 2 and ν = 0.3 at t = 1, for
∆t = 0.02.

More precisely, in Figures 7.10, 7.11 and 7.12 we show the x-coordinate and y-coordinate of the center of
the solid along the time and the streamlines and the isopressure contours at two times, respectively. Fi-
nally, in order to show the behaviour of the pure-Lagrangian scheme for large solid deformation, we solve
the problem described above for η = 0.1, ρs = 1.25, E = 2 and ν = 0.3, with the pure-Lagrangian method
(LG). The obtained results are depicted in Figures 7.13 and 7.14 where the streamlines at t = 1 and
the isopressure contours at t = 0.99 are shown, respectively. In this case any reinitialization was not done.

Example 3

In this example we simulate the large amplitude 2D sloshing of a fluid with a submerged cylinder.
There are several papers in the literature solving this problem but without the submerged body (see, for
instance, [16], [28] and [2]). The width of the tank is 0.8m, its depth is 0.3m and the diameter of the
cylinder is d = 0.12m. The values of the Young modulus and Poisson ratio for the solid are 108 and 0.3,
respectively. The liquid in the tank is subject to a sinusoidal horizontal force. More precisely, the body
force is

b(x, t) = ρ(x, t)(Ag sin(ωt),−g),

where A is an arbitrary constant governing the amplitude of the excitation, g is the gravity acceleration
and ω is the excitation frequency. We have taken, A = 0.01, ρ = 1000 kg/m3, g = 9.8m/s2 and
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Fig. 7.14. 2D Motion of a cylinder: isopressure contours for η = 0.1, ρs = 1.25, E = 2 and ν = 0.3 at t = 0.99, for
∆t = 0.02.
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Fig. 7.15. Sloshing waves: histories of the center of the solid (left) and of wave height at the walls (right), for a
spatial mesh of 11097 vertices and ∆t = 0.02.

ω = 5.642 rad/s. Using these parameters, experimental results show that the first resonance frequency
of the tank filled with inviscid fluid and using the potential theory is 0.898Hz. Moreover, the viscosity
coefficient has been taken η = 1Pa.s. The only body force acting on the solid is gravity. On the
vertical boundaries the horizontal velocity is zero, on the lower horizontal boundary the vertical velocity
is zero and on the upper horizontal boundary we impose null Neumann condition (force-free). In order to
show the behaviour of the pure-Lagrangian scheme for large mesh distortion, we solve this problem with
the pure-Lagrangian method (LG) without any reinitialization. In this method, at each time step, the
computational domain is the reference domain; in this case it is Ω = (0, 0.8)×(0, 0.3). The computational
time of this simulation, with the pure-Lagrangian method (LG) without any reinitialization (on a DELL
PowerEdge computer with an Intel(R) Xeon(R) processor, CPU E5430 @ 2.66GHz, and 16GB of RAM)
and for a spatial mesh of 11097 vertices, ∆t = 0.02 and tf = 14.13, is 3.85 min. In particular, the
computational time per time step spent in solving the Navier-Stokes equations is 0.33 s. Notice that, at
each time step we solve a linear problem. However, most schemes in literature solve non-linear problems.

Figure (7.15) shows the trajectory of the center of the solid (left) and the vertical displacement of
the upper corner nodes at the tank wall as a function of time (right). In Figure 7.16 we represent an
instantaneous configuration of the domain, the streamlines and the isopressure contours.

Moreover, for this example we have also numerically checked that the scheme conserves the fluid
volume: the relative error at the final time (tf = 14.13) and the l∞ relative error, in the fluid area, are
2.738E − 04 and 3.613E − 04, respectively, for a spatial mesh of 11097 vertices and ∆t = 0.02.
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Fig. 7.16. Sloshing waves: instantaneous domain configuration, streamlines and isopressure contours at t = 14 and
t = 13.99, respectively, and for a spatial mesh of 11097 vertices and ∆t = 0.02.

8. Conclusions. We have introduced a pure Lagrange-Galerkin scheme for solving fluid-structure
interaction problems. This scheme is written in Lagrangian coordinates and in terms of displacement
rather than velocity also for the fluid and therefore it is useful for solving free surface and fluid-structure
interaction problems. For moderate to high-Reynolds number flows, this scheme can lead to high dis-
tortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the scheme
from time to time. We have proposed a method for reinitialization. Numerical tests have been presented
to assess the effectiveness of the method and to analyze its rates of convergence. In particular, we have
considered the 2D motion of an elastic cylinder in a rectangular tank filled with an incompressible New-
tonian viscous fluid. This problem has been solved with the pure-Lagrangian method but remeshing and
reinitializing at certain times were needed. Moreover, we have considered a 2D sloshing problem of a
fluid containing an elastic submerged cylinder that has been solved without any reinitialization. We have
also numerically checked that the scheme conserves the volume with high order of accuracy both in time
and in space.
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